WO2020232989A1 - 一种铝包殷钢芯超耐热铝合金导线的制造方法 - Google Patents

一种铝包殷钢芯超耐热铝合金导线的制造方法 Download PDF

Info

Publication number
WO2020232989A1
WO2020232989A1 PCT/CN2019/116507 CN2019116507W WO2020232989A1 WO 2020232989 A1 WO2020232989 A1 WO 2020232989A1 CN 2019116507 W CN2019116507 W CN 2019116507W WO 2020232989 A1 WO2020232989 A1 WO 2020232989A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
super heat
resistant aluminum
alloy wire
wire
Prior art date
Application number
PCT/CN2019/116507
Other languages
English (en)
French (fr)
Inventor
杨立军
金榕
朱红良
黎汉林
施鑫
孙乐雨
马忠超
Original Assignee
江苏亨通电力特种导线有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨通电力特种导线有限公司 filed Critical 江苏亨通电力特种导线有限公司
Publication of WO2020232989A1 publication Critical patent/WO2020232989A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0006Apparatus or processes specially adapted for manufacturing conductors or cables for reducing the size of conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/02Stranding-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/02Stranding-up
    • H01B13/0207Details; Auxiliary devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/02Stranding-up
    • H01B13/0285Pretreatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/08Several wires or the like stranded in the form of a rope
    • H01B5/10Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material
    • H01B5/102Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material stranded around a high tensile strength core
    • H01B5/104Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material stranded around a high tensile strength core composed of metallic wires, e.g. steel wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/22Metal wires or tapes, e.g. made of steel
    • H01B7/221Longitudinally placed metal wires or tapes
    • H01B7/223Longitudinally placed metal wires or tapes forming part of a high tensile strength core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/32Insulated conductors or cables characterised by their form with arrangements for indicating defects, e.g. breaks or leaks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/32Insulated conductors or cables characterised by their form with arrangements for indicating defects, e.g. breaks or leaks
    • H01B7/324Insulated conductors or cables characterised by their form with arrangements for indicating defects, e.g. breaks or leaks comprising temperature sensing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/32Insulated conductors or cables characterised by their form with arrangements for indicating defects, e.g. breaks or leaks
    • H01B7/326Insulated conductors or cables characterised by their form with arrangements for indicating defects, e.g. breaks or leaks comprising pressure sensing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/006Constructional features relating to the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/008Power cables for overhead application

Definitions

  • the invention relates to the technical field of overhead wires, in particular to a method for manufacturing an aluminum-clad Invar core super heat-resistant aluminum alloy wire.
  • the aluminum alloy stranded wire on the outer layer of the traditional wire mostly uses a round aluminum alloy wire in cross section. However, after the round aluminum alloy wire is covered, there will be gaps between the round aluminum alloy wires, resulting in aluminum in the wire. The filling factor is low, which affects the transmission efficiency of the wire.
  • the technical problem to be solved by the present invention is to provide a method for manufacturing an aluminum-clad Invar core super heat-resistant aluminum alloy wire, so that the "SZ"-shaped aluminum alloy wire in the cross section is straight and stable during the stranding process, and the stranding position is accurate. Make close splicing between two adjacent aluminum alloy wires to improve the quality of finished products.
  • the present invention provides a method for manufacturing an aluminum-clad Invar core super heat-resistant aluminum alloy wire, which includes the following steps:
  • step S5 Limit the position of the super heat-resistant aluminum alloy wire, take the super heat-resistant aluminum alloy wire straightened in step S4 and pass it through the limiting device, and further fix the position of the super heat-resistant aluminum alloy wire to avoid super heat resistance
  • the aluminum alloy wire flips or moves;
  • the central monitoring unit includes a plurality of optical fibers, and the plurality of optical fibers are coated with stainless steel tubes, and the optical fibers are used to connect with external monitoring equipment to detect aluminum-clad Invar core super The temperature, load and sag of the heat-resistant aluminum alloy wire itself.
  • the reinforcement layer includes one or more layers of aluminum-clad Invar wire, when the reinforcement layer is a layer of aluminum-clad Invar wire, the The pitch diameter ratio of the stranded layer is 16 ⁇ 26; when the reinforcement layer is a multilayer aluminum clad Invar wire, the stranding direction of any two adjacent layers of aluminum clad Invar wire is opposite, and the multilayer aluminum clad Invar wire is from the inside to the outside The pitch diameter ratio of the twisted layer gradually decreases, and the pitch diameter ratio of the twisted layer of the innermost aluminum-clad Invar wire is 16 to 26.
  • step S3 drawing a super heat-resistant aluminum alloy rod with a circular cross section into a super heat-resistant aluminum alloy wire with a cross section of "SZ", along the A number of drawing dies are arranged in the drawing direction, and the cavities of the drawing dies gradually change from circular to "SZ" shape.
  • the super heat-resistant aluminum alloy rods pass through the cavities in turn and are gradually extruded into cross sections. It is "SZ" type super heat-resistant aluminum alloy wire.
  • step S4 the straightening pipe is fixedly arranged on each layer of the stranding cage, and a number of straightening pipes are evenly distributed on the circumference of each layer of the stranding cage.
  • the inner hole of the straight pipe is also of "SZ" type, and the inner hole of the straightening pipe is in clearance fit with the super heat-resistant aluminum alloy wire, and the fit gap is not more than 0.01 mm.
  • the limiting device is fixedly arranged outside the twisting head of the twisting cage, and a number of limiting devices are evenly distributed on the circumference of the twisting head of the twisting cage, so
  • the limiting device includes a guide wheel and a pressing wheel which is arranged on both sides of the guide wheel and is matched with the guide wheel.
  • the wheel surface of the guide wheel is provided with a profile wheel matching the super heat-resistant aluminum alloy wire Groove, the super heat-resistant aluminum alloy wire passes through the profiling wheel groove, and the gap between the super heat-resistant aluminum alloy wire and the profiling wheel groove is not more than 0.01 mm.
  • the conductive layer includes one or more layers of super heat-resistant aluminum alloy wire, and when the conductive layer is a layer of super heat-resistant aluminum alloy wire, the super heat-resistant aluminum alloy wire
  • the stranded layer pitch diameter ratio of the aluminum alloy wire is 10-12; when the conductive layer is a multi-layer super heat-resistant aluminum alloy wire, the stranding direction of any two adjacent layers of super heat-resistant aluminum alloy wire is opposite, and the multi-layer super heat-resistant aluminum
  • the pitch diameter ratio of the twisted layer in the alloy wire gradually decreases from the inside to the outside.
  • the twisted layer pitch ratio of the innermost super heat-resistant aluminum alloy wire is 10-16, and the twisted layer section of the outermost super heat-resistant aluminum alloy wire The diameter ratio is 10-12.
  • the present invention is aimed at the situation that the super heat-resistant aluminum alloy wire with the cross section of "SZ" type jumps during the stranding process, or the aluminum alloy wire is bent, and when the aluminum alloy wire is stranded
  • the situation of displacement and overturning has caused the problem of too large gap between aluminum alloy wires after splicing.
  • a method for manufacturing aluminum-clad Invar core super heat-resistant aluminum alloy wire is proposed.
  • the space position and rotation angle of the "SZ" type super heat-resistant aluminum alloy wire are fixed, so that the "SZ" type aluminum alloy wire is straight and stable during the stranding process.
  • the stranding position is accurate, so that the adjacent two aluminum alloy wires are closely spliced.
  • the aluminum filling factor is further improved when the aluminum cross section of the wire is unchanged. , To further improve the transmission capacity of the wire.
  • Figure 1 is a schematic structural diagram of the aluminum-clad Invar core super heat-resistant aluminum alloy wire of the present invention
  • FIG. 3 is a schematic structural view of a cross-sectional view of the straightening pipe of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the limiting device of the present invention.
  • Fig. 5 is a schematic diagram of the structure of the profiling wheel groove in the guide wheel of the present invention.
  • an embodiment of the aluminum-clad Invar core super heat-resistant aluminum alloy wire of the present invention includes a central monitoring unit 1, a reinforcing layer and a conductive layer sequentially wrapped around the central monitoring unit 1, and the central monitoring unit 1 includes a number of optical fibers; the optical fibers are all set in the central stainless steel tube; the reinforcement layer includes a number of reinforced steel wires, the reinforced steel wires are aluminum-clad Invar wires 2, and the plurality of aluminum-clad Invar wires 2 are centered
  • the monitoring unit 1 is the center and is twisted on the outer periphery along the extending direction;
  • the conductive layer is an aluminum alloy conductive layer, and the aluminum alloy conductive layer clumps a number of aluminum alloy wires, and the aluminum alloy wire has a cross section of "SZ" Type super heat-resistant aluminum alloy wires 3, a number of the super heat-resistant aluminum alloy wires 3 are twisted on the outer circumference along the extension direction of the reinforcing layer, and two adjacent super heat-resistant aluminum alloy wire
  • the method for manufacturing an aluminum-clad Invar core super heat-resistant aluminum alloy wire of the present invention includes the following steps:
  • step S5 Limit the position of the super heat-resistant aluminum alloy wire, take the super heat-resistant aluminum alloy wire straightened in step S4 and pass it through the limiting device, and further fix the position of the super heat-resistant aluminum alloy wire to avoid super heat resistance
  • the aluminum alloy wire flips or moves;
  • the central monitoring unit 1 is used to replace the central steel wire in the prior art.
  • the central monitoring unit 1 includes a number of optical fibers, some of which are coated with stainless steel tubes, and the optical fibers are used to connect with external monitoring equipment. It can realize real-time monitoring of key technical parameters such as operating temperature, load, and sag of the wire, and realize the purpose of intelligent monitoring.
  • the reinforcement layer includes one or more layers of aluminum-clad Invar wires 2.
  • the pitch ratio of the strands of the aluminum-clad Invar wires 2 is 16 ⁇ 26;
  • the reinforcing layer is a multilayer aluminum clad Invar wire 2, the stranding direction of any two adjacent layers of aluminum clad Invar wire 2 is opposite, and the multilayer aluminum clad Invar wire 2 is twisted from the inside to the outside
  • the pitch diameter ratio gradually decreases, and the stranded layer pitch diameter ratio of the innermost aluminum-clad Invar wire 2 is 16 to 26.
  • the present invention uses aluminum-clad Invar wire 2 instead of ordinary steel wire.
  • the linear expansion coefficient of aluminum-clad Invar wire 2 is 3.7 ⁇ 10-6 1/°C, which is only 1/3 of that of ordinary steel.
  • the tensile strength is lower than that of ordinary steel.
  • the steel wire is equivalent and has excellent high-temperature sag characteristics; the outside of the aluminum-clad invar wire 2 is made of aluminum-based material, and there is no potential difference with the adjacent external aluminum conductive layer, so the internal reinforcement layer has excellent electrochemical corrosion resistance, and the aluminum-clad invar
  • the conductivity of the steel wire 2 reaches 10% IACS or 14% IACS, so that the internal reinforcement layer has power transmission performance.
  • step S3 a super heat-resistant aluminum alloy rod with a circular cross-section is drawn into a super heat-resistant aluminum alloy wire 3 with a cross-section of "SZ", and a number of drawing dies are arranged along the drawing direction ,
  • the cavities of the drawing dies gradually changed from circular to "SZ” shape, and the super heat-resistant aluminum alloy rods passed through the cavities in turn and gradually extruded into "SZ” type super Heat-resistant aluminum alloy wire 3, through the gradual change of the cavities of several drawing dies, the circular aluminum alloy rod is gradually extruded into an "SZ" shape.
  • the entire drawing process is a gradual process, rather than directly extruding the circular aluminum alloy rod
  • the "SZ" type aluminum alloy wire is used to prevent wire breakage during the extrusion process, and continuous lubrication and cooling treatments should be carried out during the extrusion process to prevent frictional overheating.
  • step S3 it is necessary to constantly adjust the wire drawing machine and the wire take-up inverter, so that the "SZ" type super heat-resistant aluminum alloy wire 3 is arranged in sequence on the wire take-up rack to make the wire drawing Tight and neat, no crimping, avoiding bending, thinning, scratching, and breaking of the monofilament pay-off caused by crimping in the stranding process.
  • step S4 the straightening pipe 4 is fixedly arranged on each layer of the stranding cage, and a number of straightening pipes 4 are evenly distributed on the circumference of each layer of the stranding cage, as shown in FIG.
  • the inner hole of the straight pipe 4 is also of "SZ" type.
  • the inner hole of the straightening pipe 4 is in clearance fit with the super heat-resistant aluminum alloy wire 3, and the fit gap is not more than 0.01mm.
  • the straightening pipe 4 is provided to eliminate wire drawing The single-line pay-off bends caused by the uneven wiring of the process and the direction of the single-line before entering the limit device 6 is straight and stable.
  • the limiting device 6 is fixedly arranged outside the stranding head of the stranding cage, and a number of limiting devices 6 are evenly distributed on the circumference of the stranding head of the stranding cage, as shown in Figure 4-5
  • the limiting device 6 includes a guide wheel 7 and a pressing wheel 8 arranged on both sides of the guide wheel 7 to cooperate with the guide wheel 7, the guide wheel 7 is arranged on the bearing, and the guide wheel 7 Driven by the heat-resistant aluminum alloy wire 3 to rotate, the position of the pressing wheel 8 can be adjusted according to the diameter of the super heat-resistant aluminum alloy wire 3.
  • the edge of the guide wheel 7 is provided with the super heat-resistant aluminum alloy wire 3 to pass through.
  • the super heat-resistant aluminum alloy wire 3 passes through the profiling wheel groove 9, and the gap between the super heat-resistant aluminum alloy wire 3 and the profiling wheel groove 9 is not more than 0.01 mm , Set the limit device 6 to prevent the single wire from turning when it enters the stranding head of the stranding cage, to ensure that the wire is twisted tightly and the surface is smooth.
  • the conductive layer includes one or more layers of super heat-resistant aluminum alloy wire 3.
  • the conductive layer is a layer of super heat-resistant aluminum alloy wire 3
  • the twisted layer of the super heat-resistant aluminum alloy wire 3 The diameter ratio is 10-12;
  • the conductive layer is a multilayer super heat-resistant aluminum alloy wire 3, the twisting direction of any two adjacent layers of super heat-resistant aluminum alloy wire 3 is opposite, and the multilayer super heat-resistant aluminum alloy wire 3
  • the pitch diameter ratio of the inner-to-outer stranded layer gradually decreases.
  • the stranded layer pitch diameter ratio of the innermost super heat-resistant aluminum alloy wire 3 is 10-16
  • the stranded layer pitch diameter ratio of the outermost super heat-resistant aluminum alloy wire is 10-12.
  • the present invention uses super heat-resistant aluminum alloy wire 3 instead of ordinary aluminum alloy wire, and the maximum allowable long-term use temperature can reach 210°C, which is higher than 140°C than ordinary aluminum material.
  • the conductivity of 3 strands of super heat-resistant aluminum alloy wire is ⁇ 60. %IACS, when the cross-section of the super heat-resistant aluminum alloy in the aluminum-clad Invar core super heat-resistant aluminum alloy stranded wire is equivalent to the aluminum in the ordinary steel-cored aluminum stranded wire, the current capacity can reach 2 times that of ordinary aluminum at a temperature of 210°C. the above.
  • the 3-strand super heat-resistant aluminum alloy wire tensile strength is increased by 10 to 12 MPa compared with the national standard to compensate for the use of the central monitoring unit 1 instead of the central steel
  • the loss of the overall breaking force of the conductor after the line ensures that the unit-to-weight ratio of the aluminum-clad Invar core heat-resistant aluminum alloy stranded wire with intelligent monitoring function is not lower than that of the same specification all-aluminum-clad Invar core heat-resistant aluminum alloy stranded wire. That is, the wire sag performance remains unchanged.
  • the stranding directions of any two adjacent layers of aluminum-clad Invar wires 2 are opposite, and the stranding directions of any two adjacent layers of super heat-resistant aluminum alloy wires 3 are opposite, and the aluminum-clad Invar wires 2 and The super heat-resistant aluminum alloy wire 3 adopts a positive and negative twisting design, which can achieve torque balance, ensure that the torsional stiffness in both directions is basically the same, and improve the torsion resistance of the product

Abstract

一种铝包殷钢芯超耐热铝合金导线的制造方法:S1、制备中心监测单元(1);S2、将多根铝包殷钢线(2)以中心监测单元(1)为中心,沿中心监测单元(1)的延伸方向绞合在其外周制成加强层;S3、制备超耐热铝合金线(3),所述超耐热铝合金线(3)的横截面为"SZ"型;S4、取步骤S3中制备的横截面为"SZ"型的超耐热铝合金线(3)穿过校直管(4),所述校直管(4)将超耐热铝合金线(3)拉直;S5、取步骤S4中拉直后的超耐热铝合金线(3)从限位装置(6)中穿过,避免超耐热铝合金线(3)翻转或者窜动;S6、将多根超耐热铝合金线(3)同步穿过绞笼,多根超耐热铝合金线(3)以加强层为中心,沿加强层的延伸方向紧密绞合在其外周构成导电层。本制造方法使铝合金线在绞合过程中平直稳定,提高成品质量。

Description

一种铝包殷钢芯超耐热铝合金导线的制造方法
本申请要求2019年5月17日向中国国家知识产权局递交的申请号为201910414892.2的专利申请的优先权,该优先权文本内容明确通过援引加入并入本申请中。
技术领域
本发明涉及架空导线技术领域,具体涉及一种铝包殷钢芯超耐热铝合金导线的制造方法。
背景技术
随着我国国民经济的持续高速发展,对电力输送容量、电力传输设备的差异化要求越发明显。伴随着新线路建设的同时,运行多年老线路也面临换线改造,为减少旧线路改造施工周期、降低线路建设投资,主要的技术方案是使用原杆塔直接更换特殊的增容型导线。
传统的导线其外层的铝合金绞线多采用横截面为圆形铝合金线,但圆形的铝合金线包覆后,圆形铝合金线之间会留有空隙,导致导线内的铝填充系数较低,影响导线的传输效率。
随着导线结构的逐渐完善,现有技术中逐渐有用“SZ”型的铝合金线取代圆形铝合金线,从而增加了导线内的铝填充占比,增强了导线的传输能力,但是在生产此种“SZ”型的铝合金线和将此种“SZ”型的铝合金线绞合拼接时,经常会出现以下几种情况:
1、在型材铝合金杆拉丝过程中出现断线的情况;
2、在铝合金线放线时出现跳线、或者铝合金线弯折的情况;
3、在铝合金线绞合时出现移位、翻转的情况,导致铝合金线拼接后之间的缝隙过大。
发明内容
本发明要解决的技术问题是提供一种铝包殷钢芯超耐热铝合金导线的制造方法,使横截面为“SZ”型的铝合金线在绞合过程中平直稳定,绞合位置准确,使相邻两条铝合金线之间紧密拼接,提高成品质量。
为了解决上述技术问题,本发明提供了一种铝包殷钢芯超耐热铝合金导线的制造方法,包括以下步骤:
S1、制备中心监测单元;
S2、制备加强层,将多根铝包殷钢线以中心监测单元为中心,沿中心监测单元的延伸方向绞合在其外周制成加强层;
S3、制备超耐热铝合金线,所述超耐热铝合金线的横截面为“SZ”型;
S4、拉直超耐热铝合金线,取步骤S3中制备的横截面为“SZ”型的超耐热铝合金线穿过校直管,所述校直管将超耐热铝合金线拉直;
S5、限定超耐热铝合金线的位置,取步骤S4中拉直后的超耐热铝合金线从限位装置中穿过,进一步对超耐热铝合金线的位置固定,避免超耐热铝合金线翻转或者窜动;
S6、制备导电层,将多根超耐热铝合金线同步穿过绞笼,多根超耐热铝合金线以加强层为中心,沿加强层的延伸方向紧密绞合在其外周构成导电层。
本发明一个较佳实施例中,进一步包括在步骤S1中,中心监测单元包括若干光纤,若干所述光纤外包覆有不锈钢管,所述光纤用于与外部监测设备连接,检测铝包殷钢芯超耐热铝合金导线自身的温度、荷载、弧垂。
本发明一个较佳实施例中,进一步包括步骤S2中,加强层包括一层或者多层铝包殷钢线,当加强层为一层铝包殷钢线时,所述铝包殷钢线的绞层节径比为16~26;当加强层为多层铝包殷钢线时,任意相邻两层铝包殷钢线的绞合方向相反,多层铝包殷钢线中从内向外绞层节径比逐步减小,最内层的铝包殷钢线的绞层节径比为16~26。
本发明一个较佳实施例中,进一步包括在步骤S3中,将横截面为圆形的超耐热铝合金杆拉丝制成横截面为“SZ”型的超耐热铝合金线,沿所述拉丝方向设置有若干拉丝模,若干所述拉丝模的模腔从圆形逐渐变为“SZ”型,所述超耐热铝合金杆依次从若干模腔中穿过,逐步挤压为横截面为“SZ”型的超耐热铝合金线。
本发明一个较佳实施例中,进一步包括在步骤S4中,所述校直管固定设置在各层绞笼上,所述各层绞笼的圆周上均匀分布若干根校直管,所述校直管的内孔也为“SZ”型,所述校直管的内孔与所述超耐热铝合金线间隙配合,配合间隙不大于0.01mm。
本发明一个较佳实施例中,进一步包括在步骤S5中,所述限位装置固定设置在绞笼的绞合头外,所述绞笼绞合头的圆周上均匀分布若干限位装置,所述限位装置包括导向轮和设置在所述导向轮两侧的与导向轮配合的压紧轮,所述导向轮的轮面上开设有与所述超耐热铝合金线匹配的仿形轮槽,所述超耐热铝合金线从仿形轮槽内穿过,所述超耐热铝合金线与所述仿形轮槽的间隙不大于0.01mm。
本发明一个较佳实施例中,进一步包括在步骤S6中,导电层包括一层或者多层超耐热铝合金线,当导电层为一层超耐热铝合金线时,所述超耐热铝合金线的绞层节径比10~12;当导电层为多层超耐热铝合金线时,任意相邻两层超耐热铝合金线的绞合方向相反,多层超耐热铝合金线中从内向外绞层节径比逐步减小,最内层的超耐热铝合金线的绞层节径比为10~16,最外层的超耐热铝合金线的绞层节径比为10~12。
本发明的有益效果:本发明针对横截面为“SZ”型的超耐热铝合金线在绞合的放线过程中出现跳线、或者铝合金线弯折的情况以及铝合金线绞合时出现移位、翻转的情况,导致铝合金线拼接后之间的缝隙过大的问题,提出了一种铝包殷钢芯超耐热铝合金导线的制造方法。
首先,在绞笼前设置校直管,在放线的过程中将“SZ”型的超耐热铝合金线从校直管内孔中穿过,消除因拉丝工序排线不齐导致的单线放线弯折以及确保单线进入限位装置前的方向平直稳定;
其次,在绞笼的绞合头前设置限位装置,在进入绞合头前,将超耐热铝合金线从限位装置中穿过,避免证单线进入绞笼前的翻转,确保导线绞合紧密、表面光滑。
通过校直管和轮式定位轮的配合,将“SZ”型的超耐热铝合金线的空间位置,旋转角度固定,使“SZ”型的铝合金线在绞合过程中平直稳定,绞合位置准确,使相邻两条铝合金线之间紧密拼接,相比于现有技术中截面为圆形的铝合金线,导线在输电铝截面不变情况下,将铝填充系数进一步提高,进一步提升了导线的输送容量。
附图说明
图1是本发明的铝包殷钢芯超耐热铝合金导线的结构示意图;
图2是本发明的铝包殷钢芯超耐热铝合金导线的制造方法的流程图;
图3是本发明的校直管剖视图结构示意图;
图4是本发明的限位装置结构示意图;
图5是本发明的导向轮内的仿形轮槽的结构示意图。
图中标号说明:1、中心监测单元;2、铝包殷钢线;3、超耐热铝合金线;4、校直管;5、校直管与超耐热铝合金线的间隙;6、限位装置;7、导向轮;8、压紧轮;9、仿形轮槽。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
参照图1所示,本发明的铝包殷钢芯超耐热铝合金导线的一实施例,包括中心监测单元1、依次包覆在中心监测单元1外的加强层和导电层,所述中心监测单元1包括若干光纤;所述光纤均设置在中心的不锈钢管内;所述加强层包括若干加强钢线,所述加强钢线为铝包殷钢线2,若干所述铝包殷钢线2以中心监测单元1为中心,沿其延伸方向绞合在外周;所述导电层为铝合金导电层,所述铝合金导电层包块若干铝合金线,所述铝合金线为横截面为“SZ”型的超耐热铝合金线3,若干所述超耐热铝合金线3以加强层为中心,沿其延伸方向绞合在外周,相邻两根超耐热铝合金线3紧密绞合依次拼接形成铝合金导电层。
参照图2所示,本发明的铝包殷钢芯超耐热铝合金导线的制造方法,包括以下步骤:
S1、制备中心监测单元;
S2、制备加强层,将多根铝包殷钢线以中心监测单元为中心,沿中心监测单元的延伸方向绞合在其外周制成加强层;
S3、制备超耐热铝合金线,所述超耐热铝合金线的横截面为“SZ”型;
S4、拉直超耐热铝合金线,取步骤S3中制备的横截面为“SZ”型的超耐热铝合金线穿过校直管,所述校直管将超耐热铝合金线拉直;
S5、限定超耐热铝合金线的位置,取步骤S4中拉直后的超耐热铝合金线从限位装置中穿过,进一步对超耐热铝合金线的位置固定,避免超耐热铝合金线翻转或者窜动;
S6、制备导电层,将多根超耐热铝合金线同步穿过绞笼,多根超耐热铝合金线以加强层为中心,沿加强层的延伸方向紧密绞合在其外周构成导电层。
具体地,步骤1中采用中心监测单元1取代现有技术中中心钢线,中心监测单元1包括若干光纤,若干所述光纤外包覆有不锈钢管,所述光纤用于与外部监测设备连接,能够实现对导线的运行温度、荷载、弧垂等关键技术参数进行实时监测,实现智能监控目的。
具体地,步骤S2中,加强层包括一层或者多层铝包殷钢线2,当加强层为一层铝包殷钢线2时,所述铝包殷钢线2的绞层节径比为16~26;当加强层为多层铝包殷钢线2时,任意相邻两层铝包殷钢线2的绞合方向相反,多层铝包殷钢线2中从内向外绞层节径比逐步减小,最内层的铝包殷钢线2的绞层节径比为16~26。
具体地,本发明采用铝包殷钢线2代替普通钢线,铝包殷钢线2线膨胀系数为3.7×10-6 1/℃,仅为普通钢材的1/3,抗拉强度与普通钢线相当,具有优异的高温弧垂特性;铝包殷钢线2外部为铝基材料,与相邻外部铝导电层无电位差,因此内部加强层耐电化学腐蚀性能优异,同时铝包殷钢线2导电率达到10%IACS或14%IACS,使内部加强层具备输电性能。
具体地,在步骤S3中,将横截面为圆形的超耐热铝合金杆拉丝制成横截面为“SZ”型的超耐热铝合金线3,沿所述拉丝方向设置有若干拉丝模,若干所述拉丝模的模腔从圆形逐渐变为“SZ”型,所述超耐热铝合金杆依次从若干模腔中穿过,逐步挤压为横截面为“SZ”型的超耐热铝合金线3,通过若干拉丝模的模腔的逐渐变化将圆形铝合金杆逐渐挤压成“SZ”型,整个拉丝过程为渐变过程,而不是直接将圆形铝合金杆挤压成“SZ”型铝合金线,防止在挤压过程中出现断线的情况,并且在挤压过程中还要不断的进行润滑处理和降温处理,防止出现摩擦过热的情况。
具体地,在步骤S3拉线的过程中,需要不断的调整拉丝机排线与收线变频 器,使“SZ”型的超耐热铝合金线3在收线架上依次排列,使拉丝排线紧密整齐,无压线,避免绞线工序单丝放线因压线导致的拉弯、拉细、刮伤、拉断。
具体地,在步骤S4中,所述校直管4固定设置在各层绞笼上,所述各层绞笼的圆周上均匀分布若干根校直管4,如图3所示,所述校直管4的内孔也为“SZ”型,所述校直管4的内孔与所述超耐热铝合金线3间隙配合,配合间隙不大于0.01mm,设置校直管4消除因拉丝工序排线不齐导致的单线放线弯折以及确保单线进入限位装置6前的方向平直稳定。
具体地,在步骤S5中,所述限位装置6固定设置在绞笼的绞合头外,所述绞笼绞合头的圆周上均匀分布若干限位装置6,如图4-5所示,所述限位装置6包括导向轮7和设置在所述导向轮7两侧的与导向轮7配合的压紧轮8,所述导向轮7设置在轴承上,所述导向轮7在超耐热铝合金线3的带动下转动,可以根据超耐热铝合金线3的直径大小调节压紧轮8的位置,所述导向轮7的边缘开设在有供超耐热铝合金线3穿过的仿形轮槽9,所述超耐热铝合金线3从仿形轮槽9内穿过,所述超耐热铝合金线3与所述仿形轮槽9的间隙不大于0.01mm,设置限位装置6避免单线进入绞笼绞合头时翻转,确保导线绞合紧密、表面光滑。
具体地,在步骤S6中,导电层包括一层或者多层超耐热铝合金线3,当导电层为一层超耐热铝合金线3时,超耐热铝合金线3的绞层节径比10~12;当导电层为多层超耐热铝合金线3时,任意相邻两层超耐热铝合金线3的绞合方向相反,多层超耐热铝合金线3中从内向外绞层节径比逐步减小,最内层的超耐热铝合金线3的绞层节径比为10~16,最外层的超耐热铝合金线的绞层节径比为10~12。
具体地,本发明采用超耐热铝合金线3代替普通铝合金线,长期允许使用最高温度可达210℃,比普通铝材提高140℃以上,超耐热铝合金线3股导电率≥60%IACS,当铝包殷钢芯超耐热铝合金绞线中超耐热铝合金与普通钢芯铝绞线中铝横截面相当时,210℃使用温度下输送电流容量可达70℃普铝的2倍以上。 在保证超耐热铝合金线3股电性能与其他机械性能不变情况下,将超耐热铝合金线3股抗拉强度较国标提高10~12MPa,以补偿采用中心监测单元1取代中心钢线后对导线整体拉断力的损失,确保此种具备智能监测功能的铝包殷钢芯超耐热铝合金绞线较同规格全铝包殷钢芯耐热铝合金绞线的拉力单重比不降低,即导线弧垂性能不变。
具体地,上述实施例中,任意相邻两层铝包殷钢线2的绞合方向相反,任意相邻两层超耐热铝合金线3的绞合方向相反,铝包殷钢线2和超耐热铝合金线3之间均采用正反绞合设计,可实现扭矩平衡,保证两方向的扭转刚度基本一致,提升产品抗扭性能
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (7)

  1. 一种铝包殷钢芯超耐热铝合金导线的制造方法,其特征在于,包括以下步骤:
    S1、制备中心监测单元;
    S2、制备加强层,将多根铝包殷钢线以中心监测单元为中心,沿中心监测单元的延伸方向绞合在其外周制成加强层;
    S3、制备超耐热铝合金线,所述超耐热铝合金线的横截面为“SZ”型;
    S4、拉直超耐热铝合金线,取步骤S3中制备的横截面为“SZ”型的超耐热铝合金线穿过校直管,所述校直管将超耐热铝合金线拉直;
    S5、限定超耐热铝合金线的位置,取步骤S4中拉直后的超耐热铝合金线从限位装置中穿过,进一步对超耐热铝合金线的位置固定,避免超耐热铝合金线翻转或者窜动;
    S6、制备导电层,将多根超耐热铝合金线同步穿过绞笼,多根超耐热铝合金线以加强层为中心,沿加强层的延伸方向紧密绞合在其外周构成导电层。
  2. 如权利要求1所述的铝包殷钢芯超耐热铝合金导线的制造方法,其特征在于,在步骤S1中,中心监测单元包括若干光纤,若干所述光纤外包覆有不锈钢管,所述光纤用于与外部监测设备连接,检测铝包殷钢芯超耐热铝合金导线自身的温度、荷载、弧垂。
  3. 如权利要求1所述的铝包殷钢芯超耐热铝合金导线的制造方法,其特征在于,在步骤S2中,加强层包括一层或者多层铝包殷钢线,当加强层为一层铝包殷钢线时,所述铝包殷钢线的绞层节径比为16~26;当加强层为多层铝包殷钢线时,任意相邻两层铝包殷钢线的绞合方向相反,多层铝包殷钢线中从内向 外绞层节径比逐步减小,最内层的铝包殷钢线的绞层节径比为16~26。
  4. 如权利要求1所述的铝包殷钢芯超耐热铝合金导线的制造方法,其特征在于,在步骤S3中,将横截面为圆形的超耐热铝合金杆拉丝制成横截面为“SZ”型的超耐热铝合金线,沿所述拉丝方向设置有若干拉丝模,若干所述拉丝模的模腔从圆形逐渐变为“SZ”型,所述超耐热铝合金杆依次从若干模腔中穿过,逐步挤压为横截面为“SZ”型的超耐热铝合金线。
  5. 如权利要求1所述的铝包殷钢芯超耐热铝合金导线的制造方法,其特征在于,在步骤S4中,所述校直管固定设置在各层绞笼上,各层所述绞笼的圆周上均匀分布若干根校直管,所述校直管的内孔也为“SZ”型,所述校直管的内孔与所述超耐热铝合金线间隙配合,配合间隙不大于0.01mm。
  6. 如权利要求1所述的铝包殷钢芯超耐热铝合金导线的制造方法,其特征在于,在步骤S5中,所述限位装置固定设置在绞笼的绞合头外,所述绞笼绞合头的圆周上均匀分布若干限位装置,所述限位装置包括导向轮和设置在所述导向轮两侧的与导向轮配合的压紧轮,所述导向轮的轮面上开设有与所述超耐热铝合金线匹配的仿形轮槽,所述超耐热铝合金线从仿形轮槽内穿过,所述超耐热铝合金线与所述仿形轮槽的间隙不大于0.01mm。
  7. 如权利要求1所述的铝包殷钢芯超耐热铝合金导线的制造方法,其特征在于,在步骤S6中,导电层包括一层或者多层超耐热铝合金线,当导电层为一层超耐热铝合金线时,所述超耐热铝合金线的绞层节径比10~12;当导电层为多层超耐热铝合金线时,任意相邻两层超耐热铝合金线的绞合方向相反,多层超耐热铝合金线中从内向外绞层节径比逐步减小,最内层的超耐热铝合金线的绞层节径比为10~16,最外层的超耐热铝合金线的绞层节径比为10~12。
PCT/CN2019/116507 2019-05-17 2019-11-08 一种铝包殷钢芯超耐热铝合金导线的制造方法 WO2020232989A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910414892.2A CN110033903A (zh) 2019-05-17 2019-05-17 一种铝包殷钢芯超耐热铝合金导线的制造方法
CN201910414892.2 2019-05-17

Publications (1)

Publication Number Publication Date
WO2020232989A1 true WO2020232989A1 (zh) 2020-11-26

Family

ID=67242666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116507 WO2020232989A1 (zh) 2019-05-17 2019-11-08 一种铝包殷钢芯超耐热铝合金导线的制造方法

Country Status (2)

Country Link
CN (1) CN110033903A (zh)
WO (1) WO2020232989A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110033903A (zh) * 2019-05-17 2019-07-19 江苏亨通电力特种导线有限公司 一种铝包殷钢芯超耐热铝合金导线的制造方法
CN111687236B (zh) * 2019-11-19 2021-07-23 江苏中天科技股份有限公司 一种覆层合金线的制备方法
CN112582096A (zh) * 2020-12-03 2021-03-30 国网辽宁省电力有限公司丹东供电公司 一种高导电率耐热铝合金绞线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09106718A (ja) * 1995-10-09 1997-04-22 Sumitomo Wiring Syst Ltd テープ電線の製造方法及びその製造装置
CN2798256Y (zh) * 2005-04-14 2006-07-19 江苏中天科技股份有限公司 铝包殷钢芯耐热铝合金倍容量导线
CN101086908A (zh) * 2007-04-20 2007-12-12 上海磁浮交通工程技术研究中心 一种长定子绕组电缆的缆芯及其制备方法
CN201788759U (zh) * 2010-09-14 2011-04-06 上海电缆研究所 智能型架空输电导线及其监测系统
CN109065220A (zh) * 2018-08-17 2018-12-21 江苏亨通电力特种导线有限公司 一种自阻尼低损耗高防腐型硬铝型线绞线及制造方法
CN110033903A (zh) * 2019-05-17 2019-07-19 江苏亨通电力特种导线有限公司 一种铝包殷钢芯超耐热铝合金导线的制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204215733U (zh) * 2014-11-04 2015-03-18 杭州电缆股份有限公司 倍容量架空导线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09106718A (ja) * 1995-10-09 1997-04-22 Sumitomo Wiring Syst Ltd テープ電線の製造方法及びその製造装置
CN2798256Y (zh) * 2005-04-14 2006-07-19 江苏中天科技股份有限公司 铝包殷钢芯耐热铝合金倍容量导线
CN101086908A (zh) * 2007-04-20 2007-12-12 上海磁浮交通工程技术研究中心 一种长定子绕组电缆的缆芯及其制备方法
CN201788759U (zh) * 2010-09-14 2011-04-06 上海电缆研究所 智能型架空输电导线及其监测系统
CN109065220A (zh) * 2018-08-17 2018-12-21 江苏亨通电力特种导线有限公司 一种自阻尼低损耗高防腐型硬铝型线绞线及制造方法
CN110033903A (zh) * 2019-05-17 2019-07-19 江苏亨通电力特种导线有限公司 一种铝包殷钢芯超耐热铝合金导线的制造方法

Also Published As

Publication number Publication date
CN110033903A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
WO2020232989A1 (zh) 一种铝包殷钢芯超耐热铝合金导线的制造方法
CN104134483A (zh) 一种绞合型碳纤维复合芯软铝导线及其制作方法
CN201877157U (zh) 高导电性、超高强度1kV架空绝缘电缆
CN105206336A (zh) 一种大截面钢芯铝绞线及其制造方法
WO2018059434A1 (zh) 一种搜寻成像用电缆
CN201877158U (zh) 高导电性、超高强度10kV架空绝缘电缆
CN204558133U (zh) 新型低压光电复合缆结构
CN112102981B (zh) 一种金属包复合材料型线绞合加强芯架空导线及其制作方法
CN102314972A (zh) 通信电源用具有两芯半圆形导体的屏蔽软电缆的制造工艺
WO2021184771A1 (zh) 海底光缆奇数不等径钢丝复合铜管一体化拱形内铠结构
CN102969089A (zh) 交联聚乙烯绝缘电力电缆导电线芯绞制方法
CN106920581A (zh) 碳纤维绳加强芯铝绞线及其制备方法
CN106680957A (zh) 一种低损耗铝管式opgw电力光缆及制造方法
CN104700965B (zh) 一种紧压软结构导体的制备方法及其紧压绞合装置
CN110544564B (zh) 铜绞线的出口束线装置
CN112542264A (zh) 一种超柔高可靠性焊接机器人用电源电缆及制备方法
CN101814342A (zh) 一种三网融合用大容量铜包钢复合光缆及其生产方法
CN206595050U (zh) 一种高强度耐弯曲电缆用导体
CN117649983B (zh) 一种钢丝嵌入式线缆的制备工艺
CN205050582U (zh) 一种耐弯曲不易断的电缆导体、光电缆导体
CN205621487U (zh) 一种医疗设备用电缆
CN104751984A (zh) 新型低压光电复合缆结构及其制备方法
CN105206326A (zh) 一种耐弯曲不易断的电缆导体、光电缆导体及其制造方法
WO2020037657A1 (zh) 一种高强度耐腐蚀铝包pbt结构光纤复合架空地线
CN110931156A (zh) 一种新型电潜泵采油专用管缆及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929938

Country of ref document: EP

Kind code of ref document: A1