WO2022032905A1 - 一种直流海缆用异型单线模具及其设计方法 - Google Patents

一种直流海缆用异型单线模具及其设计方法 Download PDF

Info

Publication number
WO2022032905A1
WO2022032905A1 PCT/CN2020/128490 CN2020128490W WO2022032905A1 WO 2022032905 A1 WO2022032905 A1 WO 2022032905A1 CN 2020128490 W CN2020128490 W CN 2020128490W WO 2022032905 A1 WO2022032905 A1 WO 2022032905A1
Authority
WO
WIPO (PCT)
Prior art keywords
special
mold
shaped single
wire
copper rod
Prior art date
Application number
PCT/CN2020/128490
Other languages
English (en)
French (fr)
Inventor
梅文杰
朱建风
潘文
祝茂宇
狄健
于治雨
潘文林
钱志康
周阳
杨杰
Original Assignee
江苏亨通高压海缆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨通高压海缆有限公司 filed Critical 江苏亨通高压海缆有限公司
Publication of WO2022032905A1 publication Critical patent/WO2022032905A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/251Design of extruder parts, e.g. by modelling based on mathematical theories or experiments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • H01B13/24Sheathing; Armouring; Screening; Applying other protective layers by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/32Filling or coating with impervious material

Definitions

  • the invention belongs to the field of power cables, and in particular relates to a special-shaped single-wire mold for a DC submarine cable and a design method thereof.
  • Ultra-high voltage flexible DC submarine cable system is the key technology to realize far-sea wind power transmission.
  • high-voltage flexible DC transmission has the characteristics of large transmission capacity, long transmission distance and high system stability, especially the flexible DC transmission system is flexible and easy to use.
  • it has received extensive attention from domestic and foreign scientific research institutes and submarine cable manufacturers in recent years.
  • ultra-high voltage flexible DC submarine cables Due to the characteristics of large power transmission capacity and deep submarine cable laying water for far-sea wind power, ultra-high voltage flexible DC submarine cables generally need to use large-section water-blocking conductors. Solving the difficulties in the production of large-section conductors can also significantly improve the water-blocking performance of the conductors.
  • the current production process of special-shaped single-wire is not very mature. The production of special-shaped single-wire conductors by extrusion can ensure that the structure and size of special-shaped single-wire meet the design requirements, but the production efficiency On the low side, it cannot meet the production requirements of large-length submarine cables.
  • the main technical problem to be solved by the present invention is to provide a special-shaped single-wire mold for a DC submarine cable and a design method thereof, which can solve the design problem of the drawing mold required by the drawing process.
  • a technical solution adopted in the present invention is: a special-shaped single-wire mold for a DC submarine cable, comprising a sizing mold and a number of process molds, and a number of the process mold sleeves are sequentially sleeved on the sizing mold from small to large. outside of the mold;
  • the cross-sectional change rate of the adjacent sizing mold and the process mold and the cross-section change rate of the two adjacent process molds are controlled at 0% to 55%;
  • the sizing die is arc-shaped.
  • the shape of the sizing die and the process die are the same.
  • four corners of the sizing die and the process die are provided with arc chamfers.
  • a design method of a special-shaped single-wire mold for a DC submarine cable the specific steps include:
  • S sizing die is the cross-sectional area of the sizing die
  • n is the required number of the process die
  • X n is the cross-sectional change rate of the nth process die, from the copper rod incoming wire to the The rate of change of the section of the sizing die is X n ... X 2 , X 1 in sequence
  • the S copper rod is the cross-sectional area of the copper rod
  • the plane structure size of each of the process molds is obtained by expanding the upper, lower, left, and right diameters of the previous described sizing mold or the process mold;
  • is the angle between one side of the special-shaped single line and its symmetry axis
  • R 1 is the radius of the inner arc of the special-shaped single line
  • R 2 is the radius of the outer arc of the special-shaped single line
  • the coordinates of point A are ( -(R 2 -R 1 )sin ⁇ , (R 2 -R 1 )cos ⁇ )
  • the center of the copper rod must be on the axis of symmetry of the special-shaped single line
  • the calculated coordinates of point O are (R 1 sin ⁇ , ), at this time, the center position of the special-shaped single wire coincides with the position of the circle center of the copper rod.
  • the structural dimension of the sizing die in the step 1) is the same as the structural dimension of the shaped single wire of the finished product.
  • the size of the cross-sectional area of the copper rod in the step 2) is selected according to the size of the known finished special-shaped single-wire structure.
  • the cross-sectional change rate X n ⁇ (0, 55%) of the adjacent process molds in the step 2), the cross-sectional change rate X n ⁇ (0, 55%) of the adjacent process molds.
  • the value of ... X n so that it satisfies the original formula (1), and then determine the plane structure size of each of the process molds according to step 3).
  • the arc chamfered portion between adjacent molds is enlarged by 2-3 times.
  • step 3 the four circular arc chamfers of the outermost process mold are adjusted according to the actual size, so that the four circular arcs of the process mold are The chamfers are all within the circular section of the copper rod.
  • the beneficial effects of the present invention are: a special-shaped single-wire mold for a DC submarine cable and a design method thereof of the present invention, wherein the design method determines the number of process molds, the plane structure size of each mold, and the relative relationship between the special-shaped single wire and the center of the copper rod. The positional relationship ensures that the copper rod is subjected to uniform extrusion deformation in all directions during the drawing process.
  • FIG. 1 is a schematic diagram of drawing a copper rod of a special-shaped single-wire mold for a DC submarine cable and a design method thereof.
  • FIG. 2 is a diagram showing the relative positional relationship between a special-shaped single wire and a circular section of a copper rod of a special-shaped single-wire mold for a DC submarine cable and a design method thereof.
  • FIG. 3 is a schematic diagram of the position of a special-shaped single-wire mold for a DC submarine cable and a mold of a design method thereof.
  • FIG. 4 is a schematic structural diagram of a mold in one embodiment of a special-shaped single-wire mold for a DC submarine cable and a design method thereof.
  • an embodiment of the present invention includes: a special-shaped single-wire mold for a DC submarine cable, including a sizing mold 2 and a number of process molds 3, and a number of the process molds 3 sets are sequentially sleeved on the Outside the sizing die 2, when the copper rod 1 is drawn into a special-shaped single wire 4 monofilament, it needs to pass through multiple molds, and slowly draw the circular copper rod 1 into a specified structure, and the closer it is to the fixed diameter. The smaller the change rate of the section of the diameter die 2, the greater the change rate of the section near the entry line of the copper rod 1.
  • the cross-sectional change rates of the adjacent sizing molds 2 and the process molds 3 and the cross-section change rates of the two adjacent process molds 3 are both controlled at 0% to 55%.
  • the sizing die 2 is in the shape of an arc, and the sizing die 2 has the same shape as the process die 3.
  • the four corners of the sizing die 2 and the process die 3 are provided with circular arcs. Angle, the arc chamfer can avoid damage to the mold during the processing of the special-shaped single wire 44.
  • a design method for a special-shaped single-wire 4 mold for a DC submarine cable the specific steps include:
  • S sizing die is the cross-sectional area of the sizing die 2
  • n is the required number of the process die 3
  • X n is the cross-sectional change rate of the nth process die 3
  • the adjacent process die 3 the section change rate X n ⁇ (0, 55%), from the copper rod 1 incoming wire to the sizing die 2, the section change rate is X n ... X 2 , X 1
  • S copper rod 1 is the cross-sectional area of the copper rod 1, and the size of the cross-sectional area of the copper rod 1 is selected according to the structural size of the known finished special-shaped single wire 4;
  • the plane structure size of each of the process molds 3 is obtained from the expansion of the previous sizing mold 2 or the process mold 3 with equal diameters up and down, left and right, so that The copper rod 1 is subjected to uniform extrusion deformation in all directions.
  • the arc chamfered portion between adjacent molds is enlarged by 2-3 times, and the four arc chamfers of the outermost process mold 3 are adjusted according to the actual size, so that the four The arc chamfers are all within the circular section of the copper rod 1 .
  • the horizontal distance between the end point of the outer arc of the special-shaped single line 4 on the side and the point B, the vertical distance from the point B to the symmetry axis of the special-shaped single line 4 is the vertical distance between the end point of the outer arc of the special-shaped single line 4 on the side of the point B and the point B distance;
  • is the angle between one side of the special-shaped single wire 4 and its symmetry axis
  • R 1 is the radius of the inner arc of the special-shaped single wire 4
  • R 2 is the radius of the outer arc of the special-shaped single wire 4
  • point A The coordinates are (-(R 2 -R 1 )sin ⁇ , (R 2 -R 1 )cos ⁇ ), in order to make the special-shaped single wire 4 coincide with the center of the copper rod 1, the center of the copper rod 1 must be in the On the symmetric axis of the special-shaped single line 4, let the coordinate of point O be (R 1 sin ⁇ , y), and according to the coordinates of point O, A, and B, the lengths of OA and OB can be obtained according to formulas (5) and (6);
  • the calculated coordinates of point O are (R 1 sin ⁇ , ), at this time, the center position of the special-shaped single wire 4 coincides with the center position of the copper rod 1 .
  • the present invention provides a special-shaped single wire mold for a DC submarine cable and a design method thereof.
  • the design method determines the number of process molds, the plane structure size of each mold, and the relative relationship between the special-shaped single wire and the center of the copper rod. The positional relationship ensures that the copper rod is subjected to uniform extrusion deformation in all directions during the drawing process.
  • the design of the drawing die for the circular monofilament is relatively simple and cannot be used to guide the design of the special-shaped single-wire drawing die. It can significantly improve the compression coefficient of the conductor and improve the water blocking performance of the conductor.
  • the special-shaped single wire is produced by the extrusion method, and the production efficiency is low. The wire drawing process can significantly improve the production efficiency of the special-shaped single wire.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Wire Processing (AREA)

Abstract

本发明公开了一种直流海缆用异型单线模具,包括定径模具和若干过程模具,若干所述过程模具套从小到大依次套在所述定径模具外侧;相邻的所述定径模具与所述过程模具的截面变化率以及相邻的两所述过程模具的截面变化率均控制在0%~55%;所述定径模具为圆弧形。通过上述方式,本发明一种直流海缆用异型单线模具及其设计方法,该设计方法确定了过程模具的个数、每个模具的平面结构尺寸以及异型单线与铜杆圆心的相对位置关系,保证了拉丝过程中铜杆各个方向都受到均匀的挤塑变形。

Description

一种直流海缆用异型单线模具及其设计方法 技术领域
本发明属于电力电缆领域,具体涉及一种直流海缆用异型单线模具及其设计方法。
背景技术
超高压柔性直流海缆系统是实现远海风电传输的关键技术,高压柔性直流输电相较于高压交流输电具有传输容量大、传输距离远和系统稳定性高等特点,尤其是柔性直流输电系统灵活,易于应对分布式能源随机性潮流,近年来获得了国内外科研院所和海缆厂家的广泛关注。
由于远海风电需要传输的电力容量大、海缆敷设水域深等特点,超高压柔性直流海缆普遍需要用到大截面阻水导体,采用异型单线圆形紧压导体的结构形式,不仅能很好解决大截面导体生产难点,也能够显著提高导体的阻水性能,但目前异型单线生产工艺还不是很成熟,采用挤出方式生产异型单线导体能够保证异型单线的结构尺寸满足设计要求,但生产效率偏低,不能满足大长度海缆的生产要求。
发明内容
本发明主要解决的技术问题是提供一种直流海缆用异型单线模具及其设计方法,能够解决拉拔工艺所需的拉拔模具设计难题。
为解决上述技术问题,本发明采用的一个技术方案是:一种直流海缆用异型单线模具,包括定径模具和若干过程模具,若干所述过程模具套从小到大依次套在所述定径模具外侧;
相邻的所述定径模具与所述过程模具的截面变化率以及相邻的两所述过程模具的截面变化率均控制在0%~55%;
所述定径模具为圆弧形。
在本发明一个较佳实施例中,所述定径模具与所述过程模具的形状相同。
在本发明一个较佳实施例中,所述定径模具与所述过程模具的四个角上均设有圆弧倒角。
一种直流海缆用异型单线模具的设计方法,具体步骤包括:
1)确定所述定径模具的平面结构尺寸:根据客户提供的成品异型单线结构尺寸,从而确定所述定径模具的结构尺寸;
2)确定所述过程模具个数:根据公式(1)计算所需模具个数;
S 定径模×(1+X 1)×(1+X 2)×…(1+X n)=S 铜杆        (1)
其中S 定径模为所述定径模具的截面积,n为所需所述过程模具个数,X n为第n个所述过程模具的截面变化率,从所述铜杆进线到所述定径模具其截面变化率依次是X n...X 2、X 1,S 铜杆为所述铜杆的截面积;
3)确定每个所述过程模的平面结构尺寸:每个所述过程模具的平面结构尺寸为由上一个所述定径模具或者所述过程模具上下左右等径扩大而得;
4)确定所述异型单线与所述铜杆圆心的相对位置:根据已知成品异型单线结构尺寸,计算出铜杆圆心O点位置关系,首先以点B为坐标系原点,通过公式(2)、(3)和(4)分别计算出位于B点侧的所述异型单线外圆弧端点与B点的水平距离、B点到所述异型单线对称轴的垂直距离位于B点侧的所述异型单线外圆弧端点与B点的垂直距离;
AN=(R 2-R 1)sinθ             (2)
BM=R 1sinθ               (3)
BN=(R 2-R 1)cosθ            (4)
其中θ为所述异型单线的一侧边与其对称轴的夹角,R 1为所述异型单线内圆弧的半径,R 2为所述异型单线外圆弧的半径,则A点坐标为(-(R 2-R 1)sinθ,(R 2-R 1)cosθ),为了使得所述异型单线与所述铜杆圆心位置重合,所述铜杆圆心必然在所述异型单线对称轴上,设O点坐标为(R 1sinθ,y),根据O、A、B点坐标根据公式(5)和(6)可以求出OA、OB的长度;
Figure PCTCN2020128490-appb-000001
Figure PCTCN2020128490-appb-000002
当所述异型单线整体处于所述铜杆圆心位置时,AC=BD,即OA=OB,通过公式(7)可以求得O点的纵坐标y;
Figure PCTCN2020128490-appb-000003
计算得O点坐标为(R 1sinθ,
Figure PCTCN2020128490-appb-000004
),此时所述异型单线中心位置与所述铜杆圆心位置重合。
在本发明一个较佳实施例中,所述步骤1)中所述定径模具的结构尺寸与成品所述异型单线的结构尺寸相同。
在本发明一个较佳实施例中,所述步骤2)中所述铜杆的截面积大小根据已知成品异型单线结构尺寸选择。
在本发明一个较佳实施例中,所述步骤2)中相邻所述过程模具的截面变化率X n∈(0,55%)。
在本发明一个较佳实施例中,所述步骤2)中为了计算方便,假设X 1=X 2=…=X n=30%,公式(1)简化成S 定径模×(1+X n) n=S 铜杆,从而计算后取整得到n,然后根据靠近所述铜杆进线处截面变化率大,靠近所述定径模具处截面变 化率小的原则,微调X 1、X 2、…X n的数值,使其满足原来的公式(1),然后再根据步骤3)确定每个所述过程模具的平面结构尺寸。
在本发明一个较佳实施例中,所述步骤3)中相邻模具间的所述圆弧倒角部分扩大2-3倍。
在本发明一个较佳实施例中,所述步骤3)中最外层的所述过程模具的四个所述圆弧倒角根据实际尺寸进行调节,使得所述过程模具的四所述圆弧倒角均在所述铜杆的圆形截面内。
本发明的有益效果是:本发明一种直流海缆用异型单线模具及其设计方法,该设计方法确定了过程模具的个数、每个模具的平面结构尺寸以及异型单线与铜杆圆心的相对位置关系,保证了拉丝过程中铜杆各个方向都受到均匀的挤塑变形。
附图说明
图1为一种直流海缆用异型单线模具及其设计方法的铜杆拉制示意图。
图2为一种直流海缆用异型单线模具及其设计方法的异型单线与铜杆圆形截面的相对位置关系图。
图3为一种直流海缆用异型单线模具及其设计方法的模具的位置示意图。
图4为一种直流海缆用异型单线模具及其设计方法其中一实施例中模具的结构示意图。
附图中各部件的标记如下:1、铜杆;2、定径模具;3、过程模具;4、异形导体。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和 特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
请参阅图1至图4,本发明实施例包括:一种直流海缆用异型单线模具,包括定径模具2和若干过程模具3,若干所述过程模具3套从小到大依次套在所述定径模具2外侧,铜杆1在拉制成异型单线4单丝时,需要经过多道模具,慢慢的把圆形的所述铜杆1拉制成规定的结构,越靠近所述定径模具2的截面变化率越小,越靠近所述铜杆1进线处的截面变化率越大。
相邻的所述定径模具2与所述过程模具3的截面变化率以及相邻的两所述过程模具3的截面变化率均控制在0%~55%。
所述定径模具2为圆弧形,所述定径模具2与所述过程模具3的形状相同,所述定径模具2与所述过程模具3的四个角上均设有圆弧倒角,所述圆弧倒角可以避免所述异型单线44加工过程中损坏模具。
一种直流海缆用异型单线4模具的设计方法,具体步骤包括:
1)确定所述定径模具2的平面结构尺寸:根据客户提供的成品异型单线4结构尺寸,从而确定所述定径模具2的结构尺寸,所述定径模具2的结构尺寸与成品所述异型单线4的结构尺寸相同。
2)确定所述过程模具3个数:根据公式(1)计算所需模具个数;
S 定径模×(1+X 1)×(1+X 2)×…(1+X n)=S 铜杆1        (1)
其中S 定径模为所述定径模具2的截面积,n为所需所述过程模具3个数,X n为第n个所述过程模具3的截面变化率,相邻所述过程模具3的截面变化率X n∈(0,55%),从所述铜杆1进线到所述定径模具2其截面变化率依次是X n...X 2、X 1,S 铜杆1为所述铜杆1的截面积,所述铜杆1的截面积大小根据已知成品异型单线4结构尺寸选择;
3)确定每个所述过程模的平面结构尺寸:每个所述过程模具3的平面结构尺寸为由上一个所述定径模具2或者所述过程模具3上下左右等径扩大而得,使得所述铜杆1各个方向都受到均匀的挤塑变形。
相邻模具间的所述圆弧倒角部分扩大2-3倍,最外层的所述过程模具3的四个所述圆弧倒角根据实际尺寸进行调节,使得所述过程模具3的四所述圆弧倒角均在所述铜杆1的圆形截面内。
4)确定所述异型单线4与所述铜杆1圆心的相对位置:由于所述异型单线4结构是圆弧形,其中心位置与所述铜杆1圆心不一定是重合的,为了所述异型单线4整体处于所述铜杆1圆形截面的最中心位置,实现所述异型单线4每处都受到挤压变形,需要使得所述异型单线4中心位置与所述铜杆1圆心位置重合,根据已知成品异型单线4结构尺寸,计算出铜杆1圆心O点位置关系,首先以点B为坐标系原点,通过公式(2)、(3)和(4)分别计算出位于B点侧的所述异型单线4外圆弧端点与B点的水平距离、B点到所述异型单线4对称轴的垂直距离位于B点侧的所述异型单线4外圆弧端点与B点的垂直距离;
AN=(R 2-R 1)sinθ             (2)
BM=R 1sinθ           (3)
BN=(R 2-R 1)cosθ           (4)
其中θ为所述异型单线4的一侧边与其对称轴的夹角,R 1为所述异型单线4内圆弧的半径,R 2为所述异型单线4外圆弧的半径,则A点坐标为(-(R 2-R 1)sinθ,(R 2-R 1)cosθ),为了使得所述异型单线4与所述铜杆1圆心位置重合,所述铜杆1圆心必然在所述异型单线4对称轴上,设O点坐标为(R 1sinθ,y),根据O、A、B点坐标根据公式(5)和(6)可以求出OA、OB的长度;
Figure PCTCN2020128490-appb-000005
Figure PCTCN2020128490-appb-000006
当所述异型单线4整体处于所述铜杆1圆心位置时,AC=BD,即OA=OB,通过公式(7)可以求得O点的纵坐标y;
Figure PCTCN2020128490-appb-000007
计算得O点坐标为(R 1sinθ,
Figure PCTCN2020128490-appb-000008
),此时所述异型单线4中心位置与所述铜杆1圆心位置重合。
本实施例中,采用φ8.0mm的所述铜杆1,客户提供的成品所述异型单线4结构尺寸为R 1=21.83mm,R 2=26.79mm,L 1=6.53mm,r 1=0.3mm,其中L为外圆弧两端点的距离,L=,r为倒角。
为了计算方便,假设X 1=X 2=…=X n=30%,公式(1)简化成S 定径模×(1+X n) n=S 铜杆1,从而计算后取整得到n=2。
然后根据靠近所述铜杆1进线处截面变化率大,靠近所述定径模具2处截面变化率小的原则,微调X 1和X 2的数值,使其满足原来的公式(1),然后再根据步骤3)确定每个所述过程模具3的平面结构尺寸。
其中所述定径模具2的尺寸为R 1=21.83mm,R 2=26.79mm,L 1=6.53mm,r 1=0.3mm。
第一所述过程模具3的尺寸为R 3=22.45mm,R 4=28mm,L 2=6.75mm,r 2=0.6mm。
第二所述过程模具3的尺寸为R 5=24mm,R 6=31mm,L 3=7.45mm,r 3=2mm。
与现有技术相比,本发明一种直流海缆用异型单线模具及其设计方法,该 设计方法确定了过程模具的个数、每个模具的平面结构尺寸以及异型单线与铜杆圆心的相对位置关系,保证了拉丝过程中铜杆各个方向都受到均匀的挤塑变形。
在电缆生产过程中,因为圆形单丝的对称性,圆形单丝的拉丝模具设计相对简单,不能用来指导异型单线拉丝模具的设计,本设计方法采用异型单线圆型紧压导体形式,能够显著提高导体的紧压系数,提高导体的阻水性能,目前异型单线采用挤出方法生产,生产效率偏低,采用拉丝工艺生产能够显著提高异型单线生产效率。
在本发明的描述中,需要说明的是,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种直流海缆用异型单线模具,其特征在于,包括定径模具和若干过程模具,若干所述过程模具套从小到大依次套在所述定径模具外侧;
    相邻的所述定径模具与所述过程模具的截面变化率以及相邻的两所述过程模具的截面变化率均控制在0%~55%;
    所述定径模具为圆弧形。
  2. 根据权利要求1所述的一种直流海缆用异型单线模具,其特征在于:所述定径模具与所述过程模具的形状相同。
  3. 根据权利要求1所述的一种直流海缆用异型单线模具,其特征在于:所述定径模具与所述过程模具的四个角上均设有圆弧倒角。
  4. 一种如权利要求1所述的一种直流海缆用异型单线模具的设计方法,其特征在于:具体步骤包括:
    1)确定所述定径模具的平面结构尺寸:根据客户提供的成品异型单线结构尺寸,从而确定所述定径模具的结构尺寸;
    2)确定所述过程模具个数:根据公式(1)计算所需模具个数;
    S 定径模×(1+X 1)×(1+X 2)×…(1+X n)=S 铜杆  (1)
    其中S 定径模为所述定径模具的截面积,n为所需所述过程模具个数,X n为第n个所述过程模具的截面变化率,从所述铜杆进线到所述定径模具其截面变化率依次是X n...X 2、X 1,S 铜杆为所述铜杆的截面积;
    3)确定每个所述过程模的平面结构尺寸:每个所述过程模具的平面结构尺寸为由上一个所述定径模具或者所述过程模具上下左右等径扩大而得;
    4)确定所述异型单线与所述铜杆圆心的相对位置:根据已知成品异型单线结构尺寸,计算出铜杆圆心O点位置关系,首先以点B为坐标系原点,通过公式(2)、(3)和(4)分别计算出位于B点侧的所述异型单线外圆弧端点与B点 的水平距离、B点到所述异型单线对称轴的垂直距离位于B点侧的所述异型单线外圆弧端点与B点的垂直距离;
    AN=(R 2-R 1)sinθ  (2)
    BM=R 1sinθ  (3)
    BN=(R 2-R 1)cosθ  (4)
    其中θ为所述异型单线的一侧边与其对称轴的夹角,R 1为所述异型单线内圆弧的半径,R 2为所述异型单线外圆弧的半径,则A点坐标为(-(R 2-R 1)sinθ,(R 2-R 1)cosθ),为了使得所述异型单线与所述铜杆圆心位置重合,所述铜杆圆心必然在所述异型单线对称轴上,设O点坐标为(R 1sinθ,y),根据O、A、B点坐标根据公式(5)和(6)可以求出OA、OB的长度;
    Figure PCTCN2020128490-appb-100001
    Figure PCTCN2020128490-appb-100002
    当所述异型单线整体处于所述铜杆圆心位置时,AC=BD,即OA=OB,通过公式(7)可以求得O点的纵坐标y;
    Figure PCTCN2020128490-appb-100003
    计算得O点坐标为
    Figure PCTCN2020128490-appb-100004
    此时所述异型单线中心位置与所述铜杆圆心位置重合。
  5. 根据权利要求4所述的一种直流海缆用异型单线模具的设计方法,其特征在于:所述步骤1)中所述定径模具的结构尺寸与成品所述异型单线的结构尺寸相同。
  6. 根据权利要求4所述的一种直流海缆用异型单线模具的设计方法,其特征在于:所述步骤2)中所述铜杆的截面积大小根据已知成品异型单线结构尺寸 选择。
  7. 根据权利要求4所述的一种直流海缆用异型单线模具的设计方法,其特征在于:所述步骤2)中相邻所述过程模具的截面变化率X n∈(0,55%)。
  8. 根据权利要求4所述的一种直流海缆用异型单线模具的设计方法,其特征在于:所述步骤2)中为了计算方便,假设X 1=X 2=…=X n=30%,公式(1)简化成S 定径模×(1+X n) n=S 铜杆,从而计算后取整得到n,然后根据靠近所述铜杆进线处截面变化率大,靠近所述定径模具处截面变化率小的原则,微调X 1、X 2、…X n的数值,使其满足原来的公式(1),然后再根据步骤3)确定每个所述过程模具的平面结构尺寸。
  9. 根据权利要求4所述的一种直流海缆用异型单线模具的设计方法,其特征在于:所述步骤3)中相邻模具间的所述圆弧倒角部分扩大2-3倍。
  10. 根据权利要求4所述的一种直流海缆用异型单线模具的设计方法,其特征在于:所述步骤3)中最外层的所述过程模具的四个所述圆弧倒角根据实际尺寸进行调节,使得所述过程模具的四所述圆弧倒角均在所述铜杆的圆形截面内。
PCT/CN2020/128490 2020-08-11 2020-11-13 一种直流海缆用异型单线模具及其设计方法 WO2022032905A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010801615.XA CN112026132B (zh) 2020-08-11 2020-08-11 一种直流海缆用异型单线模具及其设计方法
CN202010801615.X 2020-08-11

Publications (1)

Publication Number Publication Date
WO2022032905A1 true WO2022032905A1 (zh) 2022-02-17

Family

ID=73576978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128490 WO2022032905A1 (zh) 2020-08-11 2020-11-13 一种直流海缆用异型单线模具及其设计方法

Country Status (2)

Country Link
CN (1) CN112026132B (zh)
WO (1) WO2022032905A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114498236A (zh) * 2022-01-17 2022-05-13 吉林重通成飞新材料股份公司 一种风电叶片电缆并线夹和压模的设计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1122803A (en) * 1964-07-22 1968-08-07 Fairey Eng Improvements relating to drawn wire
CN203417941U (zh) * 2013-08-29 2014-02-05 新兴铸管股份有限公司 一种多级嵌套冷拔模具
CN106202727A (zh) * 2016-07-12 2016-12-07 上海交通大学 异型线缆拉拔模具的设计方法及系统
CN209318457U (zh) * 2018-09-30 2019-08-30 江苏藤仓亨通光电有限公司 一种用于异型导线单丝拉制模具装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6052359B2 (ja) * 2014-09-11 2016-12-27 住友電気工業株式会社 絶縁電線
CN105023651B (zh) * 2015-07-14 2017-09-12 福建世纪电缆有限公司 一种铝合金梯形导体的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1122803A (en) * 1964-07-22 1968-08-07 Fairey Eng Improvements relating to drawn wire
CN203417941U (zh) * 2013-08-29 2014-02-05 新兴铸管股份有限公司 一种多级嵌套冷拔模具
CN106202727A (zh) * 2016-07-12 2016-12-07 上海交通大学 异型线缆拉拔模具的设计方法及系统
CN209318457U (zh) * 2018-09-30 2019-08-30 江苏藤仓亨通光电有限公司 一种用于异型导线单丝拉制模具装置

Also Published As

Publication number Publication date
CN112026132A (zh) 2020-12-04
CN112026132B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2022032905A1 (zh) 一种直流海缆用异型单线模具及其设计方法
CN110084000B (zh) 型线同心绞合导体结构的设计方法
WO2021098003A1 (zh) 一种高压直流海缆z型密封电缆导体及其设计方法
WO2020232989A1 (zh) 一种铝包殷钢芯超耐热铝合金导线的制造方法
CN109092918A (zh) 一种电阻丝拉丝配模结构及工艺方法
CN110808122A (zh) 一种基于临界电流准各向同性高工程电流密度高温超导股线的cicc导体
CN112698458A (zh) 一种抗震抗压光缆及电缆
CN115079362B (zh) 一种具有多个异形引入单元的蝶形光缆
CN215728945U (zh) 一种可伸缩的光纤跳线
CN202677871U (zh) 一种极细耐弯折hdmi信号电缆
CN213877638U (zh) 一种充电桩用液冷电缆
CN210091799U (zh) 一种铜扁线软化控制变形装置
CN210200334U (zh) 一种风力发电专用屏蔽超五类数据电缆
CN107480319B (zh) 一种高压直流输电分裂导线的优化布置方法及系统
CN115862941A (zh) 铝包钢芯架空绝缘电缆及其制备方法
CN220340953U (zh) 一种铝包铜型线架空导线
CN205810464U (zh) 额定电压20kV及以下中强度铝合金导体架空绝缘电缆
CN220856196U (zh) 液冷石油钻井平台顶驱电缆
CN204834094U (zh) 一种承载式扁平电缆
CN211530286U (zh) 一种移动通信电缆连接器
CN214588208U (zh) 一种用于潜油电缆钢带铠装的扁压轮
CN220873282U (zh) 一种高强度镀锡线
CN213025440U (zh) 一种工业机器人用螺旋电缆
CN215988131U (zh) 一种瓦型结构节能导体及复合电缆
CN216053923U (zh) 一种z型结构节能导体及复合电缆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949398

Country of ref document: EP

Kind code of ref document: A1