WO2022032610A1 - 线圈芯片及其制备方法、检测芯片和滑油传感器 - Google Patents

线圈芯片及其制备方法、检测芯片和滑油传感器 Download PDF

Info

Publication number
WO2022032610A1
WO2022032610A1 PCT/CN2020/109059 CN2020109059W WO2022032610A1 WO 2022032610 A1 WO2022032610 A1 WO 2022032610A1 CN 2020109059 W CN2020109059 W CN 2020109059W WO 2022032610 A1 WO2022032610 A1 WO 2022032610A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insulating layer
coil
induction coil
chip
Prior art date
Application number
PCT/CN2020/109059
Other languages
English (en)
French (fr)
Inventor
聂泳忠
吴桂珊
Original Assignee
西人马联合测控(泉州)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西人马联合测控(泉州)科技有限公司 filed Critical 西人马联合测控(泉州)科技有限公司
Publication of WO2022032610A1 publication Critical patent/WO2022032610A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1023Microstructural devices for non-optical measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • G01N33/2858Metal particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2888Lubricating oil characteristics, e.g. deterioration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1024Counting particles by non-optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1029Particle size

Definitions

  • the application belongs to the technical field of coil chips, and in particular relates to the preparation of a coil chip based on a Micro-Electro-Mechanical System (MEMS), a detection chip for detecting lubricating oil metal dust, and a coil chip for a lubricating oil sensor method.
  • MEMS Micro-Electro-Mechanical System
  • a conventional inductive oil sensor is shown in FIG. 1 , the excitation coil 101 and the induction coil layer 102 are both arranged on the oil pipeline 103 , and a shield 104 is arranged outside the excitation coil 101 and the induction coil layer 102 .
  • the two excitation coils 101 magnetize the metal scraps.
  • electromagnetic induction generates eddy currents, which finally change the magnetic flux, thereby realizing the detection of the metal scraps.
  • the traditional inductive lubricating oil sensor can only detect metal scraps with a size of several hundred microns, and can do nothing for metal scraps of 100um and below, that is, the detection sensitivity is poor.
  • an embodiment of the present application provides a coil chip based on a micro-electromechanical system, comprising a substrate having a first surface and a second surface disposed opposite to each other, and at least two induction areas are provided on the substrate;
  • the first surface and the second surface in the area are respectively provided with a first insulating layer and a second insulating layer, the first insulating layer is provided with at least one induction coil layer on the surface away from the second insulating layer, and the induction coil
  • the inner ring position of the layer is provided with a detection through hole which runs through the whole coil chip for the lubricating oil to pass through, so that an induction coil structural unit is formed in each induction area.
  • the induction coil layer in each induction area is provided with at least one third insulating layer on the surface away from the second insulating layer, and the at least one layer of the induction coil layer and the at least one third insulating layer are in sequence.
  • each third insulating layer is arranged around the detection through hole and covers the induction coil layer of the corresponding layer.
  • the induction coil layer and the third insulating layer are respectively at least two layers, each third insulating layer is provided with a connection hole for exposing the induction coil layer of the corresponding layer, and the tails of the adjacent induction coil layers are connected via holes for electrical connection.
  • the third insulating layer on the topmost layer in each sensing area is provided with a lead coil layer and a fourth insulating layer on the surface away from the second insulating layer in sequence, and the fourth insulating layer is provided with lead holes for lead wires.
  • the coil layer is used to lead out the head of the induction coil layer on the first layer and the tail of the induction coil layer on the topmost layer through lead holes.
  • the substrate is an intrinsic silicon piece, a quartz piece or a glass piece.
  • the first insulating layer and the second insulating layer are respectively a silicon dioxide layer or a silicon nitride layer or other material layers with electrical insulation.
  • the induction coil layer is a titanium induction coil layer, a gold induction coil layer, a platinum induction coil layer, an aluminum induction coil layer or a copper induction coil layer.
  • the thicknesses of the first insulating layer and the second insulating layer are respectively 0.1um-10um;
  • the thickness of the induction coil layer is 0.01 nm-10000 nm.
  • At least two detection through-hole arrays arranged in at least two sensing regions are distributed.
  • an embodiment of the present application provides a detection chip for detecting lubricating oil metal dust, comprising a base and at least two coils of conductive material, and at least two detection channels for passing the lubricating oil are provided on the base. At least two coils and at least two detection through holes are respectively arranged in a one-to-one correspondence, and the coils are arranged on the periphery of the detection through holes.
  • it also includes an insulating connector for fixing the coil on the insulating base and/or a protection member provided on the surface of the coil.
  • an embodiment of the present application provides a lubricating oil sensor, including a lubricating oil pipeline; two excitation coils disposed on the outer wall of the lubricating oil pipeline; The MEMS-based coil chip shown in the first aspect or the detection chip for detecting lubricating oil metal dust as shown in the second aspect.
  • the lubricating oil sensor further includes an insulating holder for fixing the coil chip or the detection chip on the lubricating oil channel.
  • an embodiment of the present application provides a method for preparing a MEMS-based coil chip, including the following steps:
  • At least one induction coil layer is respectively formed on the first insulating layer in each induction area; a detection through hole for lubricating oil passing through the entire coil chip is formed at the inner ring position of the induction coil layer.
  • step (2) at least one layer of the induction coil layer is alternately provided with at least one layer of third insulating layers that completely cover the first surface, and each layer of the third insulating layer is located along the surrounding direction of the induction coil layer.
  • a connection hole is formed to expose the induction coil layer of the corresponding layer, and then the tails of the adjacent two induction coil layers are electrically connected through the connection hole; finally, the second insulating layer, the base, the first insulating layer and the third insulating layer are overlapped
  • the parts form detection through holes in sequence from bottom to top.
  • a first connection hole exposing the tail of the induction coil layer of the corresponding layer and an induction coil exposing the first layer are respectively formed on the third insulating layer of the topmost layer along the surrounding direction of the induction coil layer.
  • a lead coil layer is formed on the third insulating layer of the topmost layer, and the tail of the lead coil layer is electrically connected to the tail of the induction coil layer of the corresponding layer through the first connection hole.
  • the head of the coil layer is electrically connected to the head of the induction coil layer of the first layer through the second connection hole; and then a fourth insulating layer that completely covers the first surface is provided on the lead coil layer, and then along the surrounding direction of the induction coil layer A lead hole for exposing the lead coil layer is formed on the fourth insulating layer; finally, the overlapping parts of the second insulating layer, the base, the first insulating layer, the third insulating layer and the fourth insulating layer are sequentially formed from bottom to top to form detection through holes , get the coil chip.
  • the induction coil layer is formed by a lift-off or etching process.
  • a dry etching, wet etching or laser cutting process is used to form detection through holes, connection holes or lead holes.
  • a deposition process is used to form the first insulating layer, the second insulating layer, the third insulating layer or the fourth insulating layer.
  • the MEMS-based coil chip of the present application at least two sensing regions are provided on the substrate, and a first insulating layer and a second insulating layer are respectively provided on the first surface and the second surface in each sensing region.
  • the first insulating layer is provided with at least one induction coil layer on the surface away from the second insulating layer, and the inner ring position of the induction coil layer is provided with a detection through hole through the entire coil chip for the lubricating oil to pass through, so that each An induction coil structural unit is formed in the induction area.
  • the MEMS-based coil chip includes at least two induction coil structural units, and these induction coil structural units can divide the section of the oil pipe into multiple detection areas, which significantly improves the detection sensitivity and can detect smaller particle sizes. of metal scraps.
  • the detection chip for detecting lubricating oil metal dust according to the present application includes at least two detection through holes that can be used for detecting lubricating oil metal dust, which can also significantly improve detection sensitivity, and can detect smaller particle size. Metal shavings.
  • Fig. 1 is the structure schematic diagram of the traditional inductive lubricating oil sensor
  • FIG. 2 is a schematic structural diagram of an embodiment of a MEMS-based coil chip provided by the present application.
  • FIG. 3 is a schematic structural diagram of a single induction coil structural unit in the MEMS-based coil chip of the present application.
  • FIG. 4 is a flowchart of an embodiment of a method for manufacturing a MEMS-based coil chip provided by the present application
  • FIG. 5 is a schematic structural diagram of a substrate that can be used in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of preparing the first induction coil layer by peeling
  • FIG. 7 is a schematic structural diagram of an example of depositing a silicon dioxide layer and etching connection holes
  • FIG. 8 is a schematic structural diagram of preparing a second layer of induction coils by peeling
  • FIG. 9 is a schematic structural diagram of an example of depositing a silicon dioxide layer and etching connection holes
  • Figure 10 is a schematic structural diagram of preparing a lead layer by stripping
  • FIG. 11 is a schematic diagram of an example of depositing a silicon dioxide layer and etching connection holes
  • Figure 12 is a schematic structural diagram of substrate release
  • FIG. 13 is a schematic cross-sectional view of an exemplary single-layer induction coil
  • FIG. 14 is a schematic cross-sectional view of an exemplary three-layer induction coil
  • 15a is a schematic structural diagram of an embodiment of a detection chip for detecting lubricating oil metal chips provided by the present application;
  • 15b is a schematic structural diagram of an example of a coil of a detection chip
  • FIG. 16 is a schematic structural diagram of an embodiment of a lubricating oil sensor provided by the present application.
  • 201-substrate 202-induction coil structural unit; 203-detection through hole;
  • the traditional inductive lubricating oil sensor can only detect metal scraps with a size of several hundreds of microns, and can do nothing for metal scraps of 100um and below, that is, the detection sensitivity is poor.
  • embodiments of the present application provide a MEMS-based coil chip, a detection chip for detecting lubricating oil metal dust, a lubricating oil sensor, and a method for preparing a MEMS-based coil chip.
  • the following first introduces the MEMS-based coil chip provided by the embodiments of the present application.
  • FIG. 2 is a schematic structural diagram of an embodiment of a MEMS-based coil chip provided by the present application.
  • FIG. 3 further shows a schematic structural diagram of a single induction coil structural unit 202 .
  • the MEMS-based coil chip includes a substrate 201 having a first surface and a second surface disposed opposite to each other, and at least two sensing regions are provided on the substrate 201 .
  • a first insulating layer 601 and a second insulating layer 602 are respectively provided on the first surface and the second surface of the substrate 201 in each sensing area.
  • At least one induction coil layer 102 is provided on the surface.
  • the inner ring position of the induction coil layer 102 is provided with a detection through hole 203 that runs through the entire coil chip for the lubricating oil to pass through, so that an induction coil structural unit 202 is formed in each induction area. That is, the induction coil layer 102 is formed with a plurality of planar coil structural units, wherein the inner circle of each planar coil structural unit surrounds one detection through hole 203 .
  • the MEMS-based coil chip at least two sensing regions are provided on the substrate 201, and a first insulating layer 601 and a second insulating layer 602 are respectively provided on the first surface and the second surface in each sensing region.
  • the first insulating layer 601 is provided with at least one layer of induction coil layer 102 on the surface away from the second insulating layer 602, and the inner ring position of the induction coil layer 102 is provided with a detection through hole through the entire coil chip for the passage of lubricating oil 203, so that an induction coil structure unit 202 is formed in each induction area.
  • the MEMS-based coil chip includes at least two induction coil structural units 202, and these induction coil structural units 202 can divide the section of the oil pipe into a plurality of detection areas, which greatly improves the detection sensitivity and can detect the particle size Smaller metal shavings.
  • the induction coil layer 102 in each induction area is provided with at least one third insulating layer on the surface away from the second insulating layer 602 , the at least one induction coil layer 102 and the at least one layer of The third insulating layers are alternately arranged in sequence, and each third insulating layer is arranged around the detection through hole 203 and covers the corresponding layer of the induction coil layer 102 .
  • an adhesive layer is further provided between each third insulating layer and the induction coil layer 102 covering the corresponding layer, and the thickness of the adhesive layer is 0.01 nm-10000 nm.
  • the induction coil layer 102 and the third insulating layer are respectively at least two layers, and each third insulating layer is provided with a connection hole 702 for exposing the induction coil layer 102 of the corresponding layer.
  • the tails of layer 102 are electrically connected via connection holes 702 .
  • at least two of the induction coil layers 102 have the same circumferential direction.
  • a lead coil layer 1001 and a fourth insulating layer 1101 are sequentially provided on the topmost third insulating layer in each sensing area on the surface away from the second insulating layer 602 , and the fourth insulating layer 1101 A lead hole 902 is provided, and the lead coil layer 1001 is used to lead out the head of the induction coil layer 102 on the first layer and the tail of the induction coil layer 102 on the topmost layer through the lead hole 902 .
  • the substrate 201 is an intrinsic silicon piece, a quartz piece, or a glass piece.
  • the first insulating layer 601 and the second insulating layer 602 are respectively a silicon dioxide layer or a silicon nitride layer.
  • the induction coil layer 102 is a titanium induction coil layer, a gold induction coil layer, a platinum induction coil layer, an aluminum induction coil layer or a copper induction coil layer.
  • the thicknesses of the first insulating layer 601 and the second insulating layer 602 are respectively 0.1 um-10 um.
  • the thickness of the induction coil layer 102 is 0.01 nm-10000 nm.
  • At least two detection through holes 203 arranged in at least two sensing regions are distributed in an array.
  • the embodiment of the present application further provides a detection chip for detecting lubricating oil metal dust, comprising a base 201 and at least two coils 1501 of conductive material, and at least two detection channels for passing the lubricating oil are provided on the base 201
  • the holes 203 , at least two coils 1501 and at least two detection through holes 203 are respectively provided in a one-to-one correspondence, and the coils 1501 are arranged on the periphery of the detection through holes 203 .
  • the base 201 is provided with at least two detection through holes 203 for the lubricating oil to pass through, and the at least two coils 1501 and the at least two detection through holes 203 are respectively one by one.
  • the coil is arranged on the periphery of the detection through hole 203, so the detection chip for detecting lubricating oil metal dust can divide the section of the oil pipe into multiple detection areas, which greatly improves the detection sensitivity and can detect Metal shavings with a smaller particle size.
  • the detection chip for detecting lubricating oil metal dust further includes an insulating connector for fixing the coil 1501 on the insulating base 201 and/or a protection member provided on the surface of the coil 1501 .
  • An embodiment of the present application further provides a lubricating oil sensor, which includes a lubricating oil pipeline 103 and two excitation coils 101 disposed on the outer wall of the lubricating oil pipeline 103, and a lubricating oil pipeline 103 disposed inside the oil pipeline 103 and located between the two excitation coils 101
  • the coil chip based on the micro-electromechanical system shown in any of the above-mentioned embodiments or the detection chip for detecting lubricating oil metal dust shown in any of the above-mentioned embodiments.
  • the lubricating oil sensor includes the above-mentioned MEMS-based coil chip or a detection chip for detecting lubricating oil metal dust, the lubricating oil sensor can detect metal dust with smaller particle size.
  • the lubricating oil sensor further includes an insulating holder 1601 for fixing the coil chip or the detection chip on the lubricating oil channel.
  • the present application provides a flowchart of an embodiment of a method for fabricating a MEMS-based coil chip, and the fabrication method may include the following steps:
  • step S402 may include: at least one layer of the induction coil layer 102 is alternately provided with at least one layer of third insulating layers that completely cover the first surface, along the surrounding direction of the induction coil layer 102 on each layer of the third insulating layer Connecting holes 702 exposing the corresponding layers of the induction coil layers 102 are formed on the three insulating layers, and then the tails of the adjacent two induction coil layers 102 are electrically connected through the connecting holes 702; finally, the second insulating layer 602, the substrate 201, the first The parts where the insulating layer 601 and the third insulating layer overlap with each other form the detection through holes 203 in order from bottom to top.
  • step S402 may include: respectively forming a first layer of induction coil layers 102 on the first insulating layer 601 in each induction area, and then laying a layer covering the first layer of induction coil layers 102 on top of the first layer of induction coil layers 102 completely.
  • the third insulating layer 701 of the first layer on one surface, and then forming a connection hole 702 exposing the first layer of the induction coil layer 102 on the third insulating layer 701 of the first layer along the surrounding direction of the induction coil layer 102,
  • the third insulating layer 701 of the first layer is provided with the induction coil layer 102 of the second layer that completely covers the first surface, and then the third layer of the second layer that completely covers the first surface is placed on the induction coil layer 102 of the second layer.
  • the insulating layer 901 is then formed on the third insulating layer 901 of the second layer along the surrounding direction of the induction coil layer 102 to form a connection hole exposing the induction coil layer 102 of the second layer, and the induction coil layer 102 of the first layer and the second layer are formed.
  • the tails of the induction coil layers 102 of the first layer are electrically connected through the connection holes 702 provided on the third insulating layer 701 of the first layer.
  • step S402 may include: forming a first connection hole 702 exposing the tail of the induction coil layer 102 of the corresponding layer and exposing the first connection hole 702 on the third insulating layer of the topmost layer along the surrounding direction of the induction coil layer 102 , respectively. Then, the lead coil layer 1001 is formed on the third insulating layer of the topmost layer, and the tail of the lead coil layer 1001 is connected to the induction coil of the corresponding layer through the first connection hole 702.
  • the tail of the coil layer 102 is electrically connected, and the head of the lead coil layer 1001 is electrically connected to the head of the induction coil layer 102 of the first layer through the second connection hole 702 ; and then the upper layer of the lead coil layer 1001 is arranged to completely cover the first surface.
  • the fourth insulating layer 1101 is formed, and then the lead holes 902 exposing the lead coil layer 1001 are formed on the fourth insulating layer 1101 along the surrounding direction of the induction coil layer 102; , the overlapping portions of the third insulating layer and the fourth insulating layer 1101 are sequentially formed with detection through holes 203 from bottom to top to obtain a coil chip.
  • the induction coil layer 102 is formed using a lift-off or etch process.
  • a dry etching, wet etching or laser cutting process is used to form the detection through hole 203 , the connection hole 702 or the lead hole 902 .
  • a deposition process is used to form the first insulating layer 601 , the second insulating layer 602 , the third insulating layer or the fourth insulating layer 1101 .
  • the preparation method of the coil chip based on the micro-electromechanical system uses the MEMS preparation process to replace the traditional method of winding the coil, thereby reducing the weight and volume of the induction coil layer 102 , and is especially suitable for aerospace, etc., which have strict requirements on the weight and volume of components required field.
  • the number of layers of the induction coil layer 102 is at least one, the following takes two layers of the induction coil layer 102 as an example to describe the process flow of the coil chip based on the MEMS in detail.
  • intrinsic silicon can be selected as the material for making the substrate 201 , the thickness of the substrate 201 can be 0.5 mm, and the thickness can be adjusted according to requirements, which is not specifically limited here.
  • a schematic structural diagram of the substrate 201 can be seen in FIG. 5 .
  • the substrate 201 is thermally oxidized on both sides to form a first insulating layer 601 and a second insulating layer 602 on the upper surface and the lower surface of the substrate 201, respectively.
  • Both the first insulating layer 601 and the second insulating layer 602 may be silicon dioxide layers, and the thickness may be 0.1um-10um.
  • the first induction coil layer 102 is processed by a peeling method.
  • an adhesive layer may also be provided between the first insulating layer 601 and the induction coil layer 102 of the first layer.
  • the material of the induction coil layer 102 can be selected from gold, the material of the adhesive layer can be selected from titanium, and the thickness of the induction coil layer 102 and the adhesive layer can be 0.01 nm-10000 nm.
  • the thickness of the induction coil layer 102 is 400 nm, and the thickness of the adhesive layer is 20 nm.
  • a third insulating layer 701 of the first layer of a certain thickness is deposited to achieve electrical isolation of the two layers of induction coil layers 102, and then the On the third insulating layer 701 of the first layer, a connection hole 702 for electrical connection between the induction coil layer 102 of the first layer and the induction coil layer 102 of the second layer (in this embodiment, the induction coil layer of the top layer) is etched .
  • the third insulating layer 701 of the first layer can be a silicon dioxide layer, and the thickness can be 0.1um-10um.
  • a second layer of the induction coil layer 102 is formed by a peeling method, as shown in FIG. 8 .
  • the metal at the head of 102 and the metal at the tail of the induction coil layer 102 of the second layer are drawn out.
  • the third insulating layer 901 of the second layer can be a silicon dioxide layer, and the thickness can be 0.1um-10um.
  • lead wires and electrodes of the induction coil layer 102 on the top layer are produced by peeling again to obtain a lead coil layer 1001 .
  • a fourth insulating layer 1101 with a certain thickness needs to be deposited again on the lead coil layer 1001 .
  • the fourth insulating layer 1101 on the electrodes needs to be etched to form lead holes 902 to expose the electrodes.
  • the leads can be led to the substrate 201 through the lead holes 902 .
  • the fourth insulating layer 1101 can be a silicon dioxide layer, and the thickness can be 0.1um-10um.
  • the structure of the single-layer induction coil layer 102 is similar to this, the difference is that after the first layer of the induction coil layer 102 is finished, the connection holes 702 are directly etched on the third insulating layer 701 of the first layer. The metal at the head of the induction coil layer 102 of the first layer and the metal at the tail of the induction coil layer 102 of the first layer are drawn out. Then, the lead coil layer 1001 is obtained by peeling off. Then, a fourth insulating layer 1101 with a certain thickness is deposited again on the lead coil layer 1001 . The fourth insulating layer 1101 on the electrodes is etched to form lead holes 902 to expose the electrodes.
  • a schematic cross-sectional view of the single-layer induction coil layer 102 can be seen in FIG. 13
  • the structure of the three-layer induction coil layer 102 is to repeat the stacking of the induction coil layer 102 three times, and finally the lead is connected.
  • a schematic cross-sectional view of a coil chip with three layers of induction coil layers 102 can be seen in FIG. 14 .
  • the top layer is the fourth insulating layer 1101 , the first layer of the induction coil layer 102 , the second layer of the induction coil layer 102 , the third layer of the induction coil layer 102 , and the third layer of the induction coil layer 102 .
  • the induction coil layer 103 of the first layer, the third insulating layer 701 of the first layer, the third insulating layer 901 of the second layer, and the third insulating layer 1401 of the third layer are respectively shown in FIG. 14 .
  • the fourth insulating layer 1101 can be a silicon dioxide layer, and the thickness can be 0.1um-10um.
  • the detection chip for detecting lubricating oil metal dust provided by the embodiment of the present application will be introduced.
  • the detection chip includes a substrate 201, at least two coils 1501 of conductive material, insulating connectors for fixing the coils 1501 on the insulating substrate 201, and A protective member for the surface of the coil 1501, the base 201 is provided with at least two detection through holes 203 for the lubricating oil to pass through, and the at least two coils 1501 and the at least two detection through holes 203 are respectively arranged in a one-to-one correspondence, and The coil 1501 is provided on the periphery of the detection through hole 203 .
  • the above-mentioned coil 1501 is a conductive material.
  • any existing conductive material can be used for the coil 1501 in this case, as long as it can generate an inductive signal; the above-mentioned connectors are generally selected from insulating materials that will not interfere with the inductive signal.
  • the method can be bonding, such as insulating glue, etc.
  • the material of the above protection member can be selected from titanium alloy and other materials to protect the surface structure of the coil 1501 and avoid the damage to the coil 1501 caused by the flow of lubricating oil.
  • the specific shape and structure of the above-mentioned connecting member and protecting member are not limited, and may be, for example, a plate-shaped structure.
  • the detection chip can be fabricated by a photolithography machine.
  • a plurality of detection through holes 203 are formed on the substrate 201.
  • a plurality of detection through holes 203 are formed with uniform intervals and arranged in an array.
  • the chip is then packaged with a protective plate on the front and back of the chip by gluing, so that the chip has good resistance to fluid impact and will not be easily deformed or cracked. After production, it is inserted into the tubing, and the inner diameter of the tubing is divided into several small detection areas (see Figure 16).
  • the lubricating oil sensor especially the large-diameter lubricating oil sensor, includes a lubricating oil pipe 103 , two excitation coils 101 arranged on the outer wall of the lubricating oil pipe 103 , two excitation coils 101 arranged inside the lubricating oil pipe 103 and located in The above-mentioned MEMS-based coil chip or the above-mentioned detection chip for detecting lubricating oil metal dust between the two excitation coils 101, and the above-mentioned coil chip or the detection chip for fixing the lubricating oil Insulated holder 1601 on the channel.
  • the holder 1601 may have an existing structure, as long as the coil chip or the detection chip can be stably fixed on the lubricating oil pipe 103 .
  • the lubricating oil pipe 103 is radially divided into two parts from the middle position, and enameled wires of the same specification and the same number of turns are wound on each part separately, and the excitation signal sources are respectively connected to generate excitation signals.
  • the packaged coil chip or detection chip is fixed between the two sections of oil pipes, and the two sections of lubricating oil pipes 103 are fixed and sealed together by welding.
  • the two sets of excitation coils 101 on the oil pipe 103 generate a magnetic field inside the oil pipe after the excitation signal is passed.
  • the particulate matter passes through the oil pipe, it will also pass through at least one detection area on the coil chip or the detection chip (ie, the detection through hole). 203).
  • a group of coils 1501 or induction coil structural units 202 surrounding each detection through hole 203 play a signal induction role.
  • the electrical signal changes, it can be judged that particulate matter has passed through. Through algorithm analysis, the size and number of particles can be obtained.
  • the large-diameter lubricating oil pipeline 103 is divided into many small-diameter sub-lubricating oil pipelines 103, and the sensing signals of each sub-lubricating oil pipeline 103 are detected separately, which can greatly improve the detection sensitivity of the sensor.
  • the coil chip or the detection chip is directly arranged in the lubricating oil pipeline 103, and since there is no metal shield, the sensitivity of the lubricating oil quality sensor can also be greatly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)

Abstract

一种线圈芯片及其制备方法、检测芯片和滑油传感器,基于微机电系统的线圈芯片,包括具有相对设置的第一表面和第二表面的基底(201),基底(201)上设有至少两个的感应区域;基底(201)于每个感应区域内的第一表面和第二表面上分别对应设有第一绝缘层(601)和第二绝缘层(602),第一绝缘层(601)于远离第二绝缘层(602)的表面上设有至少一层的感应线圈层(102),感应线圈层(102)的内圈位置设有贯穿整个线圈芯片的供滑油通过的检测通孔(203),使得每个感应区域内形成一感应线圈结构单元(202)。能够提高滑油传感器的检测灵敏度。

Description

线圈芯片及其制备方法、检测芯片和滑油传感器
相关申请的交叉引用
本申请要求享有于2020年8月10日提交的名称为“线圈芯片及其制备方法、检测芯片和滑油传感器”的中国专利申请202010797239.1的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于线圈芯片技术领域,尤其涉及一种基于微机电系统(Micro-Electro-Mechanical System,MEMS)的线圈芯片、用于检测滑油金属屑末的检测芯片、滑油传感器的线圈芯片的制备方法。
背景技术
在发动机、轴承、齿轮等的运转过程中,为降低磨损损耗,往往需要配置滑油系统。经验表明,设备磨损部件(如发动机、滚动轴承、齿轮等)的损伤程度与滑油系统里的金属屑末之间具有强烈的相关性。因此,为了评估设备的磨损情况,常常会在滑油系统中加装滑油传感器对设备的整个磨损过程进行监测。
传统的电感式滑油传感器如图1所示,激励线圈101和感应线圈层102均设置于滑油管道103上,激励线圈101和感应线圈层102外设置有屏蔽罩104。两个激励线圈101对金属屑末进行磁化,金属屑末流经感应线圈层102的时候,电磁感应产生涡流,最终使磁通量发生变化,从而实现对金属屑末的检测。但是,传统的电感式滑油传感器只能检测几百微米大小的金属屑末,对100um及其以下的金属屑末无能为力,也即检测灵敏度较差。
因此,如何提高滑油传感器的检测灵敏度是本领域技术人员亟需解决的技术问题。
发明内容
第一方面,本申请实施例提供一种基于微机电系统的线圈芯片,包括具有相对设置的第一表面和第二表面的基底,基底上设有至少两个的感应区域;基底于每个感应区域内的第一表面和第二表面上分别对应设有第一绝缘层和第二绝缘层,第一绝缘层于远离第二绝缘层的表面上设有至少一层的感应线圈层,感应线圈层的内圈位置设有贯穿整个线圈芯片的供滑油通过的检测通孔,使得每个感应区域内形成一感应线圈结构单元。
可选的,每个感应区域内的感应线圈层于远离第二绝缘层的表面上设有至少一层的第三绝缘层,至少一层的感应线圈层与至少一层的第三绝缘层依次交替设置,每层第三绝缘层围绕检测通孔设置且覆盖对应层的感应线圈层。
可选的,感应线圈层和第三绝缘层分别为至少两层,每层第三绝缘层上分别设有用于露出对应层的感应线圈层的连接孔,相邻的感应线圈层的尾部经由连接孔电连接。
可选的,每个感应区域内的位于最顶层的第三绝缘层于远离第二绝缘层的表面上依次设有引线圈层和第四绝缘层,第四绝缘层上设有引线孔,引线圈层用于将位于第一层的感应线圈层的头部和位于最顶层的感应线圈层的尾部经由引线孔引出。
可选的,基底为本征硅件、石英件或玻璃件。
可选的,第一绝缘层和第二绝缘层分别为二氧化硅层或氮化硅层或其他具有电绝缘的材料层。
感应线圈层为钛制感应线圈层、金制感应线圈层、铂制感应线圈层、铝制感应线圈层或铜制感应线圈层。
可选的,第一绝缘层和第二绝缘层的厚度分别为0.1um-10um;
可选的,感应线圈层的厚度为0.01nm-10000nm。
可选的,至少两个的感应区域内设置的至少两个的检测通孔阵列分布。
第二方面,本申请实施例提供一种用于检测滑油金属屑末的检测芯片,包括基底和至少两个的导电材料的线圈,基底上设有至少两个的供滑油通过的检测通孔,至少两个的线圈与至少两个的检测通孔分别一一对应设置, 且线圈设于检测通孔的孔周沿。
可选的,还包括用于将线圈固设于绝缘基底上的绝缘的连接件和/或设于线圈表面的保护件。
第三方面,本申请实施例提供一种滑油传感器,包括滑油管道;设置于滑油管道外壁上的两个激励线圈;以及设于滑油管道内部且位于两个激励线圈之间的如第一方面所示的基于微机电系统的线圈芯片或者如第二方面所示的用于检测滑油金属屑末的检测芯片。
可选的,该滑油传感器还包括用于将线圈芯片或检测芯片固设于滑油通道上的绝缘的固持件。
第四方面,本申请实施例提供一种基于微机电系统的线圈芯片的制备方法,包括以下步骤:
(1)将基底划分为至少两个的感应区域,以及将基底的相对设置的第一表面和第二表面分别进行热氧化,依次对应形成第一绝缘层和第二绝缘层;
(2)于每个感应区域中的第一绝缘层上分别形成至少一层的感应线圈层;于感应线圈层的内圈位置形成贯穿整个线圈芯片的供滑油通过的检测通孔。
可选的,步骤(2)中,至少一层的感应线圈层上交替层设完全覆盖第一表面的至少一层的第三绝缘层,沿感应线圈层的环绕方向在每层第三绝缘层上形成露出对应层的感应线圈层的连接孔,然后将相邻两层感应线圈层的尾部通过连接孔电连接;最后将第二绝缘层、基底、第一绝缘层和第三绝缘层重叠的部位由下自上依次形成检测通孔。
可选的,步骤(2)中,沿感应线圈层的环绕方向在最顶层的第三绝缘层上分别形成露出对应层的感应线圈层的尾部的第一连接孔和露出第一层的感应线圈层的头部的第二连接孔,然后在最顶层的第三绝缘层上形成引线圈层,将引线圈层的尾部通过第一连接孔与对应层的感应线圈层的尾部电连接,将引线圈层的头部通过第二连接孔与第一层的感应线圈层的头部电连接;再于引线圈层上层设完全覆盖第一表面的第四绝缘层,然后沿感应线圈层的环绕方向于第四绝缘层上形成露出引线圈层的引线孔;最后 将第二绝缘层、基底、第一绝缘层、第三绝缘层和第四绝缘层重叠的部位由下自上依次形成检测通孔,获得线圈芯片。
可选的,采用剥离或腐蚀工艺形成感应线圈层。
可选的,采用干法刻蚀、湿法腐蚀或激光切割工艺形成检测通孔、连接孔或引线孔。
可选的,采用沉积工艺形成第一绝缘层、第二绝缘层、第三绝缘层或第四绝缘层。
根据本申请的基于微机电系统的线圈芯片,基底上设有至少两个的感应区域,每个感应区域内的第一表面和第二表面上分别对应设有第一绝缘层和第二绝缘层,第一绝缘层于远离第二绝缘层的表面上设有至少一层的感应线圈层,感应线圈层的内圈位置设有贯穿整个线圈芯片的供滑油通过的检测通孔,使得每个感应区域内形成一感应线圈结构单元。也就是说,该基于微机电系统的线圈芯片包括至少两个感应线圈结构单元,这些感应线圈结构单元能够将油管截面划分成多个检测区域,显著地提高了检测灵敏度,可以检测出粒度更小的金属屑末。类似地,根据本申请的用于检测滑油金属屑末的检测芯片包括至少两个可用于检测滑油金属屑末的检测通孔,同样能够显著地提高检测灵敏度,可以检测出粒度更小的金属屑末。
附图说明
为了更清楚地说明本申请的实施例并了解其目的和优点,下面将参考附图进行描述,其中,相同或相似的附图标记表示相同或相似的特征,附图并未按照实际的比例绘制。
图1是传统的电感式滑油传感器的结构示意图;
图2是本申请提供的基于微机电系统的线圈芯片的实施例的结构示意图;
图3是本申请的基于微机电系统的线圈芯片中的单个感应线圈结构单元的结构示意图;
图4是本申请提供的基于微机电系统的线圈芯片的制备方法的实施例的流程图;
图5是可用于本申请实施例的基底的结构示意图;
图6是通过剥离制备第一层感应线圈层的结构示意图;
图7是沉积二氧化硅层及刻蚀连接孔的示例的结构示意图;
图8是通过剥离制备第二层感应线圈的结构示意图;
图9是沉积二氧化硅层及刻蚀连接孔的示例的结构示意图;
图10是通过剥离制备引线层的结构示意图;
图11是沉积二氧化硅层及刻蚀连接孔的示例的示意图;
图12是基底释放的结构示意图;
图13是示例性的单层感应线圈的截面示意图;
图14是示例性的三层感应线圈的截面示意图;
图15a是本申请提供的用于检测滑油金属屑末的检测芯片的实施例的结构示意图;
图15b是检测芯片的线圈的示例的结构示意图;
图16是本申请提供的滑油传感器的实施例的结构示意图。
附图标记:
101-激励线圈;102-感应线圈层;103-滑油管道;104-屏蔽罩;
201-基底;202-感应线圈结构单元;203-检测通孔;
601-第一绝缘层;602-第二绝缘层;701-第一层的第三绝缘层;
702-连接孔;901-第二层的第三绝缘层;902-引线孔;
1001-引线圈层;1101-第四绝缘层;1401-第三层的第三绝缘层;
1501-线圈;1601-固持件。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
由背景技术可知,传统的电感式滑油传感器只能检测几百微米大小的金属屑末,对100um及其以下的金属屑末无能为力,也即检测灵敏度较差。
为了解决现有技术问题,本申请实施例提供了一种基于微机电系统的线圈芯片、用于检测滑油金属屑末的检测芯片、滑油传感器和基于微机电系统的线圈芯片的制备方法。下面首先对本申请实施例所提供的基于微机电系统的线圈芯片进行介绍。
图2是本申请提供的基于微机电系统的线圈芯片的实施例的结构示意图。图3进一步示出了单个感应线圈结构单元202的结构示意图。
如图2和图3所示,该基于微机电系统的线圈芯片包括具有相对设置的第一表面和第二表面的基底201,基底201上设有至少两个的感应区域。参考图6,基底201于每个感应区域内的第一表面和第二表面上分别对应设有第一绝缘层601和第二绝缘层602,第一绝缘层601于远离第二绝缘层602的表面上设有至少一层的感应线圈层102。感应线圈层102的内圈位置设有贯穿整个线圈芯片的供滑油通过的检测通孔203,使得每个感应区域内形成一感应线圈结构单元202。也就是说,感应线圈层102形成有多个平面线圈结构单元,其中,各个平面线圈结构单元的内圈围绕一个检测通孔203。
该基于微机电系统的线圈芯片,基底201上设有至少两个的感应区域,每个感应区域内的第一表面和第二表面上分别对应设有第一绝缘层601和第二绝缘层602,第一绝缘层601于远离第二绝缘层602的表面上设有至少 一层的感应线圈层102,感应线圈层102的内圈位置设有贯穿整个线圈芯片的供滑油通过的检测通孔203,使得每个感应区域内形成一感应线圈结构单元202。也就是说,该基于微机电系统的线圈芯片包括至少两个感应线圈结构单元202,这些感应线圈结构单元202能够将油管截面划分成多个检测区域,极大地提高了检测灵敏度,可以检测出粒度更小的金属屑末。
在一个实施例中,每个感应区域内的感应线圈层102于远离第二绝缘层602的表面上设有至少一层的第三绝缘层,至少一层的感应线圈层102与至少一层的第三绝缘层依次交替设置,每层第三绝缘层围绕检测通孔203设置且覆盖对应层的感应线圈层102。在一个实施例中,每层第三绝缘层和其覆盖对应层的感应线圈层102之间还设置有粘接层,该粘接层的厚度为0.01nm-10000nm。
在一个实施例中,感应线圈层102和第三绝缘层分别为至少两层,每层第三绝缘层上分别设有用于露出对应层的感应线圈层102的连接孔702,相邻的感应线圈层102的尾部经由连接孔702电连接。在一个实施例中,至少两层的感应线圈层102的环绕方向相同。
在一个实施例中,每个感应区域内的位于最顶层的第三绝缘层于远离第二绝缘层602的表面上依次设有引线圈层1001和第四绝缘层1101,第四绝缘层1101上设有引线孔902,引线圈层1001用于将位于第一层的感应线圈层102的头部和位于最顶层的感应线圈层102的尾部经由引线孔902引出。
在一个实施例中,基底201为本征硅件、石英件或玻璃件。可选的,第一绝缘层601和第二绝缘层602分别为二氧化硅层或氮化硅层。可选的,感应线圈层102为钛制感应线圈层、金制感应线圈层、铂制感应线圈层、铝制感应线圈层或铜制感应线圈层。
在一个实施例中,第一绝缘层601和第二绝缘层602的厚度分别为0.1um-10um。可选的,感应线圈层102的厚度为0.01nm-10000nm。
在一个实施例中,至少两个的感应区域内设置的至少两个的检测通孔203阵列分布。
本申请实施例还提供一种用于检测滑油金属屑末的检测芯片,包括基 底201和至少两个的导电材料的线圈1501,基底201上设有至少两个的供滑油通过的检测通孔203,至少两个的线圈1501与至少两个的检测通孔203分别一一对应设置,且线圈1501设于检测通孔203的孔周沿。
该用于检测滑油金属屑末的检测芯片,基底201上设有至少两个的供滑油通过的检测通孔203,至少两个的线圈1501与至少两个的检测通孔203分别一一对应设置,且线圈设于检测通孔203的孔周沿,故该用于检测滑油金属屑末的检测芯片能够将油管截面划分成多个检测区域,极大地提高了检测灵敏度,可以检测出粒度更小的金属屑末。
在一个实施例中,该用于检测滑油金属屑末的检测芯片还包括用于将线圈1501固设于绝缘基底201上的绝缘的连接件和/或设于线圈1501表面的保护件。
本申请实施例还提供一种滑油传感器,包括滑油管道103和设置于滑油管道103外壁上的两个激励线圈101,以及设于滑油管道103内部且位于两个激励线圈101之间的上述任意实施例所示的基于微机电系统的线圈芯片或者上述任意实施例所示的用于检测滑油金属屑末的检测芯片。
由于该滑油传感器包括上述基于微机电系统的线圈芯片或用于检测滑油金属屑末的检测芯片,故该滑油传感器能够检测出粒度更小的金属屑末。
在一个实施例中,该滑油传感器还包括用于将线圈芯片或检测芯片固设于滑油通道上的绝缘的固持件1601。
如图4所示,本申请提供基于微机电系统的线圈芯片的制备方法的实施例的流程图,该制备方法可以包括以下步骤:
S401、将基底201划分为至少两个的感应区域,以及将基底201的相对设置的第一表面和第二表面分别进行热氧化,依次对应形成第一绝缘层601和第二绝缘层602;
S402、于每个感应区域中的第一绝缘层601上分别形成至少一层的感应线圈层102;于感应线圈层102的内圈位置形成贯穿整个线圈芯片的供滑油通过的检测通孔203。
在一个实施例中,步骤S402可以包括:至少一层的感应线圈层102上交替层设完全覆盖第一表面的至少一层的第三绝缘层,沿感应线圈层102 的环绕方向在每层第三绝缘层上形成露出对应层的感应线圈层102的连接孔702,然后将相邻两层感应线圈层102的尾部通过连接孔702电连接;最后将第二绝缘层602、基底201、第一绝缘层601和第三绝缘层重叠的部位由下自上依次形成检测通孔203。
在一个实施例中,步骤S402可以包括:于每个感应区域中的第一绝缘层601上分别形成第一层的感应线圈层102,然后在第一层的感应线圈层102上层设完全覆盖第一表面的第一层的第三绝缘层701,然后沿感应线圈层102的环绕方向在第一层的第三绝缘层701上形成露出第一层的感应线圈层102的连接孔702,再在第一层的第三绝缘层701上层设完全覆盖第一表面的第二层的感应线圈层102,然后在第二层的感应线圈层102上层设完全覆盖第一表面的第二层的第三绝缘层901,然后沿感应线圈层102的环绕方向在第二层的第三绝缘层901上形成露出第二层的感应线圈层102的连接孔,将第一层的感应线圈层102和第二层的感应线圈层102的尾部通过设于第一层的第三绝缘层701上的连接孔702电连接,重复上述层设操作,以获得至少一层的交替层设的感应线圈层102和第三绝缘层。
在一个实施例中,步骤S402可以包括:沿感应线圈层102的环绕方向在最顶层的第三绝缘层上分别形成露出对应层的感应线圈层102的尾部的第一连接孔702和露出第一层的感应线圈层102的头部的第二连接孔702,然后在最顶层的第三绝缘层上形成引线圈层1001,将引线圈层1001的尾部通过第一连接孔702与对应层的感应线圈层102的尾部电连接,将引线圈层1001的头部通过第二连接孔702与第一层的感应线圈层102的头部电连接;再于引线圈层1001上层设完全覆盖第一表面的第四绝缘层1101,然后沿感应线圈层102的环绕方向于第四绝缘层1101上形成露出引线圈层1001的引线孔902;最后将第二绝缘层602、基底201、第一绝缘层601、第三绝缘层和第四绝缘层1101重叠的部位由下自上依次形成检测通孔203,获得线圈芯片。
在一个实施例中,采用剥离或腐蚀工艺形成感应线圈层102。可选的,采用干法刻蚀、湿法腐蚀或激光切割工艺形成检测通孔203、连接孔702或引线孔902。可选的,采用沉积工艺形成第一绝缘层601、第二绝缘层602、 第三绝缘层或第四绝缘层1101。
该基于微机电系统的线圈芯片的制备方法,利用MEMS制备工艺代替了传统的绕线圈的方式,减小了感应线圈层102的重量和体积,尤其适用于航空航天等对于部件重量、体积有严格要求的领域。
由于感应线圈层102的层数至少有一层,下面以两层感应线圈层102为例,详细说明基于微机电系统的线圈芯片的加工工艺流程。
(1)首先可以选择本征硅作为制作基底201的材料,该基底201的厚度可以为0.5mm,厚度可根据需求进行调整,在此对其不作具体限定。基底201的结构示意图可参见图5。
(2)双面热氧化该基底201,分别在基底201的上表面和下表面分别形成第一绝缘层601和第二绝缘层602。该第一绝缘层601和第二绝缘层602均可以为二氧化硅层,厚度可以为0.1um-10um。
如图6所示,在该第一绝缘层601上,采用剥离的方法加工出第一层的感应线圈层102。在一个实施例中,第一绝缘层601和第一层的感应线圈层102之间还可以设置有粘接层。感应线圈层102的材料可以选用金,粘接层的材料可以选用钛,感应线圈层102和粘接层的厚度可以为0.01nm-10000nm。可选的,感应线圈层102的厚度为400nm,粘接层的厚度为20nm。
(3)如图7所示,在制备完第一层的感应线圈层102后,沉积一定厚度的第一层的第三绝缘层701以实现两层感应线圈层102的电隔离,然后在该第一层的第三绝缘层701上刻蚀用于第一层的感应线圈层102和第二层的感应线圈层102(本实施例中即为顶层的感应线圈层)电连接的连接孔702。该第一层的第三绝缘层701可以为二氧化硅层,厚度可以为0.1um-10um。
(4)连接孔702刻蚀完成以后,以剥离的方法形成第二层的感应线圈层102,可参见图8。
(5)如图9所示,在第二层的感应线圈层102上沉积一定厚度的第二层的第三绝缘层901,并以刻蚀连接孔702的方法将第一层的感应线圈层102头部的金属和第二层的感应线圈层102尾部的金属引出。该第二层的 第三绝缘层901可以为二氧化硅层,厚度可以为0.1um-10um。
(6)如图10所示,再次通过剥离的方式制作顶层的感应线圈层102的引线和电极,得到引线圈层1001。
(7)为了保护顶层的引线,如图11所示,引线圈层1001之上需要再次沉积一定厚度第四绝缘层1101。为了后续连接引线,需要将电极上的第四绝缘层1101刻蚀以形成引线孔902露出电极。可通过引线孔902将引线引至基底201上。该第四绝缘层1101可以为二氧化硅层,厚度可以为0.1um-10um。
(8)如图12所示,以干法刻蚀的方式将感应线圈层102内部的基底201、第一绝缘层601、第二绝缘层602、第一层的第三绝缘层701、第二层的第三绝缘层901及第四绝缘层1101去除,以形成滑油的通道。
单层感应线圈层102的结构与此类似,区别在于,在做完第一层的感应线圈层102后,在其第一层的第三绝缘层701上直接以刻蚀连接孔702的方法将第一层的感应线圈层102头部的金属和第一层的感应线圈层102尾部的金属引出。再通过剥离的方式制作得到引线圈层1001。然后在引线圈层1001之上再次沉积一定厚度第四绝缘层1101。将电极上的第四绝缘层1101刻蚀以形成引线孔902露出电极。单层感应线圈层102的截面示意图可参见图13
三层感应线圈层102结构则是重复进行三次感应线圈层102的叠加,最后再接出引线。具有三层感应线圈层102的线圈芯片的截面示意图可参见图14,图14中顶层为第四绝缘层1101,其第一层的感应线圈层102、第二层的感应线圈层102、第三层的感应线圈层103、第一层的第三绝缘层701、第二层的第三绝缘层901、第三层的第三绝缘层1401分别参见图14所示。该第四绝缘层1101可以为二氧化硅层,厚度可以为0.1um-10um。
下面再对本申请实施例所提供的用于检测滑油金属屑末的检测芯片进行介绍。
参见图15a-b、图16以及图3,该检测芯片包括基底201、至少两个的导电材料的线圈1501、用于将线圈1501固设于绝缘基底201上的绝缘的连接件、以及设于线圈1501表面的保护件,所述基底201上设有至少两个的 供滑油通过的检测通孔203,至少两个的线圈1501与至少两个的检测通孔203分别一一对应设置,且线圈1501设于检测通孔203的孔周沿。
上述线圈1501为导电材料,原则上现有的导电材料均可以用于本案的线圈1501,只要能产生感应信号即可;上述连接件,一般选择不会对感应信号起到干扰的绝缘材料,连接方式可以采用粘结,例如绝缘胶等;上述保护件的材质可选择钛合金等材质,对线圈1501的表面结构进行保护,避免滑油流经对线圈1501的破坏。上述连接件和保护件的具体形状、结构不作限制,可为例如板状等结构。
下面对本申请实施例所提供的用于检测滑油金属屑末的检测芯片的制备方法进行介绍。
该检测芯片可由光刻机制作而成,先在基底201上形成多个检测通孔203,具体的,形成多个均匀间隔呈阵列分布的检测通孔203,每个检测通孔203的外部刻上很多圈螺旋状的导电材料的线圈1501,例如符合规格要求的导电线,线圈1501的两端引到芯片的边缘,再连接信号线到电路板上,这样,每个检测通孔203都相当于一个单独的感应线圈。芯片再采用胶粘的方式前后各粘贴一片保护板进行封装,这样芯片就有很好的抗流体冲击能力,不会容易产生形变或裂开。制成后插设于油管中,并将油管内径分割成若干个小检测区(参见图16)。
下面再对本申请实施例所提供的滑油传感器进行介绍。
参见图16,该滑油传感器,尤其是大口径的滑油传感器,包括滑油管道103、设置于所述滑油管道103外壁上的两个激励线圈101、设于滑油管道103内部且位于两个激励线圈101之间的上述的基于微机电系统的线圈芯片或者上述的用于检测滑油金属屑末的检测芯片、以及用于将所述线圈芯片或所述检测芯片固设于滑油通道上的绝缘的固持件1601。固持件1601可选择现有结构,只要能将所述线圈芯片或所述检测芯片稳定地固定在滑油管道103上即可。
具体的,在设计传感器中心油管时,将滑油管道103由中间位置沿径向分成两部分,在每部分上单独绕同样规格、同样匝数的漆包线,分别连接激励信号源产生激励信号。而封装好的线圈芯片或检测芯片被固定在两 截油管之间,两截滑油管道103通过焊接的方式固定、密封在一起。
滑油管道103上的两组激励线圈101,通激励信号后在油管内部产生磁场,当颗粒物质从油管中通过时,亦会通过线圈芯片或检测芯片上的至少一个检测区(即检测通孔203)。而每个检测通孔203周围绕设的一组线圈1501或感应线圈结构单元202发挥信号感应作用,通过检测所有检测通孔203的电信号,只要其中一组线圈1501或感应线圈结构单元202的电信号出现变化,即可判断有颗粒物质通过。再通过算法解析,即可以得出颗粒的大小及数量。
这样,相当于将大口径的滑油管道103分割成很多小口径的子滑油管道103,再分别检测各子滑油管道103的感应信号,这样能大大提高传感器的检测灵敏度。
此外,线圈芯片或检测芯片直接设在滑油管道103内,因没有金属的屏蔽,亦能大大提高滑油品质传感器的灵敏度。
以上所述,仅为本申请的具体实施方式,应理解,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。

Claims (15)

  1. 一种基于微机电系统的线圈芯片,包括具有相对设置的第一表面和第二表面的基底,所述基底上设有至少两个的感应区域;所述基底于每个感应区域内的第一表面和第二表面上分别对应设有第一绝缘层和第二绝缘层,第一绝缘层于远离第二绝缘层的表面上设有至少一层的感应线圈层,所述感应线圈层的内圈位置设有贯穿整个线圈芯片的供滑油通过的检测通孔,使得每个感应区域内形成一感应线圈结构单元。
  2. 根据权利要求1所述的基于微机电系统的线圈芯片,其中,每个感应区域内的感应线圈层于远离第二绝缘层的表面上设有至少一层的第三绝缘层,至少一层的感应线圈层与至少一层的第三绝缘层依次交替设置,每层所述第三绝缘层围绕检测通孔设置且覆盖对应层的感应线圈层。
  3. 根据权利要求2所述的基于微机电系统的线圈芯片,其中,所述感应线圈层和第三绝缘层分别为至少两层,每层第三绝缘层上分别设有用于露出对应层的感应线圈层的连接孔,相邻的感应线圈层的尾部经由所述连接孔电连接。
  4. 根据权利要求2或3所述的基于微机电系统的线圈芯片,其中,每个感应区域内的位于最顶层的第三绝缘层于远离第二绝缘层的表面上依次设有引线圈层和第四绝缘层,所述第四绝缘层上设有引线孔,所述引线圈层用于将位于第一层的感应线圈层的头部和位于最顶层的感应线圈层的尾部经由所述引线孔引出。
  5. 根据权利要求1所述的基于微机电系统的线圈芯片,其中,所述基底为本征硅件、石英件或玻璃件;或者,
    所述第一绝缘层和第二绝缘层分别为二氧化硅层或氮化硅层;或者,
    所述感应线圈层为钛制感应线圈层、金制感应线圈层、铂制感应线圈层、铝制感应线圈层或铜制感应线圈层。
  6. 根据权利要求1所述的基于微机电系统的线圈芯片,其中,所述第一绝缘层和所述第二绝缘层的厚度分别为0.1um-10um;或者,
    所述感应线圈层的厚度为0.01nm-10000nm。
  7. 根据权利要求1-3和5-6任意一项所述的基于微机电系统的线圈芯片,其中,至少两个的感应区域内设置的至少两个的检测通孔阵列分布。
  8. 一种用于检测滑油金属屑末的检测芯片,包括基底和至少两个的导电材料的线圈,所述基底上设有至少两个的供滑油通过的检测通孔,至少两个的线圈与至少两个的检测通孔分别一一对应设置,且线圈设于检测通孔的孔周沿。
  9. 根据权利要求8所述的用于检测滑油金属屑末的检测芯片,其中,还包括用于将线圈固设于绝缘基底上的绝缘的连接件和/或设于线圈表面的保护件。
  10. 一种滑油传感器,包括:
    滑油管道;
    设置于所述滑油管道外壁上的两个激励线圈;以及
    设于所述滑油管道内部且位于所述两个激励线圈之间的权利要求1-7任意一项所述的基于微机电系统的线圈芯片或者权利要求8-9任意一项所述的用于检测滑油金属屑末的检测芯片。
  11. 根据权利要求10所述的滑油传感器,其中,还包括用于将所述线圈芯片或所述检测芯片固设于滑油通道上的绝缘的固持件。
  12. 一种基于微机电系统的线圈芯片的制备方法,包括以下步骤:
    (1)将基底划分为至少两个的感应区域,以及将基底的相对设置的第一表面和第二表面分别进行热氧化,依次对应形成第一绝缘层和第二绝缘层;
    (2)于每个感应区域中的第一绝缘层上分别形成至少一层的感应线圈层;于感应线圈层的内圈位置形成贯穿整个线圈芯片的供滑油通过的检测通孔。
  13. 根据权利要求12所述的基于微机电系统的线圈芯片的制备方法,其中,所述步骤(2)中,至少一层的感应线圈层上交替层设完全覆盖第一表面的至少一层的第三绝缘层,沿感应线圈层的环绕方向在每层第三绝缘层上形成露出对应层的感应线圈层的连接孔,然后将相邻两层感应线圈层的尾部通过连接孔电连接;最后将第二绝缘层、基底、第一绝缘层和第 三绝缘层重叠的部位由下自上依次形成所述检测通孔。
  14. 根据权利要求13所述的基于微机电系统的线圈芯片的制备方法,其中,所述步骤(2)中,沿感应线圈层的环绕方向在最顶层的第三绝缘层上分别形成露出对应层的感应线圈层的尾部的第一连接孔和露出第一层的感应线圈层的头部的第二连接孔,然后在最顶层的第三绝缘层上形成引线圈层,将引线圈层的尾部通过第一连接孔与对应层的感应线圈层的尾部电连接,将引线圈层的头部通过第二连接孔与第一层的感应线圈层的头部电连接;再于引线圈层上层设完全覆盖第一表面的第四绝缘层,然后沿感应线圈层的环绕方向于第四绝缘层上形成露出引线圈层的引线孔;最后将第二绝缘层、基底、第一绝缘层、第三绝缘层和第四绝缘层重叠的部位由下自上依次形成所述检测通孔,获得所述线圈芯片。
  15. 根据权利要求14所述的基于微机电系统的线圈芯片的制备方法,其中,采用剥离或腐蚀工艺形成所述感应线圈层;或者,
    采用干法刻蚀、湿法腐蚀或激光切割工艺形成所述检测通孔、连接孔或引线孔;或者,
    采用沉积工艺形成所述第一绝缘层、第二绝缘层、第三绝缘层或第四绝缘层。
PCT/CN2020/109059 2020-08-10 2020-08-14 线圈芯片及其制备方法、检测芯片和滑油传感器 WO2022032610A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010797239.1 2020-08-10
CN202010797239.1A CN111855510A (zh) 2020-08-10 2020-08-10 线圈芯片及其制备方法、检测芯片和滑油传感器

Publications (1)

Publication Number Publication Date
WO2022032610A1 true WO2022032610A1 (zh) 2022-02-17

Family

ID=72971149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109059 WO2022032610A1 (zh) 2020-08-10 2020-08-14 线圈芯片及其制备方法、检测芯片和滑油传感器

Country Status (2)

Country Link
CN (1) CN111855510A (zh)
WO (1) WO2022032610A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115060633A (zh) * 2022-06-10 2022-09-16 重庆邮电大学 一种多通道电磁结构的磨粒检测传感器及其检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101253404A (zh) * 2004-04-13 2008-08-27 哈佛大学 对生物样本和其它物体的操纵和/或检测
CN102147230A (zh) * 2011-03-01 2011-08-10 北京工业大学 一种用于检测油液中金属碎屑的微电感传感器
US8522604B2 (en) * 2008-10-31 2013-09-03 The University Of Akron Metal wear detection apparatus and method employing microfluidic electronic device
CN109348738A (zh) * 2016-02-18 2019-02-15 富士电机株式会社 信号传输装置
CN111474218A (zh) * 2020-04-23 2020-07-31 北京信息科技大学 一种用于bod快速检测的集成式微流控电化学传感器芯片及其制备和bod检测方法
CN212674712U (zh) * 2020-08-10 2021-03-09 西人马联合测控(泉州)科技有限公司 基于微机电系统的线圈芯片、检测芯片和滑油传感器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9287344B2 (en) * 2010-08-23 2016-03-15 The Hong Kong University Of Science And Technology Monolithic magnetic induction device
JP2012186440A (ja) * 2011-02-18 2012-09-27 Ibiden Co Ltd インダクタ部品とその部品を内蔵しているプリント配線板及びインダクタ部品の製造方法
CN202119695U (zh) * 2011-03-01 2012-01-18 北京工业大学 一种用于检测油液中金属碎屑的微电感传感器
CN102721738B (zh) * 2012-06-12 2015-06-10 大连理工大学 硅基底多层线圈结构的微型涡流传感器
CN103674787B (zh) * 2013-11-27 2016-06-01 上海交通大学 微型化集成的感应式滑油磨粒在线监测传感器
CN206194738U (zh) * 2016-11-23 2017-05-24 无锡吉迈微电子有限公司 集成电感结构
CN106768116A (zh) * 2017-01-23 2017-05-31 卓度计量技术(深圳)有限公司 微机电质量流量传感器组件及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101253404A (zh) * 2004-04-13 2008-08-27 哈佛大学 对生物样本和其它物体的操纵和/或检测
US8522604B2 (en) * 2008-10-31 2013-09-03 The University Of Akron Metal wear detection apparatus and method employing microfluidic electronic device
CN102147230A (zh) * 2011-03-01 2011-08-10 北京工业大学 一种用于检测油液中金属碎屑的微电感传感器
CN109348738A (zh) * 2016-02-18 2019-02-15 富士电机株式会社 信号传输装置
CN111474218A (zh) * 2020-04-23 2020-07-31 北京信息科技大学 一种用于bod快速检测的集成式微流控电化学传感器芯片及其制备和bod检测方法
CN212674712U (zh) * 2020-08-10 2021-03-09 西人马联合测控(泉州)科技有限公司 基于微机电系统的线圈芯片、检测芯片和滑油传感器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115060633A (zh) * 2022-06-10 2022-09-16 重庆邮电大学 一种多通道电磁结构的磨粒检测传感器及其检测方法

Also Published As

Publication number Publication date
CN111855510A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
CN101874343B (zh) 静电换能器阵列的封装和连接
CN101828409B (zh) 具有使用接合引线的增强型冲击验证的硅麦克风
JP6437586B2 (ja) 薄層の厚さを測定する測定プローブ及び測定プローブのセンサ要素の製造方法
WO2010097932A1 (ja) マグネトインピーダンスセンサ素子及びその製造方法
WO2022032610A1 (zh) 线圈芯片及其制备方法、检测芯片和滑油传感器
CN104006913B (zh) 带有涂覆有原子层沉积的输入端口的集成参考真空压力传感器
CN109724744A (zh) 压力传感器
TWI513960B (zh) 具有微電感結構之感測晶片
CN102721738B (zh) 硅基底多层线圈结构的微型涡流传感器
TW201512637A (zh) 具有整合式檔板的微機電系統(mems)壓力感測器
EP3321655B1 (en) All silicon capacitive pressure sensor
US8633703B2 (en) Inductive conductivity sensor
JP7145229B2 (ja) 平面コイルアセンブリの製造方法及びこれを備えたセンサーヘッド
US20060228823A1 (en) MEMS structure with anodically bonded silicon-on-insulator substrate
CN106569153B (zh) 一种磁通门传感器芯片
JP2007514321A (ja) ミックスド・シグナル集積回路のための低クロストーク回路基板
CN212674712U (zh) 基于微机电系统的线圈芯片、检测芯片和滑油传感器
JPH07333199A (ja) マイクロ渦流センサ
JP2005175156A (ja) 空芯コイル、及び空芯コイルの製造方法
KR101927046B1 (ko) 압력센서 및 그 제조방법
JP2008116429A (ja) 磁気センサデバイス
US9410930B2 (en) Method for manufacturing a testing head of a non-destructive testing sensor based on eddy currents
CN113023660B (zh) 单板双侧布线式微机械结构及其制备方法
KR101837999B1 (ko) 압력센서 및 그 제조방법
US20180132023A1 (en) Microphone and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949108

Country of ref document: EP

Kind code of ref document: A1