WO2022030313A1 - 弁 - Google Patents

Download PDF

Info

Publication number
WO2022030313A1
WO2022030313A1 PCT/JP2021/027769 JP2021027769W WO2022030313A1 WO 2022030313 A1 WO2022030313 A1 WO 2022030313A1 JP 2021027769 W JP2021027769 W JP 2021027769W WO 2022030313 A1 WO2022030313 A1 WO 2022030313A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
flow path
pressure
valve body
cross
Prior art date
Application number
PCT/JP2021/027769
Other languages
English (en)
French (fr)
Inventor
敏智 神崎
渉 高橋
真弘 葉山
康平 福留
啓吾 白藤
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to EP21853892.4A priority Critical patent/EP4194725A4/en
Priority to US18/019,060 priority patent/US20230279952A1/en
Priority to CN202180057925.8A priority patent/CN116134254A/zh
Priority to JP2022541462A priority patent/JPWO2022030313A1/ja
Priority to KR1020237004906A priority patent/KR20230035661A/ko
Publication of WO2022030313A1 publication Critical patent/WO2022030313A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/42Valve seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/54Arrangements for modifying the way in which the rate of flow varies during the actuation of the valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1813Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1831Valve-controlled fluid connection between crankcase and suction chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/185Discharge pressure

Definitions

  • the present invention relates to a valve that variably controls the working fluid, for example, a valve that controls the discharge amount of a variable capacity compressor used in an automobile air conditioning system according to pressure.
  • Variable-capacity compressors used in air-conditioning systems such as automobiles include a rotary shaft that is driven to rotate by an engine, a swash plate that is variably connected to a swash plate at an inclination angle with respect to the rotary shaft, and a piston for compression that is connected to the swash plate. Etc. are provided.
  • the variable capacity compressor controls the discharge amount of the fluid by changing the stroke amount of the piston by changing the inclination angle of the swash plate.
  • the tilt angle of this swash plate is determined by the suction pressure Ps of the suction chamber that sucks the fluid, the discharge pressure Pd of the discharge chamber that discharges the fluid pressurized by the piston, using the capacity control valve that is driven to open and close by electromagnetic force. While using the control pressure Pc of the control chamber accommodating the swash plate, the pressure in the control chamber can be continuously changed by appropriately controlling the pressure.
  • the capacity control valve When the capacity variable compressor is continuously driven, the capacity control valve is energized and controlled by a control computer, and the valve body is moved in the axial direction by the electromagnetic force generated by the solenoid, and the discharge port through which the discharge fluid of the discharge pressure Pd passes. Normal control is performed to adjust the control pressure Pc in the control chamber of the variable capacity compressor by opening and closing a valve provided between the control port and the control port through which the control fluid of the control pressure Pc passes.
  • the pressure in the control chamber of the variable capacitance compressor is appropriately controlled, and the stroke amount of the piston is changed by continuously changing the tilt angle of the swash plate with respect to the rotation axis.
  • the amount of fluid discharged to the discharge chamber is controlled so that the air conditioning system has the target cooling capacity.
  • some capacity control valves open and close the poppet valve provided between the control port and the suction port to control the flow rate of the fluid flowing from the control port to the suction port (see Patent Document 1).
  • Such a capacity control valve controls the control pressure Pc in the control chamber of the variable capacity compressor by utilizing the pressure difference between the control pressure Pc and the suction pressure Ps whose pressure is lower than the control pressure Pc.
  • the control chamber of the variable capacity compressor is communicated with the discharge chamber of the variable capacity compressor via an orifice, and is controlled by constantly supplying a high pressure discharge pressure Pd to the control chamber through the orifice. The pressure Pc is adjusted.
  • the capacitance control valve of Patent Document 1 utilizes the pressure difference between the control pressure Pc and the suction pressure Ps, which are lower than the discharge pressure Pd, as the target for controlling the flow rate of the fluid by opening and closing the poppet valve.
  • a preset current is input to the solenoid under the influence of the discharge pressure Pd that is constantly supplied through the orifice to adjust the control pressure Pc.
  • the stroke of the valve body varied, and the valve opening sometimes deviated from the target value. From the research by the inventors, it was found that the stroke of the valve body is affected by passing the poppet valve through a refrigerant having a flow velocity close to the speed of sound, and by using this, the above variation can be suppressed.
  • the present invention has been made by paying attention to such a problem, and an object of the present invention is to provide a valve having high controllability.
  • valve of the present invention is used.
  • a valve housing with inflow and outflow ports The valve body driven by the drive source and A spring that urges the valve body in a direction opposite to the driving direction by the driving source,
  • the flow path on the downstream side of the poppet valve is provided with a reduction region in which the cross-sectional area of the flow path tends to decrease toward the downstream side.
  • the flow velocity of the fluid passing through the decreasing region in the flow path on the downstream side of the poppet valve decreases, and the downstream pressure of the poppet valve increases.
  • a force in the valve closing direction acts on the valve body, the valve closing characteristic is improved, and the poppet valve can be closed with a small current value.
  • the flow velocity of the fluid passing through the decreasing region in the flow path on the downstream side of the poppet valve increases and the downstream pressure decreases.
  • the minimum flow path cross-sectional area may be constant regardless of the stroke of the valve body. According to this, the pressure of the fluid in the valve chamber after passing through the reduction region can always be stabilized.
  • the cross-sectional area of the flow path may be continuously reduced. According to this, it is possible to stabilize the flow of the fluid passing through the reduced region in the flow path on the downstream side of the poppet valve and eliminate the stagnation.
  • the poppet valve may be composed of the valve seat having an inclined cross section and the valve body having a curved cross section. According to this, the flow of the fluid passing through the poppet valve can be stabilized in the tangential direction at the valve closing position or the throttle position of the valve body.
  • the inclined shape may be linear. According to this, it is possible to make the flow of the fluid passing through the poppet valve more stable in the tangential direction at the valve closing position or the throttle position of the valve body.
  • the inclined surface constituting the valve seat may be continuous with the inclined surface constituting the reduction region. According to this, it is easy to form a large flow path cross-sectional area on the upstream side of the reduced region.
  • the inclined surface constituting the valve seat may be formed on a valve seat member separate from the valve housing, and the inclined surface forming the reduction region may be formed on the valve housing. According to this, it is easy to set the cross-sectional area of the flow path, and it is possible to easily form a reduced region.
  • FIG. 5 is an enlarged cross-sectional view showing a reduced region in the flow path on the downstream side of the CS valve in the energized state (during normal control) of the capacity control valve of the first embodiment.
  • A is a figure schematically showing the valve closing characteristic in the supersonic flow of the capacity control valve of Example 1 in which the cross-sectional area of the flow path is decreasing, and
  • (b) is the figure which the cross-sectional area of a flow path becomes constant.
  • FIG. 5 is an enlarged cross-sectional view showing a reduced region in the flow path on the downstream side of the CS valve in the energized state (during normal control) of the capacity control valve of the second embodiment.
  • the capacity control valve according to the first embodiment will be described with reference to FIGS. 1 to 3.
  • the left and right sides when viewed from the front side of FIG. 1 will be described as the left and right sides of the capacitance control valve. More specifically, the left side of the paper on which the valve housing 10 is arranged will be described as the left side of the capacity control valve, and the right side of the paper on which the solenoid 80 is arranged will be described as the right side of the capacity control valve.
  • the capacity control valve of the present invention is incorporated in a variable capacity compressor (not shown) used in an air conditioning system such as an automobile to variably control the pressure of a working fluid (hereinafter, simply referred to as "fluid") which is a refrigerant. By doing so, the discharge amount of the variable capacity compressor is controlled and the air conditioning system is adjusted to reach the target cooling capacity.
  • a working fluid hereinafter, simply referred to as "fluid"
  • variable capacity compressor has a casing including a discharge chamber, a suction chamber, a control chamber, and a plurality of cylinders.
  • the variable capacity compressor is provided with a communication passage that directly connects the discharge chamber and the control chamber, and the fixed orifice 9 for balancing the pressure between the discharge chamber and the control chamber is provided in this communication passage. Is provided (see FIG. 1).
  • variable capacity compressor is equipped with a rotating shaft, a swash plate, and a plurality of pistons.
  • the rotating shaft is rotationally driven by an engine (not shown) installed outside the casing.
  • the swash plate is tiltably connected to the rotating shaft by a hinge mechanism in the control chamber.
  • a plurality of pistons are connected to a swash plate and fitted in a reciprocating manner in each cylinder.
  • a control chamber accommodating the suction pressure Ps of the suction chamber that sucks the fluid, the discharge pressure Pd of the discharge chamber that discharges the fluid pressurized by the piston, and the swash plate using the capacity control valve V1 that is driven to open and close by electromagnetic force.
  • the stroke amount of the piston is changed to control the discharge amount of the fluid by continuously changing the inclination angle of the swash plate by appropriately controlling the pressure in the control chamber while using the control pressure Pc of. ..
  • the capacitance control valve V1 of the first embodiment incorporated in the variable capacitance compressor adjusts the current energized to the coil 86 constituting the solenoid 80 as a drive source, and adjusts the current to be energized to the capacitance control valve V1.
  • the opening / closing control of the CS valve 50 as the poppet valve in the above is performed.
  • the control pressure Pc in the control chamber is variably controlled by controlling the fluid flowing out from the control chamber to the suction chamber.
  • the discharge fluid of the discharge pressure Pd in the discharge chamber is constantly supplied to the control chamber via the fixed orifice 9, and the control pressure Pc in the control chamber can be increased by closing the CS valve 50 in the capacity control valve V1. It has become like.
  • the CS valve 50 is composed of a CS valve body 51 as a valve body and a CS valve seat 40a as a valve seat.
  • the CS valve seat 40a is formed in a cylindrical valve seat member 40 that is press-fitted and fixed in the recess 10a of the valve housing 10.
  • the CS valve 50 opens and closes when the contact portion 51a formed at the left end of the CS valve body 51 in the axial direction comes into contact with and separates from the CS valve seat 40a in the axial direction.
  • the capacitance control valve V1 is mainly composed of a valve housing 10, a valve seat member 40, a CS valve body 51, and a solenoid 80.
  • the valve housing 10 and the valve seat member 40 are made of a metal material.
  • the CS valve body 51 is arranged in the valve housing 10 so as to be reciprocating in the axial direction.
  • the solenoid 80 is connected to the valve housing 10 and exerts a driving force on the CS valve body 51.
  • the CS valve body 51 is made of a metal material or a resin material. Further, the CS valve body 51 is composed of a large diameter portion 51b and a small diameter portion 51c.
  • the large diameter portion 51b is a columnar body having a constant cross section.
  • the small diameter portion 51c extends from the inner diameter side of the right end in the axial direction of the large diameter portion 51b to the right in the axial direction.
  • the CS valve body 51 also serves as a rod that is arranged through the coil 86 of the solenoid 80.
  • An axially left end surface of the CS valve body 51 that is, an axially left end surface of the large diameter portion 51b, is formed with a contact portion 51a having a curved cross section that bulges toward the CS valve seat 40a.
  • the curved surface shape of the contact portion 51a is formed by a part of a spherical surface having a constant radius of curvature.
  • the contact portion 51a may not be formed by a part of a spherical surface having a constant radius of curvature as long as it has a curved surface shape that allows it to be seated on the CS valve seat 40a.
  • the solenoid 80 is mainly composed of a casing 81, a center post 82, a CS valve body 51, a movable iron core 84, a coil spring 85, and a coil 86 for excitation.
  • the casing 81 has an opening 81a that opens to the left in the axial direction.
  • the center post 82 is inserted from the left side in the axial direction with respect to the opening 81a of the casing 81 and is arranged between the inner diameter side of the casing 81 and the inner diameter side of the valve housing 10 to form a substantially cylindrical shape.
  • the CS valve body 51 is inserted through the center post 82 and can reciprocate in the axial direction, and its left end portion in the axial direction is arranged in the valve housing 10.
  • the movable iron core 84 is fitted and fixed at the right end portion in the axial direction of the CS valve body 51.
  • the coil spring 85 is provided between the center post 82 and the movable iron core 84, and urges the movable iron core 84 to the right in the axial direction, which is the valve opening direction of the CS valve 50.
  • the coil 86 is wound around the outside of the center post 82 via a bobbin.
  • the center post 82 includes a cylindrical portion 82b and an annular flange portion 82d.
  • the cylindrical portion 82b is formed of a rigid body made of a magnetic material such as iron or silicon steel, and has an insertion hole 82c extending in the axial direction through which the CS valve body 51 is inserted.
  • the flange portion 82d extends in the outer diameter direction from the outer peripheral surface of the left end portion in the axial direction of the cylindrical portion 82b.
  • the valve housing 10 is formed with a Ps port 11 as an outflow port.
  • the Ps port 11 penetrates in the radial direction and communicates with the suction chamber of the variable capacity compressor.
  • a recess 10a is formed on the left side of the valve housing 10 in the axial direction.
  • a tubular valve seat member 40 is press-fitted into the recess 10a from the left in the axial direction.
  • the valve housing 10 is formed with a Pc port as an inflow port.
  • the valve seat member 40 is press-fitted and fixed in the recess 10a, and the Pc port communicates with the control chamber of the variable capacity compressor by a through hole 40b that penetrates the valve seat member 40 in the axial direction.
  • a valve chamber 20 is formed inside the valve housing 10, and a contact portion 51a of the CS valve body 51 is arranged in the valve chamber 20 so as to be reciprocating in the axial direction. Further, the Ps port 11 extends from the outer peripheral surface of the valve housing 10 in the inner diameter direction and communicates with the valve chamber 20.
  • a flow path connecting the control chamber and the suction chamber of the variable capacity compressor is formed inside the valve housing 10 by the through hole 40b of the valve seat member 40, the valve chamber 20, and the Ps port 11. ing.
  • a guide hole 10c is formed on the inner peripheral surface of the valve housing 10.
  • the guide hole 10c is slidable on the outer peripheral surface 51d (see FIG. 3) of the large diameter portion 51b of the CS valve body 51 on the right side in the axial direction in which the solenoid 80 is attached to the valve chamber 20.
  • a minute gap is formed between the inner peripheral surface of the guide hole 10c and the outer peripheral surface 51d of the large diameter portion 51b of the CS valve body 51 by slightly separating them in the radial direction. Is smoothly relative to the valve housing 10 in the axial direction.
  • the recess 10a of the valve housing 10 has an inner diameter R1 larger than the inner diameter R2 of the valve chamber 20 (R1> R2), so that the bottom surface of the recess 10a is formed by the valve seat member 40. It constitutes a receiving portion 10b that can come into contact with the flat surface 40c on the right side in the axial direction.
  • the valve housing 10 is formed with a recess 10d recessed to the left in the axial direction on the right side in the axial direction, and the flange portion 82d of the center post 82 is substantially sealed from the right side in the axial direction. ⁇ It is fixed. Further, the casing 81 is integrally connected by being inserted and fixed in a substantially sealed shape from the right side in the axial direction.
  • the end face on the right side in the axial direction of the valve housing 10 and the center post are on the bottom surface of the recess 81b formed on the left side in the axial direction of the casing 81.
  • the side surfaces of the flange portion 82d of the 82 on the right side in the axial direction come into contact with each other. Further, a gap is formed between the bottom surface of the recess 10d of the valve housing 10 and the end surface on the left side in the axial direction of the center post 82 in the axial direction.
  • valve housing 10 is formed with a through hole 21.
  • the through hole 21 extends axially between the axially left end surface of the valve housing 10 and the bottom of the recess 10d.
  • the through hole 21 is composed of a small diameter hole portion 211 and a large diameter hole portion 212.
  • the left end of the small-diameter hole portion 211 in the axial direction communicates with the control chamber of the variable capacity compressor.
  • the large-diameter hole portion 212 continuously extends from the right end in the axial direction of the small-diameter hole portion 211 and has a larger diameter than the small-diameter hole portion 211.
  • the axially right end of the large diameter hole 212 is open to a gap formed between the bottom surface of the recess 10d and the axially left end surface of the center post 82.
  • the control fluid of the control pressure Pc is supplied from the control chamber of the variable capacity compressor to the inside of the small diameter hole portion 211 of the through hole 21 and the through hole 40b of the valve seat member 40.
  • a ball-shaped actuating valve body 31 and an axial right end are fixed to the axial left end surface of the center post 82 in the large-diameter hole portion 212 of the through hole 21, and the axial left end is axially right to the actuating valve body 31.
  • a return spring 32 that abuts from the side is arranged.
  • the actuating valve body 31 is urged to the left in the axial direction by the return spring 32.
  • the actuated valve body 31 and the return spring 32 constitute a pressure actuated valve 30 that controls communication between the control chamber of the variable capacity compressor and the space S inside the casing 81 in the through hole 21.
  • the operating valve body 31 of the pressure operating valve 30 resists the urging force of the return spring 32 and the pressure of the fluid in the space S inside the casing 81.
  • the valve seat 213 having an inclined cross section formed at the connection portion between the right end in the axial direction of the small diameter hole portion 211 of the through hole 21 and the left end in the axial direction of the large diameter hole portion 212.
  • the pressure actuated valve 30 is opened.
  • control chamber of the variable capacity compressor and the space S inside the casing 81 communicate with each other through the through hole 21, and the space S inside the casing 81 passes through the through hole 21 from the control chamber of the variable capacity compressor.
  • the control fluid of the control pressure Pc is supplied to, and the difference between the pressure of the fluid in the space S inside the casing 81 and the pressure of the control fluid in the through hole 40b of the valve seat member 40 becomes small, and the CS valve body 51 is moved to the left in the axial direction. In other words, it can be operated smoothly in the valve closing direction, and the responsiveness to control at high output of the variable capacity compressor can be improved.
  • the minute gap between the inner peripheral surface of the guide hole 10c and the outer peripheral surface of the large diameter portion 51b of the CS valve body 51 functions as a throttle, so that the space S inside the casing 81 is formed.
  • the fluid can be gently released to the Ps port 11, and the pressure difference between the pressure of the fluid in the valve chamber 20 and the pressure of the fluid in the space S inside the casing 81 is maintained when the valve chamber 20 is not used for a long time.
  • valve seat member 40 As shown in FIG. 2, the valve seat member 40 is made of a metal material that is harder than the metal material used for the valve housing 10. Further, the valve seat member 40 is made of a material different from that of the CS valve body 51.
  • valve seat member 40 has a cylindrical shape with a through hole 40b formed through the valve seat member 40 in the axial direction.
  • the annular flat surface 40c and the flat surface 40c are connected from the inner diameter side from the outer diameter side to the inner diameter side, and the diameter is gradually reduced toward the left in the axial direction.
  • the valve seat 40a is formed. That is, the CS valve seat 40a is formed on the edge of the through hole 40b as a through flow path, and is composed of a tapered surface in which an inclined surface having a linear cross section extends in the circumferential direction.
  • valve seat member 40 is inserted into the recess 10a by bringing the flat surface 40c on the right side in the axial direction of the valve seat member 40 into contact with the receiving portion 10b formed by the bottom surface of the recess 10a in the axial direction (see FIG. 3).
  • the degree of advancement can be specified, and the sealing property between the valve housing 10 and the valve seat member 40 can be improved.
  • the outer diameter end of the tapered surface constituting the CS valve seat 40a is arranged so as to be connected to the left end in the axial direction of the inner peripheral surface 10e in the valve chamber 20 of the valve housing 10.
  • FIG. 3 shows a state in which the CS valve body 51 is stroked to a throttle position near the closed position during normal control of the capacitance control valve V1.
  • the flow path C1 constitutes the CS valve seat 40a rather than the flow path cross-sectional area A1 between the inner diameter end on the tapered surface constituting the CS valve seat 40a and the contact portion 51a of the CS valve body 51.
  • the flow path cross-sectional area A2 between the tapered surface and the outer diameter end of the contact portion 51a of the CS valve body 51 is small (A1> A2), and the flow path cross-sectional area tends to decrease toward the downstream side (dA ⁇ . It constitutes a reduction area of 0).
  • the inner peripheral surface 10e of the valve housing 10 and the outer peripheral surface 51d of the CS valve body 51 are arranged in parallel, so that the flow path cross-sectional area A3 is constant.
  • the reduced region is formed within the stroke range of the contact portion 51a of the CS valve body 51 in the flow path on the downstream side of the CS valve 50.
  • channel cross-sectional area of the channel C1 continuously decreases toward the downstream side.
  • control pressure Pc will be described as being controlled within a range in which the above-mentioned pressure actuating valve 30 is maintained to be closed.
  • the relational expression of cross-sectional area and pressure is shown below for the effect of area change on isentropic flow.
  • the pressure difference between the control pressure Pc in the through hole 40b of the valve seat member 40 and the suction pressure Ps in the Ps port 11, that is, the Pc-Ps differential pressure is large, and the CS valve 50 is used.
  • M> 1 a supersonic flow
  • a decreasing region is formed in the flow path on the downstream side of the CS valve 50, where the cross-sectional area of the flow path tends to decrease (dA ⁇ 0) as it goes to the downstream side.
  • the flow velocity of the fluid passing through the flow path C1 decreases and the pressure increases.
  • the flow path C2 which is continuous downstream of the flow path C1 and has a constant flow path cross-sectional area, it flows stably without substantially changing the flow velocity and pressure, and flows into the Ps port 11 (FIG. 3).
  • the Pc-Ps differential pressure is small and the fluid passing through the CS valve 50 is a subsonic flow (M ⁇ 1), it passes through the flow path C1 forming the decreasing region in the flow path on the downstream side of the CS valve 50.
  • the flow velocity of the fluid increases and the pressure decreases.
  • the flow path C2 which is continuous downstream of the flow path C1 and has a constant flow path cross-sectional area, it flows stably without substantially changing the flow velocity and pressure, and flows into the Ps port 11 (FIG. 3).
  • the downstream pressure of the CS valve 50 that is, the pressure of the fluid in the valve chamber 20, is constantly supplied via the fixed orifice 9 (see FIG. 1) in order to adjust the control pressure Pc in the control chamber of the variable capacity compressor. Since it is easily affected by the discharge pressure Pd, the pressure is less likely to decrease as compared with the inside of the Ps port 11.
  • the fluid passes through the decreasing region in the supersonic flow, so that the downstream pressure of the CS valve 50 can be increased in addition to the influence of the discharge pressure Pd.
  • the pressure of the fluid in the space S (see FIG. 1) inside the casing 81 which changes based on the pressure difference from the pressure of the fluid in 20, that is, the force due to the back pressure acting on the CS valve body 51 can be further increased. ..
  • the downstream pressure of the CS valve 50 can be reduced by passing the fluid through the decreasing region in a subsonic flow, the inside of the casing 81 changes based on the pressure difference with the pressure of the fluid in the valve chamber 20. It is possible to suppress the influence of the discharge pressure Pd on the pressure of the fluid in the space S, that is, the force due to the back pressure acting on the CS valve body 51.
  • the flow path cross-sectional area tends to decrease (dA ⁇ 0) in the flow path on the downstream side of the CS valve 50 toward the downstream side.
  • a flow path C1 is provided as a reduction region.
  • the valve closing characteristic of the CS valve 50 is improved, and the CS valve 50 can be closed with a small current value.
  • the valve cannot be closed when the discharge pressure Pd is high, in other words, a large current is applied to the valve closing. It takes.
  • the influence of the discharge pressure Pd on the force due to the back pressure acting on the CS valve body 51 can be suppressed, the variation in the stroke of the CS valve body 51 with respect to the current value input to the solenoid 80 is suppressed, and the CS valve is suppressed.
  • the opening degree of 50 can be adjusted accurately.
  • the flow path C1 which is a decreasing region where the flow path cross-sectional area tends to decrease (dA ⁇ 0) as the flow path cross-sectional area goes to the downstream side is provided in the flow path on the downstream side of the CS valve 50, and passes through the CS valve 50.
  • the flow path C1 as the reduction region can stabilize the fluid flow and eliminate the stagnation by continuously reducing the flow path cross-sectional area toward the downstream side.
  • the flow velocity and pressure of the fluid passing through the flow path C1 can be changed at an accelerating rate.
  • the CS valve 50 is composed of a CS valve seat 40a having an inclined cross section and a contact portion 51a of the CS valve body 51 having a curved cross section, and the tapered surface and the CS valve body 51 constituting the CS valve seat 40a. Since the flow path C1 as a reduction region is formed between the contact portion 51a and the contact portion 51a, the flow of the fluid passing through the CS valve 50 at the valve closing position or the throttle position of the CS valve body 51 is tangentially directed (FIG. 3). It can be stabilized toward (see solid arrow).
  • the CS valve seat 40a is composed of a tapered surface in which an inclined surface having a linear cross section extends in the circumferential direction, and the flow of fluid passing through the CS valve 50 at the valve closing position or the throttle position of the CS valve body 51, in detail. Can stabilize the fluid flow in the flow path C1 in the tangential direction and guide the fluid flow along the inclined surface, so that the fluid flow can be stabilized to the downstream continuous flow path C2. can.
  • the tapered surface constituting the CS valve seat 40a may exist downstream along the normal line of the contact portion 51a of the CS valve body 51, whereby the fluid passing through the reduced region advances linearly. Therefore, it is difficult to obstruct the flow velocity of the fluid close to the speed of sound.
  • the cross-sectional area of the flow path is constant up to the opening on the valve chamber 20 side of the Ps port 11, and the flow rate of the flowing fluid is stabilized without substantially changing the flow velocity and pressure. Therefore, the pressure of the fluid in the valve chamber 20 is likely to be stable.
  • the flow path C1 can form a reduced region by using the tapered surface constituting the CS valve seat 40a in the CS valve 50 as a poppet valve and the contact portion 51a of the CS valve body 51, the capacity is controlled.
  • the structure of the valve V1 can be simplified.
  • the CS valve seat 40a is formed on the valve seat member 40 that is separate from the valve housing 10, it is possible to improve the processing accuracy of the tapered surface for forming the reduced region.
  • the flow path C2 continuous downstream of the flow path C1 is a flow path in which the inner peripheral surface 10e of the valve housing 10 and the outer peripheral surface 51d of the CS valve body 51 are arranged in parallel.
  • the mode in which the cross-sectional area is constant has been described, but the present invention is not limited to this, and the flow path C2 also continuously constitutes a decreasing region in which the flow path cross-sectional area tends to decrease (dA ⁇ 0) as it goes downstream.
  • the shapes of the inner peripheral surface 10e of the valve housing 10 and the outer peripheral surface 51d of the CS valve body 51 may be changed.
  • the capacity control valve according to the second embodiment will be described with reference to FIGS. 6 to 8. It should be noted that the description of the same configuration as that of the first embodiment and the overlapping configuration will be omitted.
  • the valve housing 110 is formed with a Ps port 111 as an outflow port that penetrates in the radial direction and communicates with the suction chamber of the variable capacity compressor. Has been done.
  • a recess 110a is formed on the left side of the valve housing 110 in the axial direction.
  • the cylindrical valve seat member 40 is press-fitted into the recess 110a from the left side in the axial direction.
  • the valve seat member 140 is press-fitted and fixed in the recess 110a, so that the inflow port communicates with the control chamber of the variable capacity compressor by the through hole 140b that penetrates the valve seat member 140 in the axial direction.
  • Pc port is formed as.
  • a valve chamber 120 is formed inside the valve housing 110, and a contact portion 51a of the CS valve body 51 is arranged in the valve chamber 120 so as to be reciprocating in the axial direction.
  • the Ps port 111 extends from the outer peripheral surface of the valve housing 110 in the inner diameter direction and communicates with the valve chamber 120.
  • the valve chamber 120 is formed with a tapered surface 110e that is continuous with the left end of the opening of the Ps port 111 on the valve chamber 120 side in the axial direction and gradually expands in diameter toward the left in the axial direction (see FIG. 7).
  • the concave portion 110a of the valve housing 110 is formed so that the inner diameter R11 is larger than the inner diameter R12 at the left end of the tapered surface 110e constituting the valve chamber 120 in the axial direction (R11> R12).
  • the bottom surface of the recess 110a constitutes a receiving portion 110b capable of contacting the flat surface 140c on the right side in the axial direction of the valve seat member 140.
  • the valve seat member 140 has a cylindrical shape with a through hole 140b penetrating in the axial direction.
  • an annular flat surface 140c and a flat surface 140c are connected from the inner diameter side from the outer diameter side to the inner diameter side, and the diameter is gradually reduced toward the left in the axial direction.
  • a CS valve seat 140a as a seat is formed. That is, the CS valve seat 140a is formed on the edge of the through hole 140b as a through flow path, and is composed of a tapered surface in which an inclined surface having a linear cross section extends in the circumferential direction.
  • valve seat member 140 is inserted into the recess 110a by bringing the flat surface 140c on the right side in the axial direction of the valve seat member 140 into contact with the receiving portion 110b formed by the bottom surface of the recess 110a in the axial direction (see FIG. 8).
  • the degree of advancement can be specified, and the sealing property between the valve housing 110 and the valve seat member 140 can be improved.
  • the outer diameter end of the tapered surface constituting the CS valve seat 40a is arranged so as to be connected to the axial left end of the tapered surface 110e in the valve chamber 120 of the valve housing 110.
  • the flow path C101 formed between the tapered surface constituting the CS valve seat 140a of the valve seat member 140 and the contact portion 51a of the CS valve body 51, and the CS valve seat 140a of the valve seat member 140 are configured.
  • a flow path on the downstream side of the CS valve 50 extending to the opening on the valve chamber 120 side of the Ps port 111 is formed (see FIG. 8). Note that FIG. 8 shows a state in which the CS valve body 51 is stroked to a throttle position near the closed position during normal control of the capacitance control valve V2.
  • the flow path C101 constitutes the flow path cross-sectional area A101 and the CS valve seat 140a between the inner diameter end on the tapered surface constituting the CS valve seat 140a and the contact portion 51a of the CS valve body 51.
  • the flow path cross-sectional area A104 on the downstream side is smaller than the flow path cross-sectional area A103 on the upstream side between the tapered surface 110e of the valve housing 110 and the contact portion 51a of the CS valve body 51 (A103). > A104), forming a decreasing region in which the flow path cross-sectional area tends to decrease (dA ⁇ 0) toward the downstream side.
  • the flow path cross-sectional area of the flow path C102 continuously decreases toward the downstream side, and in the decrease region, the flow path cross-sectional area A104, that is, the minimum flow path cross-sectional area, regardless of the stroke of the CS valve body 51. Is constant.
  • the flow path cross-sectional area tends to decrease (dA> 0) toward the downstream side.
  • the flow path C102 is provided.
  • M> 1 the fluid passing through the CS valve 50
  • the flow velocity of the fluid passing through the flow path C102 decreases, the pressure increases, and the force in the valve closing direction is applied to the CS valve body 51.
  • the force due to the back pressure acting on the CS valve body 51 affected by the discharge pressure Pd can be further increased.
  • the valve closing characteristic of the CS valve 50 is improved, and the CS valve 50 can be closed with a small current value.
  • the CS valve body 51 has a valve opening direction.
  • the force of. As a result, the influence of the discharge pressure Pd on the downstream pressure of the CS valve 50 can be suppressed. In this way, the influence of the discharge pressure Pd on the force due to the back pressure acting on the CS valve body 51 can be suppressed, the variation in the stroke of the CS valve body 51 with respect to the current value input to the solenoid 80 is suppressed, and the CS valve is suppressed.
  • the opening degree of 50 can be adjusted accurately.
  • the flow path C102 which is a decreasing region in which the flow path cross-sectional area tends to decrease (dA ⁇ 0) as the flow path cross-sectional area goes to the downstream side, is provided in the flow path on the downstream side of the CS valve 50, and passes through the CS valve 50.
  • the flow path C102 as the reduction region has a constant minimum flow path cross-sectional area regardless of the stroke of the CS valve body 51, the pressure of the fluid in the valve chamber 120 after passing through the reduction region is always stabilized. be able to.
  • the tapered surface 110e of the valve housing 110 constituting the flow path C102 is configured as a tapered surface extending linearly so as to be continuous with the left end in the axial direction of the opening on the valve chamber 120 side of the Ps port 111, the Ps port It is easy to guide the fluid to the inside of 111 while acceleratingly changing the flow velocity and pressure of the fluid.
  • the flow of fluid in the flow path on the downstream side of the CS valve 50 can be stabilized and stagnation can be eliminated, and the downstream pressure of the CS valve 50, that is, the pressure of the fluid in the valve chamber 120 can be further stabilized. ..
  • the flow path C101 having a constant flow path cross-sectional area is formed between the tapered surface constituting the CS valve seat 40a constituting the CS valve 50 and the contact portion 51a of the CS valve body 51, the CS valve body The flow rate and pressure of the fluid passing through the CS valve 50 can be stabilized in the tangential direction (see the solid arrow in FIG. 8) without substantially changing the flow velocity and pressure of the fluid passing through the CS valve 50 at the valve closing position or the throttle position of 51.
  • the tapered surface constituting the CS valve seat 40a is continuous with the tapered surface 110e of the valve housing 110 constituting the flow path C102 which is a reduction region, the continuous portion of the flow paths C101 and C102, that is, the reduction region. It is easy to form a large flow path cross-sectional area on the upstream side of a certain flow path C102.
  • the CS valve seat 140a is formed on the valve seat member 140 separate from the valve housing 110 and the tapered surface 110e forming the reduction region is formed on the valve housing 110, the flow in the flow paths C101 and C102. It is easy to set the road cross-sectional area, and it is possible to easily form a reduced region.
  • the configuration in which the cross-sectional area of the flow path C101 formed upstream of the flow path C102, which is a decreasing region, is constant has been described, but the present invention is not limited to this, and the flow of the flow path C101 is not limited to this.
  • the road cross-sectional area may tend to increase toward the downstream side.
  • valve housing and the valve seat member have been described as being made of a metal material, but the present invention is not limited to this, and the valve seat member may be harder than the hardness inside the flow path of the valve housing.
  • the valve seat member may be formed of a resin material or the like.
  • the valve seat member is formed of a material different from that of the valve body.
  • the contact portion with the CS valve seat does not have to be formed in a curved cross-sectional shape.
  • the tapered surface constituting the CS valve seat is not limited to a straight line, but may be an arc shape.
  • the decreasing region is not limited to the one in which the channel cross-sectional area continuously decreases due to the tapered surface, and may be one in which the channel cross-sectional area tends to decrease stepwise due to the stepped surface.
  • the capacity control valve of the above embodiment has been described by taking a CS valve as a poppet valve as an example, but the poppet valve opens and closes a flow path between a Pd port as an inflow port and a Pc port as an outflow port. It may be a DC valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Lift Valve (AREA)

Abstract

制御性が高い弁を提供する。 流入ポート40bおよび流出ポート11が形成されたバルブハウジング10と、駆動源80により駆動される弁体51と、弁体51を駆動源80による駆動方向と反対方向に付勢するスプリング85と、貫通流路40bの縁に形成された弁座40aと弁体51とにより構成されるポペット弁50とを備え、弁体51の移動により流量を制御する弁V1であって、ポペット弁50の下流側の流路C1には、下流側へ行くにしたがって流路断面積が減少傾向となる減少領域が設けられている。

Description

 本発明は、作動流体を可変制御する弁に関し、例えば、自動車の空調システムに用いられる容量可変型圧縮機の吐出量を圧力に応じて制御する弁に関する。
 自動車等の空調システムに用いられる容量可変型圧縮機は、エンジンにより回転駆動される回転軸、回転軸に対して傾斜角度を可変に連結された斜板、斜板に連結された圧縮用のピストン等を備えている。容量可変型圧縮機は、斜板の傾斜角度を変化させることにより、ピストンのストローク量を変化させて流体の吐出量を制御するものである。この斜板の傾斜角度は、電磁力により開閉駆動される容量制御弁を用いて、流体を吸入する吸入室の吸入圧力Ps、ピストンにより加圧された流体を吐出する吐出室の吐出圧力Pd、斜板を収容した制御室の制御圧力Pcを利用しつつ、制御室内の圧力を適宜制御することで連続的に変化させ得るようになっている。
 容量可変型圧縮機の連続駆動時において、容量制御弁は、制御コンピュータにより通電制御され、ソレノイドで発生する電磁力により弁体を軸方向に移動させ、吐出圧力Pdの吐出流体が通過する吐出ポートと制御圧力Pcの制御流体が通過する制御ポートとの間に設けられる弁を開閉して容量可変型圧縮機の制御室の制御圧力Pcを調整する通常制御を行っている。
 容量制御弁の通常制御時においては、容量可変型圧縮機における制御室の圧力が適宜制御されており、回転軸に対する斜板の傾斜角度を連続的に変化させることにより、ピストンのストローク量を変化させて吐出室に対する流体の吐出量を制御し、空調システムが目標の冷却能力となるように調整している。
 また、容量制御弁には、制御ポートと吸入ポートとの間に設けられるポペット弁を開閉して制御ポートから吸入ポートに流れる流体の流量を制御するものもある(特許文献1参照)。このような容量制御弁は、制御圧力Pcと該制御圧力Pcよりも圧力が低い吸入圧力Psとの圧力差を利用して容量可変型圧縮機の制御室の制御圧力Pcを制御している。尚、容量可変型圧縮機の制御室は、オリフィスを介して容量可変型圧縮機の吐出室と連通されており、高圧の吐出圧力Pdがオリフィスを通って制御室に常時供給されることにより制御圧力Pcが調整されている。
特開2015-075054号公報(第8頁~第10頁、第2図)
 特許文献1の容量制御弁は、ポペット弁の開閉により流体の流量を制御する対象として、吐出圧力Pdよりも圧力が低い制御圧力Pcと吸入圧力Psの圧力差を利用するものであることから、ポペット弁を通過する流体の流量を少なくすることができるが、制御圧力Pcの調整のためにオリフィスを通って常時供給される吐出圧力Pdに影響されてソレノイドに予め設定された電流を入力しても弁体のストロークにばらつきが生じ、弁の開度が目標値からずれてしまうことがあった。発明者らの研究から、ポペット弁を音速に近い流速の冷媒を通過させることで弁体のストロークに影響を与え、これを利用することで上記ばらつきを抑制できることが判明した。
 本発明は、このような問題点に着目してなされたもので、制御性が高い弁を提供することを目的とする。
 前記課題を解決するために、本発明の弁は、
 流入ポートおよび流出ポートが形成されたバルブハウジングと、
 駆動源により駆動される弁体と、
 前記弁体を前記駆動源による駆動方向と反対方向に付勢するスプリングと、
 貫通流路の縁に形成された弁座と前記弁体とにより構成されるポペット弁とを備え、前記弁体の移動により流量を制御する弁であって、
 前記ポペット弁の下流側の流路には、下流側へ行くにしたがって流路断面積が減少傾向となる減少領域が設けられている。
 これによれば、ポペット弁を通過する流体が超音速流れであるとき、ポペット弁の下流側の流路における減少領域を通過した流体は、流速が低下し、ポペット弁の下流圧が上昇する。これにより、弁体には閉弁方向の力が作用し、閉弁特性が向上し、小さい電流値でポペット弁を閉塞することができる。また、ポペット弁を通過する流体が亜音速流れであるとき、ポペット弁の下流側の流路で減少領域を通過した流体は、流速が上昇し、下流圧が低下する。これにより、弁体には開弁方向の力が作用し、弁体に作用する背圧による力に対する上流側の流体の圧力の影響を抑えることができ、ソレノイドに入力される電流値に対する弁体のストロークのばらつきが抑制される。これらにより、ポペット弁の開度を精度よく調整することができる。
 前記減少領域は、前記弁体のストロークに係らず最小流路断面積が一定であってもよい。
 これによれば、減少領域を通過した後の弁室内における流体の圧力を常に安定させることができる。
 前記減少領域は、流路断面積が連続的に減少してもよい。
 これによれば、ポペット弁の下流側の流路で減少領域を通過する流体の流れを安定させて淀みをなくすことができる。
 前記ポペット弁は、断面傾斜形状の前記弁座と、断面曲面形状の前記弁体により構成されていてもよい。
 これによれば、弁体の閉弁位置もしくは絞り位置においてポペット弁を通過する流体の流れを接線方向に向けて安定させることができる。
 前記傾斜形状は、直線状であってもよい。
 これによれば、弁体の閉弁位置もしくは絞り位置においてポペット弁を通過する流体の流れを接線方向に向けてより安定させることができる。
 前記弁座を構成する傾斜面は、前記減少領域を構成する傾斜面と連続していてもよい。
 これによれば、減少領域の上流側における流路断面積を大きく形成しやすい。
 前記弁座を構成する傾斜面は、前記バルブハウジングと別体の弁座部材に形成され、前記減少領域を構成する傾斜面は、前記バルブハウジングに形成されていてもよい。
 これによれば、流路断面積の設定を行いやすく、減少領域を容易に形成することができる。
本発明に係る実施例1の容量制御弁の非通電状態においてCS弁が開放された様子を示す断面図である。 実施例1の容量制御弁のバルブハウジングに弁座部材が圧入される様子を示す断面図である。 実施例1の容量制御弁の通電状態(通常制御時)においてCS弁の下流側の流路における減少領域を示す拡大断面図である。 (a)流路断面積が減少傾向となっている実施例1の容量制御弁の超音速流れにおける閉弁特性を模式的に示す図であり、(b)は流路断面積が一定となっている比較例の閉弁特性を模式的に示す図である。 (a)流路断面積が減少傾向となっている実施例1の容量制御弁の亜音速流れにおける閉弁特性を模式的に示す図であり、(b)は流路断面積が一定となっている比較例の閉弁特性を模式的に示す図である。 本発明に係る実施例2の容量制御弁の非通電状態においてCS弁が開放された様子を示す断面図である。 実施例2の容量制御弁のバルブハウジングに弁座部材が圧入される様子を示す断面図である。 実施例2の容量制御弁の通電状態(通常制御時)においてCS弁の下流側の流路における減少領域を示す拡大断面図である。
 本発明に係る弁を実施するための形態を実施例に基づいて以下に説明する。尚、実施例は容量制御弁を例にして説明するが、その他の用途にも適用可能である。
 実施例1に係る容量制御弁につき、図1から図3を参照して説明する。以下、図1の正面側から見て左右側を容量制御弁の左右側として説明する。詳しくは、バルブハウジング10が配置される紙面左側を容量制御弁の左側、ソレノイド80が配置される紙面右側を容量制御弁の右側として説明する。
 本発明の容量制御弁は、自動車等の空調システムに用いられる図示しない容量可変型圧縮機に組み込まれ、冷媒である作動流体(以下、単に「流体」と表記する。)の圧力を可変制御することにより、容量可変型圧縮機の吐出量を制御し空調システムを目標の冷却能力となるように調整している。
 先ず、容量可変型圧縮機について説明する。容量可変型圧縮機は、吐出室と、吸入室と、制御室と、複数のシリンダと、を備えるケーシングを有している。尚、容量可変型圧縮機には、吐出室と制御室とを直接連通する連通路が設けられており、この連通路には吐出室と制御室との圧力を平衡調整させるための固定オリフィス9が設けられている(図1参照)。
 また、容量可変型圧縮機は、回転軸と、斜板と、複数のピストンと、を備えている。回転軸は、ケーシングの外部に設置される図示しないエンジンにより回転駆動されている。斜板は、制御室内において回転軸に対してヒンジ機構により傾斜可能に連結されている。複数のピストンは、斜板に連結され各々のシリンダ内において往復動自在に嵌合されている。電磁力により開閉駆動される容量制御弁V1を用いて、流体を吸入する吸入室の吸入圧力Ps、ピストンにより加圧された流体を吐出する吐出室の吐出圧力Pd、斜板を収容した制御室の制御圧力Pcを利用しつつ、制御室内の圧力を適宜制御することで斜板の傾斜角度を連続的に変化させることにより、ピストンのストローク量を変化させて流体の吐出量を制御している。
 図1に示されるように、容量可変型圧縮機に組み込まれる本実施例1の容量制御弁V1は、駆動源としてのソレノイド80を構成するコイル86に通電する電流を調整し、容量制御弁V1におけるポペット弁としてのCS弁50の開閉制御を行っている。これにより、制御室から吸入室に流出する流体を制御することで制御室内の制御圧力Pcを可変制御している。尚、吐出室の吐出圧力Pdの吐出流体が固定オリフィス9を介して制御室に常時供給されており、容量制御弁V1におけるCS弁50を閉塞させることにより制御室内の制御圧力Pcを上昇させられるようになっている。
 本実施例1の容量制御弁V1において、CS弁50は、弁体としてのCS弁体51と、弁座としてのCS弁座40aとにより構成されている。CS弁座40aは、バルブハウジング10の凹部10aに圧入固定される筒状の弁座部材40に形成されている。CS弁50は、CS弁体51の軸方向左端に形成される当接部51aがCS弁座40aに軸方向に接離することで、開閉するようになっている。
 次いで、容量制御弁V1の構造について説明する。図1に示されるように、容量制御弁V1は、バルブハウジング10および弁座部材40と、CS弁体51と、ソレノイド80と、から主に構成されている。バルブハウジング10および弁座部材40は、金属材料により形成されている。CS弁体51は、バルブハウジング10内に軸方向に往復動自在に配置されている。ソレノイド80は、バルブハウジング10に接続されCS弁体51に駆動力を及ぼしている。
 図1に示されるように、CS弁体51は、金属材料または樹脂材料により形成されている。また、CS弁体51は、大径部51bと、小径部51cと、から構成されている。大径部51bは、断面一定の柱状体である。小径部51cは、大径部51bの軸方向右端の内径側から軸方向右方に延出している。また、CS弁体51は、ソレノイド80のコイル86に対して貫通配置されるロッドを兼ねている。
 CS弁体51の軸方向左側の端面、すなわち大径部51bの軸方向左側の端面には、CS弁座40aに向けて膨出する断面曲面形状の当接部51aが形成されている。詳しくは、当接部51aの曲面形状は、一定の曲率半径を持つ球面の一部により形成されている。尚、当接部51aは、CS弁座40aに着座可能な曲面形状であれば、一定の曲率半径を持つ球面の一部により形成されていなくてもよい。
 図1に示されるように、ソレノイド80は、ケーシング81と、センタポスト82と、CS弁体51と、可動鉄心84と、コイルスプリング85と、励磁用のコイル86と、から主に構成されている。ケーシング81は、軸方向左方に開放する開口部81aを有している。センタポスト82は、ケーシング81の開口部81aに対して軸方向左方から挿入されケーシング81の内径側とバルブハウジング10の内径側との間に配置され、略円筒形状をなしている。CS弁体51は、センタポスト82に挿通され軸方向に往復動自在、かつその軸方向左端部がバルブハウジング10内に配置されている。可動鉄心84は、CS弁体51の軸方向右端部が挿嵌・固定されている。コイルスプリング85は、センタポスト82と可動鉄心84との間に設けられ可動鉄心84をCS弁50の開弁方向である軸方向右方に付勢している。コイル86は、センタポスト82の外側にボビンを介して巻き付けられている。
 センタポスト82は、円筒部82bと、環状のフランジ部82dと、を備えている。円筒部82bは、鉄やケイ素鋼等の磁性材料である剛体から形成され、軸方向に延びCS弁体51が挿通される挿通孔82cが形成されている。フランジ部82dは、円筒部82bの軸方向左端部の外周面から外径方向に延びている。
 図1に示されるように、バルブハウジング10には、流出ポートとしてのPsポート11が形成されている。Psポート11は、径方向に貫通し容量可変型圧縮機の吸入室と連通している。また、バルブハウジング10の軸方向左側には、凹部10aが形成されている。凹部10aには、筒状の弁座部材40が軸方向左方から圧入されている。尚、バルブハウジング10には、流入ポートとしてのPcポートが形成されている。Pcポートは、凹部10aに弁座部材40が圧入固定されることにより、弁座部材40を軸方向に貫通する貫通孔40bにより容量可変型圧縮機の制御室と連通させている。
 バルブハウジング10の内部には、弁室20が形成され、弁室20内にはCS弁体51の当接部51aが軸方向に往復動自在に配置される。また、Psポート11は、バルブハウジング10の外周面から内径方向に延びて弁室20と連通している。
 このように、バルブハウジング10の内部には、弁座部材40の貫通孔40b、弁室20、Psポート11により、容量可変型圧縮機の制御室と吸入室とを連通する流路が形成されている。
 また、バルブハウジング10の内周面には、ガイド孔10cが形成されている。ガイド孔10cは、弁室20よりもソレノイド80が取り付けられる軸方向右側にCS弁体51の大径部51bの外周面51d(図3参照)が摺動可能となっている。尚、ガイド孔10cの内周面とCS弁体51の大径部51bの外周面51dとの間は、径方向に僅かに離間することにより微小な隙間が形成されており、CS弁体51は、バルブハウジング10に対して軸方向に円滑に相対移動可能となっている。
 図2に示されるように、バルブハウジング10の凹部10aは、その内径R1が弁室20の内径R2よりも大きく(R1>R2)形成されることにより、凹部10aの底面が弁座部材40の軸方向右側の平坦面40cと当接可能な受け部10bを構成している。
 図1に示されるように、バルブハウジング10は、軸方向右側に軸方向左方に凹む凹部10dが形成されており、センタポスト82のフランジ部82dが軸方向右方から略密封状に挿嵌・固定される。さらにその軸方向右方からケーシング81が略密封状に挿嵌・固定されることにより一体に接続されている。
 このように、バルブハウジング10、センタポスト82、ケーシング81が一体に接続された状態では、ケーシング81の軸方向左側に形成される凹部81bの底面にバルブハウジング10の軸方向右側の端面とセンタポスト82のフランジ部82dの軸方向右側の側面がそれぞれ当接する。また、バルブハウジング10の凹部10dの底面とセンタポスト82の軸方向左側の端面とは軸方向に離間して隙間が形成されている。
 また、バルブハウジング10には、貫通孔21が形成されている。貫通孔21は、バルブハウジング10の軸方向左側の端面と凹部10dの底部との間に軸方向に延びている。貫通孔21は、小径孔部211と、大径孔部212と、から構成されている。小径孔部211は、軸方向左端が容量可変型圧縮機の制御室に連通している。大径孔部212は、小径孔部211の軸方向右端から連続して延びており該小径孔部211よりも大径となっている。大径孔部212の軸方向右端は、凹部10dの底面とセンタポスト82の軸方向左側の端面との間に形成される隙間に開放している。尚、貫通孔21の小径孔部211内と、弁座部材40の貫通孔40bには、容量可変型圧縮機の制御室から制御圧力Pcの制御流体が供給されている。
 貫通孔21の大径孔部212には、ボール状の作動弁体31と、軸方向右端がセンタポスト82の軸方向左側の端面に固定され、軸方向左端が作動弁体31に軸方向右方から当接する復帰バネ32と、が配置されている。作動弁体31は復帰バネ32により軸方向左方に付勢されている。これら作動弁体31および復帰バネ32は、貫通孔21において容量可変型圧縮機の制御室とケーシング81内部の空間Sとの連通を制御する圧力作動弁30を構成している。
 説明の便宜上、図示を省略するが、制御圧力Pcが高い場合には、圧力作動弁30の作動弁体31が復帰バネ32の付勢力およびケーシング81内部の空間Sの流体の圧力に抗して軸方向右方に移動し、貫通孔21の小径孔部211の軸方向右端と大径孔部212の軸方向左端との接続部分に形成される断面傾斜形状の弁座213から離間することで圧力作動弁30が開放される。これにより、容量可変型圧縮機の制御室とケーシング81内部の空間Sとが貫通孔21を介して連通し、容量可変型圧縮機の制御室から貫通孔21を通ってケーシング81内部の空間Sに制御圧力Pcの制御流体が供給され、ケーシング81内部の空間Sの流体の圧力と弁座部材40の貫通孔40b内の制御流体の圧力の差が小さくなり、CS弁体51を軸方向左方、すなわち閉弁方向にスムーズに動作させることができ、容量可変型圧縮機の高出力時の制御に対する応答性を高めることができる。
 尚、バルブハウジング10においては、ガイド孔10cの内周面とCS弁体51の大径部51bの外周面との間の微小な隙間が絞りとして機能することにより、ケーシング81内部の空間Sの流体をPsポート11に緩やかに逃がすことができ、長時間不使用時には弁室20内の流体の圧力とケーシング81内部の空間Sの流体の圧力との圧力差が小さい状態が維持される。
 ここで、弁座部材40について説明する。図2に示されるように、弁座部材40は、バルブハウジング10に使用される金属材料よりも硬い金属材料により形成されている。さらに、弁座部材40は、CS弁体51とは異なる素材により形成されている。
 また、弁座部材40は、軸方向に貫通する貫通孔40bが形成されて筒状を成している。弁座部材40の軸方向右端部には、外径側から内径側に、環状の平坦面40cと平坦面40cに内径側から連なり軸方向左方へ向けて漸次縮径する断面傾斜形状のCS弁座40aが形成されている。すなわち、CS弁座40aは、貫通流路としての貫通孔40bの縁に形成され、断面直線状の傾斜面が周方向に延びるテーパ面により構成されている。
 また、弁座部材40の軸方向右側の平坦面40cを凹部10aの底面により形成される受け部10bに軸方向に当接させる(図3参照)ことにより、凹部10aに対する弁座部材40の挿入進度を規定することができるとともに、バルブハウジング10と弁座部材40との間のシール性を高めることができる。このとき、CS弁座40aを構成するテーパ面の外径端は、バルブハウジング10の弁室20における内周面10eの軸方向左端と連なるように配置される。
 これにより、弁座部材40のCS弁座40aを構成するテーパ面とCS弁体51の当接部51aとの間に形成される流路C1と、CS弁座40aを構成するテーパ面とCS弁体51の大径部51bの外周面51dおよびバルブハウジング10の内周面10eとCS弁体51の大径部51bの外周面51dとの間に形成される流路C2とによりPsポート11の弁室20側の開口まで延びるCS弁50の下流側の流路が形成される(図3参照)。尚、図3は、容量制御弁V1の通常制御時において、CS弁体51を閉塞位置近傍の絞り位置までストロークさせた状態を示している。
 本実施例1において、流路C1は、CS弁座40aを構成するテーパ面における内径端とCS弁体51の当接部51aとの間の流路断面積A1よりもCS弁座40aを構成するテーパ面とCS弁体51の当接部51aの外径端との間の流路断面積A2が小さく(A1>A2)、流路断面積が下流側へ行くにしたがって減少傾向(dA<0)となる減少領域を構成している。また、流路C2は、バルブハウジング10の内周面10eとCS弁体51の外周面51dとが平行に配置されることにより流路断面積A3が一定となっている。尚、容量制御弁V1の通常制御時において、CS弁体51を絞り位置までストロークさせた図3の状態では、流路C1の下流側の流路断面積A2と流路C2の流路断面積A3が同じ(A2=A3)になっているが、これに限らず、流路C1の下流側の流路断面積A2よりも流路C2における上流側の流路断面積A3が小さく(A2>A3)なっていてもよい。
 尚、減少領域は、CS弁50の下流側の流路においてCS弁体51の当接部51aのストローク範囲内に形成されるものである。
 また、流路C1の流路断面積は、下流側へ行くにしたがって連続的に減少している。
 次いで、CS弁50の下流側の流路C1,C2を通過する流体の流速と圧力の変化について説明する。尚、制御圧力Pcは、上述した圧力作動弁30の閉塞が維持される範囲に制御されるものとして説明する。等エントロピー流れにおける面積変化の影響について、断面積・圧力の関係式を下記に示す。
Figure JPOXMLDOC01-appb-M000001
   p:圧力
   γ:比熱比
   M:マッハ数
   A:面積
 この断面積・圧力の関係式に基づき、弁座部材40の貫通孔40b内における制御圧力PcとPsポート11内の吸入圧力Psとの圧力差、すなわちPc-Ps差圧が大きくCS弁50を通過する流体が超音速流れ(M>1)であるとき、CS弁50の下流側の流路で流路断面積が下流側へ行くにしたがって減少傾向(dA<0)となる減少領域を構成する流路C1を通過する流体は、流速が低下し、圧力が上昇する。また、流路C1の下流に連続し流路断面積が一定となる流路C2を通過することにより、流速と圧力を略変化させることなく安定して流れ、Psポート11内へ流入する(図3参照)。
 一方、Pc-Ps差圧が小さくCS弁50を通過する流体が亜音速流れ(M<1)であるとき、CS弁50の下流側の流路で減少領域を構成する流路C1を通過する流体は、流速が上昇し、圧力が低下する。また、流路C1の下流に連続し流路断面積が一定となる流路C2を通過することにより、流速と圧力を略変化させることなく安定して流れ、Psポート11内へ流入する(図3参照)。
 尚、CS弁50の下流圧、すなわち弁室20内の流体の圧力は、容量可変型圧縮機の制御室内の制御圧力Pcを調整するために固定オリフィス9(図1参照)を介して常時供給される吐出圧力Pdの影響を受けやすいことから、Psポート11内と比べて圧力が低下し難くなっている。
 本実施例1においては、上述したように流体が超音速流れで減少領域を通過することにより、吐出圧力Pdの影響に加えて、CS弁50の下流圧を上昇させることができるため、弁室20内の流体の圧力との圧力差に基づいて変化するケーシング81内部の空間S(図1参照)の流体の圧力、すなわちCS弁体51に作用する背圧による力を一層大きくすることができる。また、流体が亜音速流れで減少領域を通過することにより、CS弁50の下流圧を低下させることができるため、弁室20内の流体の圧力との圧力差に基づいて変化するケーシング81内部の空間Sの流体の圧力、すなわちCS弁体51に作用する背圧による力に対する吐出圧力Pdの影響を抑えることができる。
 以上、説明したように、本実施例1の容量制御弁V1において、CS弁50の下流側の流路には、下流側へ行くにしたがって流路断面積が減少傾向(dA<0)となる減少領域としての流路C1が設けられている。CS弁50を通過する流体が超音速流れ(M>1)であるとき、流路C1を通過する流体は、流速が低下し、圧力が上昇し、CS弁体51には閉弁方向の力が作用する。また、吐出圧力Pdに影響されるCS弁体51に作用する背圧による力を一層大きくすることができる。図4(a)に示されるように、CS弁50の閉弁特性が向上し、小さい電流値でCS弁50を閉塞することができる。なお、図4(b)における流路断面積(dA=一定)が一定の流路の特性を示す参考図においては、吐出圧力Pdが高いときには閉弁できない、言い換えると閉弁には大電流を要する。
 また、CS弁50を通過する流体が亜音速流れ(M<1)であるとき、流路C1を通過する流体は、流速が上昇し、圧力が低下し、CS弁体51には開弁方向の力が作用する。これにより、図5(a)に示されるように、CS弁50の下流圧に対するCS弁50の上流側の流体の圧力、本実施例では吐出圧力Pdの影響を抑えることができる。なお、図5(b)における流路断面積(dA=一定)が一定の流路の特性を示す参考図においては、駆動電流のばらつきが大きくなっている。このように、CS弁体51に作用する背圧による力に対する吐出圧力Pdの影響を抑えることができ、ソレノイド80に入力される電流値に対するCS弁体51のストロークのばらつきが抑制され、CS弁50の開度を精度よく調整することができる。
 このように、CS弁50の下流側の流路に流路断面積が下流側へ行くにしたがって減少傾向(dA<0)となる減少領域である流路C1を設け、CS弁50を通過する流体の流速に応じてCS弁50の下流圧を適宜制御することにより、CS弁50の制御性を高めることができる。
 また、減少領域としての流路C1は、流路断面積が下流側へ行くにしたがって連続的に減少することにより、流体の流れを安定させて淀みをなくすことができる。また、流路C1を通過する流体の流速や圧力を加速的に変化させることができる。
 また、CS弁50は、断面傾斜形状のCS弁座40aと、断面曲面形状のCS弁体51の当接部51aにより構成されており、CS弁座40aを構成するテーパ面とCS弁体51の当接部51aとの間に減少領域としての流路C1が形成されるため、CS弁体51の閉弁位置もしくは絞り位置においてCS弁50を通過する流体の流れを接線方向(図3の実線矢印参照)に向けて安定させることができる。
 また、CS弁座40aは、断面直線状の傾斜面が周方向に延びるテーパ面により構成されており、CS弁体51の閉弁位置もしくは絞り位置においてCS弁50を通過する流体の流れ、詳しくは流路C1における流体の流れを接線方向に向けて安定させるとともに、傾斜面に沿って流体の流れをガイドすることができるため、流体の流れを下流に連続する流路C2まで安定させることができる。
 また、CS弁座40aを構成するテーパ面は、CS弁体51の当接部51aの法線に沿った下流に存在するとよく、これにより、減少領域を通過した流体が直線的に進むこととなるため、音速に近い流体の流速を妨げ難い。
 また、流路C2においては、Psポート11の弁室20側の開口まで流路断面積が一定となっており、通過する流体の流速と圧力を略変化させることなく流体の流れを安定させることができるため、弁室20内の流体の圧力が安定しやすい。
 また、流路C1は、ポペット弁としてのCS弁50におけるCS弁座40aを構成するテーパ面とCS弁体51の当接部51aを利用して減少領域を形成することができるため、容量制御弁V1の構造を簡素化できる。
 また、CS弁座40aは、バルブハウジング10と別体の弁座部材40に形成されているため、減少領域を形成するためのテーパ面の加工精度を高めることができる。
 尚、本実施例1においては、流路C1の下流に連続する流路C2は、バルブハウジング10の内周面10eとCS弁体51の外周面51dとが平行に配置されることにより流路断面積が一定となる態様について説明したが、これに限らず、流路C2においても流路断面積が下流側へ行くにしたがって減少傾向(dA<0)となる減少領域を連続的に構成するようにバルブハウジング10の内周面10eやCS弁体51の外周面51dの形状を変更してもよい。
 実施例2に係る容量制御弁につき、図6から図8を参照して説明する。尚、前記実施例1と同一構成で重複する構成の説明を省略する。
 図6に示されるように、本実施例2の容量制御弁V2において、バルブハウジング110には、径方向に貫通し容量可変型圧縮機の吸入室と連通する流出ポートとしてのPsポート111が形成されている。
 また、バルブハウジング110の軸方向左側には、凹部110aが形成されている。凹部110aは、筒状の弁座部材40が軸方向左方から圧入されるようになっている。尚、バルブハウジング110には、凹部110aに弁座部材140が圧入固定されることにより、弁座部材140を軸方向に貫通する貫通孔140bにより容量可変型圧縮機の制御室と連通する流入ポートとしてのPcポートが形成される。
 バルブハウジング110の内部には、弁室120が形成され、弁室120内にはCS弁体51の当接部51aが軸方向に往復動自在に配置される。また、Psポート111は、バルブハウジング110の外周面から内径方向に延びて弁室120と連通している。また、弁室120には、Psポート111の弁室120側の開口の軸方向左端に連なり軸方向左方へ向けて漸次拡径するテーパ面110eが形成されている(図7参照)。
 図7に示されるように、バルブハウジング110の凹部110aは、その内径R11が弁室120を構成するテーパ面110eの軸方向左端における内径R12よりも大きく(R11>R12)形成されることにより、凹部110aの底面が弁座部材140の軸方向右側の平坦面140cと当接可能な受け部110bを構成している。
 図7に示されるように、弁座部材140は、軸方向に貫通する貫通孔140bが形成されて筒状を成している。弁座部材140の軸方向右端部には、外径側から内径側に、環状の平坦面140cと平坦面140cに内径側から連なり軸方向左方へ向けて漸次縮径する断面傾斜形状の弁座としてのCS弁座140aが形成されている。すなわち、CS弁座140aは、貫通流路としての貫通孔140bの縁に形成され、断面直線状の傾斜面が周方向に延びるテーパ面により構成されている。
 また、弁座部材140の軸方向右側の平坦面140cを凹部110aの底面により形成される受け部110bに軸方向に当接させる(図8参照)ことにより、凹部110aに対する弁座部材140の挿入進度を規定することができるとともに、バルブハウジング110と弁座部材140との間のシール性を高めることができる。このとき、CS弁座40aを構成するテーパ面の外径端は、バルブハウジング110の弁室120におけるテーパ面110eの軸方向左端と連なるように配置される。
 これにより、弁座部材140のCS弁座140aを構成するテーパ面とCS弁体51の当接部51aとの間に形成される流路C101と、弁座部材140のCS弁座140aを構成するテーパ面とCS弁体51の大径部51bの外周面51dおよびバルブハウジング110のテーパ面110eとCS弁体51の大径部51bの外周面51dとの間に形成される流路C102とによりPsポート111の弁室120側の開口まで延びるCS弁50の下流側の流路が形成される(図8参照)。尚、図8は、容量制御弁V2の通常制御時において、CS弁体51を閉塞位置近傍の絞り位置までストロークさせた状態を示している。
 本実施例2において、流路C101は、CS弁座140aを構成するテーパ面における内径端とCS弁体51の当接部51aとの間の流路断面積A101とCS弁座140aを構成するテーパ面とCS弁体51の当接部51aの外径端との間の流路断面積A102が略同一(A101=A102)であり、流路断面積が略一定となっている。また、流路C102は、バルブハウジング110のテーパ面110eとCS弁体51の当接部51aとの間における上流側の流路断面積A103よりも下流側の流路断面積A104が小さく(A103>A104)、流路断面積が下流側へ行くにしたがって減少傾向(dA<0)となる減少領域を構成している。
 また、流路C102の流路断面積は、下流側へ行くにしたがって連続的に減少しており、減少領域においてCS弁体51のストロークに係らず流路断面積A104、すなわち最小流路断面積が一定となっている。
 これによれば、本実施例2の容量制御弁V2において、CS弁50の下流側の流路には、下流側へ行くにしたがって流路断面積が減少傾向(dA>0)となる減少領域としての流路C102が設けられている。CS弁50を通過する流体が超音速流れ(M>1)であるとき、流路C102を通過する流体は、流速が低下し、圧力が上昇し、CS弁体51には閉弁方向の力が作用する。また、吐出圧力Pdに影響されるCS弁体51に作用する背圧による力を一層大きくすることができる。これにより、CS弁50の閉弁特性が向上し、小さい電流値でCS弁50を閉塞することができる。
 また、CS弁50を通過する流体が亜音速流れ(M<1)であるとき、流路C102を通過する流体は、流速が上昇し、圧力が低下し、CS弁体51には開弁方向の力が作用する。これにより、CS弁50の下流圧に対する吐出圧力Pdの影響を抑えることができる。このように、CS弁体51に作用する背圧による力に対する吐出圧力Pdの影響を抑えることができ、ソレノイド80に入力される電流値に対するCS弁体51のストロークのばらつきが抑制され、CS弁50の開度を精度よく調整することができる。
 このように、CS弁50の下流側の流路に流路断面積が下流側へ行くにしたがって減少傾向(dA<0)となる減少領域である流路C102を設け、CS弁50を通過する流体の流速に応じてCS弁50の下流圧を適宜制御することにより、CS弁50の制御性を高めることができる。
 また、減少領域としての流路C102は、CS弁体51のストロークに係らず最小流路断面積が一定であるため、減少領域を通過した後の弁室120内における流体の圧力を常に安定させることができる。
 また、流路C102を構成するバルブハウジング110のテーパ面110eは、Psポート111の弁室120側の開口の軸方向左端に連なるように直線状に延びるテーパ面として構成されているため、Psポート111内まで流体の流速や圧力を加速的に変化させながら誘導しやすくなっている。これにより、CS弁50の下流側の流路における流体の流れを安定させて淀みをなくすことができ、CS弁50の下流圧、すなわち弁室120内の流体の圧力をより安定させることができる。
 また、CS弁50を構成するCS弁座40aを構成するテーパ面とCS弁体51の当接部51aとの間に流路断面積が一定の流路C101が形成されるため、CS弁体51の閉弁位置もしくは絞り位置においてCS弁50を通過する流体の流速と圧力を略変化させることなく、その流れを接線方向(図8の実線矢印参照)に向けて安定させることができる。
 また、CS弁座40aを構成するテーパ面は、減少領域である流路C102を構成するバルブハウジング110のテーパ面110eと連続しているため、流路C101,C102の連続部分、すなわち減少領域である流路C102の上流側における流路断面積を大きく形成しやすい。
 また、CS弁座140aは、バルブハウジング110と別体の弁座部材140に形成され、減少領域を構成するテーパ面110eは、バルブハウジング110に形成されているため、流路C101,C102における流路断面積の設定を行いやすく、減少領域を容易に形成することができる。
 尚、本実施例2においては、減少領域である流路C102の上流に形成される流路C101の流路断面積が一定である構成について説明したが、これに限らず、流路C101の流路断面積は下流側へ行くにしたがって増加傾向となっていてもよい。
 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。
 例えば、前記実施例では、バルブハウジングおよび弁座部材は、金属材料により構成されるものとして説明したが、これに限らず、弁座部材がバルブハウジングの流路内側の硬さよりも硬いものであれば、樹脂材料等により形成されてもよい。また、この場合にも、弁座部材は弁体と異なる素材から形成されることが好ましい。
 また、CS弁体は、CS弁座との当接部が断面曲面形状に形成されていなくてもよい。
 また、CS弁座を構成するテーパ面は、直線状のものに限らず円弧状であってもよい。
 また、減少領域は、テーパ面により流路断面積が連続的に減少するものに限らず、段状の面により流路断面積が段階的に減少する減少傾向となるものであってもよい。
 また、前記実施例の容量制御弁は、ポペット弁としてのCS弁を例に説明したが、ポペット弁は、流入ポートとしてのPdポートと流出ポートとしてのPcポートとの間の流路を開閉するDC弁であってもよい。
9        固定オリフィス
10       バルブハウジング
10a      凹部
10b      受け部
10c      ガイド孔
10d      凹部
10e      内周面
11       Psポート(流出ポート)
20       弁室
21       貫通孔
30       圧力作動弁
40       弁座部材
40a      CS弁座(弁座)
40b      貫通孔(貫通流路、流入ポート)
40c      平坦面
50       CS弁(ポペット弁)
51       CS弁体(弁体)
51a      当接部
51d      外周面
80       ソレノイド(駆動源)
110      バルブハウジング
110e     テーパ面
111      Psポート(流出ポート)
120      弁室
140      弁座部材
140a     CS弁座(弁座)
140b     貫通孔(貫通流路、流入ポート)
140c     平坦面
C1,C102  流路(減少領域、下流側の流路)
C2,C101  流路(下流側の流路)
S        空間
V1,V2    容量制御弁(弁)

Claims (7)

  1.  流入ポートおよび流出ポートが形成されたバルブハウジングと、
     駆動源により駆動される弁体と、
     前記弁体を前記駆動源による駆動方向と反対方向に付勢するスプリングと、
     貫通流路の縁に形成された弁座と前記弁体とにより構成されるポペット弁とを備え、前記弁体の移動により流量を制御する弁であって、
     前記ポペット弁の下流側の流路には、下流側へ行くにしたがって流路断面積が減少傾向となる減少領域が設けられている弁。
  2.  前記減少領域は、前記弁体のストロークに係らず最小流路断面積が一定である請求項1に記載の弁。
  3.  前記減少領域は、流路断面積が連続的に減少する請求項1または2に記載の弁。
  4.  前記ポペット弁は、断面傾斜形状の前記弁座と、断面曲面形状の前記弁体により構成されている請求項1ないし3のいずれかに記載の弁。
  5.  前記傾斜形状は、直線状である請求項4に記載の弁。
  6.  前記弁座を構成する傾斜面は、前記減少領域を構成する傾斜面と連続している請求項4または5に記載の弁。
  7.  前記弁座を構成する傾斜面は、前記バルブハウジングと別体の弁座部材に形成され、前記減少領域を構成する傾斜面は、前記バルブハウジングに形成されている請求項6に記載の弁。
PCT/JP2021/027769 2020-08-04 2021-07-27 WO2022030313A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21853892.4A EP4194725A4 (en) 2020-08-04 2021-07-27 VALVE
US18/019,060 US20230279952A1 (en) 2020-08-04 2021-07-27 Valve
CN202180057925.8A CN116134254A (zh) 2020-08-04 2021-07-27
JP2022541462A JPWO2022030313A1 (ja) 2020-08-04 2021-07-27
KR1020237004906A KR20230035661A (ko) 2020-08-04 2021-07-27 밸브

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020132386 2020-08-04
JP2020-132386 2020-08-04

Publications (1)

Publication Number Publication Date
WO2022030313A1 true WO2022030313A1 (ja) 2022-02-10

Family

ID=80117379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027769 WO2022030313A1 (ja) 2020-08-04 2021-07-27

Country Status (6)

Country Link
US (1) US20230279952A1 (ja)
EP (1) EP4194725A4 (ja)
JP (1) JPWO2022030313A1 (ja)
KR (1) KR20230035661A (ja)
CN (1) CN116134254A (ja)
WO (1) WO2022030313A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159320A (ja) * 1994-12-05 1996-06-21 Fuji Koki Seisakusho:Kk 電動流量制御弁
JP2003314745A (ja) * 2002-04-18 2003-11-06 Smc Corp 真空調圧弁
JP2015075054A (ja) 2013-10-10 2015-04-20 株式会社豊田自動織機 可変容量型斜板式圧縮機
JP2017180525A (ja) * 2016-03-28 2017-10-05 株式会社不二工機 電動弁及びその組立方法
JP2018135954A (ja) * 2017-02-22 2018-08-30 株式会社不二工機 電動弁
JP2019167982A (ja) * 2018-03-22 2019-10-03 株式会社不二工機 電動弁

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108071824B (zh) * 2016-06-13 2021-08-10 株式会社Tgk 可变容量压缩机用控制阀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159320A (ja) * 1994-12-05 1996-06-21 Fuji Koki Seisakusho:Kk 電動流量制御弁
JP2003314745A (ja) * 2002-04-18 2003-11-06 Smc Corp 真空調圧弁
JP2015075054A (ja) 2013-10-10 2015-04-20 株式会社豊田自動織機 可変容量型斜板式圧縮機
JP2017180525A (ja) * 2016-03-28 2017-10-05 株式会社不二工機 電動弁及びその組立方法
JP2018135954A (ja) * 2017-02-22 2018-08-30 株式会社不二工機 電動弁
JP2019167982A (ja) * 2018-03-22 2019-10-03 株式会社不二工機 電動弁

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4194725A4

Also Published As

Publication number Publication date
EP4194725A1 (en) 2023-06-14
EP4194725A4 (en) 2024-04-24
JPWO2022030313A1 (ja) 2022-02-10
CN116134254A (zh) 2023-05-16
KR20230035661A (ko) 2023-03-14
US20230279952A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
JP7066063B2 (ja) 容量制御弁
JP7007299B2 (ja) 容量制御弁
JPWO2019146674A1 (ja) 容量制御弁
US11873805B2 (en) Capacity control valve
JPWO2019167912A1 (ja) 容量制御弁
JP7162995B2 (ja) 容量制御弁
JPWO2020013169A1 (ja) 容量制御弁
WO2020218284A1 (ja) 容量制御弁
JP7438644B2 (ja) 容量制御弁
WO2022030313A1 (ja)
WO2022030312A1 (ja)
JPWO2020013155A1 (ja) 容量制御弁
WO2021241477A1 (ja) 容量制御弁
JPWO2019159999A1 (ja) 容量制御弁
WO2022044880A1 (ja)
WO2020204136A1 (ja) 容量制御弁
JP7374574B2 (ja) 容量制御弁
WO2021215345A1 (ja) 容量制御弁
JPWO2020013156A1 (ja) 容量制御弁
JPWO2020013154A1 (ja) 容量制御弁
WO2020204135A1 (ja) 容量制御弁
WO2021085318A1 (ja) 容量制御弁
WO2022030311A1 (ja)
JP7391486B2 (ja) 容量制御弁
JP7289604B2 (ja) 容量制御弁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853892

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541462

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237004906

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021853892

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE