WO2022032746A1 - 一种WTe2/MXene复合材料及其制备方法 - Google Patents

一种WTe2/MXene复合材料及其制备方法 Download PDF

Info

Publication number
WO2022032746A1
WO2022032746A1 PCT/CN2020/112567 CN2020112567W WO2022032746A1 WO 2022032746 A1 WO2022032746 A1 WO 2022032746A1 CN 2020112567 W CN2020112567 W CN 2020112567W WO 2022032746 A1 WO2022032746 A1 WO 2022032746A1
Authority
WO
WIPO (PCT)
Prior art keywords
wte
composite material
mxene
mxene composite
preparation
Prior art date
Application number
PCT/CN2020/112567
Other languages
English (en)
French (fr)
Inventor
张业龙
徐晓丹
周健文
孙宏阳
林志扬
彭章泉
Original Assignee
五邑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五邑大学 filed Critical 五邑大学
Publication of WO2022032746A1 publication Critical patent/WO2022032746A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of potassium ion batteries, in particular to a WTe 2 /MXene composite material and a preparation method thereof.
  • Potassium metal element which is in the same main group as lithium metal element, is similar to lithium metal in chemical properties, and is abundant in reserves (the abundance of potassium element in the earth's crust is about 2.47%, and the content in seawater is about 0.38g/kg).
  • potassium has The characteristics of lower standard redox potential, weaker solvent force, wider voltage window, and smaller electronegativity make potassium-ion batteries have good kinetic performance and become a research hotspot of new generation energy storage systems. .
  • the larger radius and higher mass of potassium ions lead to severe volume expansion of the electrode material during the charge-discharge cycle, causing serious damage to the electrode material structure, resulting in a rapid decay of the specific capacity of the battery, showing poor performance. Rate performance and cycling stability.
  • the negative electrode materials used in potassium ion secondary batteries mainly include carbon materials, metals, metal oxides and organic materials. These materials have many defects: the potential safety hazards of potassium electroplating, the large radius of potassium ions, and the cycle process of the electrode materials. Volume expansion and pulverization lead to irreversible loss of capacity, poor rate performance and cycle stability, and low charge-discharge Coulombic efficiency. These defects will seriously restrict the practical application of these anode materials in potassium ion secondary batteries, thus restricting the development and application of potassium ion secondary batteries. Therefore, researching a negative electrode material with excellent rate performance, long cycle life, high Coulombic efficiency, high safety and high stability has become the focus of research and development of potassium-ion batteries.
  • WTe 2 As a transitional two-dimensional transition metal-sulfur compound, WTe 2 has a high reversible specific capacity. However, the pure transition metal compound produces a huge volume expansion during the repeated de-intercalation of potassium ions, resulting in the crushing and falling off of the electrode material, which is easy to agglomeration, resulting in poor electrochemical performance; MXene, as a new type of 2D transition metal carbon/nitride or carbonitride, has high specific surface area and high electrical conductivity, which is beneficial for ion-electron transport, but its layered The distance is small, and the surface functional groups have a certain adsorption, so the ideal fast ion migration effect cannot be achieved when used alone.
  • one of the objectives of the present invention is to provide a WTe 2 /MXene composite material.
  • Another object of the present invention is to provide a preparation method of the WTe 2 /MXene composite material.
  • the present invention provides an application of WTe 2 /MXene composite material, the WTe 2 /MXene composite material is applied to the negative electrode of potassium ion battery, and assembled into a button battery, and the storage capacity of the WTe 2 /MXene electrode material is tested. Potassium properties.
  • a preparation method of WTe 2 /MXene composite material comprising the following steps:
  • the tungsten source and the tellurium source are added in a molar ratio of 1:2 to 3, preferably 1:2 to 4, and more preferably 1:2 to 3, into the dispersion obtained in step (1), and stir 6-18h, such as 6h, 10h, 15h, 18h, to obtain a mixed solution;
  • step (3) Transfer the mixed solution obtained in step (2) to the reaction kettle, put the reaction kettle into the oven, heat up to 100-220°C, for example, 100°C, 140°C, 180°C, 220°C, and keep the temperature for 8-20h , such as 8h, 10h, 15h, 18h, 20h, and then naturally cooled to room temperature to obtain a suspension;
  • step (3) (4) centrifuging the suspension obtained in step (3), repeatedly washing the filter residue with a cleaning agent, and then placing it in a vacuum drying oven for drying to obtain a WTe 2 /MXene composite material.
  • the tungsten source is one or more of Na 2 WO 4 ⁇ 2H 2 O, WCl 6 , and (NH 4 ) 6 H 2 W 12 O 40 ⁇ xH 2 O.
  • the tellurium source is one or more of tellurium tetrachloride, biphenyl ditellurium and potassium tellurite.
  • the MXene is one or more of Ti 3 C 2 T x , V 3 C 2 T x , Mo 3 N 2 T x , Nb 2 CT x , Ta 4 C 3 T x , preferably Nb 2 CT x , such as V 3 C 2 T x , where T x is a surface functional group -O, -F or -OH.
  • the reducing agent is one or more of urea and NH 4 F.
  • the dispersing agent is one or more of N,N-dimethylformamide, ethanol, and ethylene glycol.
  • step (3) the dispersion described in step (3) is moved into the reaction kettle, the reaction kettle is put into the oven, and the temperature is raised to 100-220°C, preferably 120-180°C, such as 130°C, 150°C, 160°C , 180°C, and keep the temperature for 8-20h, preferably 12-16h, such as 12h, 13h, 14h, 15h, 16h.
  • the cleaning agent is one or more of water and ethanol, preferably, the product obtained in step (3) is thoroughly cleaned with deionized water and absolute ethanol, and can be cleaned alternately with deionized water and absolute ethanol. 2-15 times, preferably 3-9 times.
  • the rotating speed of centrifugation described in step (4) is 5000-8000r/min, preferably 6000r/min, and centrifugation time is 5-10min, preferably 8min.
  • the temperature of vacuum drying in step (4) is 50-80°C, preferably 60°C, the drying time is 6-20h, preferably 12h, such as 8h, 10h, 15h, 20h; the vacuum degree does not exceed 120Pa, such as 120Pa, 110Pa , 100Pa, 90Pa.
  • the loading amount of WTe 2 in the WTe 2 /MXene composite material is 60-220 wt %, such as 60-90 wt %, 80-150 wt %, 100-180 wt %, 150-220 wt %.
  • a potassium ion battery negative electrode comprising the WTe 2 /MXene composite material prepared by the above preparation method.
  • a potassium ion battery comprising the above-mentioned battery negative electrode.
  • the WTe 2 /MXene composite material prepared by the present invention has a layered structure, and the interaction between the WTe 2 material and the Mxene nanomaterial constitutes a stable structural support, and the MXene material can effectively relieve the electrode material in the With volume expansion during cycling, the WTe 2 /MXene composite exhibits good electrical conductivity with fast ion diffusion channels, which are favorable for the rapid de-intercalation of potassium ions.
  • the WTe 2 /MXene composite material prepared by the present invention is applied to the negative electrode of potassium ion battery.
  • the electrochemical test results show that the WTe 2 /MXene electrode material has a high reversible specific capacity and exhibits good performance. Charge-discharge cycle stability and almost 100% charge-discharge coulombic efficiency.
  • the composite material of the present invention has the advantages of simple preparation process, high production efficiency, low cost of raw materials, abundant resources and high reversible specific capacity, and has great research value for the large-scale development and application of potassium ion batteries.
  • Fig. 1 is the scanning electron microscope image of WTe 2 /MXene composite material in Example 1;
  • Figure 2 is a graph of the cycle performance of the potassium ion battery assembled with the WTe 2 /MXene composite material in Example 1 at a current density of 100 mA/g;
  • Figure 3 is a graph of the cycle performance measured at a current density of 100 mA/g of the pure WTe 2 assembled potassium ion battery in Comparative Example 1;
  • Figure 4 is a graph of the cycle performance of the pure MXene-assembled potassium-ion battery in Comparative Example 2 measured at a current density of 100 mA/g.
  • the Ti 3 C 2 T x nanoparticles were purchased from Beijing Beike New Material Technology Co., Ltd., number BK2020011814, sheet stacking thickness: 1-5 ⁇ m, purity: 99%, product application fields: energy storage, catalysis, analytical chemistry, etc. .
  • the present invention provides a preparation method of WTe 2 /MXene composite material, wherein the synthesis method of WTe 2 is a simple hydrothermal synthesis method.
  • a preparation method of WTe 2 /MXene composite material comprising the following steps:
  • step (3) transfer the mixed solution obtained in step (2) into a reaction kettle with a capacity of 100ml and seal it, place it in an oven, heat to 120°C, keep the temperature for 8h, and then cool to room temperature to obtain a suspension;
  • step (3) the suspension obtained in step (3) is centrifuged for 5 minutes under the condition of 5000r/min with a centrifuge, and after alternately washing the filter residue 3 times with deionized water and absolute ethanol, drying is carried out in a vacuum drying box, The drying temperature was 60 °C and the drying time was 6 hours, and finally the WTe 2 /MXene composite was obtained.
  • the electrochemical test results of the WTe 2 /MXene electrode material prepared in this example show that at a current density of 100 mA/g, after 200 cycles, the reversible specific capacity is 340 mAh/g, which is a pure WTe 2 (102 mAh/g ) is 3.33 times higher, and the WTe 2 /MXene electrode material in this example has high Coulombic efficiency, good charge-discharge cycle stability and excellent rate performance.
  • a preparation method of WTe 2 /MXene composite material comprising the following steps:
  • step (3) transfer the mixed solution obtained in step (2) into a reaction kettle with a capacity of 50ml and seal it, place it in an oven, heat to 180° C., keep the temperature for 15h, and then cool to room temperature to obtain a suspension;
  • step (3) the suspension obtained in step (3) was centrifuged at 7000 r/min for 7 minutes with a centrifuge, and after alternately washing the filter residue 3 times with deionized water and absolute ethanol, drying was carried out in a vacuum drying oven, The drying temperature was 60 °C and the drying time was 12 hours, and finally the WTe 2 /MXene composite was obtained.
  • the electrochemical test results of the WTe 2 /MXene electrode material prepared in this example show that at a current density of 100 mA/g, after 200 cycles, the reversible specific capacity is 458 mAh/g, which is a pure WTe 2 (102 mAh/g ), and the WTe 2 /MXene electrode material in this example has high Coulombic efficiency, good charge-discharge cycle stability and excellent rate performance.
  • a preparation method of WTe 2 /MXene composite material comprising the following steps:
  • step (3) transfer the mixed solution obtained in step (2) into a reaction kettle with a capacity of 50ml and seal it, place it in an oven, heat to 220°C, keep the temperature for 20h, and then cool to room temperature to obtain a suspension;
  • step (3) the suspension obtained in step (3) was centrifuged at 8000 r/min for 10 minutes with a centrifuge, and after alternately washing the filter residue 3 times with deionized water and absolute ethanol, drying was carried out in a vacuum drying box, The drying temperature was 60 °C and the drying time was 20 hours, and finally the WTe 2 /MXene composite was obtained.
  • the electrochemical test results of the WTe 2 /MXene electrode material prepared in this example show that at a current density of 100 mA/g, after 200 cycles, the reversible specific capacity is 410 mAh/g, which is a pure WTe 2 (102 mAh/g ), and the WTe 2 /MXene electrode material in this example has high Coulombic efficiency, good charge-discharge cycle stability and excellent rate performance.
  • the preparation method of pure WTe 2 material includes the following steps:
  • step (2) transferring the uniform dispersion obtained in step (1) into a reaction kettle with a capacity of 100ml and sealing, placing it in an oven, heating to 120°C, keeping the temperature for 8h, and then cooling to room temperature to obtain a mixed solution;
  • step (3) centrifuge the mixed solution obtained in step (2) at 5000 r/min for 5 minutes, wash the filter residue 3 times with deionized water and dehydrated alcohol alternately, dry in a vacuum drying box, and dry The temperature was 60°C, and the drying time was 6 hours, and finally the WTe 2 material was obtained.
  • the electrochemical test results of the WTe 2 electrode material prepared in this comparative example show that the reversible specific capacity is 102 mAh/g after 200 cycles at a current density of 100 mA/g.
  • Figure 1 is the scanning electron microscope image of the WTe 2 /MXene composite material in Example 1; it can be seen from Figure 1 that the sample has a layered structure, and the WTe 2 nanosheets are uniformly loaded on the surface of the MXene material without agglomeration, indicating that WTe 2 / The layered structure of MXene composites was successfully prepared and effectively increased the interlayer spacing and specific surface area.
  • Figures 2-4 are the cycle performance diagrams of the WTe 2 /MXene composite material, pure WTe 2 , and pure MXene assembled potassium ion batteries in Example 1, respectively, measured at a current density of 100 mA/g.
  • the pure WTe 2 material has a certain ability to store potassium, but during the charge and discharge process, the pure WTe 2 material is very easy to agglomerate, and the structure is unstable after the repeated insertion and extraction of potassium ions, which shows that during the charge and discharge process, After 20 cycles, the specific capacity declines significantly, without good cycle stability and excellent rate capability; while pure MXene has a very low reversible capacity of only 61.1 mA h/g; as can be seen from Figure 2, the WTe 2 of Example 1 /MXene composites have high specific capacity and good cycling performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种WTe 2/MXene复合材料及其制备方法,包括以下步骤:(1)将MXene材料与还原剂加入到分散剂中,配制成浓度为1-10mg/ml的分散液,搅拌5-10小时;(2)将钨源与碲源按照摩尔比为1:2~3的比例加入上述分散液中,搅拌6-18小时,得到混合液;(3)将步骤(2)所得混合液加热至100-220℃,保温8-20h,冷却,得到悬浊液;(4)将步骤(3)所得的悬浊液离心,洗涤,干燥,得到WTe2/MXene复合材料。制备的WTe2/MXene复合材料具有优异的倍率性能,良好的循环稳定性以及较高的可逆比容量和库仑效率,且所述复合材料生产成本低廉、资源丰富、制备方法简单,对于钾离子电池大规模生产与应用具有重要的研究意义。

Description

一种WTe 2/MXene复合材料及其制备方法 技术领域
本发明属于钾离子电池技术领域,具体涉及一种WTe 2/MXene复合材料及其制备方法。
背景技术
21世纪以来,随着现代社会的快速发展,由于化石能源的耗竭及其不可再生性,环境污染和能源危机日益严峻,可再生能源的有效利用对于社会的可持续发展具有重大的现实意义。因此,需要具有优异的存储能力以及快速的反应动力学的储能材料来改善能源危机。目前,锂离子电池的广泛使用使其在能源存储方面占据主导地位,然而,锂资源因其资源分布不均,成本较高等缺点,已经不能完全满足当今社会对能源存储的需求。为此,研究新型的二次碱金属电池已成为新能源技术领域重要的课题之一。
与锂金属元素处于同主族的钾金属元素在化学性质上与锂金属相似,且储量丰富(钾元素在地壳中丰度约2.47%,海水中含量约0.38g/kg),同时,钾具有较低的标准氧化还原电位、更弱的溶剂作用力、更宽的电压窗口、更小的电负性等特点,使得钾离子电池具有良好的动力学性能,成为新一代储能系统的研究热点。但是,钾离子较大的半径和较高的质量导致在充放电循环过程中电极材料产生严重的体积膨胀,对电极材料结构造成严重破坏,从而导致电池的比容量快速衰减,表现出较差的倍率性能和循环稳定性。
目前,用于钾离子二次电池的负极材料主要有碳材料、金属、金属氧化物以及有机材料,这些材料存在诸多缺陷:具有电镀钾的安全隐患、由于钾离子半径太大使电极材料循环过程中体积膨胀及粉化导致容量不可逆的损失、倍率性能以及循环稳定性较差、充放电库仑效率较低。这些缺陷将严重制约这些负极材料在钾离子二次电池中的实际应用,从而制约着钾离子二次电池的发展与应用。因此,研究一种具有优异的倍率性能、较长的循环使用寿命、较高的库仑效率、高安全性且高稳定性的负极材料成为目前钾离子电池研发的焦点问题。
WTe 2作为一种过渡二维过渡金属硫化合物,具有较高的可逆比容量,然而,单纯的过渡金属化合物在钾离子重复脱嵌过程中产生巨大的体积膨胀,造成电极材料粉碎与脱落,易团聚,从而导致较差的电化学性能;MXene作为一种新型的二维过渡金属碳/氮化物或碳氮化物,具有较高的比表面积和高导电性,有利于离子电子传输,但是其层间距较小,并且表面官能团具有一定的吸附性,因此单独使用并不能取得理想的离子快速迁移效果。
发明内容
针对现有技术存在的问题,本发明的目的之一在于提供一种WTe 2/MXene复合材料。本发明的另一目的在于提供所述WTe 2/MXene复合材料的制备方法。进一步的,本发明提供一种WTe 2/MXene复合材料的应用,将所述WTe 2/MXene复合材料应用于钾离子电池负极,并组装成纽扣电池,测试所述WTe 2/MXene电极材料的储钾性能。
本发明采用以下技术方案:
一种WTe 2/MXene复合材料的制备方法,包括以下步骤:
(1)将MXene材料与还原剂材料按照1:1-2的摩尔比加入分散剂中,搅拌5-10h,例如5h、6h、7h、9h、10h,配制成浓度为1-10mg/ml的分散液,优选的为1-9mg/ml,进一步优选的为3-8mg/ml,更进一步优选的为4-7mg/ml;
(2)将钨源与碲源按照为1:2~3的摩尔比,优选的为1:2~4,进一步优选的为1:2~3,加入步骤(1)所得分散液中,搅拌6-18h,例如6h、10h、15h、18h,得到混合液;
(3)将步骤(2)所得的混合液转移至反应釜中,将反应釜放入烘箱中,升温至100-220℃,例如100℃、140℃、180℃、220℃,保温8-20h,例如8h、10h、15h、18h、20h,然后自然冷却至室温,得到悬浊液;
(4)将步骤(3)所得的悬浊液离心,用清洗剂反复洗涤滤渣,然后置于真空干燥箱中进行干燥,得到WTe 2/MXene复合材料。
进一步地,所述钨源为Na 2WO 4·2H 2O、WCl 6、(NH 4) 6H 2W 12O 40·xH 2O中的一种或多种。
进一步地,所述碲源为四氯化碲、联苯二碲、亚碲酸钾中的一种或多种。
进一步地,所述MXene为Ti 3C 2T x、V 3C 2T x、Mo 3N 2T x、Nb 2CT x、Ta 4C 3T x中的一种或多种,优选的为Nb 2CT x,例如V 3C 2T x,其中T x为表面官能团-O、-F或-OH。
进一步地,所述还原剂为尿素、NH 4F中的一种或多种。
进一步地,所述分散剂为N,N-二甲基甲酰胺、乙醇、乙二醇中的一种或多种。
进一步地,将步骤(3)中所述分散液移入反应釜中,将反应釜放入烘箱中,升温至100-220℃,优选的为120-180℃,例如130℃、150℃、160℃、180℃,保温8-20h,优选的为12-16h,例如12h、13h、14h、15h、16h。
进一步地,所述清洗剂为水、乙醇中的一种或多种,优选的,用去离子水和无水乙醇彻底清洗步骤(3)所得产物,可以用去离子水和无水乙醇交替清洗2-15次,优选的为3-9次。
进一步地,步骤(4)中所述离心的转速为5000-8000r/min,优选的为6000r/min,离心 时间为5-10min,优选的为8min。
进一步地,步骤(4)中真空干燥的温度为50-80℃,优选60℃,干燥时间6-20h,优选12h,例如8h、10h、15h、20h;真空度不超过120Pa,例如120Pa、110Pa、100Pa、90Pa。
进一步地,所述WTe 2/MXene复合材料中WTe 2负载量为60-220wt%,例如60-90wt%,80-150wt%,100-180wt%,150-220wt%。
一种钾离子电池负极,其包括利用上述制备方法制备得到的WTe 2/MXene复合材料。
一种钾离子电池,其包括上述电池负极。
本发明的有益效果:
(1)与单纯的WTe 2材料比,本发明制备的WTe 2/MXene复合材料具有层状结构,WTe 2材料与Mxene纳米材料相互作用构成了稳定的结构支撑,MXene材料可以有效缓解电极材料在循环过程中的体积膨胀,WTe 2/MXene复合材料表现出良好的导电性能,具有快速的离子扩散通道,有利于钾离子快速脱嵌。
(2)本发明制备的WTe 2/MXene复合材料,将其应用于钾离子电池负极,经电化学测试结果表明,所述WTe 2/MXene电极材料具有较高的可逆比容量,表现出良好的充放电循环稳定性以及几乎100%的充放电库仑效率。
(3)本发明所述的复合材料制备工艺简单,生产效率高,原料成本低廉,资源丰富、可逆比容量高等优势,对于钾离子电池的大规模开发和应用具有重大的研究价值。
附图说明
图1是实施例1中WTe 2/MXene复合材料的扫描电镜图;
图2是实施例1中WTe 2/MXene复合材料组装钾离子电池在100mA/g的电流密度下所测的循环性能图;
图3是对比例1中单纯的WTe 2组装钾离子电池在100mA/g的电流密度下所测的循环性能图;
图4是对比例2中单纯的MXene组装钾离子电池在100mA/g的电流密度下所测的循环性能图。
具体实施方式
为了更好的解释本发明,现结合以下具体实施例作进一步说明,但是本发明不限于具体 实施例。
其中,所述材料如无特别说明均可以在商业途径可得;
所述Ti 3C 2T x纳米颗粒购自北京北科新材科技有限公司,编号BK2020011814,片层堆积厚度:1-5μm,纯度:99%,产品应用领域:储能,催化,分析化学等。
所述方法如无特别说明均为常规方法。
本发明提供一种WTe 2/MXene复合材料的制备方法,其中,所述WTe 2的合成方法为简单的水热合成法。
实施例1
一种WTe 2/MXene复合材料的制备方法,包括以下步骤:
(1)取1mmol MXene(V 3C 2T x)与1.5mmol尿素加入到N,N-二甲基甲酰胺中,磁力搅拌5小时,配置成浓度为1mg/ml的分散液;
(2)将1mmol WCl 6与2mmol四氯化碲加入步骤(1)所述分散液中,搅拌6小时,得到混合液;
(3)将步骤(2)所得的混合液移入容量为100ml反应釜中密封后放置在烘箱中,加热至120℃,保温8h,然后冷却至室温,得到悬浊液;
(4)将步骤(3)得到的悬浊液,用离心机在5000r/min条件下离心5分钟,用去离子水和无水乙醇交替洗涤滤渣3次后,在真空干燥箱中进行干燥,干燥温度60℃,干燥时间6小时,最终得到WTe 2/MXene复合材料。
将WTe 2/MXene复合材料与聚偏氟乙烯、碳黑按质量比为8:1:1的比例混合,加入适量的N-甲基吡咯烷酮,搅拌,形成均匀浆料并涂覆在集流体上,经真空干燥、切片后,制成钾离子电池负极片,并组装成纽扣电池,测试其电化学性能。
本实施例所制备的WTe 2/MXene电极材料,经电化学测试结果表明,在电流密度为100mA/g下,经200圈循环,可逆比容量为340mAh/g,是单纯WTe 2(102mAh/g)的3.33倍,且本实施例中WTe 2/MXene电极材料具有较高的库仑效率、良好的充放电循环稳定性以及优异的倍率性能。
实施例2
一种WTe 2/MXene复合材料的制备方法,包括以下步骤:
(1)取1mmol MXene(V 3C 2T x)与2mmol尿素加入到N,N-二甲基甲酰胺中,磁力 搅拌8小时,得到分散液;
(2)将1mmol WCl 6与2.3mmol四氯化碲加入步骤(1)所述分散液中,并搅拌12小时,得到混合液;
(3)将步骤(2)所得的混合液移入容量为50ml反应釜中密封后放置在烘箱中,加热至180℃,保温15h,然后冷却至室温,得到悬浊液;
(4)将步骤(3)得到的悬浊液,用离心机在7000r/min条件下离心7分钟,用去离子水和无水乙醇交替洗涤滤渣3次后,在真空干燥箱中进行干燥,干燥温度60℃,干燥时间12小时,最终得到WTe 2/MXene复合材料。
将WTe 2/MXene复合材料与聚偏氟乙烯、碳黑按质量比为8:1:1的比例混合,加入适量的N-甲基吡咯烷酮,搅拌,形成均匀浆料并涂覆在集流体上,经真空干燥、切片后,制成钾离子电池负极片,并组装成纽扣电池,测试其电化学性能。
本实施例所制备的WTe 2/MXene电极材料,经电化学测试结果表明,在电流密度为100mA/g下,经200圈循环,可逆比容量为458mAh/g,是单纯WTe 2(102mAh/g)的4.49倍,且本实施例中WTe 2/MXene电极材料具有较高的库仑效率、良好的充放电循环稳定性以及优异的倍率性能。
实施例3
一种WTe 2/MXene复合材料的制备方法,包括以下步骤:
(1)取1mmol MXene(V 3C 2T x)与2.5mmol尿素加入到N,N-二甲基甲酰胺中,磁力搅拌10小时得到分散液;
(2)将1mmol WCl 6与2.3mmol四氯化碲加入步骤(1)所述分散液中,并搅拌18小时,得到混合液;
(3)将步骤(2)所得混合液移入容量为50ml反应釜中密封后放置在烘箱中,加热至220℃,保温20h,然后冷却至室温,得到悬浊液;
(4)将步骤(3)得到的悬浊液,用离心机在8000r/min条件下离心10分钟,用去离子水和无水乙醇交替洗涤滤渣3次后,在真空干燥箱中进行干燥,干燥温度60℃,干燥时间20小时,最终得到WTe 2/MXene复合材料。
将WTe 2/MXene复合材料与聚偏氟乙烯、碳黑按质量比为8:1:1的比例混合,加入适量的N-甲基吡咯烷酮,搅拌,形成均匀浆料并涂覆在集流体上,经真空干燥、切片后,制成 钾离子电池负极片,并组装成纽扣电池,测试其电化学性能。
本实施例所制备的WTe 2/MXene电极材料,经电化学测试结果表明,在电流密度为100mA/g下,经200圈循环,可逆比容量为410mAh/g,是单纯WTe 2(102mAh/g)的4.02倍,且本实施例中WTe 2/MXene电极材料具有较高的库仑效率、良好的充放电循环稳定性以及优异的倍率性能。
对比例1
单纯WTe 2材料的制备方法,包括以下步骤:
(1)将1mmol WCl 6与2mmol四氯化碲加入到N,N-二甲基甲酰胺中,搅拌6小时,配置成浓度为1mg/ml的分散液;
(2)将步骤(1)所得均匀分散液移入容量为100ml反应釜中密封后放置在烘箱中,加热至120℃,保温8h,然后冷却至室温,得到混合液;
(3)将步骤(2)得到的混合液,用离心机在5000r/min条件下离心5分钟,用去离子水和无水乙醇交替洗涤滤渣3次后,在真空干燥箱中进行干燥,干燥温度60℃,干燥时间6小时,最终得到WTe 2材料。
将WTe 2材料与聚偏氟乙烯、碳黑按质量比为8:1:1的比例混合,加入适量的N-甲基吡咯烷酮,搅拌,形成均匀浆料并涂覆在集流体上,经真空干燥、切片后,制成钾离子电池负极片,并组装成纽扣电池,测试其电化学性能。
对比例2
称取80mg的MXene材料、10mg的super P和10mg的聚偏氟乙烯粘结剂混合,加入少量N-甲基吡咯烷酮,搅拌后涂在铜箔上,90℃温度下干燥3h,用切片机将铜箔裁剪圆形作为工作电极,干燥后放入氧和水含量都低于0.4ppm的惰性气氛手套箱中,以金属钾片为对电极,玻璃纤维为隔膜,组装成2032型纽扣电池。在电流密度为100mA/g下,经100圈循环,可逆比容量为61.1mA h/g。
本对比例所制备的WTe 2电极材料,经电化学测试结果表明,在电流密度为100mA/g下,经200圈循环,可逆比容量为102mAh/g。
图1是实施例1中WTe 2/MXene复合材料的扫描电镜图;从图1可以看出样品具有层状结构,WTe 2纳米片均匀负载在MXene材料表面,没有出现团聚现象,表明WTe 2/MXene复合材料的层状结构成功制备且有效增加层间距和比表面积。
图2-4分别是实施例1中WTe 2/MXene复合材料,单纯的WTe 2,单纯的MXene组装钾离子电池在100mA/g的电流密度下所测的循环性能图。通过对比不难发现,单纯WTe 2材料具有一定储钾能力,但在充放电过程中由于单纯的WTe 2材料极易团聚,且钾离子反复嵌入脱出后结构不稳定,表现出在充放电过程,20圈后比容量衰退明显,没有良好的循环稳定性和优异的倍率性;而单纯的MXene,可逆容量很低,仅为61.1mA h/g;而由图2可见,实施例1的WTe 2/MXene复合材料具有高的比容量和良好的循环性能。这是因为制得的复合材料层状结构和WTe 2材料与Mxene纳米材料相互作用构成了稳定的结构支撑,在循环200圈后仍然保持稳定的比容量;同时,WTe 2/MXene复合材料在嵌/脱钾循环过程中体积变化极小,因此具有良好的循环稳定性以及极高的充放电库仑效率。
以上所述仅为本发明的具体实施例,并非因此限制本发明的专利范围,凡是利用本发明作的等效变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围之中。

Claims (10)

  1. 一种WTe 2/MXene复合材料的制备方法,其特征在于,包括以下步骤:
    (1)将MXene材料加入分散剂中,配制成浓度为1-10mg/ml的分散液;
    (2)将钨源与碲源按照1:2~3的摩尔比加入步骤(1)所述分散液中,搅拌均匀,得到混合液;
    (3)将步骤(2)所述混合液在100-220℃下,反应8-20h,冷却,得到悬浊液;x
    (4)将步骤(3)所述悬浊液过滤,洗涤,离心,真空干燥,得到WTe 2/MXene复合材料。
  2. 根据权利要求1所述的WTe 2/MXene复合材料的制备方法,其特征在于,所述MXene为Ti 3C 2T x、V 3C 2T x、Mo 3N 2T x、Nb 2CT x、Ta 4C 3T x中的一种或多种。
  3. 根据权利要求1所述的WTe 2/MXene复合材料的制备方法,其特征在于,所述钨源为Na 2WO 4·2H 2O、WCl 6、(NH 4) 6H 2W 12O 40·xH 2O中的一种或多种。
  4. 根据权利要求1所述的WTe 2/MXene复合材料的制备方法,其特征在于,所述碲源为四氯化碲、联苯二碲、亚碲酸钾中的一种或多种。
  5. 根据权利要求1所述的WTe 2/MXene复合材料的制备方法,其特征在于,所述还原剂为尿素、NH 4F中的至少一种;优选的,所述分散剂为N,N-二甲基甲酰胺、乙醇、乙二醇中的至少一种。
  6. 根据权利要求1所述的WTe 2/MXene复合材料的制备方法,其特征在于,所述WTe 2/MXene复合材料中WTe 2负载量为60-220wt%。
  7. 根据权利要求1所述的WTe 2/MXene复合材料的制备方法,其特征在于,步骤(4)中所述离心的转速为5000-8000r/min,时间为5-10min。
  8. 根据权利要求1所述的WTe 2/MXene复合材料的制备方法,其特征在于,步骤(4)中真空干燥的温度为50-80℃,时间为6-20h,真空度不超过120Pa。
  9. 一种钾离子电池负极,其特征在于,其包括权利要求1-8中任一项所述的制备方法制备得到的WTe 2/MXene复合材料。
  10. 一种钾离子电池,其特征在于,其包括权利要求9所述的电池负极。
PCT/CN2020/112567 2020-08-14 2020-08-31 一种WTe2/MXene复合材料及其制备方法 WO2022032746A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010816586.4 2020-08-14
CN202010816586.4A CN112018353A (zh) 2020-08-14 2020-08-14 一种WTe2/MXene复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2022032746A1 true WO2022032746A1 (zh) 2022-02-17

Family

ID=73504446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112567 WO2022032746A1 (zh) 2020-08-14 2020-08-31 一种WTe2/MXene复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN112018353A (zh)
WO (1) WO2022032746A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115207567A (zh) * 2022-05-18 2022-10-18 上海交通大学 锂硫电池用双功能改性隔膜及其制备方法
CN115246645A (zh) * 2022-09-05 2022-10-28 湖北万润新能源科技股份有限公司 基于不同层数的V2CTx材料的制备方法及电容器制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113990540B (zh) * 2021-09-28 2022-11-01 哈尔滨工业大学 一种抗重离子单粒子效应的flash器件及其制备方法
CN116715988A (zh) * 2023-05-22 2023-09-08 武汉理工大学 一种MXene/Cs0.33WO3复合材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019079062A1 (en) * 2017-10-16 2019-04-25 Drexel University MXENE LAYERS AS SUBSTRATES FOR THE GROWTH OF HIGHLY ORIENTED THIN FILMS OF PÉROVSKITE
CN109786743A (zh) * 2019-01-15 2019-05-21 五邑大学 一种碲掺杂MXene材料及其制备方法和应用
CN109830659A (zh) * 2019-01-15 2019-05-31 五邑大学 一种Te掺杂MXene材料及其制备方法
CN110550660A (zh) * 2019-09-04 2019-12-10 江苏理工学院 一种二硫化钨/MXene复合材料的制备方法
CN110767796A (zh) * 2019-10-14 2020-02-07 东华大学 一种二维过渡金属碳化物/碲化铋或其衍生物基热电复合材料及其制备
WO2020065533A1 (en) * 2018-09-24 2020-04-02 Universidade Do Porto Thermionic capacitor chargeable by soret-effect using a gradient temperature

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110788346B (zh) * 2019-10-11 2022-06-21 陕西科技大学 半金属结构二碲化钨/氧化还原石墨烯复合物及其铜掺杂复合物粉体的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019079062A1 (en) * 2017-10-16 2019-04-25 Drexel University MXENE LAYERS AS SUBSTRATES FOR THE GROWTH OF HIGHLY ORIENTED THIN FILMS OF PÉROVSKITE
WO2020065533A1 (en) * 2018-09-24 2020-04-02 Universidade Do Porto Thermionic capacitor chargeable by soret-effect using a gradient temperature
CN109786743A (zh) * 2019-01-15 2019-05-21 五邑大学 一种碲掺杂MXene材料及其制备方法和应用
CN109830659A (zh) * 2019-01-15 2019-05-31 五邑大学 一种Te掺杂MXene材料及其制备方法
CN110550660A (zh) * 2019-09-04 2019-12-10 江苏理工学院 一种二硫化钨/MXene复合材料的制备方法
CN110767796A (zh) * 2019-10-14 2020-02-07 东华大学 一种二维过渡金属碳化物/碲化铋或其衍生物基热电复合材料及其制备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115207567A (zh) * 2022-05-18 2022-10-18 上海交通大学 锂硫电池用双功能改性隔膜及其制备方法
CN115207567B (zh) * 2022-05-18 2024-03-15 上海交通大学 锂硫电池用双功能改性隔膜及其制备方法
CN115246645A (zh) * 2022-09-05 2022-10-28 湖北万润新能源科技股份有限公司 基于不同层数的V2CTx材料的制备方法及电容器制备方法
CN115246645B (zh) * 2022-09-05 2023-07-18 湖北万润新能源科技股份有限公司 基于不同层数的V2CTx材料的制备方法及电容器制备方法

Also Published As

Publication number Publication date
CN112018353A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
WO2022032746A1 (zh) 一种WTe2/MXene复合材料及其制备方法
WO2022032743A1 (zh) 一种CoTe2/MXene复合材料及其制备方法
WO2022032745A1 (zh) 一种VO2/MXene复合材料及其制备方法与应用
US11005100B2 (en) Selenium-doped MXene material, and preparation method and use thereof
CN109473663B (zh) 一种还原氧化石墨烯负载锑的钠离子电池负极材料及其制备方法
CN108658119B (zh) 一种低温硫化技术用于制备硫化铜纳米片及其复合物的方法和应用
CN109713269B (zh) 一种锂硫电池用多烯/s复合正极材料的制备方法
WO2022032748A1 (zh) 一种硼掺杂MXene材料及其制备方法
CN111211273A (zh) 氮化铁纳米颗粒原位生长在还原氧化石墨烯上作为修饰隔膜材料的锂硫电池及其制备方法
CN108598450A (zh) 一种CoP/氮掺杂碳/石墨烯纳米复合材料及其制备方法
CN105000545A (zh) 一种锂离子电池人造石墨/焦炭负极材料的制备方法
WO2022032747A1 (zh) 一种硫掺杂ReSe2/MXene复合材料的制备方法
CN109037623B (zh) 一种镁二次电池的正极材料及其制备方法
CN110581265A (zh) 用于锂硫电池正极的中空球状CeO2-x@C复合材料的制备方法
CN107959024B (zh) 一种钠离子电池负极用片状Sb2Se3纳米晶的制备方法
WO2022032749A1 (zh) 一种三维棒状钛酸钾材料的制备方法
US20220278312A1 (en) Vanadium selenide/carbon cellulose composite as well as preparation method and application thereof
CN114843459A (zh) 一种五硫化二锑基材料及其制备方法和应用
CN110212172B (zh) 一种碳材料原位沉积纳米铅晶粒/氧化铅的复合材料及其制备方法
CN112018356A (zh) 一种片状钾离子负极材料
CN111883754A (zh) 一种氮化二铁-有序介孔碳复合材料及其制备方法和应用
CN111916705A (zh) 一种高性能硅氧化物基复合材料的制备及应用
CN111293297A (zh) 一种碳包覆MoSe2/黑磷复合材料及其制备方法
Sun et al. Review on Layered Manganese‐Based Metal Oxides Cathode Materials for Potassium‐Ion Batteries: From Preparation to Modification
CN112234170B (zh) 一种MoTe2/Mxene复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949243

Country of ref document: EP

Kind code of ref document: A1