WO2022032514A1 - 改性淀粉接枝低聚乳酸热塑性复合材料的制备方法及其应用 - Google Patents

改性淀粉接枝低聚乳酸热塑性复合材料的制备方法及其应用 Download PDF

Info

Publication number
WO2022032514A1
WO2022032514A1 PCT/CN2020/108626 CN2020108626W WO2022032514A1 WO 2022032514 A1 WO2022032514 A1 WO 2022032514A1 CN 2020108626 W CN2020108626 W CN 2020108626W WO 2022032514 A1 WO2022032514 A1 WO 2022032514A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
modified starch
lactic acid
composite material
thermoplastic composite
Prior art date
Application number
PCT/CN2020/108626
Other languages
English (en)
French (fr)
Inventor
陈昌平
Original Assignee
南京五瑞生物降解新材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京五瑞生物降解新材料研究院有限公司 filed Critical 南京五瑞生物降解新材料研究院有限公司
Priority to AU2020227121A priority Critical patent/AU2020227121A1/en
Priority to PCT/CN2020/108626 priority patent/WO2022032514A1/zh
Publication of WO2022032514A1 publication Critical patent/WO2022032514A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Definitions

  • the invention relates to a preparation method and application of a modified starch grafted oligomeric lactic acid thermoplastic composite material, and belongs to the field of degradable plastics.
  • Biodegradable plastics are polymeric materials that can decompose into carbon dioxide and water in a relatively short period of time under normal environmental conditions.
  • the common ones are: biodegradable homopolyester, such as PHA, PLA, PHB, PCL, PHBV, etc.; biodegradable copolyester, such as PBS, PBSA, etc.; natural products with polysaccharide structure, such as thermoplastic starch resin (TPS), Cellulose acetate, etc.
  • TPS thermoplastic starch resin
  • Thermoplastic starch refers to that starch is modified by steps such as esterification and grafting.
  • Thermoplastic starch is inexpensive and fully degradable, making it the material of choice for biodegradable plastics.
  • the biodegradable films made of common thermoplastic starch have disadvantages such as relatively poor mechanical properties and strong water absorption, and their use is limited.
  • the purpose of the present invention is to provide a preparation method of a modified starch grafted oligomeric lactic acid thermoplastic composite material, and the prepared material has good mechanical properties and waterproof properties.
  • a method for preparing a modified starch grafted oligomeric lactic acid thermoplastic composite material comprising:
  • step (1) The emulsion in step (1) is demulsified and then dried to obtain a modified starch grafted oligomeric lactic acid thermoplastic composite material.
  • the preparation method of the modified starch is as follows: adding dimethylformamide and pyrrole to the vegetable starch, stirring at 40-60° C. for more than 2 hours, then adding acryloyl chloride dropwise while stirring, and continuing to stir for more than 2 hours, Add absolute ethanol for washing, suction filtration, and then drying to obtain modified starch.
  • the preparation method of the oligomeric lactic acid reactant is as follows: 100 parts of oligomeric lactic acid, 0.5-1.2 parts of zinc oxide and 0.5-1.5 parts of polyethylene glycol are stirred at a high speed in a mixer for 1-2.5 hours, and the stirring temperature The temperature is 90-120° C., and the stirring speed is 800-1200 rpm to obtain the oligomeric lactic acid reactant.
  • the initiator is potassium persulfate or ammonium persulfate.
  • the vegetable starch is corn starch, sweet potato starch, pea starch, mung bean starch or potato starch.
  • the invention also discloses the application of the above-mentioned modified starch grafted oligomeric lactic acid thermoplastic composite material in the preparation of biodegradable films.
  • the modified starch and oligomeric lactic acid reactants form a framework of topology structure, and glycidyl methacrylate forms grafts
  • the modified starch and oligomeric lactic acid can be organically combined to jointly exert the advantages of starch and oligomeric lactic acid; performance and water resistance.
  • the preparation method of the modified starch grafted oligomeric lactic acid thermoplastic composite material, its preparatory process comprises:
  • modified starch add 50 parts of dimethylformamide and 12 parts of pyrrole to 100 parts of vegetable starch, stir at 50°C for 6 hours, then add 1.2 parts of acryloyl chloride dropwise while stirring, continue stirring for 4 hours, and add absolute ethanol Washing, suction filtration, and drying to obtain modified starch.
  • the vegetable starch can use commercially available ordinary starch.
  • Preparation of oligomeric lactic acid reactant stir 100 parts of oligomeric lactic acid, 0.8 parts of zinc oxide and 1.0 part of polyethylene glycol in a mixer at high speed for 2 hours, the stirring temperature is 100 ° C, and the stirring speed is 1000 rpm, that is, the oligomeric lactic acid is reacted thing.
  • step (1) The emulsion in step (1) is demulsified with a little ethanol and dried to obtain a modified starch grafted oligomeric lactic acid thermoplastic composite material.
  • the obtained modified starch grafted oligomeric lactic acid thermoplastic composite material was blown into a film with a thickness of 0.03 mm, the tensile strength was 32 MPa, and the elongation at break was 350%.
  • the preparation method of the modified starch grafted oligomeric lactic acid thermoplastic composite material, its preparatory process comprises:
  • modified starch add 30 parts of dimethylformamide and 10 parts of pyrrole to 100 parts of vegetable starch, stir at 40 ° C for more than 2 hours, then add 0.5 part of acryloyl chloride dropwise while stirring, continue stirring for 2 hours, add anhydrous Ethanol washing, suction filtration, and drying to obtain modified starch.
  • the vegetable starch can use commercially available ordinary starch.
  • Preparation of oligomeric lactic acid reactant stir 100 parts of oligomeric lactic acid, 0.5 part of zinc oxide and 0.5 part of polyethylene glycol at a high speed in a mixer for 1 hour, the stirring temperature is 90 ° C, and the stirring speed is 800 rpm, that is, the reaction of oligomeric lactic acid is obtained. thing.
  • step (1) The emulsion in step (1) is demulsified with a little ethanol and dried to obtain a modified starch grafted oligomeric lactic acid thermoplastic composite material.
  • the obtained modified starch grafted oligomeric lactic acid thermoplastic composite material was blown into a film with a thickness of 0.03 mm, the tensile strength was 27 MPa, and the elongation at break was 320%.
  • the preparation method of the modified starch grafted oligomeric lactic acid thermoplastic composite material, its preparatory process comprises:
  • modified starch add 60 parts of dimethylformamide and 15 parts of pyrrole to 100 parts of vegetable starch, stir at 60°C for 5 hours, then add 2 parts of acryloyl chloride dropwise while stirring, continue stirring for 5 hours, and add absolute ethanol Washing, suction filtration, and drying to obtain modified starch.
  • the vegetable starch can use commercially available ordinary starch.
  • oligomeric lactic acid reactant 100 parts of oligomeric lactic acid, 1.2 parts of zinc oxide and 1.5 parts of polyethylene glycol are stirred at a high speed in a mixer for 2.5 hours, the stirring temperature is 120 ° C, and the stirring speed is 1200 rpm, that is, oligomeric lactic acid is obtained. Reactant.
  • step (1) The emulsion in step (1) is demulsified with a little ethanol and dried to obtain a modified starch grafted oligomeric lactic acid thermoplastic composite material.
  • the obtained modified starch grafted oligomeric lactic acid thermoplastic composite material was blown into a film with a thickness of 0.03 mm, the tensile strength was 35 MPa, and the elongation at break was 390%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

一种改性淀粉接枝低聚乳酸热塑性复合材料的制备方法,其步骤包括:(1)将100份改性淀粉与50-100份低聚乳酸反应物、8-15份甲基丙烯酸缩水甘油酯、1-3份柠檬酸以及0.5-5份引发剂加入水中搅拌均匀,超声分散形成乳液,然后加热到70-90℃继续搅拌反应5-12h;(2)步骤(1)的乳液破乳后烘干,制得改性淀粉接枝低聚乳酸热塑性复合材料。改性淀粉接枝低聚乳酸热塑性复合材料制成薄膜后,具有良好的透明度和延展性,可加工性强,且易于在自然条件下降解,成本低,可广泛用于包装材料。

Description

改性淀粉接枝低聚乳酸热塑性复合材料的制备方法及其应用 技术领域
本发明涉及一种改性淀粉接枝低聚乳酸热塑性复合材料的制备方法及其应用,属于可降解塑料领域。
背景技术
常规的塑料制品如聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)等其性状非常稳定,可在自然界长期稳定存在,难以降解,被称为白色垃圾,造成了严重的环境污染。为缓解环境压力,生物降解塑料成了目前的研发热点。
生物降解塑料是指能够在常规环境条件下在较短的时间内分解为二氧化碳和水的聚合物材料。目前常见的有:生物降解均聚酯,如PHA、PLA、PHB、PCL、PHBV等,生物降解共聚酯,如PBS、PBSA等;具有多糖结构的天然产物,如热塑性淀粉树脂(TPS)、醋酸纤维素等。其中热塑性淀粉树脂是指淀粉经过酯化、接枝等步骤改性而成。热塑性淀粉成本低廉,可完全降解,是生物降解塑料的首选材料。但常见的热塑性淀粉制成的生物降解薄膜存在力学性能相对较差,吸水性强等缺点,使用受限。
发明内容
本发明的目的在于提供一种改性淀粉接枝低聚乳酸热塑性复合材料的制备方法,制得的材料具有良好的力学性能和防水性能。
本发明的目的通过以下技术方案实现:
一种改性淀粉接枝低聚乳酸热塑性复合材料的制备方法,其步骤包括:
(1)将100份改性淀粉与50-100份低聚乳酸反应物、8-15份甲基丙烯酸缩水甘油酯、1-3份柠檬酸以及0.5-5份引发剂加入水中搅拌均匀,超声分散形成乳液,然后加热到70-90℃继续搅拌反应5-12h;
(2)步骤(1)的乳液破乳后烘干,制得改性淀粉接枝低聚乳酸热塑性复合材料。
优选的,所述改性淀粉的制备方法为:在植物淀粉中加入二甲基甲酰胺和吡咯,在40-60℃下搅拌2h以上,然后边搅拌边滴加丙烯酰氯,继续搅拌2h以上, 加入无水乙醇洗涤、抽滤,然后干燥制得改性淀粉。
优选的,改性淀粉的制备过程中,每100份植物淀粉中加入30-60份二甲基甲酰胺、10-15份吡咯、0.5-2份丙烯酰氯。
优选的,所述低聚乳酸反应物的制备方法为:将100份低聚乳酸与0.5-1.2份氧化锌及0.5-1.5份聚乙二醇在混料机高速搅拌1-2.5h,搅拌温度为90-120℃,搅拌速度为800-1200rpm,即得低聚乳酸反应物。
优选的,所述引发剂为过硫酸钾或过硫酸铵。
优选的,所述植物淀粉为玉米淀粉、红薯淀粉、豌豆淀粉、绿豆淀粉或土豆淀粉。
本发明还公开了上述的改性淀粉接枝低聚乳酸热塑性复合材料在制备生物降解薄膜中的应用。
本发明将淀粉改性后,与甲基丙烯酸缩水甘油酯以及低聚乳酸反应物接枝共联,改性淀粉与低聚乳酸反应物形成拓扑结构的骨架,甲基丙烯酸缩水甘油酯形成接枝的支链,一方面使得改性淀粉与低聚乳酸能有机结合,共同发挥淀粉与低聚乳酸的优势,另一方面,有效提高材料的交联度,减少侧链的羟基,提高材料的力学性能和防水性能。本发明的改性淀粉接枝低聚乳酸热塑性复合材料制成薄膜后,具有良好的透明度和延展性,可加工性强,且易于在自然条件下降解,成本低,可广泛用于包装材料。
具体实施方式
实施例1
本改性淀粉接枝低聚乳酸热塑性复合材料的制备方法,其预备工序包括:
制备改性淀粉:在100份植物淀粉中加入50份二甲基甲酰胺和12份吡咯,在50℃下搅拌6h,然后边搅拌边滴加1.2份丙烯酰氯,继续搅拌4h,加入无水乙醇洗涤、抽滤,然后干燥制得改性淀粉。植物淀粉采用市售普通淀粉即可。
制备低聚乳酸反应物:将100份低聚乳酸与0.8份氧化锌及1.0份聚乙二醇在混料机高速搅拌2h,搅拌温度为100℃,搅拌速度为1000rpm,即得低聚乳酸反应物。
(1)将100份改性淀粉与80份低聚乳酸反应物、12份甲基丙烯酸缩水甘油酯、2份柠檬酸以及3份引发剂过硫酸钾或过硫酸铵加入水中搅拌均匀,超声分 散形成乳液,然后加热到80℃继续搅拌反应7h;
(2)步骤(1)的乳液加少许乙醇破乳后烘干,制得改性淀粉接枝低聚乳酸热塑性复合材料。
将制得的改性淀粉接枝低聚乳酸热塑性复合材料吹塑成厚度0.03mm的薄膜,其拉伸强度为32MPa,断裂伸长率为350%。
实施例2
本改性淀粉接枝低聚乳酸热塑性复合材料的制备方法,其预备工序包括:
制备改性淀粉:在100份植物淀粉中加入30份二甲基甲酰胺和10份吡咯,在40℃下搅拌2h以上,然后边搅拌边滴加0.5份丙烯酰氯,继续搅拌2h,加入无水乙醇洗涤、抽滤,然后干燥制得改性淀粉。植物淀粉采用市售普通淀粉即可。
制备低聚乳酸反应物:将100份低聚乳酸与0.5份氧化锌及0.5份聚乙二醇在混料机高速搅拌1h,搅拌温度为90℃,搅拌速度为800rpm,即得低聚乳酸反应物。
(1)将100份改性淀粉与50份低聚乳酸反应物、8份甲基丙烯酸缩水甘油酯、1份柠檬酸以及0.5份引发剂过硫酸钾或过硫酸铵加入水中搅拌均匀,超声分散形成乳液,然后加热到70℃继续搅拌反应5h;
(2)步骤(1)的乳液加少许乙醇破乳后烘干,制得改性淀粉接枝低聚乳酸热塑性复合材料。
将制得的改性淀粉接枝低聚乳酸热塑性复合材料吹塑成厚度0.03mm的薄膜,其拉伸强度为27MPa,断裂伸长率为320%。
实施例3
本改性淀粉接枝低聚乳酸热塑性复合材料的制备方法,其预备工序包括:
制备改性淀粉:在100份植物淀粉中加入60份二甲基甲酰胺和15份吡咯,在60℃下搅拌5h,然后边搅拌边滴加2份丙烯酰氯,继续搅拌5h,加入无水乙醇洗涤、抽滤,然后干燥制得改性淀粉。植物淀粉采用市售普通淀粉即可。
制备低聚乳酸反应物:将100份低聚乳酸与1.2份氧化锌及1.5份聚乙二醇在混料机高速搅拌2.5h,搅拌温度为120℃,搅拌速度为1200rpm,即得低聚乳酸反应物。
(1)将100份改性淀粉与100份低聚乳酸反应物、15份甲基丙烯酸缩水甘 油酯、3份柠檬酸以及5份引发剂过硫酸钾或过硫酸铵加入水中搅拌均匀,超声分散形成乳液,然后加热到90℃继续搅拌反应12h;
(2)步骤(1)的乳液加少许乙醇破乳后烘干,制得改性淀粉接枝低聚乳酸热塑性复合材料。
将制得的改性淀粉接枝低聚乳酸热塑性复合材料吹塑成厚度0.03mm的薄膜,其拉伸强度为35MPa,断裂伸长率为390%。

Claims (7)

  1. 一种改性淀粉接枝低聚乳酸热塑性复合材料的制备方法,其步骤包括:
    (1)将100份改性淀粉与50-100份低聚乳酸反应物、8-15份甲基丙烯酸缩水甘油酯、1-3份柠檬酸以及0.5-5份引发剂加入水中搅拌均匀,超声分散形成乳液,然后加热到70-90℃继续搅拌反应5-12h;
    (2)步骤(1)的乳液破乳后烘干,制得改性淀粉接枝低聚乳酸热塑性复合材料。
  2. 根据权利要求1所述的改性淀粉接枝低聚乳酸热塑性复合材料的制备方法,其特征在于:所述改性淀粉的制备方法为:在植物淀粉中加入二甲基甲酰胺和吡咯,在40-60℃下搅拌2h以上,然后边搅拌边滴加丙烯酰氯,继续搅拌2h以上,加入无水乙醇洗涤、抽滤,然后干燥制得改性淀粉。
  3. 根据权利要求2所述的改性淀粉接枝低聚乳酸热塑性复合材料的制备方法,其特征在于:改性淀粉的制备过程中,每100份植物淀粉中加入30-60份二甲基甲酰胺、10-15份吡咯、0.5-2份丙烯酰氯。
  4. 根据权利要求2所述的改性淀粉接枝低聚乳酸热塑性复合材料的制备方法,其特征在于:所述低聚乳酸反应物的制备方法为:将100份低聚乳酸与0.5-1.2份氧化锌及0.5-1.5份聚乙二醇在混料机高速搅拌1-2.5h,搅拌温度为90-120℃,搅拌速度为800-1200rpm,即得低聚乳酸反应物。
  5. 根据权利要求1-4中任一项所述的改性淀粉接枝低聚乳酸热塑性复合材料的制备方法,其特征在于:所述引发剂为过硫酸钾或过硫酸铵。
  6. 根据权利要求5所述的改性淀粉接枝低聚乳酸热塑性复合材料的制备方法,其特征在于:所述植物淀粉为玉米淀粉、红薯淀粉、豌豆淀粉、绿豆淀粉或土豆淀粉。
  7. 权利要求1-6中任一项所述的改性淀粉接枝低聚乳酸热塑性复合材料在制备生物降解薄膜中的应用。
PCT/CN2020/108626 2020-08-12 2020-08-12 改性淀粉接枝低聚乳酸热塑性复合材料的制备方法及其应用 WO2022032514A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2020227121A AU2020227121A1 (en) 2020-08-12 2020-08-12 Preparation method and application of modified starch graft lactic acid oligomer thermoplastic composite
PCT/CN2020/108626 WO2022032514A1 (zh) 2020-08-12 2020-08-12 改性淀粉接枝低聚乳酸热塑性复合材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108626 WO2022032514A1 (zh) 2020-08-12 2020-08-12 改性淀粉接枝低聚乳酸热塑性复合材料的制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2022032514A1 true WO2022032514A1 (zh) 2022-02-17

Family

ID=80246676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108626 WO2022032514A1 (zh) 2020-08-12 2020-08-12 改性淀粉接枝低聚乳酸热塑性复合材料的制备方法及其应用

Country Status (2)

Country Link
AU (1) AU2020227121A1 (zh)
WO (1) WO2022032514A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117050241A (zh) * 2023-09-25 2023-11-14 广东鑫球新材料科技有限公司 一种可降解热固性粉末及制备方法和在滤芯制备中的应用
CN117089210A (zh) * 2023-10-18 2023-11-21 广州市瑞合新材料科技有限公司 一种医疗防护用硅橡胶及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101353420A (zh) * 2008-09-11 2009-01-28 上海交通大学 聚乳酸-聚乙二醇共聚物的溶剂热合成制备方法
KR20100108683A (ko) * 2009-03-30 2010-10-08 대상 주식회사 폴리락트산-함유 생분해성 수지 조성물
WO2010138081A1 (en) * 2009-05-26 2010-12-02 Hyflux Ltd A biodegradable starch film
CN103881338A (zh) * 2012-12-19 2014-06-25 上海载和实业投资有限公司 一种新型阻燃抗静电生物降解材料及其制备方法
CN108676201A (zh) * 2018-06-07 2018-10-19 苏州汉丰新材料股份有限公司 生物基环保降解材料、由其制得的薄膜及其薄膜的制备方法
CN108948690A (zh) * 2017-05-18 2018-12-07 济宁明升新材料有限公司 一种聚乳酸-木质素-淀粉复合材料及其制备方法
CN110437392A (zh) * 2019-07-04 2019-11-12 江南大学 一种基于生物基三层官能化核壳粒子及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101353420A (zh) * 2008-09-11 2009-01-28 上海交通大学 聚乳酸-聚乙二醇共聚物的溶剂热合成制备方法
KR20100108683A (ko) * 2009-03-30 2010-10-08 대상 주식회사 폴리락트산-함유 생분해성 수지 조성물
WO2010138081A1 (en) * 2009-05-26 2010-12-02 Hyflux Ltd A biodegradable starch film
CN103881338A (zh) * 2012-12-19 2014-06-25 上海载和实业投资有限公司 一种新型阻燃抗静电生物降解材料及其制备方法
CN108948690A (zh) * 2017-05-18 2018-12-07 济宁明升新材料有限公司 一种聚乳酸-木质素-淀粉复合材料及其制备方法
CN108676201A (zh) * 2018-06-07 2018-10-19 苏州汉丰新材料股份有限公司 生物基环保降解材料、由其制得的薄膜及其薄膜的制备方法
CN110437392A (zh) * 2019-07-04 2019-11-12 江南大学 一种基于生物基三层官能化核壳粒子及制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117050241A (zh) * 2023-09-25 2023-11-14 广东鑫球新材料科技有限公司 一种可降解热固性粉末及制备方法和在滤芯制备中的应用
CN117089210A (zh) * 2023-10-18 2023-11-21 广州市瑞合新材料科技有限公司 一种医疗防护用硅橡胶及其制备方法
CN117089210B (zh) * 2023-10-18 2024-02-09 广州市瑞合新材料科技有限公司 一种医疗防护用硅橡胶及其制备方法

Also Published As

Publication number Publication date
AU2020227121A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
CN1768115B (zh) 聚乳酸树脂组合物及其制备方法、以及聚乳酸双轴拉伸薄膜、和由其构成的成型品
US11732058B2 (en) Thermoplastic starch and starch-based biodegradable film
AU2005251905B2 (en) Process for the production of biodegradable films having improved mechanical properties
WO2022032514A1 (zh) 改性淀粉接枝低聚乳酸热塑性复合材料的制备方法及其应用
TWI551643B (zh) Biodegradable resin composition and biodegradable film
JPH06207047A (ja) 高い耐水性を有する、生物学的に分解可能な成形材料ないしはポリマーブレンド及びその製造方法並びに成形材料ないしは押出成形体
JP2015518907A (ja) リグニンの化学修飾およびリグニン誘導体
WO2020088214A1 (zh) Pha改性的tps/pbat可生物降解树脂及其制备方法
JP2001509527A (ja) ジアルデヒドデンプン及び天然高分子を含んで成る熱可塑性混合物
CN102643523B (zh) 一种改性聚乳酸/聚己内酯复合材料及其制法
CN117897450A (zh) 生物可降解聚合物基生物复合材料
CN109206668B (zh) 超临界流体制备热塑性淀粉可生物降解材料的方法及产品
JPH10100353A (ja) 生分解性積層フィルム
CN108864628A (zh) 一种耐高温生物塑料的制备方法
CN106751568B (zh) 一种抗菌pbat/pla复合膜及其制备方法
WO2022032518A1 (zh) 聚己内酯改性淀粉基生物降解树脂材料及其制备方法
CN116277844B (zh) 一种生物降解地膜的五层共挤制备方法及其制备的地膜
CN109438772B (zh) 一种可食用型包装薄膜及其制备方法和应用
Chaunier et al. The shape memory of starch
CN102140223A (zh) 热塑性葡甘聚糖/动物蛋白共混材料及其制备方法
JPH10146936A (ja) 生分解性チャック付き袋
CN108003583A (zh) 一种高拉伸强度全生物降解垃圾袋生产工艺
CN116003971A (zh) 一种高强高韧生物降解塑料及其制备方法
JP2000264343A (ja) 生分解性チャック付き袋
CN101851357A (zh) 热塑性葡甘聚糖/植物蛋白共混材料及其制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020227121

Country of ref document: AU

Date of ref document: 20200812

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949013

Country of ref document: EP

Kind code of ref document: A1