WO2022030455A1 - スパッタリングターゲット材及び酸化物半導体 - Google Patents

スパッタリングターゲット材及び酸化物半導体 Download PDF

Info

Publication number
WO2022030455A1
WO2022030455A1 PCT/JP2021/028640 JP2021028640W WO2022030455A1 WO 2022030455 A1 WO2022030455 A1 WO 2022030455A1 JP 2021028640 W JP2021028640 W JP 2021028640W WO 2022030455 A1 WO2022030455 A1 WO 2022030455A1
Authority
WO
WIPO (PCT)
Prior art keywords
target material
less
phase
sputtering target
powder
Prior art date
Application number
PCT/JP2021/028640
Other languages
English (en)
French (fr)
Inventor
享祐 寺村
亮 白仁田
成紀 徳地
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to US18/014,432 priority Critical patent/US20230307549A1/en
Priority to JP2022532705A priority patent/JP7218481B2/ja
Priority to KR1020227046024A priority patent/KR20230017294A/ko
Priority to CN202180059883.1A priority patent/CN116194612A/zh
Publication of WO2022030455A1 publication Critical patent/WO2022030455A1/ja
Priority to JP2023009644A priority patent/JP2023041776A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/082Oxides of alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Definitions

  • the present invention relates to a sputtering target material.
  • the present invention also relates to an oxide semiconductor formed by using the sputtering target material.
  • TFT thin film transistors
  • FPD flat panel displays
  • IGZO Oxide semiconductors represented by -Zn composite oxides
  • Patent Documents 1 and 2 propose an oxide semiconductor for TFT using an In—Zn—X composite oxide composed of an indium (In) element and a zinc (Zn) element and an arbitrary element X.
  • this oxide semiconductor is formed by sputtering using a target material composed of an In—Zn—X composite oxide.
  • the target material is manufactured by a powder sintering method.
  • the target material produced by the powder sintering method generally has a low relative density, which tends to generate particles and easily cracks in the target material during abnormal discharge. As a result, it may hinder the manufacture of high-performance TFTs.
  • an oxide semiconductor exhibiting a field effect mobility higher than the field effect mobility exhibited by IGZO is desired.
  • an oxide semiconductor having a threshold voltage close to 0 V is desired. Therefore, an object of the present invention is to provide a sputtering target material and an oxide semiconductor that can eliminate the drawbacks of the above-mentioned prior art.
  • the present invention is composed of an oxide containing an indium (In) element, a zinc (Zn) element and an additive element (X).
  • the additive element (X) consists of at least one element selected from tantalum (Ta), strontium (Sr) and niobium (Nb).
  • the atomic ratio of each element satisfies the formulas (1) to (3) (X in the formula is the sum of the content ratios of the added elements).
  • the present invention is an oxide semiconductor formed by using the above-mentioned sputtering target material. It is composed of an oxide containing an indium (In) element, a zinc (Zn) element and an additive element (X).
  • the additive element (X) consists of at least one element selected from tantalum (Ta), strontium (Sr), and niobium (Nb).
  • the atomic ratio of each element satisfies the formulas (1) to (3) (X in the formula is the sum of the content ratios of the added elements).
  • the present invention is composed of an oxide containing an indium (In) element, a zinc (Zn) element and an additive element (X).
  • the additive element (X) consists of at least one element selected from tantalum (Ta), strontium (Sr), and niobium (Nb).
  • the atomic ratio of each element satisfies the formulas (1) to (3) (X in the formula is the sum of the content ratios of the added elements).
  • the present invention provides a thin film transistor having an electrolytic effect mobility of 45 cm 2 ⁇ Vs or more.
  • FIG. 1 is a schematic view showing the structure of a thin film transistor manufactured by using the sputtering target material of the present invention.
  • FIG. 2 is a chart showing the results of X-ray diffraction measurement of the sputtering target material obtained in Example 1.
  • FIG. 3 is a scanning electron microscope image of the sputtering target material obtained in Example 1.
  • FIG. 4 is a scanning electron microscope image of the sputtering target material obtained in Example 1.
  • FIG. 5 shows a qualitative analysis chart and quantitative analysis results in the EDX analysis of the In 2 O 3 phase of the sputtering target material obtained in Example 1.
  • FIG. 6 is a scanning electron microscope image of the sputtering target material obtained in Example 1.
  • FIG. 1 is a schematic view showing the structure of a thin film transistor manufactured by using the sputtering target material of the present invention.
  • FIG. 2 is a chart showing the results of X-ray diffraction measurement of the sputtering target material obtained in Example 1.
  • FIG. 7 shows a qualitative analysis chart and quantitative analysis results in the EDX analysis of the Zn 3 In 2 O 6 phase of the sputtering target material obtained in Example 1.
  • FIG. 8A is an image showing the EDX analysis result of the sputtering target material obtained in Example 1
  • FIG. 8B shows the EDX analysis result of the sputtering target material obtained in Comparative Example 1. It is a statue.
  • the present invention relates to a sputtering target material (hereinafter, also referred to as “target material”).
  • the target material of the present invention is composed of an oxide containing an indium (In) element, a zinc (Zn) element and an additive element (X).
  • the additive element (X) consists of at least one element selected from tantalum (Ta), strontium (Sr) and niobium (Nb).
  • the target material of the present invention contains In, Zn and an additive element (X) as the metal elements constituting the target material, but in addition to these elements, intentionally or inevitably, as long as the effect of the present invention is not impaired. It may contain trace elements.
  • trace elements include elements contained in organic additives described later and media raw materials such as ball mills mixed during the production of target materials.
  • Trace elements in the target material of the present invention include, for example, Fe, Cr, Ni, Al, Si, W, Zr, Na, Mg, K, Ca, Ti, Y, Ga, Sn, Ba, La, Ce, Pr, Examples thereof include Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Pb.
  • Their contents are usually preferably 100 mass ppm (hereinafter, also referred to as "ppm") or less, respectively, with respect to the total mass of the oxides containing In, Zn and X contained in the target material of the present invention.
  • the total amount of these trace elements is preferably 500 ppm or less, more preferably 300 ppm or less, still more preferably 100 ppm or less.
  • the total mass also includes the mass of trace elements.
  • the target material of the present invention is preferably composed of a sintered body containing the above-mentioned oxide.
  • the shapes of the sintered body and the sputtering target material are not particularly limited, and conventionally known shapes such as a flat plate type and a cylindrical shape can be adopted.
  • the formula (2). ) And (3) are the same.) 0.4 ⁇ (In + X) / (In + Zn + X) ⁇ 0.8 (1)
  • Zn it is preferable to satisfy the atomic ratio represented by the following formula (2).
  • the semiconductor device having an oxide thin film formed by sputtering using the target material of the present invention has high field effect mobility. It shows a low leakage current and a threshold voltage close to 0V. From the viewpoint of further enhancing these advantages, it is more preferable to satisfy the following formulas (1-2) to (1-5) for In and X.
  • the additive element (X) at least one selected from Ta, Sr and Nb is used as described above. Each of these elements can be used alone, or two or more kinds can be used in combination. In particular, it is preferable to use Ta as the additive element (X) from the viewpoint of the overall performance of the oxide semiconductor device manufactured from the target material of the present invention and from the viewpoint of economic efficiency in manufacturing the target material.
  • the target material of the present invention is formed from the target material of the present invention to satisfy the following formula (4) with respect to the atomic ratio of In and X. It is preferable from the viewpoint of further enhancing the field effect mobility of the oxide semiconductor device and exhibiting a threshold voltage close to 0V. 0.970 ⁇ In / (In + X) ⁇ 0.999 (4)
  • the electric field effect mobility of the oxide semiconductor device formed from the target material is increased by using an extremely small amount of X with respect to the amount of In. .. This was first discovered by the present inventor.
  • the amount of X used relative to the amount of In is larger than that of the present invention.
  • the atomic ratio of In and X is expressed by the following equations (4-2) to (4-2). It is more preferable to satisfy 4-4). 0.980 ⁇ In / (In + X) ⁇ 0.997 (4-2) 0.990 ⁇ In / (In + X) ⁇ 0.995 (4-3) 0.990 ⁇ In / (In + X) ⁇ 0.993 (4-4)
  • the TFT provided with the oxide semiconductor element formed from the target material preferably has a field effect mobility (cm 2 / Vs) of 45 cm 2 / Vs or more, preferably 50 cm 2 / Vs or more. More preferably, it is more preferably 60 cm 2 / Vs or more, further preferably 70 cm 2 / Vs or more, further preferably 80 cm 2 / Vs or more, and even more preferably 90 cm 2 / Vs or more. Is even more preferable, and 100 cm 2 / Vs or more is particularly preferable.
  • the ratio of each metal contained in the target material of the present invention is measured by, for example, ICP emission spectroscopy.
  • the target material of the present invention is characterized by a high relative density in addition to the atomic ratios of In, Zn and X. Specifically, the target material of the present invention exhibits a high relative density of preferably 95% or more. By exhibiting such a high relative density, when sputtering is performed using the target material of the present invention, it is possible to suppress the generation of particles, which is preferable. From this viewpoint, the target material of the present invention preferably has a relative density of 97% or more, more preferably 98% or more, further preferably 99% or more, and even more preferably 100% or more. It is particularly preferable, and it is particularly preferable that it is more than 100%. The target material of the present invention having such a relative density is suitably produced by the method described later. Relative density is measured according to the Archimedes method. The specific measurement method will be described in detail in Examples described later.
  • the target material of the present invention is also characterized by a small size of pores inside the target material and a small number of pores.
  • the target material of the present invention has 5 pores / 1000 ⁇ m 2 or less having an area circle equivalent diameter of 0.5 ⁇ m or more and 20 ⁇ m or less.
  • the target material of the present invention has more preferably 3 holes / 1000 ⁇ m 2 or less and more preferably 2 holes / 1000 ⁇ m 2 or less having an area circle equivalent diameter of 0.5 ⁇ m or more and 20 ⁇ m or less.
  • the number is 1 piece / 1000 ⁇ m 2 or less, more preferably 0.5 pieces / 1000 ⁇ m 2 or less, and particularly preferably 0.1 piece / 1000 ⁇ m 2 or less.
  • the target material of the present invention having such a small number of pores is suitably produced by the method described later. The specific measurement method will be described in detail in Examples described later.
  • the target material of the present invention is also characterized by its high strength.
  • the target material of the present invention has a high bending strength of preferably 100 MPa or more.
  • the target material of the present invention preferably has a bending strength of 120 MPa or more, and more preferably 150 MPa or more.
  • the target material of the present invention having such bending strength is suitably produced by the method described later.
  • the bending strength is measured according to JIS R1601. The specific measurement method will be described in detail in Examples described later.
  • the target material of the present invention is also characterized by a low bulk resistivity.
  • the low bulk resistivity is advantageous in that DC sputtering can be performed using the target material.
  • the target material of the present invention preferably has a bulk resistance of 100 m ⁇ ⁇ cm or less, more preferably 50 m ⁇ ⁇ cm or less, and even more preferably 10 m ⁇ ⁇ cm or less at 25 ° C. It is more preferably 5 m ⁇ ⁇ cm or less, further preferably 4 m ⁇ ⁇ cm or less, particularly preferably 3 m ⁇ ⁇ cm or less, particularly preferably 2 m ⁇ ⁇ cm or less, and 1.5 m ⁇ ⁇ cm. The following is particularly preferable.
  • the target material of the present invention having such a bulk resistivity is suitably produced by the method described later. Bulk resistivity is measured by the DC four-probe method. The specific measurement method will be described in detail in Examples described later.
  • the target material of the present invention is also characterized by a small variation in the number of pores and a small variation in bulk resistivity within the same plane of the target material.
  • the difference between the respective values of the number of pores and the bulk resistivity and the arithmetic mean value of the five points measured at any five points on the same surface is set at five points.
  • the absolute value of the value divided by the arithmetic mean value and multiplied by 100 is 20% or less.
  • the target material of the present invention has an absolute value of 15% or less, more preferably 10% or less, still more preferably 5% or less, and 3%. It is particularly preferably less than or equal to, and particularly preferably 1% or less.
  • the target material of the present invention, in which the variation in the number of pores and the variation in the bulk resistivity is small, is suitably produced by the method described later.
  • the target material of the present invention is also characterized by a small variation in the number of pores and a small variation in bulk resistivity in the depth direction of the target material.
  • the difference between each value of the number of pores and bulk resistivity and the arithmetic mean value of 5 points on the surface ground every 1 mm in the depth direction from the surface is 5
  • the absolute value of the value divided by the arithmetic mean value of the points and multiplied by 100 is 20% or less.
  • the target material of the present invention has an absolute value of 15% or less, more preferably 10% or less, and even more preferably 5% or less. It is particularly preferably 3% or less, and particularly preferably 1% or less.
  • the target material of the present invention, in which the variation in the number of pores and the variation in the bulk resistivity is small is suitably produced by the method described later.
  • the target material of the present invention preferably has a standard deviation of Vickers hardness of 50 or less in the same plane of the target material. When this value satisfies the above condition, it is preferable as a target material because there is no bias in density, crystal grain size and composition.
  • the standard deviation of the Vickers hardness in the same plane is preferably 40 or less, more preferably 30 or less, further preferably 20 or less, and even more preferably 10 or less.
  • the target material of the present invention having such Vickers hardness is suitably produced by the method described later. Vickers hardness is measured according to JIS-R-1610: 2003. The specific measurement method will be described in detail in Examples described later.
  • the arithmetic mean roughness Ra (JIS-B-0601: 2013) of the surface of the target material of the present invention can be appropriately adjusted by the number of grindstones at the time of grinding.
  • the target material of the present invention preferably has an arithmetic mean roughness Ra of 3.2 ⁇ m or less, more preferably 1.6 ⁇ m or less, further preferably 1.2 ⁇ m or less, and 0. It is even more preferably 0.8 ⁇ m or less, particularly preferably 0.5 ⁇ m or less, and particularly preferably 0.1 ⁇ m or less.
  • the arithmetic mean roughness Ra is measured by a surface roughness measuring instrument. The specific measurement method will be described in detail in Examples described later.
  • the target material of the present invention preferably has a maximum surface color difference ⁇ E * of 5 or less. Further, it is preferable that ⁇ E * is 5 or less as the maximum color difference in the depth direction of the target material.
  • Color difference ⁇ E * is an index that quantifies the difference between two colors. When this value satisfies the above condition, it is preferable as a target material because there is no bias in density, crystal grain size and composition.
  • the maximum color difference ⁇ E * between the entire surface and the depth direction is preferably 4 or less, more preferably 3 or less, further preferably 2 or less, and even more preferably 1 or less.
  • the target material of the present invention having such a maximum color difference ⁇ E * is suitably produced by the method described later. The specific measurement method will be described in detail in Examples described later.
  • the target material of the present invention is composed of an oxide containing In, Zn and X as described above.
  • This oxide can be an oxide of In, an oxide of Zn, or an oxide of X.
  • this oxide can be a composite oxide of any two or more elements selected from the group consisting of In, Zn and X.
  • Specific examples of the composite oxide include In—Zn composite oxide, Zn—Ta composite oxide, In—Ta composite oxide, In—Nb composite oxide, Zn—Nb composite oxide, and In—Nb composite.
  • the target material of the present invention contains, in particular, the In 2 O 3 phase, which is an oxide of In, and the Zn 3 In 2 O 6 phase, which is a composite oxide of In and Zn, so that the density and strength of the target material can be determined. It is preferable from the viewpoint of increasing and reducing the resistance.
  • the inclusion of the In 2 O 3 phase and the Zn 3 In 2 O 6 phase in the target material of the present invention means that In 2 O is measured by X-ray diffraction (hereinafter, also referred to as “XRD”) measurement for the target material of the present invention. It can be judged by whether or not 3 phase and Zn 3 In 2 O 6 phase are observed.
  • the In 2 O 3 phase in the present invention may contain a trace amount of Zn element.
  • X is contained in both the In 2 O 3 phase and the Zn 3 In 2 O 6 phase.
  • the oxide semiconductor formed from the target material of the present invention uniformly contains X, and a homogeneous oxide semiconductor film can be obtained. Can be done.
  • the inclusion of X in both the In 2 O 3 phase and the Zn 3 In 2 O 6 phase can be measured by, for example, energy dispersive X-ray spectroscopy (hereinafter, also referred to as “EDX”). The specific measurement method will be described in detail in Examples described later.
  • the In 2 O 3 phase can satisfy a specific range in the size of its crystal grains, which determines the density and strength of the target material of the present invention. It is preferable from the viewpoint of increasing and reducing the resistance.
  • the size of the crystal grains of the In 2 O 3 phase is preferably 3.0 ⁇ m or less, more preferably 2.7 ⁇ m or less, and even more preferably 2.5 ⁇ m or less. The smaller the crystal grain size is, the more preferable it is, and the lower limit is not particularly determined, but it is usually 0.1 ⁇ m or more.
  • the target of the present invention is that the size of the crystal grains of the Zn 3 In 2 O 6 phase also satisfies a specific range. It is preferable from the viewpoint of increasing the density and strength of the material and reducing the resistance.
  • the size of the crystal grains of the Zn 3 In 2 O 6 phase is preferably 3.9 ⁇ m or less, more preferably 3.5 ⁇ m or less, still more preferably 3.0 ⁇ m or less. It is more preferably 2.5 ⁇ m or less, further preferably 2.3 ⁇ m or less, particularly preferably 2.0 ⁇ m or less, and particularly preferably 1.9 ⁇ m or less.
  • the target material may be manufactured by the method described later.
  • the size of the crystal grains of the In 2 O 3 phase and the size of the crystal grains of the Zn 3 In 2 O 6 phase are measured by observing the target material of the present invention with a scanning electron microscope (hereinafter, also referred to as “SEM”). Will be done. The specific measurement method will be described in detail in Examples described later.
  • the ratio of the area of the In 2 O 3 phase to the unit area (hereinafter, also referred to as “In 2 O 3 phase area ratio”) is specific.
  • the range is also preferable from the viewpoint of reducing the resistance of the target material.
  • the In 2 O 3 -phase area ratio is preferably 10% or more and 70% or less, more preferably 20% or more and 70% or less, and further preferably 30% or more and 70% or less. It is even more preferable that it is 35% or more and 70% or less.
  • the ratio of the area of the Zn 3 In 2 O 6 phase to the unit area is preferably 30% or more and 90% or less, preferably 30% or more. It is more preferably 80% or less, further preferably 30% or more and 70% or less, and even more preferably 30% or more and 65% or less.
  • the target material may be manufactured by the method described later.
  • the In 2 O 3 phase area ratio and the Zn 3 In 2 O 6 phase area ratio are measured by observing the target material of the present invention by SEM. The specific measurement method will be described in detail in Examples described later.
  • the In 2 O 3 phase and the Zn 3 In 2 O 6 phase are uniformly dispersed. It is preferable that these are uniformly dispersed because the composition is not biased and the film characteristics do not change when the thin film is formed by sputtering.
  • the dispersion state of the crystal phase is evaluated by EDX.
  • the In / Zn atom ratio of the entire field of view is obtained by EDX from a range of 200 times, 437.5 ⁇ m ⁇ 625 ⁇ m, which is randomly selected in the target material. Subsequently, the same field of view is evenly divided into 4 vertical ⁇ 4 horizontal, and the In / Zn atom ratio in each divided visual field is obtained.
  • the absolute value of the difference between the In / Zn atom ratio in each divided field of view and the In / Zn atom ratio in the entire field of view is divided by the In / Zn atom ratio in the entire field of view, and the value multiplied by 100 is taken as the dispersion rate (%). It is defined and the degree of homogeneity of dispersion of In 2 O 3 phase and Zn 3 In 2 O 6 phase is evaluated based on the magnitude of the dispersion rate. The closer the dispersion ratio is to zero, the more uniformly the In 2 O 3 phase and the Zn 3 In 2 O 6 phase are dispersed.
  • the maximum value of the dispersion ratio at 16 points is preferably 10% or less, more preferably 5% or less, further preferably 4% or less, still more preferably 3% or less. It is particularly preferably 2% or less, and particularly preferably 1% or less.
  • an oxide powder as a raw material for a target material is molded into a predetermined shape to obtain a molded body, and the molded body is fired to obtain a target material made of a sintered body.
  • a method known so far in the art can be adopted.
  • the cast molding method is also called the slip cast method.
  • a slurry containing a raw material powder and an organic additive is prepared using a dispersion medium.
  • oxide powder it is preferable to use oxide powder, hydroxide powder, or carbonate powder as the raw material powder.
  • oxide powder In oxide powder, Zn oxide powder, and X oxide powder are used.
  • In oxide for example, In 2 O 3 can be used.
  • ZnO can be used as the Zn oxide.
  • the powder of the X oxide for example, Ta 2 O 5 , SrO and Nb 2 O 5 can be used.
  • SrO may be combined with carbon dioxide in the air and exist in the state of SrCO 3 , but carbon dioxide is dissociated from SrCO 3 to become SrO in the firing process. In this production method, firing is performed after all these raw material powders are mixed.
  • the amount of In oxide powder, Zn oxide powder and X oxide powder used is preferably adjusted so that the atomic ratio of In, Zn and X in the target material satisfies the above range. ..
  • the particle size of the raw material powder is preferably 0.1 ⁇ m or more and 1.5 ⁇ m or less in terms of the volume cumulative particle size D50 at the cumulative volume of 50% by volume by the laser diffraction / scattering type particle size distribution measurement method.
  • the above-mentioned organic additive is a substance used for appropriately adjusting the properties of a slurry or a molded product.
  • the organic additive include a binder, a dispersant, a plasticizer and the like.
  • the binder is added to increase the strength of the molded product.
  • a binder usually used when obtaining a molded product by a known powder sintering method can be used.
  • the binder include polyvinyl alcohol.
  • the dispersant is added to enhance the dispersibility of the raw material powder in the slurry.
  • the dispersant include a polycarboxylic acid-based dispersant and a polyacrylic acid-based dispersant.
  • the plasticizer is added to increase the plasticity of the molded product.
  • the plasticizer include polyethylene glycol (PEG) and ethylene glycol (EG).
  • the dispersion medium used to prepare the slurry containing the raw material powder and the organic additive is not particularly limited, and may be appropriately selected from water and a water-soluble organic solvent such as alcohol depending on the purpose. can.
  • the method for producing a slurry containing the raw material powder and the organic additive is not particularly limited, and for example, a method in which the raw material powder, the organic additive, the dispersion medium and the zirconia balls are placed in a pot and mixed by a ball mill can be used.
  • the slurry is poured into a mold, and then the dispersion medium is removed to prepare a molded product.
  • the mold that can be used include a metal mold, a gypsum mold, and a resin mold that is pressurized to remove a dispersion medium.
  • a slurry similar to the slurry used in the casting molding method is spray-dried to obtain a dry powder.
  • the obtained dry powder is filled in a mold and CIP molding is performed.
  • Firing of the molded product can generally be performed in an oxygen-containing atmosphere. In particular, it is convenient to bake in an atmospheric atmosphere.
  • the firing temperature is preferably 1200 ° C. or higher and 1600 ° C. or lower, more preferably 1300 ° C. or higher and 1500 ° C. or lower, and even more preferably 1350 ° C. or higher and 1450 ° C. or lower.
  • the firing time is preferably 1 hour or more and 100 hours or less, more preferably 2 hours or more and 50 hours or less, and further preferably 3 hours or more and 30 hours or less.
  • the heating rate is preferably 5 ° C./hour or more and 500 ° C./hour or less, more preferably 10 ° C./hour or more and 200 ° C./hour or less, and 20 ° C./hour or more and 100 ° C./hour or less. Is more preferable.
  • a composite oxide of In and Zn for example, a phase of Zn 5 In 2 O 8 is formed for a certain period of time in the firing process promotes sintering and a dense target material. It is preferable from the viewpoint of generation. Specifically, when the raw material powder contains In 2 O 3 powder and Zn O powder, these react with each other as the temperature rises to form a phase of Zn 5 In 2 O 8 and then Zn 4 In 2 O 7 . It changes to a phase and then to a Zn 3 In 2 O 6 phase.
  • volume diffusion proceeds and densification is promoted when the phase of Zn 5 In 2 O 8 is formed it is preferable to surely generate the phase of Zn 5 In 2 O 8 .
  • it is preferable to maintain the temperature in the range of 1000 ° C. or higher and 1250 ° C. or lower for a certain period of time in the process of raising the temperature of firing and it is more preferable to maintain the temperature in the range of 1050 ° C. or higher and 1200 ° C. or lower for a certain period of time.
  • the temperature to be maintained is not necessarily limited to the temperature of a specific point, and may be a temperature range having a certain range. Specifically, when a specific temperature selected from the range of 1000 ° C.
  • T ° C.
  • T ⁇ 10 ° C. as long as it is included in the range of 1000 ° C. or higher and 1250 ° C. or lower. It is also good, preferably T ⁇ 5 ° C, more preferably T ⁇ 3 ° C, still more preferably T ⁇ 1 ° C.
  • the time for maintaining this temperature range is preferably 1 hour or more and 40 hours or less, and more preferably 2 hours or more and 20 hours or less.
  • FIG. 1 schematically shows an example of the TFT element 1.
  • the TFT element 1 shown in the figure is formed on one surface of a glass substrate 10.
  • a gate electrode 20 is arranged on one surface of the glass substrate 10, and a gate insulating film 30 is formed so as to cover the gate electrode 20.
  • a source electrode 60, a drain electrode 61, and a channel layer 40 are arranged on the gate insulating film 30.
  • the channel layer 40 can be formed by using the target material of the present invention.
  • the channel layer 40 is composed of an oxide containing an indium (In) element, a zinc (Zn) element and an additive element (X), and is composed of an indium (In) element, a zinc (Zn) element and an additive element.
  • the atomic ratio of (X) satisfies the above-mentioned formula (1). Further, the above-mentioned equations (2) and (3) are satisfied. It is preferable that the oxide semiconductor device formed from the target material of the present invention has an amorphous structure from the viewpoint of improving the performance of the device.
  • Example 1 In 2 O 3 powder having an average particle size D 50 of 0.6 ⁇ m, Zn O powder having an average particle size D 50 of 0.8 ⁇ m, and Ta 2 O 5 powder having an average particle size D 50 of 0.6 ⁇ m. was mixed dry with a ball mill using zirconia balls to prepare a mixed raw material powder.
  • the average particle size D50 of each powder was measured using a particle size distribution measuring device MT3300EXII manufactured by Microtrac Bell Co., Ltd. At the time of measurement, water was used as a solvent, and the measurement was carried out at the refractive index of 2.20 of the measurement substance.
  • the mixing ratio of each powder the atomic ratio of In, Zn and Ta was set to the value shown in Table 1 below.
  • the prepared slurry was poured into a metal mold sandwiching a filter, and then the water in the slurry was discharged to obtain a molded product.
  • This molded product was fired to produce a sintered body.
  • the firing was carried out in an atmosphere having an oxygen concentration of 20% by volume at a firing temperature of 1400 ° C., a firing time of 8 hours, a temperature rising rate of 50 ° C./hour, and a temperature lowering rate of 50 ° C./hour. During the firing, the temperature was maintained at 1100 ° C. for 6 hours to promote the formation of Zn 5 In 2 O 8 .
  • the sintered body thus obtained was machined to obtain an oxide sintered body (target material) having a width of 210 mm, a length of 710 mm, and a thickness of 6 mm.
  • a # 170 grindstone was used for cutting.
  • the number of pores and the variation in bulk resistivity in the same plane and in the depth direction were calculated by the above-mentioned method.
  • the variations in the number of pores in the same plane calculated at any five points of the target material were 5.7%, 0.4%, 1.4%, 6.8%, and 2.2%, respectively. ..
  • the variations in bulk resistivity within the same plane were 3.5%, 5.3%, 3.5%, 5.3%, and 3.5%, respectively.
  • the variations in the number of pores in the depth direction calculated at any five points of the target material were 4.6%, 0.2%, 1.6%, 1.6%, and 1.6%, respectively. ..
  • the variations in bulk resistivity in the depth direction were 3.5%, 3.5%, 5.3%, 5.3%, and 3.5%, respectively.
  • the number of pores per 1000 ⁇ m 2 was 1.2.
  • the arithmetic mean roughness Ra was 1.0 ⁇ m.
  • the maximum color difference ⁇ E * on the surface was 1.1, and the maximum color difference ⁇ E * in the depth direction was 1.0.
  • Example 2 In Example 1, each raw material powder was mixed so that the atomic ratios of In, Zn, and Ta were the values shown in Table 1 below. A target material was obtained in the same manner as in Example 1 except for this.
  • ZnO powder having an average particle size D 50 of 0.8 ⁇ m was mixed with this mixed powder so that the atomic ratio [In / (In + Zn)] was 0.698.
  • the mixed powder was supplied to a wet ball mill and mixed and pulverized for 24 hours to obtain a slurry of raw material powder.
  • the slurry was filtered, dried and granulated.
  • the obtained granulated product was press-molded, and further, a pressure of 2000 kgf / cm 2 was applied and molded by a cold hydrostatic pressure press.
  • the molded body was charged into a firing furnace and fired at 1400 ° C. for 12 hours under atmospheric pressure and oxygen gas inflow conditions to obtain a sintered body.
  • the heating rate was 0.5 ° C./min from room temperature to 400 ° C. and 1 ° C./min from 400 to 1400 ° C.
  • the temperature lowering rate was 1 ° C./min.
  • a target material was obtained in the same manner as in Example 1 except for these.
  • Example 2 In Example 1, Ta 2 O 5 powder was not used. The raw material powders were mixed so that the atomic ratios of In and Zn were the values shown in Table 2 below. A target material was obtained in the same manner as in Example 1 except for this.
  • Example 9 In Example 1, each raw material powder was mixed so that the atomic ratios of In, Zn and Ta were the values shown in Table 2 below. A target material was obtained in the same manner as in Example 1 except for this.
  • Example 14 In Example 1, instead of Ta 2 O 5 powder, Nb 2 O 5 powder having an average particle size D 50 of 0.7 ⁇ m was used. The raw material powders were mixed so that the atomic ratios of In, Zn and Nb were the values shown in Table 2 below. A target material was obtained in the same manner as in Example 1 except for this.
  • Example 15 In Example 1, instead of Ta 2 O 5 powder, SrCO 3 powder having an average particle size D 50 of 1.5 ⁇ m was used. The raw material powders were mixed so that the atomic ratios of In, Zn and Sr were as shown in Table 2 below. A target material was obtained in the same manner as in Example 1 except for this.
  • the content (% by mass) of the constituent substances of the target material is considered to be In 2 O 3 , ZnO, Ta 2 O 5 , Nb 2 O 5 , SrO, for example, C1: In 2 O 3 of the target material.
  • the mass% of In 2 O 3 , the mass% of Zn O, the mass% of Ta 2 O 5 , the mass% of Nb 2 O 5 and the mass% of SrO are obtained from the analysis results of each element of the target material by ICP emission spectroscopy. be able to.
  • the in-plane color difference ⁇ E * was measured by measuring the surface of the machined target material at intervals of 50 mm in the x-axis and y-axis directions using a color difference meter (color difference meter CR-300 manufactured by Konica Minolta). The L * value, a * value and b * value of each point were evaluated in the CIE1976L * a * b * color space. Then, from the differences ⁇ L *, ⁇ a *, and ⁇ b * of the L * value, a * value, and b * value of two points among the measured points, the color difference ⁇ E * is calculated from the following equation (ii) for all the two points.
  • the maximum value of the plurality of color difference ⁇ E * obtained by the combination was taken as the maximum color difference ⁇ E * in the surface.
  • ⁇ E * (( ⁇ L *) 2 + ( ⁇ a *) 2 + ( ⁇ b *) 2 ) 1/2 ... (ii)
  • the maximum color difference ⁇ E * in the depth direction is measured by cutting 1 mm at an arbitrary point of the machined target material and measuring at each depth up to the center of the target material using a color difference meter.
  • the L * value, a * value, and b * value of each point were evaluated in the CIE1976L * a * b * color space.
  • the color difference ⁇ E * was obtained from the differences ⁇ L *, ⁇ a *, and ⁇ b * of the L * value, a * value, and b * value of two points among the measured points by the combination of all the two points.
  • the maximum value of a plurality of color differences ⁇ E * was defined as the maximum color difference ⁇ E * in the depth direction.
  • BSE-COMP images in the range of 87.5 ⁇ m ⁇ 125 ⁇ m at a magnification of 1000 times were randomly photographed in 10 fields to obtain SEM images.
  • the obtained SEM image was analyzed by image processing software: ImageJ 1.51k (http://imageJ.nih.gov/ij/, provider: National Institutes of Health (NIH)).
  • image processing software ImageJ 1.51k (http://imageJ.nih.gov/ij/, provider: National Institutes of Health (NIH)).
  • the specific procedure is as follows.
  • the sample used for SEM image imaging was subjected to thermal etching at 1100 ° C. for 1 hour, and SEM observation was performed to obtain an image in which the grain boundaries shown in FIG. 3 appeared.
  • the obtained image was first drawn along the grain boundaries of the In 2 O 3 phase (region A that looks white in FIG. 3).
  • the arithmetic mean value of the area equivalent circle diameter of all the particles calculated in 10 fields of view was taken as the size of the crystal grains of the Zn 3 In 2 O 6 phase.
  • the ratio of the area of the In 2 O 3 phase to the total area was calculated by performing particle analysis on the BSE-COMP image without grain boundaries before thermal etching.
  • the arithmetic mean value of all the particles calculated in 10 fields of view was taken as the In 2 O 3 phase area ratio.
  • the Zn 3 In 2 O 6 phase area ratio was calculated by subtracting the In 2 O 3 phase area ratio from 100. 4 and 6 are enlarged images of FIG.
  • the TFT element 1 shown in FIG. 1 was manufactured by a photolithography method.
  • a Mschreib thin film was formed as a gate electrode 20 on a glass substrate (OA-10 manufactured by Nippon Electric Glass Co., Ltd.) using a DC sputtering apparatus.
  • a SiOx thin film was formed as the gate insulating film 30 under the following conditions.
  • Film forming equipment Plasma CVD equipment PD-2202L manufactured by SAMCO Co., Ltd.
  • Film formation gas SiH 4 / N 2 O / N 2 mixed gas
  • Film formation pressure 110 Pa
  • Substrate temperature 250-400 ° C
  • the channel layer 40 was sputtered under the following conditions using the target materials obtained in Examples and Comparative Examples to form a thin film having a thickness of about 10 to 50 nm.
  • Film forming equipment DC sputtering equipment SML-464 manufactured by Tokki Co., Ltd.
  • the measured transfer characteristics are field effect mobility ⁇ (cm 2 / Vs), SS (Subthreshold Swing) value (V / dec), and threshold voltage Vth (V).
  • the transfer characteristics were measured by a Semiconductor Navigator Device Analogizer B1500A manufactured by Agilent Technologies, Inc. The measurement results are shown in Tables 1 and 2. Although not shown in the table, the present inventor has confirmed by XRD measurement that the channel layer 40 of the TFT element 1 obtained in each embodiment has an amorphous structure.
  • the field effect mobility is the channel mobility obtained from the change in the drain current with respect to the gate voltage when the drain voltage is constant in the saturation region of MOSFET (Metal-Oxide-Semiconductor Field-Effective Transistor) operation.
  • MOSFET Metal-Oxide-Semiconductor Field-Effective Transistor
  • the SS value is a gate voltage required to increase the drain current by an order of magnitude in the vicinity of the threshold voltage, and the smaller the value, the better the transfer characteristic.
  • the threshold voltage is a voltage when a positive voltage is applied to the drain electrode and a drain current flows when either a positive or negative voltage is applied to the gate electrode and becomes 1 nA, and the value is preferably close to 0 V. .. More specifically, it is more preferably -2V or higher, further preferably -1V or higher, and even more preferably 0V or higher. Further, it is more preferably 3 V or less, further preferably 2 V or less, and even more preferably 1 V or less. Specifically, it is more preferably -2V or more and 3V or less, further preferably -1V or more and 2V or less, and further preferably 0V or more and 1V or less.
  • the TFT element manufactured by using the target material obtained in each example has excellent transmission characteristics.
  • the number of pores per 1000 ⁇ m 2 , the number of pores, the variation in bulk resistivity, the arithmetic mean roughness Ra, the maximum color difference, and the In / Zn atomic ratio are not shown in Tables 1 and 2, but Examples 2 to 2 to The same results as in Example 1 were obtained for the target material obtained in No. 16.
  • the target material obtained in Example 1 contained In 2 O 3 phase and Zn 3 In 2 O 6 phase.
  • similar results were obtained for the target materials obtained in Examples 2 to 16.
  • the In 2 O 3 phase and the Zn 3 In 2 O 6 phase contained in the target material obtained in Example 1 both contain Ta. rice field. Although not shown, similar results were obtained for the target materials obtained in Examples 2 to 16.
  • the sputtering target material of the present invention by using the sputtering target material of the present invention, particles can be suppressed and cracks due to abnormal discharge can be suppressed. As a result, a TFT having high field effect mobility can be easily manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

スパッタリングターゲット材は、インジウム(In)元素、亜鉛(Zn)元素及び添加元素(X)を含む酸化物から構成される。添加元素(X)はタンタル(Ta)、ストロンチウム(Sr)、ニオブ(Nb)の中から選ばれる少なくとも1つの元素からなる。スパッタリングターゲット材は、各元素の原子比が式(1)ないし(3)を満たす。スパッタリングターゲット材は相対密度が95%以上である。0.4≦(In+X)/(In+Zn+X)≦0.8(1)、0.2≦Zn/(In+Zn+X)≦0.6(2)、0.001≦X/(In+Zn+X)≦0.015(3)

Description

スパッタリングターゲット材及び酸化物半導体
 本発明はスパッタリングターゲット材に関する。また本発明は、該スパッタリングターゲット材を用いて形成された酸化物半導体に関する。
 フラットパネルディスプレイ(以下「FPD」ともいう。)に使用される薄膜トランジスタ(以下「TFT」ともいう。)の技術分野においては、FPDの高機能化に伴い、従来のアモルファスシリコンに代わってIn-Ga-Zn複合酸化物(以下「IGZO」ともいう。)に代表される酸化物半導体が注目されており、実用化が進んでいる。IGZOは、高い電界効果移動度と低いリーク電流を示すという利点を有する。近年ではFPDの更なる高機能化が進むに従い、IGZOが示す電界効果移動度よりも更に高い電界効果移動度を示す材料が提案されている。
 例えば特許文献1及び2には、インジウム(In)元素及び亜鉛(Zn)元素と任意の元素XからなるIn-Zn-X複合酸化物によるTFT用の酸化物半導体が提案されている。同文献によればこの酸化物半導体は、In-Zn-X複合酸化物からなるターゲット材を用いたスパッタリングによって形成される。
US2013/270109A1 US2014/102892A1
 特許文献1及び2に記載の技術においては、ターゲット材を粉末焼結法によって製造している。しかし粉末焼結法によって製造されるターゲット材は一般に相対密度が低く、そのことに起因してパーティクルが発生しやすく、また異常放電時にターゲット材に亀裂が生じやすい。その結果、高性能のTFTを製造することに支障を来す場合がある。
 また、TFTの技術分野においては、IGZOが示す電界効果移動度よりも更に高い電界効果移動度を示す酸化物半導体が望まれている。
 更に、TFTの技術分野においては、しきい電圧が0Vに近い値を示す酸化物半導体が望まれている。
 したがって本発明の課題は、前述した従来技術が有する欠点を解消し得るスパッタリングターゲット材及び酸化物半導体を提供することにある。
 本発明は、インジウム(In)元素、亜鉛(Zn)元素及び添加元素(X)を含む酸化物から構成され、
 添加元素(X)はタンタル(Ta)、ストロンチウム(Sr)及びニオブ(Nb)から選ばれる少なくとも1つの元素からなり、
 各元素の原子比が式(1)ないし(3)を満たし(式中のXは、前記添加元素の含有比の総和とする。)、
   0.4≦(In+X)/(In+Zn+X)≦0.8 (1)
   0.2≦Zn/(In+Zn+X)≦0.6     (2)
   0.001≦X/(In+Zn+X)≦0.015  (3)
 相対密度が95%以上である、スパッタリングターゲット材を提供することによって前記の課題を解決したものである。
 また本発明は、前記のスパッタリングターゲット材を用いて形成された酸化物半導体であって、
 インジウム(In)元素、亜鉛(Zn)元素及び添加元素(X)を含む酸化物から構成され、
 添加元素(X)はタンタル(Ta)、ストロンチウム(Sr)、ニオブ(Nb)の中から選ばれる少なくとも1つの元素からなり、
 各元素の原子比が式(1)ないし(3)を満たす(式中のXは、前記添加元素の含有比の総和とする。)、
   0.4≦(In+X)/(In+Zn+X)≦0.8 (1)
   0.2≦Zn/(In+Zn+X)≦0.6     (2)
   0.001≦X/(In+Zn+X)≦0.015  (3)
 酸化物半導体を提供するものである。
 更に本発明は、インジウム(In)元素、亜鉛(Zn)元素及び添加元素(X)を含む酸化物から構成され、
 添加元素(X)はタンタル(Ta)、ストロンチウム(Sr)、ニオブ(Nb)の中から選ばれる少なくとも1つの元素からなり、
 各元素の原子比が式(1)ないし(3)を満たす(式中のXは、前記添加元素の含有比の総和とする。)、
   0.4≦(In+X)/(In+Zn+X)≦0.8 (1)
   0.2≦Zn/(In+Zn+X)≦0.6     (2)
   0.001≦X/(In+Zn+X)≦0.015  (3)
 酸化物半導体を有し、
 電解効果移動度が45cm・Vs以上である、薄膜トランジスタを提供するものである。
図1は、本発明のスパッタリングターゲット材を用いて製造された薄膜トランジスタの構造を示す模式図である。 図2は、実施例1で得られたスパッタリングターゲット材のX線回折測定の結果を示すチャートである。 図3は、実施例1で得られたスパッタリングターゲット材の走査型電子顕微鏡像である。 図4は、実施例1で得られたスパッタリングターゲット材の走査型電子顕微鏡像である。 図5は、実施例1で得られたスパッタリングターゲット材のIn相のEDX分析における定性分析チャートと定量分析結果である。 図6は、実施例1で得られたスパッタリングターゲット材の走査型電子顕微鏡像である。 図7は、実施例1で得られたスパッタリングターゲット材のZnIn相のEDX分析における定性分析チャートと定量分析結果である。 図8(a)は、実施例1で得られたスパッタリングターゲット材のEDX分析結果を示す像であり、図8(b)は、比較例1で得られたスパッタリングターゲット材のEDX分析結果を示す像である。
 以下本発明を、その好ましい実施形態に基づき説明する。本発明はスパッタリングターゲット材(以下「ターゲット材」ともいう。)に関するものである。本発明のターゲット材は、インジウム(In)元素、亜鉛(Zn)元素及び添加元素(X)を含む酸化物から構成されるものである。添加元素(X)はタンタル(Ta)、ストロンチウム(Sr)及びニオブ(Nb)から選ばれる少なくとも1つの元素からなる。本発明のターゲット材は、これを構成する金属元素としてIn、Zn及び添加元素(X)を含むものであるが、本発明の効果を損なわない範囲で、これらの元素の他に、意図的に又は不可避的に、微量元素を含んでいてもよい。微量元素としては、例えば後述する有機添加物に含まれる元素やターゲット材製造時に混入するボールミル等のメディア原料が挙げられる。本発明のターゲット材における微量元素としては、例えばFe、Cr、Ni、Al、Si、W、Zr、Na、Mg、K、Ca、Ti、Y、Ga、Sn、Ba、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu及びPb等が挙げられる。それらの含有量は本発明のターゲット材が含むIn、Zn及びXを含む酸化物の合計質量に対して、各々通常100質量ppm(以下「ppm」ともいう。)以下であることが好ましく、より好ましくは80ppm以下、更に好ましくは50ppm以下である。これらの微量元素の合計量は500ppm以下であることが好ましく、より好ましくは300ppm以下、更に好ましくは100ppm以下である。本発明のターゲット材に微量元素が含まれる場合は、前記合計質量には微量元素の質量も含まれる。
 本発明のターゲット材は好適には、上述した酸化物を含む焼結体から構成されている。かかる焼結体及びスパッタリングターゲット材の形状に特に制限はなく、従来公知の形状、例えば平板型及び円筒形などを採用することができる。
 本発明のターゲット材は、これを構成する金属元素、すなわちIn、Zn及びXの原子比が特定の範囲であることが、該ターゲット材から形成される酸化物半導体素子の性能が向上する点から好ましい。
 具体的には、In及びXに関しては以下の式(1)で表される原子比を満たすことが好ましい(式中のXは、前記添加元素の含有比の総和とする。以下、式(2)及び(3)についても同じである。)。
   0.4≦(In+X)/(In+Zn+X)≦0.8 (1)
 Znに関しては以下の式(2)で表される原子比を満たすことが好ましい。
   0.2≦Zn/(In+Zn+X)≦0.6     (2)
 Xに関しては以下の式(3)で表される原子比を満たすことが好ましい。
   0.001≦X/(In+Zn+X)≦0.015  (3)
 In、Zn及びXの原子比が前記の式(1)ないし(3)を満たすことで、本発明のターゲット材を用いスパッタリングによって形成された酸化物薄膜を有する半導体素子は、高い電界効果移動度、低いリーク電流及び0Vに近いしきい電圧を示すものとなる。これらの利点を一層顕著なものとする観点から、In及びXに関しては下記の式(1-2)ないし(1-5)を満たすことが更に好ましい。
   0.43≦(In+X)/(In+Zn+X)≦0.79 (1-2)
   0.48≦(In+X)/(In+Zn+X)≦0.78 (1-3)
   0.53≦(In+X)/(In+Zn+X)≦0.75 (1-4)
   0.58≦(In+X)/(In+Zn+X)≦0.70 (1-5)
 前記と同様の観点から、Znに関しては下記の式(2-2)ないし(2-5)を満たすことが更に好ましく、Xに関しては下記の式(3-2)ないし(3-5)を満たすことが更に好ましい。
   0.21≦Zn/(In+Zn+X)≦0.57    (2-2)
   0.22≦Zn/(In+Zn+X)≦0.52    (2-3)
   0.25≦Zn/(In+Zn+X)≦0.47    (2-4)
   0.30≦Zn/(In+Zn+X)≦0.42    (2-5)
   0.0015≦X/(In+Zn+X)≦0.013  (3-2)
   0.002<X/(In+Zn+X)≦0.012   (3-3)
   0.0025≦X/(In+Zn+X)≦0.010  (3-4)
   0.003≦X/(In+Zn+X)≦0.009   (3-5)
 添加元素(X)は、上述のとおりTa、Sr及びNbから選択される1種以上が用いられる。これらの元素は、それぞれ単独で用いることができ、あるいは2種以上を組み合わせて用いることもできる。特に添加元素(X)としてTaを用いることが、本発明のターゲット材から製造される酸化物半導体素子の総合的な性能の観点、及びターゲット材を製造する上での経済性の点から好ましい。
 本発明のターゲット材は、上述の(1)ないし(3)の関係に加えて、InとXとの原子比に関して以下の式(4)を満たすことが、本発明のターゲット材から形成される酸化物半導体素子の電界効果移動度を一層高める点、及び0Vに近いしきい電圧を示す点から好ましい。
   0.970≦In/(In+X)≦0.999 (4)
 式(4)から明らかなとおり、本発明のターゲット材においては、Inの量に対して極めて少量のXを用いることで、ターゲット材から形成される酸化物半導体素子の電界効果移動度が高くなる。このことは本発明者が初めて見いだしたものである。これまで知られている従来技術(例えば特許文献1及び2に記載の従来技術)では、Inの量に対するXの使用量は本発明よりも多い。
 ターゲット材から形成される酸化物半導体の電界効果移動度が一層高くなる観点、及び0Vに近いしきい電圧を示す観点から、InとXとの原子比は以下の式(4-2)ないし(4-4)を満たすことが更に好ましい。
   0.980≦In/(In+X)≦0.997 (4-2)
   0.990≦In/(In+X)≦0.995 (4-3)
   0.990<In/(In+X)≦0.993 (4-4)
 ターゲット材から形成される酸化物半導体素子の電界効果移動度の値が大きいことは、酸化物半導体素子であるTFT素子の伝達特性が良好となることに起因するFPDの高機能化の点から好ましい。詳細にはターゲット材から形成される酸化物半導体素子を備えたTFTは、その電界効果移動度(cm/Vs)が、45cm/Vs以上であることが好ましく、50cm/Vs以上であることが更に好ましく、60cm/Vs以上であることがより好ましく、70cm/Vs以上であることが一層好ましく、80cm/Vs以上であることが更に一層好ましく、90cm/Vs以上であることがより一層好ましく、100cm/Vs以上であることが特に好ましい。電界効果移動度の値は大きければ大きいほど、FPDの高機能化の点から好ましいが、電界効果移動度が200cm/Vs程度に高ければ、十分に満足すべき程度の性能が得られる。
 本発明のターゲット材に含まれる各金属の割合は、例えばICP発光分光測定によって測定される。
 本発明のターゲット材は、In、Zn及びXの原子比に加えて、相対密度が高いことによっても特徴付けられる。詳細には、本発明のターゲット材はその相対密度が好ましくは95%以上という高い値を示すものである。このような高い相対密度を示すことで、本発明のターゲット材を用いてスパッタリングを行う場合、パーティクルの発生を抑制することが可能となるので好ましい。この観点から、本発明のターゲット材はその相対密度が97%以上であることが更に好ましく、98%以上であることが一層好ましく、99%以上であることが更に一層好ましく、100%以上であることが特に好ましく、100%超であることがとりわけ好ましい。このような相対密度を有する本発明のターゲット材は、後述する方法によって好適に製造される。相対密度は、アルキメデス法に従い測定される。具体的な測定方法は後述する実施例において詳述する。
 本発明のターゲット材は、ターゲット材内部の空孔のサイズが小さいことと、空孔の数が少ないことによっても特徴付けられる。詳細には、本発明のターゲット材は面積円相当径が0.5μm以上20μm以下である空孔が5個/1000μm以下である。このような空孔が少ないターゲット材を用いてスパッタリングを行う場合、パーティクルの発生を抑制することが可能となるので好ましい。この観点から、本発明のターゲット材は面積円相当径が0.5μm以上20μm以下である空孔が3個/1000μm以下であることが更に好ましく、2個/1000μm以下であることが一層好ましく、1個/1000μm以下であることが更に一層好ましく、0.5個/1000μm以下であることが特に好ましく、0.1個/1000μm以下であることがとりわけ好ましい。このような空孔の数が少ない本発明のターゲット材は、後述する方法によって好適に製造される。具体的な測定方法は後述する実施例において詳述する。
 本発明のターゲット材は強度が高いことによっても特徴付けられる。詳細には、本発明のターゲット材はその抗折強度が好ましくは100MPa以上という高い値を示すものである。このような高い抗折強度を示すことで、本発明のターゲット材を用いてスパッタリングを行う場合、スパッタリング中に意図せず異常放電が起こっても、ターゲット材に亀裂が生じにくくなるので好ましい。この観点から本発明のターゲット材は、その抗折強度が120MPa以上であることが更に好ましく、150MPa以上であることが一層好ましい。このような抗折強度を有する本発明のターゲット材は、後述する方法によって好適に製造される。抗折強度は、JIS R1601に準拠して測定される。具体的な測定方法は後述する実施例において詳述する。
 本発明のターゲット材はバルク抵抗率が低いことによっても特徴付けられる。バルク抵抗率が低いことは、該ターゲット材を用いてDCスパッタリングが可能となる点から有利である。この観点から、本発明のターゲット材はそのバルク抵抗率が25℃において100mΩ・cm以下であることが好ましく、50mΩ・cm以下であることがより好ましく、10mΩ・cm以下であることが更に好ましく、5mΩ・cm以下であることが一層好ましく、4mΩ・cm以下であることが更に一層好ましく、3mΩ・cm以下であることが特に好ましく、2mΩ・cm以下であることがとりわけ好ましく、1.5mΩ・cm以下であることが殊更好ましい。このようなバルク抵抗率を有する本発明のターゲット材は、後述する方法によって好適に製造される。バルク抵抗率は、直流四探針法によって測定される。具体的な測定方法は後述する実施例において詳述する。
 本発明のターゲット材は、ターゲット材の同一面内において、空孔の数のバラつき及びバルク抵抗率のバラつきが小さいことによっても特徴付けられる。詳細には、本発明のターゲット材は、同一面における任意の5点において測定される、空孔の数、バルク抵抗率のそれぞれの値と5点の算術平均値との差を、5点の算術平均値で除して100を乗じた値の絶対値が20%以下である。このような同一面内のバラつきが小さいターゲット材を用いてスパッタリングを行う場合、スパッタリングの際に、対向するガラス基板の位置によって膜特性が変化することがないため好ましい。この観点から、本発明のターゲット材は、前記絶対値が、それぞれ15%以下であることが更に好ましく、10%以下であることが一層好ましく、5%以下であることが更に一層好ましく、3%以下であることが特に好ましく、1%以下であることがとりわけ好ましい。このような、空孔の数のバラつき及びバルク抵抗率のバラつきが小さい本発明のターゲット材は、後述する方法によって好適に製造される。
 更に、本発明のターゲット材は、ターゲット材の深さ方向において、空孔の数のバラつき及びバルク抵抗率のバラつきが小さいことによっても特徴付けられる。詳細には、本発明のターゲット材は、表面から深さ方向に1mmごとに研削した面における、空孔の数、バルク抵抗率のそれぞれの値と5点の算術平均値との差を、5点の算術平均値で除して100を乗じた値の絶対値が20%以下である。上記と同様の観点から、本発明のターゲット材は、前記絶対値が、それぞれ15%以下であることが更に好ましく、10%以下であることが一層好ましく、5%以下であることが更に一層好ましく、3%以下であることが特に好ましく、1%以下であることがとりわけ好ましい。このような、空孔の数のバラつき及びバルク抵抗率のバラつきが小さい本発明のターゲット材は、後述する方法によって好適に製造される。
 本発明のターゲット材は、ターゲット材の同一面内におけるビッカース硬度の標準偏差が50以下であることが好ましい。この数値が上記条件を満たす場合、密度、結晶粒径や組成に偏りがないためターゲット材として好ましい。同一面内におけるビッカース硬度の標準偏差が40以下であることが好ましく、30以下であることが更に好ましく、20以下であることが一層好ましく、10以下であることが更に一層好ましい。このようなビッカース硬度を有する本発明のターゲット材は、後述する方法によって好適に製造される。ビッカース硬度は、JIS-R-1610:2003に準拠して測定される。具体的な測定方法は後述する実施例において詳述する。
 本発明のターゲット材表面の算術平均粗さRa(JIS-B-0601:2013)は研削加工時の砥石の番手などによって適宜調整することができる。算術平均粗さRaが小さいターゲット材を用いてスパッタリングを行う場合、スパッタリングの際に、異常放電を抑制することが可能となり好ましい。この観点から、本発明のターゲット材は、算術平均粗さRaが3.2μm以下であることが好ましく、1.6μm以下であることが更に好ましく、1.2μm以下であることが一層好ましく、0.8μm以下であることが更に一層好ましく、0.5μm以下であることが特に好ましく、0.1μm以下であることがとりわけ好ましい。算術平均粗さRaは、表面粗さ測定器によって測定される。具体的な測定方法は後述する実施例において詳述する。
 本発明のターゲット材は、表面の最大色差ΔE*が5以下であることが好ましい。また、ターゲット材の深さ方向の最大色差もΔE*が5以下であることが好ましい。「色差ΔE*」とは、2つの色の違いを数値化した指標である。この数値が上記条件を満たす場合、密度、結晶粒径や組成に偏りがないためターゲット材として好ましい。表面全体と深さ方向の最大色差ΔE*は4以下であることが好ましく、3以下であることが更に好ましく、2以下であることが一層好ましく、1以下であることが更に一層好ましい。このような最大色差ΔE*を有する本発明のターゲット材は、後述する方法によって好適に製造される。具体的な測定方法は後述する実施例において詳述する。
 本発明のターゲット材は、上述したとおりIn、Zn及びXを含む酸化物から構成されている。この酸化物は、Inの酸化物、Znの酸化物又はXの酸化物であり得る。あるいはこの酸化物は、In、Zn及びXからなる群から選択される任意の2種以上の元素の複合酸化物であり得る。複合酸化物の具体的な例としては、In-Zn複合酸化物、Zn-Ta複合酸化物、In-Ta複合酸化物、In-Nb複合酸化物、Zn-Nb複合酸化物、In-Nb複合酸化物、In-Sr複合酸化物、Zn-Sr複合酸化物、In-Sr複合酸化物、In-Zn-Ta複合酸化物、In-Zn-Nb複合酸化物、In-Zn-Sr複合酸化物等が挙げられるが、これらに限られるものではない。
 本発明のターゲット材は、特にInの酸化物であるIn相及びInとZnとの複合酸化物であるZnIn相を含むことが、該ターゲット材の密度及び強度を高め且つ抵抗を低減させる観点から好ましい。本発明のターゲット材がIn相及びZnIn相を含むことは、本発明のターゲット材を対象としたX線回折(以下「XRD」ともいう。)測定によってIn相及びZnIn相が観察されるか否かによって判断できる。なお、本発明におけるIn相は微量にZn元素を含み得る。
 詳細には、X線源としてCuKα線を用いたXRD測定においてIn相は2θ=30.38°以上30.78°以下の範囲にメインピークが観察される。ZnIn相は2θ=34.00°以上34.40°以下の範囲にメインピークが観察される。
 更に本発明のターゲット材においては、In相及びZnIn相の双方にXが含まれることが好ましい。とりわけ、ターゲット材全体に均質にXが分散して含まれると、本発明のターゲット材から形成される酸化物半導体に一様にXが含まれることになり、均質な酸化物半導体膜を得ることができる。In相及びZnIn相の双方にXが含まれることは、例えばエネルギー分散型X線分光法(以下「EDX」ともいう。)などにより測定することができる。具体的な測定方法は後述する実施例において詳述する。
 XRD測定によって本発明のターゲット材にIn相が観察される場合、In相はその結晶粒のサイズが特定の範囲を満たすことが、本発明のターゲット材の密度及び強度を高め且つ抵抗を低減させる点から好ましい。詳細には、In相の結晶粒のサイズは、3.0μm以下であることが好ましく、2.7μm以下であることが更に好ましく、2.5μm以下であることが一層好ましい。結晶粒のサイズは小さいほど好ましく下限値は特に定めるものではないが、通常0.1μm以上である。
 XRD測定によって本発明のターゲット材にZnIn相が観察される場合、ZnIn相に関しても、その結晶粒のサイズが特定の範囲を満たすことが、本発明のターゲット材の密度及び強度を高め且つ抵抗を低減させる点から好ましい。詳細には、ZnIn相の結晶粒のサイズは、3.9μm以下であることが好ましく、3.5μm以下であることがより好ましく、3.0μm以下であることが更に好ましく、2.5μm以下であることが一層好ましく、2.3μm以下であることが更に一層好ましく、2.0μm以下であることが特に好ましく、1.9μm以下であることがとりわけ好ましい。結晶粒のサイズは小さいほど好ましく下限値は特に定めるものではないが、通常0.1μm以上である。
 In相の結晶粒のサイズ及びZnIn相の結晶粒のサイズを上述した範囲に設定するには、例えば後述する方法によってターゲット材を製造すればよい。
 In相の結晶粒のサイズ及びZnIn相の結晶粒のサイズは、本発明のターゲット材を走査型電子顕微鏡(以下「SEM」ともいう。)によって観察することで測定される。具体的な測定方法は後述する実施例において詳述する。
 上述した結晶粒のサイズとの関係で、本発明のターゲット材においては、単位面積に占めるIn相の面積の割合(以下「In相面積率」ともいう。)が特定の範囲であることも、該ターゲット材の抵抗を低める点から好ましい。詳細には、In相面積率は10%以上70%以下であることが好ましく、20%以上70%以下であることが更に好ましく、30%以上70%以下であることが一層好ましく、35%以上70%以下であることがより一層好ましい。
 一方、単位面積に占めるZnIn相の面積の割合(以下「ZnIn相面積率」ともいう。)は30%以上90%以下であることが好ましく、30%以上80%以下であることが更に好ましく、30%以上70%以下であることが一層好ましく、30%以上65%以下であることがより一層好ましい。
 In相面積率及びZnIn相面積率を上述した範囲に設定するには、例えば後述する方法によってターゲット材を製造すればよい。In相面積率及びZnIn相面積率は、本発明のターゲット材をSEMによって観察することで測定される。具体的な測定方法は後述する実施例において詳述する。
 本発明のターゲット材においては、In相及びZnIn相が均質に分散していることが好ましい。これらが均質に分散しているとスパッタリングにより薄膜を形成した際、組成に偏りがなく、膜特性が変化することがないため好ましい。
 結晶相の分散状態評価は、EDXによって行う。ターゲット材において無作為に選んだ倍率200倍、437.5μm×625μmの範囲から、EDXによって視野全体のIn/Zn原子比率を得る。続いて同視野を縦4×横4の均等に分割し、各分割視野でのIn/Zn原子比率を得る。各分割視野でのIn/Zn原子比率と視野全体のIn/Zn原子比率の差の絶対値を、視野全体のIn/Zn原子比率で除し、100を乗じた値を分散率(%)と定義し、分散率の大小に基づきIn相及びZnIn相の分散の均質の程度を評価する。分散率がゼロに近いほどIn相及びZnIn相が均質に分散していることを意味する。16箇所での分散率の最大値が10%以下であることが好ましく、5%以下であることが更に好ましく、4%以下であることが一層好ましく、3%以下であることが更に一層好ましく、2%以下であることが特に好ましく、1%以下であることがとりわけ好ましい。
 次に、本発明のターゲット材の好適な製造方法について説明する。本製造方法においては、ターゲット材の原料となる酸化物粉を所定の形状に成形して成形体を得て、この成形体を焼成することで、焼結体からなるターゲット材を得る。成形体を得るには、当該技術分野においてこれまで知られている方法を採用することができる。特に鋳込み成形法又はCIP成形法を採用することが、緻密なターゲット材を製造し得る点から好ましい。
 鋳込み成形法はスリップキャスト法とも呼ばれる。鋳込み成形法を行うには先ず、原料粉末と有機添加物とを含有するスラリーを、分散媒を用いて調製する。
 前記の原料粉末としては酸化物粉末又は水酸化物粉末、炭酸塩粉末を用いることが好適である。酸化物粉末としては、In酸化物の粉末、Zn酸化物の粉末、及びX酸化物の粉末を用いる。In酸化物としては例えばInを用いることができる。Zn酸化物としては例えばZnOを用いることができる。X酸化物の粉末としては例えばTa、SrO及びNbを用いることができる。なお、SrOは空気中では二酸化炭素と化合してSrCOの状態で存在することがあるが、焼成過程においてSrCOから二酸化炭素が解離してSrOとなる。
 本製造方法においては、これら原料粉末をすべて混合した後に焼成を行う。このこととは対照的に、従来技術、例えば特許文献2に記載の技術では、In粉とTa粉とを混合した後に焼成を行い、次いで得られた焼成粉とZnO粉とを混合して再び焼成を行っている。この方法では事前に焼成を実施することによって粉末を構成する粒子が粗粒となってしまい、相対密度の高いターゲット材を得ることが容易でない。これに対して本製造方法では、好ましくは、In酸化物の粉末、Zn酸化物の粉末及びX酸化物の粉末をすべて常温で混合、成形した後、焼成を行っているので、相対密度の高い緻密なターゲット材が容易に得られる。
 In酸化物の粉末、Zn酸化物の粉末及びX酸化物の粉末の使用量は、目的とするターゲット材におけるIn、Zn及びXの原子比が、上述した範囲を満たすように調整することが好ましい。
 原料粉末の粒径は、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50で表して、0.1μm以上1.5μm以下であることが好ましい。この範囲の粒径を有する原料粉末を用いることで、相対密度の高いターゲット材を容易に得ることができる。
 前記の有機添加物は、スラリーや成形体の性状を好適に調整するために用いられる物質である。有機添加物としては、例えばバインダ、分散剤及び可塑剤等を挙げることができる。バインダは、成形体の強度を高めるために添加される。バインダとしては、公知の粉末焼結法において成形体を得るときに通常使用されるバインダを使用することができる。バインダとしては、例えばポリビニルアルコールを挙げることができる。分散剤は、スラリー中の原料粉末の分散性を高めるために添加される。分散剤としては、例えばポリカルボン酸系分散剤、ポリアクリル酸系分散剤を挙げることができる。可塑剤は、成形体の可塑性を高めるために添加される。可塑剤としては、例えば、ポリエチレングリコール(PEG)及びエチレングリコール(EG)等を挙げることができる。
 原料粉末及び有機添加物を含有するスラリーを作製する際に使用する分散媒には特に制限はなく、目的に応じて、水、及びアルコール等の水溶性有機溶媒から適宜選択して使用することができる。原料粉末及び有機添加物を含有するスラリーを作製する方法には特に制限はなく、例えば、原料粉末、有機添加物、分散媒及びジルコニアボールをポットに入れ、ボールミル混合する方法が使用できる。
 このようにしてスラリーが得られたら、このスラリーを型に流し込み、次いで分散媒を除去して成形体を作製する。用いることができる型としては、例えば金属型や石膏型、加圧して分散媒除去を行う樹脂型などが挙げられる。
 一方、CIP成形法においては、鋳込み成形法において用いたスラリーと同様のスラリーを噴霧乾燥して乾燥粉末を得る。得られた乾燥粉末を型に充填してCIP成形を行う。
 このようにして成形体が得られたら、次にこれを焼成する。成形体の焼成は一般に酸素含有雰囲気中で行うことができる。特に大気雰囲気中で焼成することが簡便である。焼成温度は1200℃以上1600℃以下であることが好ましく、1300℃以上1500℃以下であることが更に好ましく、1350℃以上1450℃以下であることが一層好ましい。焼成時間は、1時間以上100時間以下であることが好ましく、2時間以上50時間以下であることが更に好ましく、3時間以上30時間以下であることが一層好ましい。昇温速度は5℃/時間以上500℃/時間以下であることが好ましく、10℃/時間以上200℃/時間以下であることが更に好ましく、20℃/時間以上100℃/時間以下であることが一層好ましい。
 成形体の焼成においては、焼成過程においてInとZnとの複合酸化物、例えばZnInの相が生成する温度を一定時間維持することが、焼結の促進及び緻密なターゲット材の生成の観点から好ましい。詳細には、原料粉末にIn粉及びZnO粉が含まれている場合、昇温に従いこれらが反応してZnInの相が生成し、その後ZnInの相へ変化し、ZnInの相へと変化する。特にZnInの相が生成する際に体積拡散が進み緻密化が促進されることから、ZnInの相を確実に生成させることが好ましい。このような観点から、焼成の昇温過程において、温度を1000℃以上1250℃以下の範囲で一定時間維持することが好ましく、1050℃以上1200℃以下の範囲で一定時間維持することが更に好ましい。維持する温度は、必ずしもある特定の一点の温度に限られるものではなく、ある程度の幅を有する温度範囲であってもよい。具体的には、1000℃以上1250℃以下の範囲から選ばれるある特定の温度をT(℃)とするとき、1000℃以上1250℃以下の範囲に含まれる限り、例えばT±10℃であってもよく、好ましくはT±5℃であり、より好ましくはT±3℃であり、更に好ましくはT±1℃である。この温度範囲を維持する時間は、好ましくは1時間以上40時間以下であり、更に好ましくは2時間以上20時間以下である。
 このようにして得られたターゲット材は、研削加工などにより、所定の寸法に加工することができる。これを基材に接合することでスパッタリングターゲットが得られる。このようにして得られたスパッタリングターゲットは、酸化物半導体の製造に好適に用いられる。例えばTFTの製造に、本発明のターゲット材を用いることができる。図1には、TFT素子1の一例が模式的に示されている。同図に示すTFT素子1は、ガラス基板10の一面に形成されている。ガラス基板10の一面にはゲート電極20が配置されており、これを覆うようにゲート絶縁膜30が形成されている。ゲート絶縁膜30上には、ソース電極60、ドレイン電極61及びチャネル層40が配置されている。チャネル層40上にはエッチングストッパー層50が配置されている。そして最も上部に保護層70が配置されている。この構造を有するTFT素子1において、例えばチャネル層40の形成を、本発明のターゲット材を用いて行うことができる。その場合、チャネル層40は、インジウム(In)元素、亜鉛(Zn)元素及び添加元素(X)を含む酸化物から構成されたものとなり、インジウム(In)元素、亜鉛(Zn)元素及び添加元素(X)の原子比は、上述した式(1)を満たすものとなる。また、上述した式(2)及び(3)を満たすものとなる。
 本発明のターゲット材から形成された酸化物半導体素子はアモルファス構造を有することが、該素子の性能向上の点から好ましい。
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。
  〔実施例1〕
 平均粒径D50が0.6μmであるIn粉末と、平均粒径D50が0.8μmであるZnO粉末と、平均粒径D50が0.6μmであるTa粉末とを、ジルコニアボールによってボールミル乾式混合して、混合原料粉末を調製した。各粉末の平均粒径D50は、マイクロトラックベル株式会社製の粒度分布測定装置MT3300EXIIを用いて測定した。測定の際、溶媒には水を使用し、測定物質の屈折率2.20で測定した。各粉末の混合比率は、InとZnとTaとの原子比が、以下の表1に示す値となるようにした。
 混合原料粉末が調製されたポットに、混合原料粉末に対して0.2%のバインダと、混合原料粉末に対して0.6%の分散剤と、混合原料粉末に対して20%の水とを加え、ジルコニアボールによってボールミル混合してスラリーを調製した。
 調製されたスラリーを、フィルターを挟んだ金属製の型に流し込み、次いでスラリー中の水を排出して成形体を得た。この成形体を焼成して焼結体を作製した。焼成は酸素濃度が20体積%である雰囲気中、焼成温度1400℃、焼成時間8時間、昇温速度50℃/時間、降温速度50℃/時間で行った。焼成の途中、1100℃を6時間維持してZnInの生成を促進させた。
 このようにして得られた焼結体を切削加工し、幅210mm×長さ710mm×厚さ6mmの酸化物焼結体(ターゲット材)を得た。切削加工には#170の砥石を使用した。
 得られたターゲット材について、同一面内及び深さ方向における空孔の数及びバルク抵抗率のバラつきを上述した方法で算出した。
 ターゲット材の任意の5点において算出した同一面内における空孔の数のバラつきは、それぞれ5.7%、0.4%、1.4%、6.8%、2.2%であった。同一面内におけるバルク抵抗率のバラつきは、それぞれ3.5%、5.3%、3.5%、5.3%、3.5%であった。
 ターゲット材の任意の5点において算出した深さ方向における空孔の数のバラつきは、それぞれ4.6%、0.2%、1.6%、1.6%、1.6%であった。深さ方向におけるバルク抵抗率のバラつきは、それぞれ3.5%、3.5%、5.3%、5.3%、3.5%であった。
 得られたターゲット材について、1000μmあたりの空孔の数、算術平均粗さRa、表面の最大色差ΔE*及び深さ方向の最大色差ΔE*を以下の方法で測定した。1000μmあたりの空孔の数は、1.2個であった。算術平均粗さRaは、1.0μmであった。表面の最大色差ΔE*は1.1であり、深さ方向の最大色差ΔE*は1.0であった。
  〔実施例2ないし8〕
 実施例1において、InとZnとTaとの原子比が、以下の表1に示す値となるように各原料粉末を混合した。これ以外は実施例1と同様にしてターゲット材を得た。
  〔比較例1〕
 平均粒径D50が0.6μmであるIn粉末と、平均粒径D50が0.6μmであるTa粉末とを、In元素とTa元素の合計に対するIn元素の原子比〔In/(In+Ta)〕が0.993となるように混合した。混合物を湿式ボールミルに供給し、12時間混合粉砕した。
 得られた混合スラリーを取り出し、濾過、乾燥した。この乾燥粉を焼成炉に装入し、大気雰囲気中、1000℃で5時間熱処理した。
 以上により、In元素とTa元素を含有する混合粉を得た。
 この混合粉に、平均粒径D50が0.8μmであるZnO粉末を、原子比〔In/(In+Zn)〕が0.698となるように混合した。混合粉を湿式ボールミルに供給し、24時間混合粉砕して、原料粉末のスラリーを得た。このスラリーを、濾過、乾燥及び造粒した。
 得られた造粒物をプレス成形し、更に、2000kgf/cmの圧力を加えて冷間静水圧プレスで成形した。
 成形体を焼成炉に装入し、大気圧、酸素ガス流入条件で、1400℃、12時間の条件で焼成し焼結体を得た。室温から400℃までは昇温速度は0.5℃/分とし、400~1400℃までは1℃/分とした。降温速度は1℃/分とした。
 これら以外は実施例1と同様にしてターゲット材を得た。
  〔比較例2〕
 実施例1において、Ta粉末を用いなかった。InとZnの原子比が、以下の表2に示す値となるように各原料粉末を混合した。これ以外は実施例1と同様にしてターゲット材を得た。
  〔実施例9ないし13〕
 実施例1において、InとZnとTaとの原子比が、以下の表2に示す値となるように各原料粉末を混合した。これ以外は実施例1と同様にしてターゲット材を得た。
  〔実施例14〕
 実施例1において、Ta粉末に代えて、平均粒径D50が0.7μmであるNb粉末を用いた。InとZnとNbとの原子比が、以下の表2に示す値となるように各原料粉末を混合した。これ以外は実施例1と同様にしてターゲット材を得た。
  〔実施例15〕
 実施例1において、Ta粉末に代えて、平均粒径D50が1.5μmであるSrCO粉末を用いた。InとZnとSrとの原子比が、以下の表2に示す値となるように各原料粉末を混合した。これ以外は実施例1と同様にしてターゲット材を得た。
  〔実施例16〕
 実施例1において、Ta粉末に代えて、Ta粉末と、Nb粉末と、SrCO粉末とを、InとZnとTaとNbとSrとの原子比が、以下の表2に示す値となるように混合した。Ta、Nb及びSrのモル比は、Ta:Nb:Sr=3:1:1とした。これ以外は実施例1と同様にしてターゲット材を得た。
 実施例及び比較例で得られたターゲット材に含まれる各金属の割合を、ICP発光分光測定によって測定した。InとZnとTaとの原子比が、表1に示す原料比と同一であることを確認した。
  〔評価1〕
 実施例及び比較例で得られたターゲット材について、相対密度、抗折強度、バルク抵抗率及びビッカース硬度を以下の方法で測定した。実施例及び比較例で得られたターゲット材について以下の条件でXRD測定を行い、In相及びZnIn相の有無を確認した。また、実施例及び比較例で得られたターゲット材についてSEM観察を行い、In相の結晶粒のサイズ、ZnIn相の結晶粒のサイズ、In相面積率及びZnIn相面積率を以下の方法で測定した。更に、SEM観察にて確認されたIn相及びZnIn相に添加元素(X)の含有の有無をEDXにて測定した。それらの結果を以下の表1及び2並びに図2ないし7に示す。
  〔相対密度〕
 ターゲット材の空中質量を体積(ターゲット材の水中質量/計測温度における水比重)で除し、下記式(i)に基づく理論密度ρ(g/cm)に対する百分率の値を相対密度(単位:%)とした。
ρ=Σ((Ci/100)/ρi)-1 ・・・(i)
(式中Ciはターゲット材の構成物質の含有量(質量%)を示し、ρiはCiに対応する各構成物質の密度(g/cm)を示す。)
 本発明の場合、ターゲット材の構成物質の含有量(質量%)は、In、ZnO、Ta、Nb、SrOと考え、例えば
C1:ターゲット材のInの質量%
ρ1:Inの密度(7.18g/cm
C2:ターゲット材のZnOの質量%
ρ2:ZnOの密度(5.60g/cm
C3:ターゲット材のTaの質量%
ρ3:Taの密度(8.73g/cm
C4:ターゲット材のNbの質量%
ρ4:Nbの密度(4.60g/cm
C5:ターゲット材のSrOの質量%
ρ5:SrOの密度(4.70g/cm
を式(i)に適用することで理論密度ρを算出できる。
 Inの質量%、ZnOの質量%、Taの質量%、Nbの質量%及びSrOの質量%は、ICP発光分光測定によるターゲット材の各元素の分析結果から求めることができる。
  〔1000μmあたりの空孔の数〕
 ターゲット材を切断して得られた切断面を、エメリー紙#180、#400、#800、#1000、#2000を用いて段階的に研磨し、最後にバフ研磨して鏡面に仕上げた。鏡面仕上げ面をSEM観察した。倍率400倍、218.7μm×312.5μmの範囲のSEM像を無作為に5視野撮影しSEM像を得た。
 得られたSEM像を、画像処理ソフトウェア:ImageJ 1.51k(http://imageJ.nih.gov/ij/、提供元:アメリカ国立衛生研究所(NIH:National Institutes of Health))によって解析した。具体的な手順は以下のとおりである。
 得られた画像に対し、先ず空孔に沿って描画を行った。すべての描画が完了した後、粒子解析を実施(Analyze→Analyze Particles)して、空孔の数と、各空孔における面積を得た。その後、得られた各空孔における面積から、面積円相当径を算出した。5視野において確認された、面積円相当径が0.5μm~20μmの空孔の総和を5視野の総面積で除して得られた空孔の数を、1000μmあたりに換算した。
  〔抗折強度〕
 島津製作所製のオートグラフ(登録商標)AGS-500Bを用いて測定した。ターゲット材から切り出した試料片(全長36mm以上、幅4.0mm、厚さ3.0mm)を用い、JIS-R-1601(ファインセラミックスの曲げ強度試験方法)の3点曲げ強さの測定方法に従って測定した。
  〔バルク抵抗率〕
 三菱ケミカル製のロレスタ(登録商標)HP MCP-T410を用いて、JIS規格の直流四探針法によって測定した。加工後のターゲット材の表面にプローブ(直列四探針プローブ TYPE ESP)を当接させ、AUTO RANGEモードで測定した。測定箇所はターゲット材の中央付近及び四隅の計5か所とし、各測定値の算術平均値をそのターゲット材のバルク抵抗率とした。
  〔算術平均粗さRa〕
 表面粗さ測定器(SJ-210/株式会社ミツトヨ製)を用いて測定した。ターゲット材のスパッタリング面の5個所を測定して、その算術平均値をそのターゲット材の算術平均粗さRaとした。
  〔最大色差〕
 面内の色差ΔE*は、切削加工したターゲット材の表面をx軸、y軸方向に50mm間隔で色差計(コニカミノルタ社製、色彩色差計CR-300)を用いて測定し、測定された各点のL*値、a*値及びb*値をCIE1976L*a*b*色空間で評価した。そして、測定された各点のうち2点のL*値、a*値及びb*値の差分ΔL*、Δa*、Δb*から、下記式(ii)より色差ΔE*をすべての2点の組み合わせで求め、求められた複数の色差ΔE*の最大値を表面内の最大色差ΔE*とした。
ΔE*=((ΔL*)+(Δa*)+(Δb*)1/2・・(ii)
 また、深さ方向の最大色差ΔE*は、切削加工したターゲット材の任意の箇所において、1mmずつ切削加工し、ターゲット材の中央部までの各深さで色差計を用いて測定し、測定された各点のL*値、a*値およびb*値をCIE1976L*a*b*色空間で評価した。そして、測定された各点のうち2点のL*値、a*値およびb*値の差分ΔL*、Δa*、Δb*から色差ΔE*をすべての2点の組み合わせで求め、求められた複数の色差ΔE*の最大値を深さ方向の最大色差ΔE*とした。
  〔ビッカース硬度〕
 株式会社マツザワのビッカース硬度計MHT-1を用いて測定した。ターゲット材を切断して得られた切断面を、エメリー紙#180、#400、#800、#1000、#2000を用いて段階的に研磨し、最後にバフ研磨して鏡面に仕上げて測定面とした。また、測定面からみて反対の面は、測定面と平行になるように、上記エメリー紙#180を用いて研磨し、試験片を得た。上記試験片を用いJIS-R-1610:2003(ファインセラミックスの硬さ試験方法)の硬さ測定方法に従って荷重1kgfでのビッカース硬度の測定を行った。測定は、1つの試験片中の異なる10箇所の位置について行い、その算術平均値をそのターゲット材のビッカース硬度とした。また、得られた測定値からビッカース硬度の標準偏差を算出した。
  〔XRD測定条件〕
 株式会社リガクのSmartLab(登録商標)を用いた。測定条件は以下のとおりである。実施例1で得られたターゲット材についてのXRD測定の結果を図2に示す。
・線源:CuKα線
・管電圧:40kV
・管電流:30mA
・スキャン速度:5deg/min
・ステップ:0.02deg
・スキャン範囲:2θ=5度~80度
  〔In相の結晶粒のサイズ、ZnIn相の結晶粒のサイズ、In相面積率及びZnIn相面積率〕
 日立ハイテクノロジーズ製の走査型電子顕微鏡SU3500を用いて、ターゲット材の表面をSEM観察するとともに、結晶の構成相や結晶形状の評価を行った。
 具体的には、ターゲット材を切断して得られた切断面を、エメリー紙#180、#400、#800、#1000、#2000を用いて段階的に研磨し、最後にバフ研磨して鏡面に仕上げた。鏡面仕上げ面をSEM観察した。結晶形状の評価では、倍率1000倍、87.5μm×125μmの範囲のBSE-COMP像を無作為に10視野撮影しSEM像を得た。
 得られたSEM像を、画像処理ソフトウェア:ImageJ 1.51k(http://imageJ.nih.gov/ij/、提供元:アメリカ国立衛生研究所(NIH:National Institutes of Health))によって解析した。具体的な手順は以下のとおりである。
 SEM像撮影時に用いたサンプルを、1100℃で1時間サーマルエッチングを施し、SEM観察を行うことで図3に示す粒界が現れた画像を得た。得られた画像に対し、先ずIn相(図3中、白く見える領域A)の粒界に沿って描画を行った。すべての描画が完了した後、粒子解析を実施(Analyze→Analyze Particles)して、各粒子における面積を得た。その後、得られた各粒子における面積から、面積円相当径を算出した。10視野において算出された全粒子の面積円相当径の算術平均値を、In相の結晶粒のサイズとした。続いてZnIn相(図3中、黒く見える領域B)の粒界に沿って描画を行い、同様に解析を施すことによって得られた各粒子における面積から、面積円相当径を算出した。10視野において算出された全粒子の面積円相当径の算術平均値を、ZnIn相の結晶粒のサイズとした。
 また、サーマルエッチング前の粒界のないBSE-COMP像について、粒子解析を行うことで総面積におけるIn相の面積の比率を算出した。10視野において算出された全粒子のそれらの算術平均値を、In相面積率とした。また100からIn相面積率を差し引くことで、ZnIn相面積率を算出した。
 なお図4及び図6は、図3の拡大像である。
  〔添加元素(X)の有無及びその定量〕
 エダックス製のエネルギー分散型X線分析装置Octane Elite Plusを用いて、前記SEM観察にて確認されたIn相及びZnIn相における、各々任意の箇所での点分析によるスペクトル情報を得て、添加元素(X)含有の有無を確認した。結果を図5及び図7に示す。
  〔評価2〕
 実施例及び比較例のターゲット材を用いて、図1に示すTFT素子1をフォトリソグラフィー法により作製した。
 TFT素子1の作製においては、最初に、ガラス基板(日本電気硝子株式会社製OA-10)10上にゲート電極20としてMо薄膜を、DCスパッタリング装置を用いて成膜した。次に、ゲート絶縁膜30としてSiOx薄膜を下記の条件で成膜した。
成膜装置:プラズマCVD装置 サムコ株式会社製 PD-2202L
成膜ガス:SiH/NO/N混合ガス
成膜圧力:110Pa
基板温度:250~400℃
 次に、チャネル層40を、実施例及び比較例で得られたターゲット材を用いて、下記の条件でスパッタリング成膜を行い、厚さ約10~50nmの薄膜を成膜した。
・成膜装置:DCスパッタリング装置 トッキ株式会社製 SML-464
・到達真空度:1×10-4Pa未満
・スパッタガス:Ar/O混合ガス
・スパッタガス圧:0.4Pa
・Oガス分圧:50%
・基板温度:室温
・スパッタリング電力:3W/cm
 更に、エッチングストッパー層50として、SiOx薄膜を、前記プラズマCVD装置を用いて成膜した。次に、ソース電極60及びドレイン電極61としてMo薄膜を、前記DCスパッタリング装置を用いて成膜した。保護層70として、SiOx薄膜を、前記プラズマCVD装置を用いて成膜した。最後に350℃で熱処理を実施した。
 このようにして得られたTFT素子1について、ドレイン電圧Vd=5Vでの伝達特性の測定を行った。測定した伝達特性は、電界効果移動度μ(cm/Vs)、SS(Subthreshold Swing)値(V/dec)及びしきい電圧Vth(V)である。伝達特性は、Agilent Technologies株式会社製Semiconductor Device Analyzer B1500Aによって測定した。測定結果を表1及び表2に示す。なお表に示していないが、各実施例で得られたTFT素子1のチャネル層40がアモルファス構造であることをXRD測定によって本発明者は確認している。
 電界効果移動度とは、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)動作の飽和領域において、ドレイン電圧を一定としたときのゲート電圧に対するドレイン電流の変化から求めたチャネル移動度のことであり、値が大きいほど伝達特性が良好である。
 SS値とは、しきい電圧近傍でドレイン電流を1桁上昇させるのに必要なゲート電圧のことであり、値が小さいほど伝達特性が良好である。
 しきい電圧とは、ドレイン電極に正電圧をかけ、ゲート電極に正負いずれかの電圧をかけたときにドレイン電流が流れ、1nAとなった場合の電圧であり、値が0Vに近いことが好ましい。詳細には、-2V以上であることが更に好ましく、-1V以上であることが一層好ましく、0V以上であることが更に一層好ましい。また、3V以下であることが更に好ましく、2V以下であることが一層好ましく、1V以下であることが更に一層好ましい。具体的には、-2V以上3V以下であることが更に好ましく、-1V以上2V以下であることが一層好ましく、0V以上1V以下であることが更に一層好ましい。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示す結果から明らかなとおり、各実施例で得られたターゲット材を用いて製造されたTFT素子は、伝達特性が優れていることが分かる。1000μmあたりの空孔の数、空孔の数及びバルク抵抗率のバラつき、算術平均粗さRa、最大色差及びIn/Zn原子比率については表1及び2に示していないが、実施例2ないし16で得られたターゲット材についても実施例1と同様の結果が得られた。
 更に、図2に示す結果から明らかなとおり、実施例1で得られたターゲット材は、In相及びZnIn相を含むものであった。図示していないが、実施例2ないし16で得られたターゲット材についても同様の結果が得られた。
 更に、図5及び図7に示す結果から明らかなとおり、実施例1で得られたターゲット材に含まれるIn相及びZnIn相はいずれもTaを含有するものであった。図示していないが、実施例2ないし16で得られたターゲット材についても同様の結果が得られた。
〔評価3〕
 実施例1及び比較例1で得られたターゲット材について、上述した方法でIn相及びZnIn相の分散率を測定した。その結果を以下の表3並びに図8(a)及び図8(b)に示す。
Figure JPOXMLDOC01-appb-T000003
 図8(a)に示す結果から明らかなとおり、実施例1で得られたターゲット材は、In相及びZnIn相が均質に分散していることが分かる。表3に示すとおり、実施例1では16箇所の分散率が最大でも3.3%であり、In相及びZnIn相が均質に分散していることが裏付けられた。
 これに対して図8(b)に示す結果から明らかなとおり、比較例1で得られたターゲット材は、In相及びZnIn相が不均質に分散していることが分かる。
 なお、表には示していないが実施例2ないし16で得られたターゲット材についても、16箇所の分散率が最大でも10%以下であったことを本発明者は確認している。
 以上、詳述したとおり、本発明のスパッタリングターゲット材を用いることで、パーティクルを抑制でき、異常放電による亀裂を抑制できる。その結果、高い電界効果移動度を有するTFTを容易に製造することができる。

Claims (14)

  1.  インジウム(In)元素、亜鉛(Zn)元素及び添加元素(X)を含む酸化物から構成され、
     添加元素(X)はタンタル(Ta)、ストロンチウム(Sr)及びニオブ(Nb)から選ばれる少なくとも1つの元素からなり、
     各元素の原子比が式(1)ないし(3)を満たし(式中のXは、前記添加元素の含有比の総和とする。)、
       0.4≦(In+X)/(In+Zn+X)≦0.8 (1)
       0.2≦Zn/(In+Zn+X)≦0.6     (2)
       0.001≦X/(In+Zn+X)≦0.015  (3)
     相対密度が95%以上である、スパッタリングターゲット材。
  2.  添加元素(X)がタンタル(Ta)である、請求項1に記載のスパッタリングターゲット材。
  3.  抗折強度が100MPa以上である、請求項1又は2に記載のスパッタリングターゲット材。
  4.  バルク抵抗率が25℃において100mΩ・cm以下である、請求項1ないし3のいずれか一項に記載のスパッタリングターゲット材。
  5.  In相及びZnIn相を含む、請求項1ないし4のいずれか一項に記載のスパッタリングターゲット材。
  6.  In相及びZnIn相の双方に添加元素(X)が含まれる、請求項5に記載のスパッタリングターゲット材。
  7.  In相の結晶粒のサイズが0.1μm以上3.0μm以下であり、
     ZnIn相の結晶粒のサイズが0.1μm以上3.9μm以下である、請求項5又は6に記載のスパッタリングターゲット材。
  8.  式(4)を更に満たす、請求項1ないし7のいずれか一項に記載のスパッタリングターゲット材。
       0.970≦In/(In+X)≦0.999 (4)
  9.  JIS-R-1610:2003に準拠して測定されたビッカース硬度の標準偏差が50以下である、請求項1ないし8のいずれか一項に記載のスパッタリングターゲット材。
  10.  請求項1ないし9のいずれか一項に記載のスパッタリングターゲット材を用いて形成された酸化物半導体であって、
     インジウム(In)元素、亜鉛(Zn)元素及び添加元素(X)を含む酸化物から構成され、
     添加元素(X)はタンタル(Ta)、ストロンチウム(Sr)、ニオブ(Nb)の中から選ばれる少なくとも1つの元素からなり、
     各元素の原子比が式(1)ないし(3)を満たす(式中のXは、前記添加元素の含有比の総和とする。)、
       0.4≦(In+X)/(In+Zn+X)≦0.8 (1)
       0.2≦Zn/(In+Zn+X)≦0.6     (2)
       0.001≦X/(In+Zn+X)≦0.015  (3)
     酸化物半導体。
  11.  インジウム(In)元素、亜鉛(Zn)元素及び添加元素(X)を含む酸化物から構成され、
     添加元素(X)はタンタル(Ta)、ストロンチウム(Sr)、ニオブ(Nb)の中から選ばれる少なくとも1つの元素からなり、
     各元素の原子比が式(1)ないし(3)を満たす(式中のXは、前記添加元素の含有比の総和とする。)、
       0.4≦(In+X)/(In+Zn+X)≦0.8 (1)
       0.2≦Zn/(In+Zn+X)≦0.6     (2)
       0.001≦X/(In+Zn+X)≦0.015  (3)
     酸化物半導体を有し、
     電界効果移動度が45cm/Vs以上である、薄膜トランジスタ。
  12.  前記酸化物半導体がアモルファス構造である、請求項11に記載の薄膜トランジスタ。
  13.  電界効果移動度が70cm/Vs以上である、請求項11又は12に記載の薄膜トランジスタ。
  14.  しきい電圧が-2V以上3V以下である、請求項11ないし13のいずれか一項に記載の薄膜トランジスタ。
PCT/JP2021/028640 2020-08-05 2021-08-02 スパッタリングターゲット材及び酸化物半導体 WO2022030455A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/014,432 US20230307549A1 (en) 2020-08-05 2021-08-02 Sputtering target material and oxide semiconductor
JP2022532705A JP7218481B2 (ja) 2020-08-05 2021-08-02 スパッタリングターゲット材及び酸化物半導体
KR1020227046024A KR20230017294A (ko) 2020-08-05 2021-08-02 스퍼터링 타깃재 및 산화물 반도체
CN202180059883.1A CN116194612A (zh) 2020-08-05 2021-08-02 溅射靶材和氧化物半导体
JP2023009644A JP2023041776A (ja) 2020-08-05 2023-01-25 スパッタリングターゲット材及び酸化物半導体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020133080 2020-08-05
JP2020-133080 2020-08-05

Publications (1)

Publication Number Publication Date
WO2022030455A1 true WO2022030455A1 (ja) 2022-02-10

Family

ID=80118002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028640 WO2022030455A1 (ja) 2020-08-05 2021-08-02 スパッタリングターゲット材及び酸化物半導体

Country Status (6)

Country Link
US (1) US20230307549A1 (ja)
JP (2) JP7218481B2 (ja)
KR (1) KR20230017294A (ja)
CN (1) CN116194612A (ja)
TW (1) TW202219295A (ja)
WO (1) WO2022030455A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145499A1 (ja) * 2022-01-31 2023-08-03 三井金属鉱業株式会社 スパッタリングターゲット
WO2023145497A1 (ja) * 2022-01-31 2023-08-03 三井金属鉱業株式会社 電界効果トランジスタ及びその製造方法並びに電界効果トランジスタ製造用スパッタリングターゲット材

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117043122A (zh) * 2021-12-28 2023-11-10 三井金属矿业株式会社 氧化物烧结体及其制造方法以及溅射靶材
CN115595544B (zh) * 2022-10-31 2024-05-28 宁波工程学院 检测金属靶材溅射性能的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105054A1 (ja) * 2003-05-20 2004-12-02 Idemitsu Kosan Co. Ltd. 非晶質透明導電膜、及びその原料スパッタリングターゲット、及び非晶質透明電極基板、及びその製造方法、及び液晶ディスプレイ用カラーフィルタ
JP2012151469A (ja) * 2010-12-28 2012-08-09 Kobe Steel Ltd 薄膜トランジスタの半導体層用酸化物およびスパッタリングターゲット、並びに薄膜トランジスタ
JP2013095657A (ja) * 2011-11-04 2013-05-20 Kobelco Kaken:Kk 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
JP2014084479A (ja) * 2012-10-19 2014-05-12 Idemitsu Kosan Co Ltd スパッタリングターゲット
JP2018093181A (ja) * 2016-10-21 2018-06-14 株式会社半導体エネルギー研究所 複合酸化物、およびトランジスタ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140027241A (ko) 2011-05-10 2014-03-06 이데미쓰 고산 가부시키가이샤 In₂O₃-ZnO계 스퍼터링 타겟
JP5318932B2 (ja) 2011-11-04 2013-10-16 株式会社コベルコ科研 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105054A1 (ja) * 2003-05-20 2004-12-02 Idemitsu Kosan Co. Ltd. 非晶質透明導電膜、及びその原料スパッタリングターゲット、及び非晶質透明電極基板、及びその製造方法、及び液晶ディスプレイ用カラーフィルタ
JP2012151469A (ja) * 2010-12-28 2012-08-09 Kobe Steel Ltd 薄膜トランジスタの半導体層用酸化物およびスパッタリングターゲット、並びに薄膜トランジスタ
JP2013095657A (ja) * 2011-11-04 2013-05-20 Kobelco Kaken:Kk 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
JP2014084479A (ja) * 2012-10-19 2014-05-12 Idemitsu Kosan Co Ltd スパッタリングターゲット
JP2018093181A (ja) * 2016-10-21 2018-06-14 株式会社半導体エネルギー研究所 複合酸化物、およびトランジスタ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145499A1 (ja) * 2022-01-31 2023-08-03 三井金属鉱業株式会社 スパッタリングターゲット
WO2023145497A1 (ja) * 2022-01-31 2023-08-03 三井金属鉱業株式会社 電界効果トランジスタ及びその製造方法並びに電界効果トランジスタ製造用スパッタリングターゲット材
JP7364824B1 (ja) 2022-01-31 2023-10-18 三井金属鉱業株式会社 電界効果トランジスタ及びその製造方法並びに電界効果トランジスタ製造用スパッタリングターゲット材

Also Published As

Publication number Publication date
JPWO2022030455A1 (ja) 2022-02-10
JP7218481B2 (ja) 2023-02-06
JP2023041776A (ja) 2023-03-24
CN116194612A (zh) 2023-05-30
US20230307549A1 (en) 2023-09-28
TW202219295A (zh) 2022-05-16
KR20230017294A (ko) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2022030455A1 (ja) スパッタリングターゲット材及び酸化物半導体
JP5288141B2 (ja) スパッタリングターゲット、それを用いたアモルファス酸化物薄膜の形成方法、及び薄膜トランジスタの製造方法
JP5883367B2 (ja) 酸化物焼結体およびスパッタリングターゲット、並びにその製造方法
KR101863467B1 (ko) 산화물 소결체 및 그 제조 방법, 스퍼터 타겟, 및 반도체 디바이스
TWI653352B (zh) Oxide sintered body, method of manufacturing the same, sputtering target, and semiconductor device
TW201300548A (zh) In2O3-SnO2-ZnO系濺鍍靶材
WO2014042139A1 (ja) 酸化物焼結体およびスパッタリングターゲット
JPWO2009142289A6 (ja) スパッタリングターゲット、それを用いたアモルファス酸化物薄膜の形成方法、及び薄膜トランジスタの製造方法
JP2021038143A (ja) 酸化物焼結体、スパッタリングターゲット、酸化物半導体膜及び薄膜トランジスタ
JP2011195924A (ja) In−Ga−Zn系複合酸化物焼結体およびその製造方法
TWI547573B (zh) 氧化物燒結體、濺鍍用靶、及使用其而獲得之氧化物半導體薄膜
US20190062900A1 (en) Oxide sintered body and sputtering target
WO2023145498A1 (ja) スパッタリングターゲット材及び酸化物半導体の製造方法
JP7403718B1 (ja) スパッタリングターゲット
TW201336803A (zh) 氧化物燒結體及濺鍍靶,以及其製造方法
JP6661041B2 (ja) 酸化物焼結体、スパッタリングターゲットおよび酸化物薄膜の製造方法
JP2011195406A (ja) 導電性酸化物焼結体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022532705

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21854618

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227046024

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21854618

Country of ref document: EP

Kind code of ref document: A1