WO2019095147A1 - 一种空中显示系统及空中显示方法 - Google Patents

一种空中显示系统及空中显示方法 Download PDF

Info

Publication number
WO2019095147A1
WO2019095147A1 PCT/CN2017/111122 CN2017111122W WO2019095147A1 WO 2019095147 A1 WO2019095147 A1 WO 2019095147A1 CN 2017111122 W CN2017111122 W CN 2017111122W WO 2019095147 A1 WO2019095147 A1 WO 2019095147A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
total reflection
reflection mirror
optical component
lens
Prior art date
Application number
PCT/CN2017/111122
Other languages
English (en)
French (fr)
Inventor
陈永新
曾宏
李振全
Original Assignee
深圳盈天下视觉科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳盈天下视觉科技有限公司 filed Critical 深圳盈天下视觉科技有限公司
Priority to PCT/CN2017/111122 priority Critical patent/WO2019095147A1/zh
Publication of WO2019095147A1 publication Critical patent/WO2019095147A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms

Definitions

  • the present invention relates to the field of holographic display imaging, and more particularly to an aerial display system and an aerial display method.
  • the image is reflected by a transflective glass, and the image of the screen is reflected, and the virtual image is extended in the reverse direction along the reflection path, thereby finally forming a virtual image inside the glass (mirror principle), due to the transflective
  • the glass can see the back of the glass, the virtual image is merged with the scene behind the glass. From the perspective, the virtual image becomes a holographic image displayed in the air, but the shortcoming of this imaging is that it can only be seen and cannot be touched, and because the light passes through the transflective There is light loss in the glass, resulting in low image clarity for the final image.
  • the present invention provides an aerial display system that uses optical components to focus and refract light, and displays high-definition images in the air for the viewer to touch, giving a sense of reality.
  • An aerial display system includes a cover body having an opening for viewing, a display body in the cover body, and a display at a 45 degree angle above the display for total reflection of light emitted by the display.
  • a total reflection mirror one side of which is provided with an optical component for refraction focusing of light reflected by the total reflection mirror, and light passing through the optical component forms a focus point in front of the optical component and then diverges in front of the opening The real image corresponding to the image on the display.
  • the optical component comprises at least one vertically disposed focusing lens, and the light reflected by the total reflection lens is refracted and focused by a focusing lens.
  • the optical component comprises three vertically disposed focusing lenses, and the light reflected by the total reflection mirror is sequentially refracted and focused by three focusing lenses.
  • the focusing lens includes, but is not limited to, a convex lens, a single Fresnel lens, a double Fresnel lens, or a Fresnel lens of different focal lengths. ⁇ 0 2019/095147 ⁇ (:1' 2017/111122
  • the total reflection mirror includes, but is not limited to, a front mirror, a back mirror or a reflective film.
  • the display is an image generator, and the image generator includes, but is not limited to, a liquid crystal display, a 01. 0 display, or a projector.
  • the present invention also provides an aerial display method, comprising the following steps:
  • the display in the housing emits light in a direction upward, and the light emitted by the display is totally reflected by a total reflection mirror that is inclined at 45°;
  • the present invention provides an airborne display system in which all the light emitted by the display is reflected by the total reflection mirror, and then refracted by the optical component to form a focus in front of the optical component. The point then diverges in front of the opening to form a real image corresponding to the display.
  • the real image is displayed in the air, in front of the viewer, and the viewer reaches for a transmissive touch to the real image, giving a sense of reality; and the light is reflected by the total reflection mirror and
  • the optical components are low-loss and maintain the brightness of the image.
  • FIG. 1 is a schematic diagram 1 of an image display system for an aerial display system according to the present invention.
  • FIG. 2 is a second schematic diagram of image display by an aerial display system according to the present invention.
  • the aerial display system includes a cover body 1 .
  • the cover 10 is provided with an opening 11 for viewing.
  • the cover 10 is provided with a display 20, and the display 20 is provided with a 45 degree tilt.
  • total reflection mirror 30 Setting the light for the display 20 ⁇ 0 2019/095147 ⁇ (:1' 2017/111122 Total reflection mirror 30 for total reflection, one side of total reflection mirror 30 is provided with an optical component for refraction focusing of light reflected by total reflection mirror 30 40, the light passing through the optical component 40 forms a focus point 41 in front of the optical component 40 and then diverges in front of the opening 11 into a real image corresponding to the image on the display 20, so that the real image is displayed in the air, in front of the viewer, and the viewer can reach out.
  • the penetrating touch to the real image gives an unprecedented visual experience in the visual experience, giving a sense of reality; and the light is transmitted through the total reflection mirror 30 and the optical assembly 40 without loss, and the brightness of the real image can be maintained.
  • the optical assembly 40 includes at least one vertically disposed focusing lens, and the light reflected by the total reflection mirror 30 is refracted and focused by a focusing lens.
  • the focusing lens includes, but is not limited to, a convex lens, a single Fresnel lens, a double Fresnel lens, or a Fresnel lens of different focal lengths.
  • the total reflection mirror 30 includes, but is not limited to, a front mirror, a back mirror, or a reflective film.
  • the display 20 is an image generator, and the image generator includes, but is not limited to, a liquid crystal display, Display, 01 ⁇ 1) display or projector.
  • the optical assembly 40 includes three vertically disposed focusing lenses, and the light reflected by the total reflection mirror 30 sequentially passes through three focusing lenses. Perform refraction focusing.
  • the three focus lenses are referred to as a first focus lens 401, a second focus lens 402, and a third focus lens 403 in order from left to right, such that the light reflected by the total reflection mirror 30 sequentially passes through the three focus lenses 4 01, 402 403, a focus point 41 is formed in front of the third focus lens 403, and then the focus point 41 diverges light to form a real image corresponding to the image on the display 20 before the opening.
  • the spacing between the three focusing lenses 401, 402, 403 is determined by the respective focal lengths, and the focusing point 41 formed in front of the optical assembly 40 is determined by the focal length of the third focusing lens 403. Therefore, the distance between the image formed by the divergence of the focus point 41 and the opening 11 is also determined by the focal length of the third focus lens.
  • the image formed by the focus point 41 is a real image corresponding to the image on the display, and the brightness of the image is high, and the viewer reaches the hand to penetrate the image to give a sense of reality.
  • each focusing lens has a corrugated surface and a smooth surface; in order to obtain a clearer and brighter image, the first focusing lens 401 may be disposed as a corrugated surface toward the total reflection mirror, the second focusing lens 402 and the third focusing.
  • the respective corrugated faces of the lenses 403 are oppositely disposed.
  • the present invention also provides an aerial display method, comprising the following steps:
  • the display 20 in the housing emits light with upward direction (as shown in FIG. 1), and the display 20 emits ⁇ 0 2019/095147 ⁇ (:1' 2017/111122
  • the light emitted by the total reflection mirror 30 is inclined at 45° (shown in Figure 2);

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种空中显示系统及空中显示方法,空中显示系统包括罩体(10),罩体(10)上设有供观看的开口(11),罩体(10)内设有显示器(20),显示器(20)的上方设有呈45度倾斜设置用于对显示器(20)发出的光线进行全反射的全反射镜(30),全反射镜(30)的一侧设有设用于对经过全反射镜(30)反射的光线进行折射聚焦的光学组件(40),穿过光学组件(40)的光线在光学组件(40)前方形成聚焦点(41)再在开口(11)前方发散成与显示器(20)上图像对应的实像。空中显示系统将实像显示在空中,处于观看者的面前,明亮清晰,观看者伸手可穿透性的触摸到实像,给人真实感。

Description

\¥0 2019/095147 ?€1^2017/111122
一种空中显示系统及空中显示方法
技术领域
[0001] 本发明涉及全息显示成像领域, 特别是一种空中显示系统及空中显示方法。
背景技术
[0002] 现有技术中, 成像是通过一块半透半反射玻璃, 将屏幕的影像反射, 虚像沿着 反射路径反向延长, 最终形成一个虚像在玻璃里面 (镜子原理) , 由于半透半 反玻璃可以看到玻璃背后, 虚像跟玻璃背后的景物融合, 从视角上虚像成为了 一个在空中显示的全息影像, 但这种成像的缺点是只能看不能摸, 并且由于光 线透过半透半反射玻璃会有光损耗, 造成最终成像的影像清晰度不高。
技术问题
[0003] 针对上述问题, 本发明提供了一种空中显示系统, 利用光学组件对光线进行折 射聚焦, 在空中显示高清图像, 可供观看者触摸, 给人真实感。
问题的解决方案
技术解决方案
[0004] 本发明采用的技术方案为:
[0005] 一种空中显示系统, 包括罩体, 罩体上设有供观看的开口, 罩体内设有显示器 , 显示器的上方设有呈 45度倾斜设置用于对显示器发出的光线进行全反射的全 反射镜, 全反射镜的一侧设有设用于对经过全反射镜反射的光线进行折射聚焦 的光学组件, 穿过光学组件的光线在光学组件前方形成聚焦点再在开口前方发 散成与显示器上图像对应的实像。
[0006] 优选地, 所述光学组件包括至少一个竖直设置的聚焦透镜, 经过全反射镜片反 射的光线经过聚焦透镜进行折射聚焦。
[0007] 优选地, 所述光学组件包括三个竖直设置的聚焦透镜, 经过全反射镜反射的光 线依次经过三个聚焦透镜进行折射聚焦。
[0008] 更优选地, 所述聚焦透镜包括但不限于凸透镜、 单菲涅尔透镜、 双菲涅尔透镜 或不同焦距的菲涅尔透镜。 \¥0 2019/095147 卩(:1' 2017/111122
[0009] 更优选地, 所述全反射镜包括但不限于前反射镜、 后反射镜或反射膜。
[0010] 更优选地, 所述显示器为图像发生器, 所述图像发生器包括但不限于液晶显示 显示器、 01^0显示器或投影器。
[0011] 本发明还提供一种空中显示方法, 包括以下步骤:
[0012] 1) 处于罩体内的显示器发出方向朝上的光线, 显示器发出的光线被呈 45°倾 斜设置的全反射镜全反射;
[0013] 2) 经过全反射镜反射的光线穿过设置在全反射镜一侧的光学组件进行折射聚 焦;
[0014] 3) 穿过光学组件的光线在光学组件前方形成聚焦点再在开口前方发散成与显 示器上图像对应的实像。
发明的有益效果
有益效果
[0015] 与现有技术相比, 本发明的有益效果在于: 本发明提供一种空中显示系统, 显 示器发出的光线全部被全反射镜反射, 再经光学组件折射聚焦, 在光学组件前 方形成聚焦点再在开口前方发散成与显示器上对应的实像, 这实像显示在空中 , 处于观看者的面前, 观看者伸手可穿透性的触摸到实像, 给人真实感; 并且 光线经全反射镜和光学组件低损耗, 可保持图像的明亮度。
对附图的简要说明
附图说明
[0016] 图 1为本发明提供的一种空中显示系统进行图像显示的示意图一;
[0017] 图 2为本发明提供的一种空中显示系统进行图像显示的示意图二。
实施该发明的最佳实施例
本发明的最佳实施方式
[0018] 根据附图对本发明提供的优选实施方式做具体说明。
[0019] 图 1至图 2, 为本发明提供的一种空中显示系统的优选实施方式。 如图 1至图 2所 示, 该空中显示系统包括罩体 1〇, 罩体 10上设有供观看的开口 11, 罩体 10内设 有显示器 20, 显示器 20的上方设有呈 45度倾斜设置用于对显示器 20发出的光线 \¥0 2019/095147 卩(:1' 2017/111122 进行全反射的全反射镜 30, 全反射镜 30的一侧设有设用于对经过全反射镜 30反 射的光线进行折射聚焦的光学组件 40, 穿过光学组件 40的光线在光学组件 40前 方形成聚焦点 41再在开口 11前方发散成与显示器 20上图像对应的实像, 这样实 像显示在空中, 处于观看者的面前, 观看者伸手可穿透性的触摸到实像, 在视 觉体验上得到前所未有的视觉体验, 给人真实感; 并且光线经全反射镜 30和光 学组件 40无损耗, 可保持该实像的明亮度。
[0020] 该光学组件 40包括至少一个竖直设置的聚焦透镜, 经过全反射镜 30反射的光线 经过聚焦透镜进行折射聚焦。 所述聚焦透镜包括但不限于凸透镜、 单菲涅尔透 镜、 双菲涅尔透镜或不同焦距的菲涅尔透镜。
[0021] 所述全反射镜 30包括但不限于前反射镜、 后反射镜或反射膜。
[0022] 所述显示器 20为图像发生器, 所述图像发生器包括但不限于液晶显示器、
Figure imgf000005_0001
显示器、 01^1)显示器或投影器。
[0023] 作为一种较佳的优选实施方式, 如图 1至图 2所示, 该光学组件 40包括三个竖直 设置的聚焦透镜, 经过全反射镜 30反射的光线依次经过三个聚焦透镜进行折射 聚焦。 三个聚焦透镜按照从左至右的顺序记为第一聚焦透镜 401、 第二聚焦透镜 402和第三聚焦透镜 403, 这样全反射镜 30反射的光线依次经过这三个聚焦透镜 4 01、 402、 403, 在第三个聚焦透镜 403前方形成聚焦点 41, 然后聚焦点 41发散光 , 在开口前形成与显示器 20上图像对应的实像。
[0024] 值得注意的是, 这三个聚焦透镜 401、 402、 403之间的间距由各自的焦距决定 , 在光学组件 40前方形成的聚焦点 41则由第三个聚焦透镜 403的焦距决定, 因此 , 聚焦点 41发散形成的图像与开口 11之间的间距也是由第三个聚焦透镜的焦距 决定。 该聚焦点 41形成的图像为与显示器上图像对应的实像, 图像的明亮度高 , 观看者伸手可穿透性的触摸到图像, 给人真实感。
[0025] 另外, 每一个聚焦透镜都有波纹面和光滑面; 为了得到更加清晰明亮的图像, 可将第一聚焦透镜 401设置为波纹面朝向全反射镜, 第二聚焦透镜 402和第三聚 焦透镜 403的各自波纹面相对设置。
[0026] 本发明还提供一种空中显示方法, 包括以下步骤:
[0027] 1) 处于罩体内的显示器 20发出方向朝上的光线 (如图 1所示) , 显示器 20发 \¥0 2019/095147 卩(:1' 2017/111122 出的光线被呈 45°倾斜设置的全反射镜 30全反射 (如图 2所示) ;
[0028] 2) 经过全反射镜 30反射的光线穿过设置在全反射镜 30—侧的光学组件 40进行 折射聚焦;
[0029] 3) 穿过光学组件 40的光线在光学组件 40前方形成聚焦点 41再在开口 11前方发 散成与显示器上图像对应的实像 (如图 2所示) 。
[0030] 综上所述, 本发明的技术方案可以充分有效的实现上述发明目的, 且本发明的 结构及功能原理都已经在实施例中得到充分的验证, 能达到预期的功效及目的 , 在不背离本发明的原理和实质的前提下, 可以对发明的实施例做出多种变更 或修改。 因此, 本发明包括一切在专利申请范围中所提到范围内的所有替换内 容, 任何在本发明申请专利范围内所作的等效变化, 皆属本案申请的专利范围 之内。

Claims

\¥0 2019/095147 ?€1^2017/111122 权利要求书
[权利要求 1] 一种空中显示系统, 其特征在于, 包括罩体, 罩体上设有供观看的开 口, 罩体内设有显示器, 显示器的上方设有呈 45度倾斜设置用于对显 示器发出的光线进行全反射的全反射镜, 全反射镜的一侧设有设用于 对经过全反射镜反射的光线进行折射聚焦的光学组件, 穿过光学组件 的光线在光学组件前方形成聚焦点再在开口前方发散成与显示器上图 像对应的实像。
[权利要求 2] 如权利要求 1所述的空中显示系统, 其特征在于: 所述光学组件包括 至少一个竖直设置的聚焦透镜, 经过全反射镜片反射的光线经过聚焦 透镜进行折射聚焦。
[权利要求 3] 如权利要求 1所述的空中显示系统, 其特征在于: 所述光学组件包括 三个竖直设置的聚焦透镜, 经过全反射镜反射的光线依次经过三个聚 焦透镜进行折射聚焦。
[权利要求 4] 如权利要求 2或 3所述的空中显示系统, 其特征在于: 所述聚焦透镜包 括但不限于凸透镜、 单菲涅尔透镜、 双菲涅尔透镜或不同焦距的菲涅 尔透镜。
[权利要求 5] 如权利要求 2或 3所述的空中显示系统, 其特征在于: 所述全反射镜包 括但不限于前反射镜、 后反射镜或反射膜。
[权利要求 6] 如权利要求 2或 3所述的空中显示系统, 其特征在于: 所述显示器为图 像发生器, 所述图像发生器包括但不限于液晶显示器、
Figure imgf000007_0001
显示器、 01^0显示器或投影器。
[权利要求 7] 一种空中显示方法, 其特征在于, 包括以下步骤:
1) 处于罩体内的显示器发出方向朝上的光线, 显示器发出的光线被 呈 45°倾斜设置的全反射镜全反射;
2) 经过全反射镜反射的光线穿过设置在全反射镜一侧的光学组件进 行折射聚焦;
3) 穿过光学组件的光线在光学组件前方形成聚焦点再在开口前方发 散成与显示器上图像对应的实像。 WO 2019/095147 PCT/CN2017/111122
PCT/CN2017/111122 2017-11-15 2017-11-15 一种空中显示系统及空中显示方法 WO2019095147A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/111122 WO2019095147A1 (zh) 2017-11-15 2017-11-15 一种空中显示系统及空中显示方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/111122 WO2019095147A1 (zh) 2017-11-15 2017-11-15 一种空中显示系统及空中显示方法

Publications (1)

Publication Number Publication Date
WO2019095147A1 true WO2019095147A1 (zh) 2019-05-23

Family

ID=66538337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111122 WO2019095147A1 (zh) 2017-11-15 2017-11-15 一种空中显示系统及空中显示方法

Country Status (1)

Country Link
WO (1) WO2019095147A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110174757A (zh) * 2019-06-18 2019-08-27 苗家豪 光线绕流隐身装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040150758A1 (en) * 2002-12-05 2004-08-05 Samsung Electronics Co., Ltd. Head-mounted display
CN106526844A (zh) * 2015-09-14 2017-03-22 贾裕忠 凹反射放大式增强现实立体眼镜
CN106707531A (zh) * 2017-01-04 2017-05-24 京东方科技集团股份有限公司 一种显示装置及穿戴式设备
CN106842573A (zh) * 2017-01-26 2017-06-13 西安可视可觉网络科技有限公司 一种ar或vr成像方法及可用于ar或vr的眼镜
CN107703726A (zh) * 2017-11-15 2018-02-16 深圳盈天下视觉科技有限公司 一种空中显示系统及空中显示方法
CN207571474U (zh) * 2017-11-15 2018-07-03 深圳盈天下视觉科技有限公司 一种空中显示系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040150758A1 (en) * 2002-12-05 2004-08-05 Samsung Electronics Co., Ltd. Head-mounted display
CN106526844A (zh) * 2015-09-14 2017-03-22 贾裕忠 凹反射放大式增强现实立体眼镜
CN106707531A (zh) * 2017-01-04 2017-05-24 京东方科技集团股份有限公司 一种显示装置及穿戴式设备
CN106842573A (zh) * 2017-01-26 2017-06-13 西安可视可觉网络科技有限公司 一种ar或vr成像方法及可用于ar或vr的眼镜
CN107703726A (zh) * 2017-11-15 2018-02-16 深圳盈天下视觉科技有限公司 一种空中显示系统及空中显示方法
CN207571474U (zh) * 2017-11-15 2018-07-03 深圳盈天下视觉科技有限公司 一种空中显示系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110174757A (zh) * 2019-06-18 2019-08-27 苗家豪 光线绕流隐身装置

Similar Documents

Publication Publication Date Title
US11630250B2 (en) System for use in imaging in air
RU2594370C2 (ru) Световодная структура, оптическое устройство и система формирования изображений
JP6808745B2 (ja) 投影光学系、及びヘッドアップディスプレイ装置
WO2017061040A1 (ja) 投影光学系及びヘッドアップディスプレイ装置
TWI497116B (zh) 立體影像顯示裝置及立體影像顯示方法
JP2010538313A (ja) 広視野角を有する現実的画像表示装置
US10809609B2 (en) Projection apparatus
US20220317448A1 (en) AR Optical System and AR Display Device
WO2015043098A1 (zh) 一种多视角裸眼立体显示系统及其显示方法
JP2014240960A (ja) 空間映像投映装置
CN110286496B (zh) 一种基于前置方向性光源的立体显示装置
WO2020237923A1 (zh) 一种显示面板、显示方法及显示系统
WO2019087996A1 (ja) 網膜投影装置、網膜投影システム
US11644673B2 (en) Near-eye optical system
JP5059272B2 (ja) 2段階光学拡大および画像修正装置
JP2003057595A (ja) 三次元表示装置
US20180348533A1 (en) Display system and display method of display system
WO2019095147A1 (zh) 一种空中显示系统及空中显示方法
JP7051077B2 (ja) 空中像形成光学系及び空中像形成装置
CN107703726A (zh) 一种空中显示系统及空中显示方法
JP2009063914A (ja) 表示装置
US10605968B2 (en) Imaging system
TWI608255B (zh) 立體浮空影像顯示裝置
KR100420924B1 (ko) 3차원 입체영상표시장치
US11754837B2 (en) Optical device for augmented reality having external light leakage prevention function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932417

Country of ref document: EP

Kind code of ref document: A1