WO2022032540A1 - Uav飞行控制、管控策略处理方法及装置、设备及介质 - Google Patents

Uav飞行控制、管控策略处理方法及装置、设备及介质 Download PDF

Info

Publication number
WO2022032540A1
WO2022032540A1 PCT/CN2020/108738 CN2020108738W WO2022032540A1 WO 2022032540 A1 WO2022032540 A1 WO 2022032540A1 CN 2020108738 W CN2020108738 W CN 2020108738W WO 2022032540 A1 WO2022032540 A1 WO 2022032540A1
Authority
WO
WIPO (PCT)
Prior art keywords
uav
management
control
request
smf
Prior art date
Application number
PCT/CN2020/108738
Other languages
English (en)
French (fr)
Inventor
洪伟
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2020/108738 priority Critical patent/WO2022032540A1/zh
Priority to CN202080001894.XA priority patent/CN114424595A/zh
Priority to EP20949039.0A priority patent/EP4199472A4/en
Priority to US18/004,855 priority patent/US20230305555A1/en
Publication of WO2022032540A1 publication Critical patent/WO2022032540A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1083In-session procedures
    • H04L65/1094Inter-user-equipment sessions transfer or sharing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0016Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the operator's input device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0055Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0026Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located on the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0043Traffic management of multiple aircrafts from the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0052Navigation or guidance aids for a single aircraft for cruising
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/006Navigation or guidance aids for a single aircraft in accordance with predefined flight zones, e.g. to avoid prohibited zones
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0082Surveillance aids for monitoring traffic from a ground station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • H04L67/125Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks involving control of end-device applications over a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/104Simultaneous control of position or course in three dimensions specially adapted for aircraft involving a plurality of aircrafts, e.g. formation flying

Definitions

  • the present application relates to the field of wireless communication technology, but is not limited to the field of wireless communication technology, and in particular, relates to a method and device for processing an unmanned aerial vehicle (Unmanned Arial Vehicle, UAV) flight control, management and control strategy, electrical equipment, and storage medium.
  • UAV Unmanned Arial Vehicle
  • a UAV control device In order to control the flight of the UAV, a UAV control device (UAVC) is usually set to control the flight of the UAV.
  • UAV UAV control device
  • a communication connection is usually established, which allows for communication between the UAV and the UAV controller.
  • Embodiments of the present application provide a UAV flight control, management and control strategy processing method and device, electrical equipment, and storage medium.
  • a first aspect of the embodiments of the present disclosure provides a method for controlling the flight of an unmanned aerial vehicle, which is applied to the session management function SMF, wherein the method includes:
  • the control device of the UAV is switched from the first device to the second device according to the management and control strategy.
  • a second aspect of the embodiments of the present disclosure provides a method for controlling the flight of an unmanned aerial vehicle, which is applied in UTM or USS, wherein the method includes:
  • the device switches to the second device.
  • a third aspect of an embodiment of the present disclosure provides a method for processing a UAV management and control strategy, wherein, when applied in UDR, the method includes:
  • a fourth aspect of the embodiments of the present disclosure provides a UAV flight control device, which is applied to a session management function SMF, wherein the device includes:
  • the first switching module is configured to switch the control device of the UAV from the first device to the second device according to the management and control strategy in response to detecting the control device switching requirement of the UAV UAV.
  • a fifth aspect of the embodiments of the present disclosure provides a UAV flight control device, which is applied in UTM or USS, including:
  • the second switching module is configured to switch the control device of the UAV from the first device to the second device according to the management and control strategy in response to detecting the switching demand of the control device of the UAV UAV, and according to the management and control strategy, request the SMF to The control device of the UAV is switched from the first device to the second device.
  • a sixth aspect of the embodiments of the present disclosure provides an apparatus for processing a UAV management and control strategy, wherein, when applied to a UDR, the device includes:
  • a receiving module configured to receive a query request sent by the NEF, wherein the query request is sent based on an acquisition request sent by the SMF;
  • a sending module configured to send a request response to a query request to the NEF, where the request response to the query request is used for the NEF to send an acquisition response to the SMF, wherein the request response and the The obtained responses all carry the management and control strategy; the management and control strategy is used to switch the control device of the UAV for the control device that detects the detection of the UAV UAV needs to be switched.
  • a seventh aspect of an embodiment of the present application provides a communication device, including a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs the executable program During the program, the method shown in any technical solution of the first aspect or the second aspect or the third aspect is executed.
  • An eighth aspect of an embodiment of the present application provides a computer storage medium, where an executable program is stored in the computer storage medium; after the executable program is executed by a processor, any one of the first aspect, the second aspect, or the third aspect can be implemented.
  • the UAV control device switching requirement When the UAV control device switching requirement is detected, it indicates that the current UAV control device needs to be switched, that is, the UAV current control device is no longer suitable for controlling the UAV, and the UAV control device will be changed from the first device to the second according to the management and control strategy.
  • Device switching compared with random switching of control devices, can ensure the effective control of the UAV by the device after switching, or the switching of the control device of the UAV is not performed, resulting in the current control device being unable to continue to be effective, and the flight of various UAVs when controlling the UAV. Accidents improve the flight safety of UAVs and reduce the flight loss rate.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
  • FIG. 2 is a schematic structural diagram of a control system of a UAV according to an exemplary embodiment
  • FIG. 3 is a schematic diagram of a C2 communication link according to an exemplary embodiment
  • FIG. 4 is a schematic flowchart of a UAV flight control method according to an exemplary embodiment
  • FIG. 5 is a schematic flowchart of a UAV flight control method according to an exemplary embodiment
  • FIG. 6 is a schematic flowchart of a UAV flight control method according to an exemplary embodiment
  • FIG. 7 is a schematic flowchart of a method for processing a UAV management and control strategy according to an exemplary embodiment
  • FIG. 8 is a schematic flowchart of a method for processing a UAV management and control strategy according to an exemplary embodiment
  • FIG. 9 is a schematic flowchart of a method for processing a UAV management and control strategy according to an exemplary embodiment
  • FIG. 10 is a schematic flowchart of a method for processing a UAV management and control strategy according to an exemplary embodiment
  • FIG. 11 is a schematic flowchart of a UAV management and control strategy processing and a UAV flight control method according to an exemplary embodiment
  • FIG. 12 is a schematic structural diagram of a UAV flight control device according to an exemplary embodiment
  • FIG. 13 is a schematic structural diagram of a UAV flight control device according to an exemplary embodiment
  • FIG. 14 is a schematic structural diagram of an apparatus for processing a UAV management and control strategy according to an exemplary embodiment
  • FIG. 15 is a schematic structural diagram of a UE according to an exemplary embodiment.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several UEs 11 and several base stations 12 .
  • the UE11 may be a device that provides voice and/or data connectivity to the user.
  • the UE11 may communicate with one or more core networks via a Radio Access Network (RAN), and the UE11 may be an IoT UE, such as a sensor device, a mobile phone (or "cellular" phone) and an IoT-enabled UE.
  • RAN Radio Access Network
  • the UE's computer for example, may be a stationary, portable, pocket-sized, hand-held, computer-built-in, or vehicle-mounted device.
  • a station For example, a station (Station, STA), a subscriber unit (subscriber unit), a subscriber station (subscriber station), a mobile station (mobile station), a mobile station (mobile), a remote station (remote station), an access point, a remote UE ( remote terminal), access UE (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user UE (user equipment, UE).
  • UE11 can also be a device for an unmanned aerial vehicle.
  • the UE 11 may also be an in-vehicle device, for example, a trip computer with a wireless communication function, or a wireless communication device connected to an external trip computer.
  • the UE11 may also be a roadside device, for example, may be a streetlight, a signal light, or other roadside device having a wireless communication function.
  • the base station 12 may be a network-side device in a wireless communication system.
  • the wireless communication system may be a fourth generation mobile communication (the 4th generation mobile communication, 4G) system, also known as a long term evolution (Long Term Evolution, LTE) system; or, the wireless communication system may also be a 5G system, Also known as new radio (NR) system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, a new generation of radio access network).
  • the MTC system may be a network-side device in a wireless communication system.
  • the base station 12 may be an evolved base station (eNB) used in the 4G system.
  • the base station 12 may also be a base station (gNB) that adopts a centralized distributed architecture in a 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a protocol stack of a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control Protocol (Radio Link Control, RLC) layer, and a Media Access Control (Media Access Control, MAC) layer; distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 12 is not limited in this embodiment of the present disclosure.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control Protocol
  • MAC Media Access Control
  • distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 12 is not limited in this embodiment of the present disclosure.
  • a wireless connection can be established between the base station 12 and the UE 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a 5G next-generation mobile communication network technology standard.
  • an E2E (End to End, end-to-end) connection may also be established between the UEs 11.
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle-to-everything (V2X) communication etc. scene.
  • the above wireless communication system may further include a network management device 13 .
  • the network management device 13 may be a core network device in a wireless communication system, for example, the network management device 13 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME).
  • the network management device may also be other core network devices, such as a serving gateway (Serving GateWay, SGW), a public data network gateway (Public Data Network GateWay, PGW), a policy and charging rules functional unit (Policy and Charging Rules) Function, PCRF) or home subscriber server (Home Subscriber Server, HSS), etc.
  • the implementation form of the network management device 13 is not limited in this embodiment of the present disclosure.
  • the network shown in FIG. 1 may be a cellular mobile communication.
  • FIG. 2 shows a control system for UAV that can be built for UAV, UAVC and UTM.
  • UTM can communicate with UAV through cellular mobile communication network.
  • the UAVC can establish a direct C2 communication connection with the UAV, and this C2 communication connection may not go through cellular mobile communication.
  • the UAVC can also establish a C2 communication connection with the UAV through the cellular mobile communication network.
  • a UAV application can run on the UAV, and application data traffic can be transmitted through the C2 communication connection, and the application data traffic includes but is not limited to UAV flight data and/or control signaling issued by UTM or UAVC.
  • FIG. 3 shows two C2 communication connections that can be established through cellular mobile communication.
  • One is: C2 communication connection between UAVC and UAV, which needs to go through UPFF and UTM/USS of cellular mobile communication respectively.
  • the other is: the C2 communication connection between UAVC and UAV, which can directly pass through UPF only, without going through UTM/USS.
  • an embodiment of the present disclosure provides a UAV flight control method, which is applied to a session management function SMF, including:
  • the UAV control device switching requirement When the UAV control device switching requirement is detected, it indicates that the current UAV control device needs to be switched, that is, the UAV current control device is no longer suitable for controlling the UAV, and the UAV control device will be changed from the first device to the second according to the management and control strategy.
  • Device switching compared with random switching of control devices, can ensure the effective control of the UAV by the device after switching, or the switching of the control device of the UAV is not performed, resulting in the current control device being unable to continue to be effective, and the flight of various UAVs when controlling the UAV.
  • Accidents improve the flight safety of UAVs and reduce the flight accident rate.
  • control device of the UAV may be a UAVC that establishes a C2 communication connection through cellular mobile communication, and may also be a UAVC that does not communicate through cellular mobile communication.
  • the control device switching requirement that detects the UAV includes at least one of the following:
  • the first device conforms to the control device change condition.
  • the illegal behavior of the UAV may include: switching requirements caused by the UAV's flight behavior, for example, the UAV flies into a no-fly area that is prohibited by the country or region, or the UAV flies into a control area without approval. Or, the UAV deviates from the established course.
  • the current flight behavior of the UAV is legal, but the control device needs to be switched due to the problem of the control device itself or the communication itself.
  • the current control equipment of the UAV is down or has low energy consumption, or the communication quality of the communication link between the UAV and the current control equipment of the UAV is poor, etc., which are not conducive to the flight control of the UAV.
  • the control device switching requirements of the UAV in the case of legal behavior.
  • the control device change condition that the described first device complies with includes but is not limited to at least one of the following:
  • the first device fails
  • the first device is overloaded
  • the link quality of the communication connection between the first device and the UAV drops to a preset value.
  • the switching requirement of the control device includes: the switching requirement caused by the UAV itself and the switching requirement of the control device caused by the situation other than the UAV device.
  • the UAV, the first device, and the second device respectively establish a protocol data unit (Protocol Data Unit, PDU) session for C2 communication.
  • PDU Protocol Data Unit
  • the C2 communication connection between the UAV and its UAVC is through the cellular mobile communication network, and the release and establishment of the communication connection can be controlled through the SMF.
  • the communication connection between the UAV and its UAVC may be a C2 communication connection without UTM/USS as shown in FIG. 3 .
  • SMF implements the routing of C2 data packets between UAV and UAVC by configuring control policies to UPF.
  • the communication connection between UAV and UAVC is realized through UPF routing.
  • the management and control policies may include:
  • the device information includes, but is not limited to, address information of the second device, for example, IP address information and/or MAC address information.
  • the UTM may maintain the device status information of the multiple candidate devices, and the device status information reflects the running status and/or device status of the multiple candidate devices.
  • a device suitable for controlling the UAV can be selected as the second device to control the flight of the UAV, and the device can be included in the management and control strategy and sent to the SMF.
  • switching the control device of the UAV from the first device to the second device according to the management and control policy includes:
  • a communication connection between the UAV and the second device is established.
  • a communication connection is established between the first device and the UAV, and the communication connection may be a command and control connection (Cammand and Control, C2) communication connection.
  • C2 command and control connection
  • switching the control device of the UAV from the first device to the second device may include:
  • S112 Establish a communication connection between the UAV and the second device.
  • the release of the original communication connection of the first device can release the communication resources used to establish communication between the UAV and the first device, and at the same time establish a communication connection between the UAV and the second device, which can be used for the second device.
  • the SMF configures the UPF to route the C2 data packet between the UAV and the second device, and releases the protocol data unit (Protocol Data Unit, PDU) session of the first device.
  • the C2 data here includes any data exchanged between the UAV and its control device, for example, control commands sent by the control device and/or flight data reported by the UAV.
  • the SMF may send a first indication to the UAV's UPF, instructing to establish a communication connection between the UAV and the second device. If the second device is another UAVC, the SMF sends a second indication to the UPF of the second device to establish a communication connection between the second device and the UAV. At the same time, a third instruction is sent to the UPF of the first device, indicating to release the communication connection between the first device and the UAV.
  • the foregoing first indication may carry at least address information of the second device, for the UPF to route the communication data between the UAV and the second device.
  • the establishing a communication connection between the UAV and the second device includes:
  • the establishment of the communication connection includes: sending the address information to the UPF that performs the data transmission route between the UAV and its controller (that is, the control device). In this way, the UPF receives the updated address information and can download it again according to the SMF
  • the address information sent by the second device is used for communication between the second device and the UAV, and the data of the communication includes but is not limited to: the control signaling of the second device to the UAV and/or the flight data of the UAV.
  • releasing the communication connection between the first device and the UAV and establishing the communication connection between the second device and the UAV may not have a certain sequence relationship.
  • the first device and the UAV may be released first.
  • the communication connection between the UAV and the second device is established, or the communication connection between the UAV and the second device can be established first, and then the communication connection between the UAV and the first device is released. Connections are performed concurrently.
  • the method further includes:
  • the buffering time may be a preset time period after detecting that the switching requirement of the control device is satisfied, for example, 2s or 5s.
  • the UAV flies to the edge of the no-fly zone, but it exits the no-fly zone within 5s, and the flight behavior is legal again.
  • the control of the UAV by the first device is still valid, and there is no need to switch the control device. , thereby reducing unnecessary switching, and reducing the state of the UAV in the control vacuum during the switching process.
  • the second device includes at least one of the following:
  • the UTM may be the upper layer control device of the UAVC.
  • UTM may select UAVC for UAV.
  • the UTM can directly control the UAV.
  • the second device here may be the new UAVC or the UTM itself.
  • the first device may be any device that is incompatible with the second device, eg, a UAVC that is different from the first device.
  • the management and control strategy includes at least one of the following:
  • a management and control strategy for a UAV group wherein the UAV group includes: one or more of the UAVs;
  • the above management and control strategy may be any of the above.
  • the priorities of the above three management and control strategies may be different. If a UAV that needs to control device switching is configured due to its own management and control strategy, the control device is configured according to the management and control strategy for the single UAV. switch.
  • the UAV determines whether the UAV belongs to a UAV group and the UAV group is configured with a control policy for this group, if so, according to the control policy for the UAV group where the UAV belongs Switch the control device of the UAV.
  • a general control policy for any UAV is used to switch the control device of the UAV.
  • the aforementioned management and control strategies are not prioritized, and when there is only one management and control strategy, switching is performed according to the management and control strategy. If there are multiple management and control policies, the switching of the control device of the UAV can be controlled according to the effective management and control policies.
  • UAVs whose communication connections (such as but not limited to C2) belong to the same digital network name (Digital Network Name, DNN) can be assigned to the same UAV group.
  • UAVs for the same purpose can be assigned to the same UAV group.
  • UAVs are used for tree irrigation or chemical spraying, and UAVs for these purposes can be assigned to the same UAV group.
  • the method further includes at least one of the following:
  • the configuration and storage of the management and control policies may be performed according to the change frequency of the management and control policies.
  • a management and control policy whose change frequency is the first frequency is directly configured in the SMF.
  • this management and control policy may be a static management and control policy.
  • the management and control policies whose change frequency is the second frequency are stored in the UDR.
  • the second frequency may be higher than the first frequency, and certainly may not be higher than the first frequency.
  • a management and control policy whose change frequency is the third frequency is stored in the UTM, where the third frequency may be higher than the second frequency, or may not be higher than the second frequency.
  • the obtaining the management and control policy from the unified data storage UDR includes:
  • the NEF can be an intermediate network element that conducts a session between the UDR and the SMF. By introducing the NEF, the session security between the network elements of the core network can be guaranteed.
  • the management and control policy obtained from the UTM of the UAV includes:
  • the management and control policy is received from the UTM when the control device switching requirement of the UAV is detected.
  • the SMF sends a request message, and the UDR returns the control policy after receiving the request message.
  • the SMF sends a request message
  • the UDR returns the control policy after receiving the request message.
  • the SMF receives the management and control policy pushed by the UDR. For example, when the UAV's management and control policy stored in the UDR is changed, the UDR will actively send the updated management and control policy to the NEF, and the NEF will further notify the SMF, so that the SMF can receive the updated management and control policy as soon as possible.
  • the UAV and/or the first device When the SMF establishes a communication connection between the UAV and the first device, in order to ensure communication security, the UAV and/or the first device needs to be securely controlled. One or more messages in the authentication and/or authorization process are issued, so that the existing process is reused to realize the issuance of the management and control strategy, which has the characteristics of great compatibility with the existing technology.
  • the SMF can also request the UTM for a control strategy when detecting the switching requirement of the control device of the UAV.
  • the illegal behavior of the UAV includes at least one of the following: the UAV flies into a no-fly zone; the UAV deviates from a prescribed route.
  • the current location of the UAV can be estimated or its current geographic location information can be obtained directly from the UAV.
  • the geographic location information it can be determined or estimated whether the UAV has flown into the no-fly zone, or deviation from the intended route.
  • an embodiment of the present disclosure provides a UAV flight control method, which is applied in UTM or USS, including:
  • S210 In response to detecting the control device switching requirement of the UAV UAV, switch the control device of the UAV from the first device to the second device according to the management and control strategy, and request the SMF to switch the control device of the UAV from the first device to the second device according to the management and control strategy.
  • the first device switches to the second device.
  • UTM and USS can also detect the illegal behavior of UAV or the abnormality of their own equipment, so they can also monitor whether there is a need for switching control equipment. .
  • the detected control device switching requirement of the UAV includes at least one of the following: detecting an illegal behavior of the UAV;
  • the first device conforms to the control device change condition.
  • Unlawful conduct here includes, but is not limited to: flying into no-fly zones and/or deviating from course.
  • the requesting the SMF to switch the control device of the UAV from the first device to the second device includes:
  • the SMF is requested to establish a communication connection between the UAV and the second device.
  • the SMF controls the establishment of the communication connection between the UAV and its control device, in this embodiment, if the USS or UTM requests to switch the control device that controls the UAV, the SMF will be requested to disconnect the communication connection with the old control device, and Establish a communication connection with the new control device.
  • the address information of the second device is sent to the SMF.
  • the SMF After receiving the request message, the SMF will release the original connection according to the newly received address information of the second device, and establish the UAV and the first device. A communication link between two devices.
  • the requesting the SMF to establish a communication connection between the UAV and the second device includes:
  • the SMF After receiving the address information of the second device, the SMF will further deliver it to the UPF, so that the UPF can re-route any information transmitted between the UAV and its control device.
  • the second device includes: an unmanned aerial vehicle controller UAVC; and/or an unmanned aerial vehicle system traffic management UTM.
  • the management and control strategy includes:
  • a management and control strategy for a UAV group wherein the UAV group includes: one or more of the UAVs;
  • the method further comprises: providing the governance policy to the SMF
  • the SMF can detect the switching requirement of the UAV control device by itself.
  • the management and control policy can be directly issued to the SMF, and the SMF can control the switching of the UAV control device by itself.
  • the providing the management and control policy to the SMF includes at least one of the following:
  • the management and control policy is provided to the SMF.
  • timings for providing the management and control policy to the SMF there are multiple timings for providing the management and control policy to the SMF, and the specific implementation is not limited to any one of the above timings. For example, it is issued during the authentication and authorization process of establishing the communication connection between the first device and the UAV, or it can be issued during the detection It is only issued when there is a need to switch the control device.
  • an embodiment of the present disclosure provides a UAV management and control policy processing method, wherein, when applied to UDR, the method includes:
  • S310 Receive a query request sent by the NEF, where the query request is sent based on an acquisition request sent by the SMF;
  • S320 Send a request response to the query request to the NEF, where the request response to the query request is used for the NEF to send an acquisition response to the SMF, wherein the request response and the acquisition response are both Carrying the management and control strategy; the management and control strategy is used to switch the control device of the UAV for the control device that detects the detection of the UAV UAV needs to be switched.
  • the query request received by the UDR is that the SMF first sends an acquisition request to the NEF, and then the NEF determines the current security processing after receiving the acquisition request, and then routes a corresponding query request to the UDR. The request response, and then send the control policy to the SMF through the NEF.
  • a method for processing a UAV management and control strategy that can be provided in an embodiment of the present disclosure includes:
  • Nnef_UAV Management-Fetch NEF
  • Nnef_UAV Management-Fetch the aforementioned fetch request.
  • the NEF After receiving the Nnef_UAV Management-Fetch sent by the SMF, the NEF sends a Nudr_DM-Query to the UDR, where the Nudr_DM-Query is the aforementioned query request.
  • the UDR After receiving the Nudr_DM-Query, the UDR sends the Nudr_DM-response to the NEF; the Nudr_DM-Query response carries the management and control policy provided by the UDR.
  • Nudr_DM-Query response is a kind of request response of the aforementioned query request.
  • Nnef_UAV Management-Fetch Response is one of the aforementioned fetch responses.
  • the UAV management and control policy processing method provided by this embodiment includes:
  • the UTM/USS sends a request response to the first request, wherein the request responses to the first request and the second request carry the processing result of the management and control policy.
  • the UTM/USS also needs to communicate with the UDR through the NEF. Therefore, when the UTM/USS stores the control policy in the UDR or updates the control policy stored in the UDR, it needs to go through the NEF for intermediate processing.
  • the NEF performs communication between the UDR and the UTM/USS.
  • the Nnef_UAV Management-Create/Update/Delete Request shown in FIG. 8 is one of the aforementioned first requests.
  • the NEF After the NEF receives the Nnef_UAV Management-Create/Update/Delete Request, it performs NEF processing, where the NFE processing (handling) may include but is not limited to: identifying whether the UTM/USS is a legal entity that can access the cellular mobile communication network.
  • Nudr_DM_Create/Update/Delete Requet is one of the aforementioned second requests.
  • the UDR After the UDR receives Nudr_DM_Create/Update/Delete Requet, it will process the UAV control strategy.
  • the processing of the management and control policy may include: creating the management and control policy, deleting the management and control policy, and/or updating the management and control policy, and then obtaining the processing result.
  • the request response of Nudr_DM_Create/Update/Delete Requet is returned to NEF, and the request response here is the request response of the second request.
  • the request response can be the Nudr_DM_Create/Update/Delete response shown in FIG. 6 .
  • NEF After NEF receives Nudr_DM_Create/Update/Delete response, it sends Nnef_UAV Management-Create/Update/Delete Response to SMF.
  • the Nnef_UAV Management-Create/Update/Delete Response here is the request response of the first request.
  • performing the management and control policy processing of the UAV according to the second request includes at least one of the following:
  • the processed management and control strategy may include at least one of the following:
  • the UDR further includes: sending a clearing instruction or an invalidating instruction to the SMF of the UAV through the NEF to clear or invalidate the deleted or invalidated management and control policy.
  • the UAV management and control policy processing method provided by this embodiment includes:
  • the processed management and control policy is sent to the SMF of the UAV.
  • the UDR can also push the management and control policy to the SMF by itself. In this way, the SMF can receive the latest effective management and control policy in time without requesting it to switch the controller of the UAV. processed in a timely manner.
  • NEF finds that the management and control policy stored in the UDR has changed, it can carry the processed management and control policy through Nnef_UAV Management-Notify as shown in Figure 10.
  • the obtaining request includes:
  • the SMF sends a query message based on a notification message delivered by the NEF, where the notification message is a message delivered by the NEF based on the first request.
  • the NEF When the NEF receives the first request to update the control policy, delete the control policy, or create the control policy, it will notify the SMF of the UAV according to the first request.
  • the acquisition request is automatically sent to the NEF to obtain the latest effective control policy.
  • the embodiment of the present disclosure provides a UAV control method, which may be as follows:
  • the UAV and UAV controller respectively establish a PDU session (session) of the dedicated DNN for C2 communication with the network.
  • the drone and drone controller need to be authenticated and authenticated by UTM/USS to successfully establish a PDU session for the C2 connection.
  • the application data traffic of the C2 communication connection is transmitted between the UAV and the UAV controller through the UPF, using the C2 communication connection shown by the dotted line in Figure 2.
  • These governance policies can be for a specific UAV, a group of UAVs, or all UAVs.
  • control policy is for a group of UAVs (for example, all UAVs under a specific DNN) or all UAVs
  • the policy can be manually configured in the SMF in advance, or configured by the UTM/USS through the NEF.
  • the latter method is suitable for situations where the parameters in the policy will change frequently, such as the list of UAV controllers designated by the UTM to take over the control of the C2.
  • UTM/USS provides UAV control strategies to NEF, including UAV no-fly zones, and strategies and/or application scopes after UAV flies into no-fly zones (UAVs under a specific slice or DNN or all UAVs).
  • NEF checks whether UTM/USS is a legitimate device, with authorization for C2 communication
  • NEF provides UAV control strategy to UDR
  • UDR updates the UAV control strategy
  • NEF responds to UTM/USS.
  • the SMF When the SMF receives a PDU session establishment request from the UAV for establishing a C2 communication connection, the SMF obtains the UAV management and control policy from the UDR, as shown in FIG. 9 .
  • the SMF needs to call the relevant technical solution to monitor whether the UAV flies into the no-fly zone and other illegal behaviors.
  • the SMF needs to provide the address of the new UAV controller or UTM to the UPF so that the UPF can route the C2 flow to the correct one. Destination address.
  • the SMF then terminates the PDU session of the old UAV controller.
  • the address of the new UAV controller or UTM can be pre-configured in the SMF (if it does not change), stored in the UDR (see Figure 2.2-2) or provided by the UTM/USS (during the authentication and authorization process or the UAV detected by the UTM) Included in the UTM policy request when flying into a no-fly zone).
  • an embodiment of the present disclosure provides a method for processing a UAV management and control strategy, which may include:
  • UAV, UAVC1, and UAVC2 respectively establish PDU sessions for C2 communication, and register their own IP address and SMF address with UTM/USS during the session establishment process.
  • the SMF can be preset with a UAV control policy, or the SMF can obtain the UAV control policy from the UDR.
  • the UAVC1 here may be the aforementioned first device.
  • SMF detects UAV illegal behavior (eg, flying into a no-fly zone).
  • UTM/USS detects illegal UAV behavior (for example, flying into a no-fly zone or not flying according to a predetermined route), and informs SMF that the message can contain UAV control strategies.
  • Nsmf_PDUSession-Update sends Nsmf_PDUSession-Update to SMF, and the Nsmf_PDUSession-Update sends a request to SMF to request to switch the control device of UAV.
  • the Nsmf_PDUSession-Update may carry the updated address information of the second device.
  • step 2a a parallel scheme combined with step 2b-1 and step 2b-2, only needs to execute one of them during specific implementation.
  • SMF configures UPF to route C2 communication to UAVC2 or UTM according to the control policy.
  • the UAVC2 and UTM here are the aforementioned second devices.
  • the SMF switches the control device of the UAV by replying to a session modification message.
  • SMF configures UPF2 to route C2 messages to UAV.
  • the SMF establishes a communication connection between the UAV and the second device through session modification.
  • the SMF releases the C2 communication PDU session between UAV and UAVC1. SMF releases the communication connection between UAV and UAVC1 through a message of session release.
  • an embodiment of the present disclosure provides a UAV flight control device, which is applied to a session management function SMF, including:
  • the first switching module 110 is configured to switch the control device of the UAV from the first device to the second device according to the management and control policy in response to detecting the control device switching requirement of the UAV UAV.
  • the NEF When the NEF receives a message of adding, deleting or modifying the UAV control policy, it notifies the corresponding SMF.
  • the policy is for a specific UAV, it can be provided to SMF by UTM/USS during the authentication and authorization process, and includes the no-fly zone that needs to be monitored, and then SMF needs to detect whether the UAV flies into the no-fly zone; or when UTM/USS flies into the no-fly zone.
  • the USS detects that the UAV is flying into the no-fly zone, the UTM/USS sends a policy request to the SMF.
  • the first switching module 110 may be a program module; after the program module is executed by the processor, in response to detecting a control device switching requirement of the UAV UAV, the UAV will be switched according to a management and control strategy.
  • the control device switches from the first device to the second device.
  • the first switching module 110 may be a soft-hardware combination module; the soft-hardware combination module includes but is not limited to various programmable arrays.
  • the programmable array includes, but is not limited to, a field programmable array or a complex programmable array.
  • the first switching module 110 may further include: a pure hardware module; the pure hardware module includes but is not limited to: an application specific integrated circuit.
  • the apparatus further includes: a detection module, which can detect the control device switching requirement of the UAV.
  • the control device switching requirement that detects the UAV may include at least one of the following:
  • the first device conforms to the control device change condition.
  • the illegal behavior of the UAV includes:
  • the UAV deviates from the prescribed route.
  • the first switching module 110 is configured to release the communication connection between the UAV and the first device; and establish the communication connection between the UAV and the second device .
  • the first switching module 110 is specifically configured to deliver the address information of the second device to the user plane function UPF, where the address information is used for the location where the UPF is located. establishing the communication connection between the UAV and the second device.
  • the second device includes at least one of the following:
  • the management and control strategy includes at least one of the following:
  • a management and control strategy for a UAV group wherein the UAV group includes: one or more of the UAVs;
  • the apparatus further includes: a management and control strategy module; the management and control strategy module is configured to execute at least one of the following:
  • the management and control policy module is configured to perform at least one of the following:
  • the management and control strategy module is configured to receive the management and control strategy from the UTM during the authentication and authorization process of establishing the communication connection between the drone and the first device; and/or, when detecting The management and control policy is received from the UTM when switching to the control device of the UAV requires.
  • an embodiment of the present disclosure provides a UAV flight control device, which is applied in UTM or USS, including:
  • the second switching module 210 is configured to switch the control device of the UAV from the first device to the second device according to the management and control strategy in response to detecting the switching requirement of the control device of the UAV UAV, and request the SMF to switch the control device according to the management and control strategy.
  • the control device of the UAV is switched from the first device to the second device.
  • the second switching module 210 may be a program module; after the program module is executed by the processor, in response to detecting the control device switching requirement of the UAV UAV, the UAV will be switched according to the management and control strategy.
  • the control device switches from the first device to the second device.
  • the second switching module 210 may be a soft-hardware combination module; the soft-hardware combination module includes but is not limited to various programmable arrays.
  • the programmable array includes, but is not limited to, a field programmable array or a complex programmable array.
  • the second switching module 210 may further include: a pure hardware module; the pure hardware module includes but is not limited to: an application specific integrated circuit.
  • the detected control device switching requirement of the UAV includes at least one of the following: an illegal behavior of the UAV is detected; when it is detected that the UAV behavior is legal, a control device switching condition that the first device conforms to .
  • the USS/UTM includes a detection module that can detect the control device switching requirement of the UAV described above.
  • the second switching module 210 is configured to request the SMF to release the communication connection between the UAV and the first device; and/or request the SMF to establish the UAV and the first device A communication connection between the second devices.
  • the second switching module 210 is configured to send the address information of the second device to the SMF, where the address information is used to be delivered by the SMF to the UPF , and for the UPF to perform session routing for the communication between the UAV and the second device.
  • the second device includes at least one of the following:
  • the management and control strategy includes at least one of the following:
  • a management and control strategy for a UAV group wherein the UAV group includes: one or more of the UAVs;
  • the apparatus further comprises:
  • a policy sending module configured to provide the management and control policy to the SMF.
  • the policy sending module is configured to provide the management and control policy to the SMF during the authentication and authorization process of establishing the communication connection between the drone and the first device; And/or, in response to detecting a control device switching requirement of the UAV, the management and control policy is provided to the SMF.
  • an embodiment of the present disclosure provides an apparatus for processing a UAV management and control strategy, wherein, when applied to a UDR, the device includes:
  • the receiving module 310 is configured to receive a query request sent by the NEF, wherein the query request is sent based on an acquisition request sent by the SMF;
  • the sending module 320 is configured to send a request response to the query request to the NEF, where the request response to the query request is used for the NEF to send an acquisition response to the SMF, wherein the request response and all The acquisition responses all carry the management and control strategy; the management and control strategy is used to switch the control device of the UAV for the control device that detects the detection of the UAV UAV needs to be switched.
  • the receiving module 310 and the sending module 320 may be program modules; after the program modules are executed by the processor, the management and control policies are delivered to the SMF.
  • the receiving module 310 and the transmitting module 320 may be a combination of hardware and software modules; the combination of software and hardware modules includes, but is not limited to, various programmable arrays.
  • the programmable array includes, but is not limited to, a field programmable array or a complex programmable array.
  • the receiving module 310 and the sending module 320 may further include: pure hardware modules; the pure hardware modules include but are not limited to: application specific integrated circuits.
  • the receiving module 310 is further configured to receive the second request sent by the first request of the UAV-based UTM/USS of the NEF;
  • the device also includes:
  • a processing module configured to process the management and control strategy of the UAV according to the second request
  • the sending module 320 is further configured to send a request response to the second request to the NEF, where the request response to the second request is used for the NEF to send the UTM/USS to the UTM/USS.
  • the request response to the first request wherein the request responses to the first request and the second request carry the processing result of the management and control policy.
  • the processing module is configured to perform at least one of the following:
  • the management and control policy of the UAV is deleted.
  • the sending module is further configured to send the processed management and control policy to the SMF of the UAV according to the processing result.
  • the obtaining request includes:
  • the SMF sends a query message based on a notification message delivered by the NEF, where the notification message is a message delivered by the NEF based on the first request.
  • An embodiment of the present application provides a communication device, including a processor, a transceiver, a memory, and an executable program stored in the memory and capable of being run by the processor, wherein, when the processor runs the executable program, the processor executes any of the preceding technical solutions.
  • the method applied to SMF, UTM/USS or UDR may specifically be the method shown in any one of FIG. 4 to FIG. 11 .
  • the communication device may be the aforementioned SMF, or UTM/USS, UDR.
  • the processor may include various types of storage media, which are non-transitory computer storage media that can continue to memorize and store information on the communication device after the power is turned off.
  • the communication device includes a base station or a user equipment.
  • the processor may be connected to the memory through a bus or the like, and is used to read the executable program stored in the memory, for example, the method shown in any one of FIG. 4 to FIG. 11 may be specifically used.
  • An embodiment of the present application provides a computer storage medium, where an executable program is stored in the computer storage medium; after the executable program is executed by a processor, the method shown in any technical solution of the first aspect or the second aspect can be implemented, For example, at least one of the methods shown in FIGS. 2 to 4 and FIGS. 6 to 7 .
  • FIG. 15 is a block diagram of a UE (UE) 800 according to an exemplary embodiment.
  • UE 800 may be a mobile phone, computer, digital broadcast user equipment, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • UE 800 may include one or more of the following components: processing component 802, memory 804, power supply component 806, multimedia component 808, audio component 810, input/output (I/O) interface 812, sensor component 814, and Communication component 816.
  • the processing component 802 generally controls the overall operations of the UE 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 can include one or more processors 820 to execute instructions to perform all or some of the steps of the methods described above.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operation at UE 800 . Examples of such data include instructions for any application or method operating on the UE 800, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 804 may be implemented by any type of volatile or nonvolatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply component 806 provides power to various components of UE 800 .
  • Power components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to UE 800 .
  • Multimedia component 808 includes screens that provide an output interface between the UE 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • the multimedia component 808 includes a front-facing camera and/or a rear-facing camera. When the UE 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC) that is configured to receive external audio signals when the UE 800 is in operating modes, such as call mode, recording mode, and voice recognition mode.
  • the received audio signal may be further stored in memory 804 or transmitted via communication component 816 .
  • audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor component 814 includes one or more sensors for providing various aspects of status assessment for UE 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and keypad of the UE 800, the sensor component 814 can also detect the position change of the UE 800 or a component of the UE 800, the user and the UE 800. Presence or absence of UE800 contact, UE800 orientation or acceleration/deceleration and UE800 temperature changes.
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communications between UE 800 and other devices.
  • the UE 800 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • UE 800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gates An array (FPGA), controller, microcontroller, microprocessor, or other electronic component implementation for performing the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable gates
  • controller microcontroller, microprocessor, or other electronic component implementation for performing the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 804 including instructions, which are executable by the processor 820 of the UE 800 to perform the above method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种UAV飞行控制、管控策略处理方法及装置、电设备及存储介质。所述UAV飞行控制方法,可应用于会话管理功能SMF中,其中,包括:响应于检测到无人机UAV的控制设备切换需求,根据管控策略将所述UAV的控制设备从第一设备切换到第二设备。

Description

UAV飞行控制、管控策略处理方法及装置、设备及介质 技术领域
本申请涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种无人机(Unmanned Arial Vehicle,UAV)飞行控制、管控策略处理方法及装置、电设备及存储介质。
背景技术
为了管控UAV的飞行,通常会设置UAV的控制设备(UAVC),控制UAV的飞行。
为了方便UAV和UAV控制器之间的远程控制传输,通常会建立通信连接,该通信连接可供UAV和UAV控制器之间的通信。
发明内容
本申请实施例提供一种UAV飞行控制、管控策略处理方法及装置、电设备及存储介质。
本公开实施例第一方面提供一种无人机飞行控制方法,应用于会话管理功能SMF中,其中,包括:
响应于检测到无人机UAV的控制设备切换需求,根据管控策略将所述UAV的控制设备从第一设备切换到第二设备。
本公开实施例第二方面提供一种无人机飞行控制方法,应用于UTM或USS中,其中,包括:
响应于检测到无人机UAV的控制设备切换需求,根据管控策略将所述UAV的控制设备从第一设备切换到第二设备,根据管控策略,请求SMF将所述UAV的控制设备从第一设备切换到第二设备。
本公开实施例第三方面提供一种UAV的管控策略处理方法,其中,应 用于UDR中,包括:
接收NEF发送的查询请求,其中,所述查询请求是基于SMF发送的获取请求发送的;
向所述NEF发送查询请求的请求响应,其中,所述查询请求的请求响应,用于供所述NEF向所述SMF发送获取响应,其中,所述请求响应和所述获取响应,均携带有所述管控策略;所述管控策略,用于供检测到检测到无人机UAV的控制设备切换需求切换所述UAV的控制设备。
本公开实施例第四方面提供一种无人机飞行控制装置,应用于会话管理功能SMF中,其中,包括:
第一切换模块,被配置为响应于检测到无人机UAV的控制设备切换需求,根据管控策略将所述UAV的控制设备从第一设备切换到第二设备。
本公开实施例第五方面提供一种无人机飞行控制装置,应用于UTM或USS中,其中,包括:
第二切换模块,被配置为响应于检测到无人机UAV的控制设备切换需求,根据管控策略将所述UAV的控制设备从第一设备切换到第二设备,根据管控策略,请求SMF将所述UAV的控制设备从第一设备切换到第二设备。
本公开实施例第六方面提供一种UAV的管控策略处理装置,其中,应用于UDR中,包括:
接收模块,被配置为接收NEF发送的查询请求,其中,所述查询请求是基于SMF发送的获取请求发送的;
发送模块,被配置为向所述NEF发送查询请求的请求响应,其中,所述查询请求的请求响应,用于供所述NEF向所述SMF发送获取响应,其中,所述请求响应和所述获取响应,均携带有所述管控策略;所述管控策略,用于供检测到检测到无人机UAV的控制设备切换需求切换所述UAV的控 制设备。
本申请实施例第七方面提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行第一方面或第二方面或第三方面任意技术方案所示的方法。
本申请实施例第八方面提供一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现第一方面或第二方面或第三方面任意技术方案所示的方法。
在检测到UAV的控制设备切换需求时,说明当前需要切换UAV的控制设备,即UAV的当前控制设备不再适用于控制UAV,则会根据管控策略进行UAV的控制设备从第一设备到第二设备的切换,相对于随意切换控制设备,能够确保切换后的设备对UAV的有效控制,或者不进行UAV的控制设备的切换,导致当前控制设备无法继续有效,控制UAV时的各种UAV的飞行事故,提升了UAV的飞行安全性,降低了飞行失控率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种UAV的控制系统结构示意图;
图3是根据一示例性实施例示出的一种C2通信链路的示意图;
图4是根据一示例性实施例示出的一种UAV飞行控制方法的流程示意图;
图5是根据一示例性实施例示出的一种UAV飞行控制方法的流程示意图;
图6是根据一示例性实施例示出的一种UAV飞行控制方法的流程示意图;
图7是根据一示例性实施例示出的一UAV的管控策略处理方法的流程示意图;
图8是根据一示例性实施例示出的一种UAV的管控策略处理方法的流程示意图;
图9是根据一示例性实施例示出的一种UAV的管控策略处理方法的流程示意图;
图10是根据一示例性实施例示出的一种UAV的管控策略处理方法的流程示意图;
图11是根据一示例性实施例示出的一种UAV的管控策略处理和UAV的飞行控制方法的流程示意图;
图12是根据一示例性实施例示出的一种无人机飞行控制装置的结构示意图;
图13是根据一示例性实施例示出的一种无人机飞行控制装置的结构示意图;
图14是根据一示例性实施例示出的一种UAV的管控策略处理装置的结构示意图;
图15是根据一示例性实施例示出的UE的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施 例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个UE11以及若干个基站12。
其中,UE11可以是指向用户提供语音和/或数据连通性的设备。UE11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,UE11可以是物联网UE,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网UE的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程UE(remote terminal)、接入UE(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户UE(user equipment,UE)。或者,UE11 也可以是无人飞行器的设备。或者,UE11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,UE11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和UE11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,UE11之间还可以建立E2E(End to End,端到端) 连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
图1所示可为一种蜂窝移动通信的网络。
图2所示可为UAV、UAVC及UTM建立的UAV的控制系统。UTM可以通过蜂窝移动通信网络与UAV进行通信连接。
UAVC可以与UAV建立直连的C2通信连接,这种C2通信连接可不经过蜂窝移动通信。
UAVC还可以通过蜂窝移动通信网络与UAV建立C2通信连接。
UAV上可运行有UAV应用,可以通过C2通信连接传输应用数据流量,该应用数据流量包括但不限于UAV的飞行数据和/或UTM或UAVC下发的控制信令。
图3所示为通过蜂窝移动通信可建立的两种C2通信连接,一种是:UAVC和UAV之间的C2通信连接,需要分别经过蜂窝移动通信的UPFF、UTM/USS。另一种是:UAVC和UAV之间的C2通信连接,可直接仅通过 UPF,而不需要经过UTM/USS。
如图4所示,本公开实施例提供一种无人机飞行控制方法,应用于会话管理功能SMF中,其中,包括:
S110:响应于检测到无人机UAV的控制设备切换需求,根据管控策略将所述UAV的控制设备从第一设备切换到第二设备。
在检测到UAV的控制设备切换需求时,说明当前需要切换UAV的控制设备,即UAV的当前控制设备不再适用于控制UAV,则会根据管控策略进行UAV的控制设备从第一设备到第二设备的切换,相对于随意切换控制设备,能够确保切换后的设备对UAV的有效控制,或者不进行UAV的控制设备的切换,导致当前控制设备无法继续有效,控制UAV时的各种UAV的飞行事故,提升了UAV的飞行安全性,降低了飞行事故率。
在本公开实施例中,UAV的控制设备(即UAVC)可以是通过蜂窝移动通信建立C2通信连接的UAVC还可以是不通过蜂窝移动通信的UAVC。
所述检测到UAV的控制设备切换需求包括以下至少之一:
检测到所述UAV的非法行为;
检测到所述UAV行为合法时所述第一设备符合的控制设备换条件。
UAV的非法行为可包括:UAV的飞行行为导致的切换需求,例如,UAV飞入到国家或地区禁止飞入的禁飞区域,或者,UAV飞入到未经批准飞入到管控区域。或者,UAV偏离既定航线。
在另一些情况下,UAV的当前飞行行为合法行为,但是由于控制设备本身或者通信本身的问题需要切换控制设备。例如,UAV当前的控制设备宕机或者出现低能耗等情况,或者,UAV和UAV的当前控制设备之间的通信链路通信质量差等,这些都不利于UAV的飞行管控,这种是UAV在行为合法情况下的UAV的控制设备切换需求。
所述所述第一设备符合的控制设备换条件,包括但不限于以下至少之 一:
所述第一设备故障;
所述第一设备过载;
所述第一设备与UAV之间的通信连接的链路质量下降到预设值。
总之,所述控制设备切换需求包括:UAV自身引起的切换需求和UAV设备之外的情况引起的控制设备的切换需求。
若本公开实施例中UAV、第一设备以及第二设备分别为C2通信建立协议数据单元(Protocol Data Unit,PDU)会话。UAV与其UAVC之间的C2通信连接通过蜂窝移动通信网络,则可通过SMF来控制通信连接的释放和建立。
在一个实施例中,UAV与其UAVC之间的通信连接可为如图3所示的不经过UTM/USS的C2通信连接。SMF通过向UPF配置管控策略实现C2数据包在UAV与UAVC之间的路由。UAV与UAVC之间的通信连接是通过UPF的路由来实现的。
这些切换需求都会触发SMF根据该UAV的管控策略进行控制设备的切换。
在本公开实施例中,所述管控策略可包括:
用于确定切换后的一个或多个第二设备的规则或者第二设备的设备信息等。
所述设备信息包括但不限于:第二设备的地址信息,例如,IP地址信息和/或MAC地址信息等。
再例如,所述UTM可以维护这多个备选设备的设备状态信息,该设备状态信息反映了多个备选设备的运行状态和/或设备状态,在检测到UAV的控制设备切换需求时,可以根据设备状态信息,选择合适控制UAV的设备 作为第二设备控制UAV的飞行并包含在管控策略中发送给SMF。
在另一些实施例中,所述响应于检测到无人机UAV的非法行为,根据管控策略将所述UAV的控制设备从第一设备切换到第二设备,包括:
释放所述UAV与所述第一设备之间的通信连接;
建立所述UAV与所述第二设备之间的通信连接。
若第一设备控制UAV的飞行,则第一设备和UAV之间建立有通信连接,该通信连接可为命令和控制连接(Cammand and Control,C2)通信连接。
在本公开实施例中,将UAV的控制设备从第一设备切换到第二设备可包括:
S111:释放掉UAV与第一设备之间的通信连接,及
S112:建立UAV与第二设备的通信连接。如此,原来的第一设备的通信连接的释放,可以释放用于建立UAV与第一设备之间通信的通信资源,且同时建立UAV与第二设备之间的通信连接,可以建立供第二设备控制UAV飞行的控制命令和/或UAV的飞行数据的传输。
具体如,SMF配置UPF将C2数据包在UAV与第二设备之间路由,并释放掉第一设备的协议数据单元(Protocol Data Unit,PDU)会话。此处的C2数据包括UAV和其控制设备之间交互的任意数据,例如,控制设备发送的控制指令和/或,UAV上报的飞行数据等。
在一个实施例中,所述SMF可以向UAV的UPF发送第一指示,指示建立UAV与第二设备之间的通信连接。如果第二设备是另一个UAVC,SMF向第二设备的UPF发送第二指示,指示建立第二设备与UAV之间的通信连接。同时向第一设备的UPF发送第三指示,指示释放第一设备与UAV之间的通信连接。
在前述第一指示中可至少携带第二设备的地址信息,供UPF进行UAV 与第二设备之间的通信数据的路由。
在一些实施例中,所述建立所述UAV与所述第二设备之间的通信连接,包括:
将所述第二设备的地址信息,下发给用户面功能UPF,其中,所述地址信息,用于所述UPF在所述UAV与所述第二设备之间建立所述通信连接。
通信连接的建立,包括:将地址信息下发到进行UAV和其控制器(即控制设备)之间数据传输的路由的UPF上,如此,UPF接收到更新后的地址信息,可以根据SMF重新下发的地址信息,进行第二设备与UAV之间的通信,该通信的数据包括但不限于:第二设备对UAV的控制信令和/或UAV的飞行数据。
在一些实施例中,释放第一设备与UAV之间的通信连接,和建立第二设备与UAV之间的通信连接,可以没有一定的先后关系,例如,可以先释放第一设备与UAV之间的通信连接,再建立UAV与第二设备之间的通信连接,也可以先建立UAV与第二设备之间的通信连接,再释放UAV与第一设备之间的通信连接,还可使释放和连接同时执行。
在另一些实施例中,所述方法还包括:
在检测UAV的控制设备切换需求,在确定出将UAV的控制设备从第一设备切换到第二设备后,继续监控第一设备对UAV的通知是否持续满足所述控制设备切换需求,若在继续监控的切换缓冲时间内,所述控制设备切换需求消失,则可以不进行前述UAV控制设备从第一设备到第二设备的切换,从而减少不必要的切换。该缓冲时间可为检测到满足控制设备切换需求算起的预设时长,例如,2s或5s等。
例如,检测到UAV飞入到禁飞区边缘,但是在5s内又退出了禁飞区,飞行行为重新合法,此时可认为第一设备对UAV的控制依然有效,可以不用进行控制设备的切换,从而减少不必要的切换,且减少切换过程中UAV 处于控制真空的状态。
在一些实施例中,所述第二设备包括以下至少之一:
无人机控制器UAVC;
无人机流量管理UTM。
在一些实施例中,UTM可为UAVC的上一层控制设备。例如,UTM可以为UAV选择UAVC。当UTM未选择到合适的UAVC时,UTM可以直接控制UAV。
因此,此处的第二设备可为新的UAVC或者UTM自身。
所述第一设备可为与第二设备不容的任意设备,例如,与第一设备不同过的UAVC。
在一些实施例中,所述管控策略,包括以下至少之一:
针对单个所述UAV的管控策略;
针对UAV组的管控策略,其中,所述UAV组包含:一个或多个所述UAV;
针对任意所述UAV的管控策略。
上述管控策略可为上述的任意一种。
在一个实施例中,上述三种管控策略的优先级可不同,若需要进行控制设备切换的UAV,配置由于针对其自身的管控策略时,则根据针对该单个UAV的管控策略,进行控制设备的切换。
若UAV未配置有针对该单个UAV的控制策略时,确定该UAV是否属于某一个UAV组且该UAV组配置有针对该组的控制策略,如果有,则根据针对该UAV所在UAV组的控制策略进行该UAV的控制设备的切换。
若该UAV未配置有针对该单个UAV的控制策略且未配置有针对其所在UAV组的管控策略,则采用针对任意一个UAV的通用的管控策略进行UAV的控制设备切换。
当然在一些实施例中,前述几种管控策略本身并没有优先级高低的区分,在仅有一个管控策略时,就根据该管控策略进行切换。若有多个管控策略时,就可以根据生效的管控策略控制UAV的控制设备的切换。
例如,可以将通信连接(例如但不限于C2)属于同一个数字网络名字(Digital Network Name,DNN)的所有UAV归属到同一个UAV组中。或者,将相同用途的UAV归属到同一个UAV组,例如,利用UAV进行林木的灌溉或者药剂喷洒,这些用途的UAV可以归属到同一个UAV组。
再例如,将通信连接是通过同一个网络切片建立的所有UAV归属到统一个UAV组。
总之,在本公开实施例中建立UAV组的方式有多种,具体实现不局限于上述任意一种。
在一个实施例中,所述方法还包括以下至少之一:
预先配置所述管控策略;
从数据统一存储UDR获取所述管控策略;
从所述UAV的UTM获取的所述管控策略。
在一些实施例中,可以根据管控策略的变更频次,进行管控策略的配置和存储。
例如,将变更频次为第一频次的管控策略直接配置在SMF中,一般这种管控策略可为静态的管控策略。例如,可以针对任意UAV的通用的管控策略,可是一种并更频次低的管控策略。
再例如,将变更频次为第二频次的管控策略存储到UDR。例如,第二频次可高于第一频次,当然也可以不高于第一频次。
再例如,将变更频次为第三频次的管控策略存储到UTM,其中,第三频次可高于第二频次,也可以不高于第二频次。
总之,所述管控策略的来源有多种,也不局限于上述任意一种。
在一些实施例中,所述从数据统一存储UDR获取所述管控策略,包括:
向网络开放功能NEF向发送所述管控策略的获取请求;
接收所述NEF获取响应,其中,所述获取响应包含:所述UDR提供的所述管控策略。
NEF可为UDR和SMF之间进行会话的中间网元,通过NEF的引入,可以保证核心网的网元之间的会话安全性。
在一些实施例中,从所述UAV的UTM获取的所述管控策略,包括:
在建立所述无人机与所述第一设备之间通信连接的鉴权和授权过程中,从所述UTM接收所述管控策略;
和/或,
当检测到UAV的控制设备切换需求时,从所述UTM接收所述管控策略。
例如,SMF通过请求消息的发送,UDR在收到请求消息之后会返回所述管控策略。总之,SMF获取请求管控策略的方式有多种,不局限于上述任意一种。
在另一个实施例中,所述SMF接收UDR推送的所述管控策略。例如,UDR中存储的UAV的管控策略发送变化时,所述UDR会主动向NEF发送更新后的管控策略,则NEF会进一步通知SMF,如此,SMF就能够尽快地接收到更新后的管控策略。
SMF建立UAV与第一设备之间通信连接时,为了确保通信安全需要对UAV和/或第一设备进行安全管控,该安全管控主要通过鉴权和授权认证过程实现,所述管控策略可以通过在鉴权和/或授权过程中的一条或多条消息下发,从而复用现有的流程实现管控策略下发,具有与现有技术兼容性大的特点。
SMF也可以在检测到UAV的控制设备切换需求时,在向UTM请求管 控策略。
在一些实施例中,所述UAV的非法行为包括以下至少之一:所述UAV飞入禁飞区;所述UAV偏离规定路线。
例如,通过UAV的飞行数据,预估出UAV的当前位置或者直接从UAV获取其当前的地理位置信息,根据该地理位置信息可以确定出或者预估出其UAV是否飞入到禁飞区,或者偏离预定航线。
如图6所示,本公开实施例提供一种无人机飞行控制方法,应用于UTM或USS中,其中,包括:
S210:响应于检测到无人机UAV的控制设备切换需求,根据管控策略将所述UAV的控制设备从第一设备切换到第二设备,根据管控策略,请求SMF将所述UAV的控制设备从第一设备切换到第二设备。
若该方法应用于UTM或者USS中。
UTM和USS也可以检测到UAV的非法行为或者自身设备的异常,故同样可以监控是否有控制设备切换需求,如果有,则根据管控策略进行UAV的控制设备从第一设备到第二设备的切换。
具体检测是否有控制设备切换需求的方式有很多种,不局限于前述实施例中的任意一种。
在一个实施例中,所述检测到UAV的控制设备切换需求包括以下至少之一:检测到所述UAV的非法行为;
检测到所述UAV行为合法时所述第一设备符合的控制设备换条件。
此处的非法行为包括但不限于:飞入禁飞区和/或偏离航线。
在一些实施例中,所述请求SMF将所述UAV的控制设备从第一设备切换到第二设备,包括:
请求所述SMF释放所述UAV与所述第一设备之间的通信连接;
请求所述SMF建立所述UAV与所述第二设备之间的通信连接。
由于SMF控制UAV与其控制设备之间的通信连接的建立,故在本实施例中,若USS或者UTM请求切换控UAV的控制设备,则会请求SMF断开与旧的控制设备的通信连接,并建立与新的控制设备的通信连接。
例如,通过请求消息的发送,将第二设备的地址信息给到SMF,SMF接收到该请求消息之后,会根据新接收到的第二设备的地址信息,释放原来的连接,并建立UAV与第二设备之间的通信连接。
在一个实施例中,所述请求SMF建立所述UAV与所述第二设备之间的通信连接,包括:
将所述第二设备的地址信息,发送给所述SMF,其中,所述地址信息,用于由所述SMF下发给UPF,并供所述UPF进行所述UAV与所述第二设备之间通信的会话路由。
SMF接收到第二设备的地址信息之后,会进一步下发给UPF,使得UPF可以重新进行UAV与其控制设备之间的传输的任意信息的路由。
在一个实施例中,所述第二设备包括:无人机控制器UAVC;和/或,无人机系流量管理UTM。
在一些实施例中,所述管控策略,包括:
针对单个所述UAV的管控策略;
针对UAV组的管控策略,其中,所述UAV组包含:一个或多个所述UAV;
针对任意所述UAV的管控策略。
在一个实施例中,所述方法还包括:向所述SMF提供所述管控策略
在有些情况是,SMF可以自行检测到UAV的控制设备切换需求,为了减少延时,可以直接将所述管控策略下发给SMF,由SMF自行控制UAV的控制设备的切换。
在一个实施例中,所述向所述SMF提供所述管控策略,包括以下至少 之一:
在建立所述无人机与所述第一设备之间通信连接的鉴权和授权过程中,向所述SMF提供所述管控策略;
响应于检测到所述UAV的控制设备切换需求,向所述SMF提供所述管控策略。
向SMF提供管控策略的时机有多个,具体实现不限于上述任意一个时机,例如,在进行在建立第一设备与UAV之间通信连接的鉴权和授权过程中下发,也可以是在检测到有控制设备切换需求时才下发。
如图7所示,本公开实施例提供一种UAV的管控策略处理方法,其中,应用于UDR中,包括:
S310:接收NEF发送的查询请求,其中,所述查询请求是基于SMF发送的获取请求发送的;
S320:向所述NEF发送查询请求的请求响应,其中,所述查询请求的请求响应,用于供所述NEF向所述SMF发送获取响应,其中,所述请求响应和所述获取响应,均携带有所述管控策略;所述管控策略,用于供检测到检测到无人机UAV的控制设备切换需求切换所述UAV的控制设备。
SMF与UDR之间的通信需要经过NEF的中间处理,以确保通信安全。
因此,UDR接收到的查询请求是SMF先向NEF发送一个获取请求,然后NEF在接收到获取请求之后,确定当前安全性处理等,然后路由一个对应的查询请求给UDR,UDR接收到之后会进行请求响应,然后通过NEF向SMF发送管控策略。
参见图9所示,可为本公开实施例提供的一种UAV的管控策略处理方法,包括:
SMF向NEF发送Nnef_UAV Management-Fetch;该Nnef_UAV Management-Fetch即为前述获取请求。
NEF接收到SMF发送的Nnef_UAV Management-Fetch之后,向UDR发送Nudr_DM-Query,该Nudr_DM-Query即为前述所述查询请求。
UDR接收到所述Nudr_DM-Query之后,向NEF发送Nudr_DM-response;该Nudr_DM-Query response携带有UDR提供的管控策略。Nudr_DM-Query response为前述查询请求的请求响应的一种。
NEF接收到Nudr_DM-Query response之后,向SMF发送Nnef_UAV Management-Fetch Response。Nnef_UAV Management-Fetch Response为前述获取响应的一种。
在一个实施例中,本实施例提供的UAV的管控策略处理方法包括:
接收NEF基于UAV的UTM/USS的第一请求发送的第二请求;
根据所述第二请求,进行所述UAV的管控策略处理;向所述NEF发送所述第二请求的请求响应,其中,所述第二请求的请求响应,用于供所述NEF向所述UTM/USS发送针对所述第一请求的请求响应,其中,针对所述第一请求和所述第二请求的请求响应携带有所述管控策略的处理结果。
该UTM/USS也是需要通过NEF和UDR进行通信的,因此,UTM/USS将管控策略存储到UDR或者更新存储在UDR中的管控策略时都需要经过NEF进行中间处理。
具体如参见图8所示,NEF进行UDR和UTM/USS之间的通信。图8所示的Nnef_UAV Management-Create/Update/Delete Request是前述第一请求的一种。
NEF接收到Nnef_UAV Management-Create/Update/Delete Request之后,进行NEF处理,此处的NFE处理(handling)可包括但不限于:鉴定UTM/USS是否是可以接入到蜂窝移动通信网络的合法实体。
在完成NEF处理之后,确定UTM/USS合法,则向UDR发送 Nudr_DM_Create/Update/Delete Requet。此处Nudr_DM_Create/Update/Delete Requet为前述第二请求的一种。
UDR接收到Nudr_DM_Create/Update/Delete Requet之后,会进行UAV的管控策略处理。
此处的管控策略的处理可包括:创建管控策略、删除管控策略和/或更新管控策略,然后获得处理结果。
在完成处理之后,向NEF返回Nudr_DM_Create/Update/Delete Requet的请求响应,此处的请求响应即为第二请求的请求响应。该请求响应可为图6所示Nudr_DM_Create/Update/Delete response。
NEF接收到Nudr_DM_Create/Update/Delete response之后,向SMF发送Nnef_UAV Management-Create/Update/Delete Response。此处的Nnef_UAV Management-Create/Update/Delete Response即为第一请求的请求响应。
在一个实施例中,所述根据所述第二请求,进行所述UAV的管控策略处理,包括以下至少之一:
响应于所述第二请求为创建请求,创建所述UAV的所述管控策略;
响应于所述第二请求为更新请求,更新所述UAV的所述管控策略;
响应于所述第二请求为删除请求,删除所述UAV的所述管控策略。该处理后的管控策略可包括以下至少之一:
新创建的管控策略;
更新后的管控策略。
在还有一个实施例中,若一个管控策略被删除或者被无效,则所述UDR还包括:通过NEF向UAV的SMF发送清空指令或者无效指令,清空或者无效被删除或被无效的管控策略。
在一个实施例中,所述本实施例提供UAV的管控策略处理方法包括:
根据所述处理结果,向所述UAV的SMF发送处理后的所述管控策略。
若发现管控策略进行了更新或者进行了创建,UDR也可以自行向SMF推送所述管控策略,如此,SMF不用请求的情况下,可以及时收到最新生效的管控策略,以对UAV的控制器切换进行及时处理。参考图10所示,NEF在发现UDR中存储的管控策略有变化时,可以通过如图10所示的Nnef_UAV Management-Notify携带有处理后的管控策略。
在一个实施例中,所述获取请求包括:
所述SMF基于NEF下发的通知消息的发送的查询消息,其中,所述通知消息为所述NEF基于所述第一请求下发的消息。
NEF接收到更新管控策略或者删除管控策略或者创建管控策略的第一请求时,会将根据第一请求通知UAV的SMF,此时,SMF就知道UDR存储有UAV的最新生效的管控策略,就会自动向NEF发送所述获取请求,以获得最新生效的管控策略。
本公开实施例提一种UAV控制方法,可如下:
为实现C2通信,无人机和无人机控制器分别与网络建立了C2通信专用DNN的PDU会话(session)。
无人机和无人机控制器需要得到UTM/USS的鉴权和认证才能成功为C2连接建立PDU会话。
为减少C2通信连接的传输时延,C2通信连接的应用数据流量通过UPF在无人机和无人机控制器之间传输,采用如图2中虚线所示的C2通信连接。
对无人机非法行为(飞入禁飞区)的处理策略,以及如何向3GPP网络提供处理策略。
当3GPP网络或UTM/USS检测出无人机飞入禁飞区后,可以执行以下管控策略:
终止UAV C2通信的当前PDU会话;
指定其他UAV控制器接管C2控制,管控策略中需要包含新UAV控制 器的地址信息;或者,由UTM直接接管对UAV的控制,策略中需要包含UTM的地址信息。
这些管控策略可以针对特定的UAV、一组UAV或者所有UAV。
如果管控策略是针对一组UAV(例如特定DNN下所有UAV)或所有UAV,策略可预先手工配置在SMF,或者由UTM/USS通过NEF进行配置。后一种方式适用于策略中的参数会经常发生变化的情况,例如UTM指定的接管C2控制的UAV控制器列表。
可参考图8所示,UTM/USS向NEF提供UAV的管控策略,其中包含UAV禁飞区、以及UAV飞入禁飞区后的策略和/或应用范围(某特定切片或DNN下的UAV或所有UAV)。
NEF检查UTM/USS是否合法设备,具有C2通信的授权;
NEF向UDR提供UAV的管控策略;
UDR更新UAV的管控策略;
UDR响应NEF。
NEF响应UTM/USS。
当SMF收到UAV为建立C2通信连接的PDU会话建立请求时,SMF向UDR获取UAV的管控策略,可参见图9所示。
如果UAV策略预置在SMF,存贮在UDR或者在鉴权和授权的过程由UTM/USS动态提供,SMF需要通过调用相关技术方案来监控UAV是否飞入禁飞区等非法行为。
当对飞入禁飞区UAV的管控策略是由另外一个UAV控制器或者UTM来接管C2通信时,SMF需要向UPF提供新的UAV控制器或UTM的地址,以便UPF将C2流路由到正确的目的地址。之后SMF终止旧的UAV控制器的PDU session。新的UAV控制器或UTM的地址可以预配置在SMF(如果不会变)、存储在UDR(参见图2.2-2)或由UTM/USS提供(在鉴权和 授权的过程或UTM检测出UAV飞入禁飞区时包含在UTM策略请求中)。
参考图11所示,本公开实施例提供一种关于UAV的管控策略的处理方法,可包括:
0.UAV、UAVC1、UAVC2分别为C2通信建立PDU会话,在会话建立过程中向UTM/USS注册自己的IP地址和SMF的地址。SMF可被预置了UAV管控策略或者SMF向UDR获取UAV管控策略。此处的UAVC1可为前述的第一设备。
1.进行C2通信。
2a.SMF检测出UAV非法行为(例如,飞入禁飞区)。
2b-1.UTM/USS检测出UAV非法行为(例如,飞入禁飞区或不按预定路线飞行),并通知SMF,消息中可以包含UAV管控策略。
2b-2 UTM/USS向SMF发送Nsmf_PDUSession-Update,该Nsmf_PDUSession-Update向SMF发送请求,请求切换UAV的控制设备。该Nsmf_PDUSession-Update可携带有更新后的第二设备的地址信息。
值得注意的是:步骤2a,与步骤2b-1和步骤2b-2组合的并列方案,在具体实现的时候执行其中之一即可。
3.SMF根据管控策略配置UPF将C2通信路由到UAVC2或UTM。此处的UAVC2和UTM为前述的第二设备。例如,SMF通过回复修改(session modification)消息切换UAV的控制设备。
4.如果管控策略是建立UAV与UAVC2的C2连接,SMF配置UPF2将C2消息路由到UAV。SMF通过session modification建立UAV与第二设备之间的通信连接。
5.SMF释放UAV与UAVC1之间的C2通信PDU会话。SMF通过会话释放(session release)这一条消息,释放UAV与UAVC1之间的通信连接。
6.在UAV与UAVC2或UAV与UTM之间进行C2通信。若UAV和 UAVC2连接在不同的UPF上时,例如,如图11所示的UPF1和UPF2时,则C2通信需要经过两个UPF,具体可以参见图11的步骤6a和6b。
如图12所示,本公开实施例提供一种无人机飞行控制装置,应用于会话管理功能SMF中,其中,包括:
第一切换模块110,被配置为响应于检测到无人机UAV的控制设备切换需求,根据管控策略将所述UAV的控制设备从第一设备切换到第二设备。
当NEF收到对UAV管控策略的增删改消息时,通知相应的SMF。
如果策略是针对特定的UAV,可以在鉴权和授权的过程中由UTM/USS提供给SMF,同时包含需要监控的禁飞区,然后SMF需要检测UAV是否飞入禁飞区;或者当UTM/USS检测到UAV飞入禁飞区时,UTM/USS向SMF发送策略请求。
在一个实施例中,所述第一切换模块110可为程序模块;所述程序模块被处理器执行后,会响应于检测到无人机UAV的控制设备切换需求,根据管控策略将所述UAV的控制设备从第一设备切换到第二设备。
在另一个实施例中,所述第一切换模块110可为软硬结合模块;所述软硬结合模块包括但不限于各种可编程阵列。所述可编程阵列包括但不限于:现场可编程阵列或者复杂可编程阵列。
在还有一个实施例中,所述第一切换模块110还可包括:纯硬件模块;所述纯硬件模块包括但不限于:专用集成电路。
在一个实施例中,所述装置还包括:检测模块,该检测模块可检测UAV的控制设备切换需求。该检测到UAV的控制设备切换需求可包括以下至少之一:
检测到所述UAV的非法行为;
检测到所述UAV行为合法时所述第一设备符合的控制设备换条件。
在一个实施例中,所述UAV的非法行为包括:
所述UAV飞入禁飞区;
所述UAV偏离规定路线。
在一个实施例中,所述第一切换模块110,被配置为释放所述UAV与所述第一设备之间的通信连接话;及建立所述UAV与所述第二设备之间的通信连接。
在一个实施例中,所述第一切换模块110,具体被配置为将所述第二设备的地址信息,下发给用户面功能UPF,其中,所述地址信息,用于所述UPF在所述UAV与所述第二设备之间建立所述通信连接。
在一个实施例中,所述第二设备包括以下至少之一:
无人机控制器UAVC;
无人机流量管理UTM。
在一个实施例中,所述管控策略,包括以下至少之一:
针对单个所述UAV的管控策略;
针对UAV组的管控策略,其中,所述UAV组包含:一个或多个所述UAV;
针对任意所述UAV的管控策略。
在一个实施例中,所述装置还包括:管控策略模块;该管控策略模块,被配置为执行以下至少之一:
预先配置所述管控策略;
从数据统一存储UDR获取所述管控策略;
从所述UAV的UTM获取的所述管控策略。
在一个实施例中,所述管控策略模块,被配置为执行以下至少之一:
向网络开放功能NEF向发送所述管控策略的获取请求;
接收所述NEF获取响应,其中,所述获取响应包含:所述UDR提供的所述管控策略。
所述管控策略模块,被配置为在建立所述无人机与所述第一设备之间通信连接的鉴权和授权过程中,从所述UTM接收所述管控策略;和/或,当检测到UAV的控制设备切换需求时,从所述UTM接收所述管控策略。
如图13所示,本公开实施例提供一种无人机飞行控制装置,应用于UTM或USS中,其中,包括:
第二切换模块210,被配置为响应于检测到无人机UAV的控制设备切换需求,根据管控策略将所述UAV的控制设备从第一设备切换到第二设备,根据管控策略,请求SMF将所述UAV的控制设备从第一设备切换到第二设备。
在一个实施例中,所述第二切换模块210可为程序模块;所述程序模块被处理器执行后,会响应于检测到无人机UAV的控制设备切换需求,根据管控策略将所述UAV的控制设备从第一设备切换到第二设备。
在另一个实施例中,所述第二切换模块210可为软硬结合模块;所述软硬结合模块包括但不限于各种可编程阵列。所述可编程阵列包括但不限于:现场可编程阵列或者复杂可编程阵列。
在还有一个实施例中,所述第二切换模块210还可包括:纯硬件模块;所述纯硬件模块包括但不限于:专用集成电路。
在一个实施例中,所述检测到UAV的控制设备切换需求包括以下至少之一:检测到所述UAV的非法行为;检测到所述UAV行为合法时所述第一设备符合的控制设备换条件。
例如,USS/UTM包括一个检测模块,可以检测上述UAV的控制设备切换需求。
在一个实施例中,所述第二切换模块210,被配置为请求所述SMF释放所述UAV与所述第一设备之间的通信连接;和/或,请求所述SMF建立所述UAV与所述第二设备之间的通信连接。
在一个实施例中,所述第二切换模块210,被配置为将所述第二设备的地址信息,发送给所述SMF,其中,所述地址信息,用于由所述SMF下发给UPF,并供所述UPF进行所述UAV与所述第二设备之间通信的会话路由。
在一个实施例中,所述第二设备包括以下至少之一:
无人机控制器UAVC;
无人机系流量管理UTM。
在一个实施例中,所述管控策略,包括以下至少之一:
针对单个所述UAV的管控策略;
针对UAV组的管控策略,其中,所述UAV组包含:一个或多个所述UAV;
针对任意所述UAV的管控策略。
在一个实施例中,所述装置还包括:
策略发送模块,被配置为向所述SMF提供所述管控策略。
在一个实施例中,所述策略发送模块,被配置为在建立所述无人机与所述第一设备之间通信连接的鉴权和授权过程中,向所述SMF提供所述管控策略;和/或,响应于检测到所述UAV的控制设备切换需求,向所述SMF提供所述管控策略。
如图14所示,本公开实施例提供一种UAV的管控策略处理装置,其中,应用于UDR中,包括:
接收模块310,被配置为接收NEF发送的查询请求,其中,所述查询请求是基于SMF发送的获取请求发送的;
发送模块320,被配置为向所述NEF发送查询请求的请求响应,其中,所述查询请求的请求响应,用于供所述NEF向所述SMF发送获取响应,其中,所述请求响应和所述获取响应,均携带有所述管控策略;所述管控策 略,用于供检测到检测到无人机UAV的控制设备切换需求切换所述UAV的控制设备。
在一个实施例中,所述接收模块310及所述发送模块320可为程序模块;所述程序模块被处理器执行后,实现所述管控策略向SMF的下发。
在另一个实施例中,所述接收模块310及所述发送模块320可为软硬结合模块;所述软硬结合模块包括但不限于各种可编程阵列。所述可编程阵列包括但不限于:现场可编程阵列或者复杂可编程阵列。
在还有一个实施例中,所述接收模块310及所述发送模块320还可包括:纯硬件模块;所述纯硬件模块包括但不限于:专用集成电路。
在一个实施例中,所述接收模块310,还被配置为接收NEF基于UAV的UTM/USS的第一请求发送的第二请求;
所述装置还包括:
处理模块,被配置为根据所述第二请求,进行所述UAV的管控策略处理;
所述发送模块320,还被配置为向所述NEF发送所述第二请求的请求响应,其中,所述第二请求的请求响应,用于供所述NEF向所述UTM/USS发送针对所述第一请求的请求响应,其中,针对所述第一请求和所述第二请求的请求响应携带有所述管控策略的处理结果。
在一个实施例中,所述处理模块,被配置为执行以下至少之一:
响应于所述第二请求为创建请求,创建所述UAV的所述管控策略;
响应于所述第二请求为更新请求,更新所述UAV的所述管控策略;
响应于所述第二请求为删除请求,删除所述UAV的所述管控策略。
在一个实施例中,所述发送模块,还被配置为根据所述处理结果,向所述UAV的SMF发送处理后的所述管控策略。
在一个实施例中,所述获取请求包括:
所述SMF基于NEF下发的通知消息的发送的查询消息,其中,所述通知消息为所述NEF基于所述第一请求下发的消息。
本申请实施例提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有处理器运行的可执行程序,其中,处理器运行可执行程序时执行前述任意技术方案提供的应用于SMF、UTM/USS或者UDR中的方法,具体可如图4至图11任一项所示的方法。
该通信设备可为前述的SMF、或者UTM/USS、UDR。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。这里,所述通信设备包括基站或用户设备。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,具体可如图4至图11任一项所示的方法。
本申请实施例提供一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现第一方面或第二方面任意技术方案所示的方法,例如,如图图2至4和图6至图7所示的方法的至少其中之一。
图15是根据一示例性实施例示出的一种UE(UE)800的框图。例如,UE800可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图15,UE800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制UE800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。 此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在UE800的操作。这些数据的示例包括用于在UE800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为UE800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为UE800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述UE800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当UE800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当UE800处于操作模式,如呼叫模式、记录模式 和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为UE800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为UE800的显示器和小键盘,传感器组件814还可以检测UE800或UE800一个组件的位置改变,用户与UE800接触的存在或不存在,UE800方位或加速/减速和UE800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于UE800和其他设备之间有线或无线方式的通信。UE800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程 逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由UE800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (28)

  1. 一种无人机飞行控制方法,应用于会话管理功能SMF中,其中,包括:
    响应于检测到无人机UAV的控制设备切换需求,根据管控策略将所述UAV的控制设备从第一设备切换到第二设备。
  2. 根据权利要求1所述的方法,其中,所述检测到UAV的控制设备切换需求包括以下至少之一:
    检测到所述UAV的非法行为;
    检测到所述UAV行为合法时所述第一设备符合的控制设备换条件。
  3. 根据权利要求2所述的方法,其中,所述UAV的非法行为包括:
    所述UAV飞入禁飞区;
    所述UAV偏离规定路线。
  4. 根据权利要求1至3任一项所述的方法,其中,所述响应于检测到无人机UAV的非法行为,根据管控策略将所述UAV的控制设备从第一设备切换到第二设备,包括:
    释放所述UAV与所述第一设备之间的通信连接话;
    建立所述UAV与所述第二设备之间的通信连接。
  5. 根据权利要求4所述的方法,其中,所述建立所述UAV与所述第二设备之间的通信连接,包括:
    将所述第二设备的地址信息,下发给用户面功能UPF,其中,所述地址信息,用于所述UPF在所述UAV与所述第二设备之间建立所述通信连接。
  6. 根据权利要求1至5任一项所述的方法,其中,所述第二设备包括以下至少之一:
    无人机控制器UAVC;
    无人机流量管理UTM。
  7. 根据权利要求1至7任一项所述的方法,其中,所述管控策略,包括以下至少之一:
    针对单个所述UAV的管控策略;
    针对UAV组的管控策略,其中,所述UAV组包含:一个或多个所述UAV;
    针对任意所述UAV的管控策略。
  8. 根据权利要求1至7任一项所述的方法,其中,所述方法还包括以下至少之一:
    预先配置所述管控策略;
    从数据统一存储UDR获取所述管控策略;
    从所述UAV的UTM获取的所述管控策略。
  9. 根据权利要求8所述的方法,其中,所述从数据统一存储UDR获取所述管控策略,包括:
    向网络开放功能NEF向发送所述管控策略的获取请求;
    接收所述NEF获取响应,其中,所述获取响应包含:所述UDR提供的所述管控策略。
  10. 根据权利要求8所述的方法,其中,从所述UAV的UTM获取的所述管控策略,包括以下至少之一:
    在建立所述无人机与所述第一设备之间通信连接的鉴权和授权过程中,从所述UTM接收所述管控策略;
    当检测到UAV的控制设备切换需求时,从所述UTM接收所述管控策略。
  11. 一种无人机飞行控制方法,应用于UTM或USS中,其中,包括:
    响应于检测到无人机UAV的控制设备切换需求,根据管控策略将所述UAV的控制设备从第一设备切换到第二设备,根据管控策略,请求SMF将 所述UAV的控制设备从第一设备切换到第二设备。
  12. 根据权利要求11所述的方法,其中,所述检测到UAV的控制设备切换需求包括以下至少之一:
    检测到所述UAV的非法行为;
    检测到所述UAV行为合法时所述第一设备符合的控制设备换条件。
  13. 根据权利要求12所述的方法,其中,所述请求SMF将所述UAV的控制设备从第一设备切换到第二设备,包括:
    请求所述SMF释放所述UAV与所述第一设备之间的通信连接;
    请求所述SMF建立所述UAV与所述第二设备之间的通信连接。
  14. 根据权利要求13所述的方法,其中,所述请求建立所述UAV与所述第二设备之间的通信连接,包括:
    将所述第二设备的地址信息,发送给所述SMF,其中,所述地址信息,用于由所述SMF下发给UPF,并供所述UPF进行所述UAV与所述第二设备之间通信的会话路由。
  15. 根据权利要求11或12所述的方法,其中,所述第二设备包括以下至少之一:
    无人机控制器UAVC;
    无人机系流量管理UTM。
  16. 根据权利要求11或12所述的方法,其中,所述管控策略,包括:
    针对单个所述UAV的管控策略;
    针对UAV组的管控策略,其中,所述UAV组包含:一个或多个所述UAV;
    针对任意所述UAV的管控策略。
  17. 根据权利要求11至16任一项所述的方法,其中,所述方法还包括:
    向所述SMF提供所述管控策略。
  18. 根据权利要求17所述的方法,其中,所述向所述SMF提供所述管控策略,包括以下至少之一:
    在建立所述无人机与所述第一设备之间通信连接的鉴权和授权过程中,向所述SMF提供所述管控策略;
    响应于检测到所述UAV的控制设备切换需求,向所述SMF提供所述管控策略。
  19. 一种UAV的管控策略处理方法,其中,应用于UDR中,包括:
    接收NEF发送的查询请求,其中,所述查询请求是基于SMF发送的获取请求发送的;
    向所述NEF发送查询请求的请求响应,其中,所述查询请求的请求响应,用于供所述NEF向所述SMF发送获取响应,其中,所述请求响应和所述获取响应,均携带有所述管控策略;所述管控策略,用于供检测到检测到无人机UAV的控制设备切换需求切换所述UAV的控制设备。
  20. 根据权利要求19所述的方法,其中,所述方法还包括:
    接收NEF基于UAV的UTM/USS的第一请求发送的第二请求;
    根据所述第二请求,进行所述UAV的管控策略处理;
    向所述NEF发送所述第二请求的请求响应;
    其中,所述第二请求的请求响应,用于供所述NEF向所述UTM/USS发送针对所述第一请求的请求响应,其中,针对所述第一请求和所述第二请求的请求响应携带有所述管控策略的处理结果。
  21. 根据权利要求20所述的方法,其中,所述根据所述第二请求,进行所述UAV的管控策略处理,包括以下至少之一:
    响应于所述第二请求为创建请求,创建所述UAV的所述管控策略;
    响应于所述第二请求为更新请求,更新所述UAV的所述管控策略;
    响应于所述第二请求为删除请求,删除所述UAV的所述管控策略。
  22. 根据权利要求20所述的方法,其中,所述方法还包括:
    根据所述处理结果,向所述UAV的SMF发送处理后的所述管控策略。
  23. 根据权利要求20所述的方法,其中,所述获取请求包括:
    所述SMF基于NEF下发的通知消息的发送的查询消息,其中,所述通知消息为所述NEF基于所述第一请求下发的消息。
  24. 一种无人机飞行控制装置,应用于会话管理功能SMF中,其中,包括:
    第一切换模块,被配置为响应于检测到无人机UAV的控制设备切换需求,根据管控策略将所述UAV的控制设备从第一设备切换到第二设备。
  25. 一种无人机飞行控制装置,应用于UTM或USS中,其中,包括:
    第二切换模块,被配置为响应于检测到无人机UAV的控制设备切换需求,根据管控策略将所述UAV的控制设备从第一设备切换到第二设备,根据管控策略,请求SMF将所述UAV的控制设备从第一设备切换到第二设备。
  26. 一种UAV的管控策略处理装置,其中,应用于UDR中,包括:
    接收模块,被配置为接收NEF发送的查询请求,其中,所述查询请求是基于SMF发送的获取请求发送的;
    发送模块,被配置为向所述NEF发送查询请求的请求响应,其中,所述查询请求的请求响应,用于供所述NEF向所述SMF发送获取响应,其中,所述请求响应和所述获取响应,均携带有所述管控策略;所述管控策略,用于供检测到检测到无人机UAV的控制设备切换需求切换所述UAV的控制设备。
  27. 一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执 行程序时执行如权利要求1至10或11至18或19至23任一项提供的方法。
  28. 一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现如权利要求1至10或11至18或19至23任一项提供的方法。
PCT/CN2020/108738 2020-08-12 2020-08-12 Uav飞行控制、管控策略处理方法及装置、设备及介质 WO2022032540A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/108738 WO2022032540A1 (zh) 2020-08-12 2020-08-12 Uav飞行控制、管控策略处理方法及装置、设备及介质
CN202080001894.XA CN114424595A (zh) 2020-08-12 2020-08-12 Uav飞行控制、管控策略处理方法及装置、设备及介质
EP20949039.0A EP4199472A4 (en) 2020-08-12 2020-08-12 UAV FLIGHT CONTROL METHOD AND DEVICE, MANAGEMENT AND CONTROL STRATEGY PROCESSING METHOD AND DEVICE FOR UAV, AS WELL AS DEVICE AND MEDIUM
US18/004,855 US20230305555A1 (en) 2020-08-12 2020-08-12 Uav flight control method and apparatus, management and control strategy processing method and apparatus for uav, and device and medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108738 WO2022032540A1 (zh) 2020-08-12 2020-08-12 Uav飞行控制、管控策略处理方法及装置、设备及介质

Publications (1)

Publication Number Publication Date
WO2022032540A1 true WO2022032540A1 (zh) 2022-02-17

Family

ID=80246713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108738 WO2022032540A1 (zh) 2020-08-12 2020-08-12 Uav飞行控制、管控策略处理方法及装置、设备及介质

Country Status (4)

Country Link
US (1) US20230305555A1 (zh)
EP (1) EP4199472A4 (zh)
CN (1) CN114424595A (zh)
WO (1) WO2022032540A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117354805A (zh) * 2022-06-28 2024-01-05 华为技术有限公司 一种通信方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018178758A1 (en) * 2017-03-31 2018-10-04 Telefonaktiebolaget Lm Ericsson (Publ) Enhanced flight plan for unmanned traffic aircraft systems
WO2018204353A1 (en) * 2017-05-04 2018-11-08 Intel Corporation Interference coordination for networks serving aerial vehicles
CN109792794A (zh) * 2018-12-28 2019-05-21 北京小米移动软件有限公司 通信控制方法及装置
CN110049508A (zh) * 2018-01-15 2019-07-23 华为技术有限公司 一种获取业务数据的方法及装置
WO2020156157A1 (zh) * 2019-02-02 2020-08-06 华为技术有限公司 无人机控制方法、装置及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11832104B2 (en) * 2018-08-10 2023-11-28 Apple Inc. Systems and methods for using unmanned aerial systems in cellular networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018178758A1 (en) * 2017-03-31 2018-10-04 Telefonaktiebolaget Lm Ericsson (Publ) Enhanced flight plan for unmanned traffic aircraft systems
WO2018204353A1 (en) * 2017-05-04 2018-11-08 Intel Corporation Interference coordination for networks serving aerial vehicles
CN110049508A (zh) * 2018-01-15 2019-07-23 华为技术有限公司 一种获取业务数据的方法及装置
CN109792794A (zh) * 2018-12-28 2019-05-21 北京小米移动软件有限公司 通信控制方法及装置
WO2020156157A1 (zh) * 2019-02-02 2020-08-06 华为技术有限公司 无人机控制方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "KI #2, KI#5, New Sol: Network-Assisted UAV Authorization and Monitoring", 3GPP DRAFT; S2-2004005, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. e-meeting ;20200601 - 20200612, 22 May 2020 (2020-05-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051890012 *

Also Published As

Publication number Publication date
US20230305555A1 (en) 2023-09-28
EP4199472A1 (en) 2023-06-21
EP4199472A4 (en) 2023-07-19
CN114424595A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
WO2022120544A1 (zh) 通信方法及装置、无线接入网、终端及存储介质
WO2022082445A1 (zh) 频率优先级确定、信息下发方法及装置、设备及介质
WO2021026696A1 (zh) 终端监听的方法及装置、通信设备及存储介质
KR20240042026A (ko) 중계 사용자 기기 전환 방법, 장치, 기기 및 판독 가능 저장 매체
WO2022000200A1 (zh) 定位参考信号配置方法及装置、用户设备、存储介质
WO2021217595A1 (zh) 数据传输处理方法、装置、通信设备及存储介质
WO2022141095A1 (zh) 辅助ue的选择方法、装置及存储介质
WO2022120735A1 (zh) 无线通信的方法、装置、通信设备及存储介质
WO2022032540A1 (zh) Uav飞行控制、管控策略处理方法及装置、设备及介质
WO2022147662A1 (zh) 测量间隙调度方法及装置、通信设备及存储介质
WO2022205362A1 (zh) 寻呼处理方法及装置、通信设备及存储介质
WO2021227081A1 (zh) 转移业务的方法、装置、通信设备及存储介质
WO2022021271A1 (zh) 波束切换方法及装置、网络设备、终端及存储介质
WO2022077232A1 (zh) 无线通信方法及装置、通信设备及存储介质
WO2024031400A1 (zh) 确定激活或去激活辅小区的方法、装置及存储介质
WO2023240643A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2023000154A1 (zh) 跟踪区异常处理方法及装置、通信设备及存储介质
WO2024031640A1 (zh) 一种信息传输方法、装置、通信设备及存储介质
WO2024060091A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2024055329A1 (zh) 邻近服务ProSe的无线通信方法、装置、通信设备及存储介质
WO2024007173A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2024031460A1 (zh) 一种接入行为确定方法、装置、通信设备及存储介质
WO2024000124A1 (zh) 寻呼协商方法、装置、通信设备及存储介质
WO2023070326A1 (zh) Ta信息处理方法及装置、通信设备及存储介质
WO2024060057A1 (zh) 信息处理方法及装置、通信设备及存储介质

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020949039

Country of ref document: EP

Effective date: 20230313