WO2022030290A1 - モータ駆動装置 - Google Patents

モータ駆動装置 Download PDF

Info

Publication number
WO2022030290A1
WO2022030290A1 PCT/JP2021/027629 JP2021027629W WO2022030290A1 WO 2022030290 A1 WO2022030290 A1 WO 2022030290A1 JP 2021027629 W JP2021027629 W JP 2021027629W WO 2022030290 A1 WO2022030290 A1 WO 2022030290A1
Authority
WO
WIPO (PCT)
Prior art keywords
pwm
motor
signal
rotation speed
frequency
Prior art date
Application number
PCT/JP2021/027629
Other languages
English (en)
French (fr)
Inventor
祐司 国田
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2022030290A1 publication Critical patent/WO2022030290A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current

Definitions

  • This disclosure relates to a motor drive device.
  • a motor drive device for driving a brushless DC motor is often provided as a semiconductor device (IC package).
  • Some such motor drive devices drive the motor by PWM (pulse width modulation) so that the rotation speed of the motor becomes constant at the target speed indicated by the speed command signal (for example, Patent Document 1). ..
  • the object of the present disclosure is to provide a motor drive device capable of achieving both miniaturization of size and high speed of start-up.
  • the motor drive device of the present disclosure includes a PWM drive control unit that generates a PWM signal based on a rotation speed signal indicating the rotation speed of the motor and a speed command signal indicating the target rotation speed, and the PWM drive control unit based on the PWM signal.
  • a driver that generates a drive signal to be applied to the motor is provided, and until it is detected based on the rotation speed signal and the speed command signal that the rotation speed of the motor has reached the target rotation speed.
  • the PWM drive control unit generates the PWM signal with the PWM frequency as the first PWM frequency lower than the second PWM frequency, and when it is detected that the rotation speed of the motor has reached the target rotation speed, the PWM drive is performed.
  • the control unit is configured to switch the PWM frequency to the second PWM frequency.
  • the motor drive device of the present disclosure it is possible to achieve both miniaturization of size and high speed of start-up.
  • FIG. 1 is a block diagram showing an overall configuration of a motor system 30 according to an exemplary embodiment.
  • the motor system 30 shown in FIG. 1 includes a motor drive device 10 and a motor 20.
  • the motor drive device 10 drives the motor 20 with a configuration as described later.
  • the motor 20 is a three-phase brushless DC motor, and includes star-connected U-phase, V-phase, and W-phase coils and permanent magnets (all not shown).
  • the number of poles of the motor 20 is not particularly limited, and is, for example, 4.
  • the motor drive device 10 is a semiconductor device having a rotation position detection unit 1, an FG generation unit 2, a PLL unit 3, a logic unit 4, and a driver 5 integrated into one chip.
  • the motor drive device 10 is configured by packaging an IC chip.
  • the motor drive device 10 has an external terminal for inputting / outputting various signals such as a speed command signal S1, a drive signal Sdr, and an induced voltage Ve, which will be described later, to and from the outside, an application end of a power supply voltage, and a ground voltage. It has an external terminal connected to the application end.
  • the motor drive device 10 drives and controls the motor 20 by sine wave drive (180 degree energization). Further, the motor drive device 10 PWM drives the motor 20.
  • the rotation position detection unit 1 generates a rotation position detection signal Srp indicating the rotation position of the rotor based on the induced voltage (back electromotive force) Ve generated in the motor 20. That is, the motor drive device 10 corresponds to sensorless drive.
  • the rotation position detection unit 1 sets the induced voltage Ve generated at one end of each of the star-connected U, V, and W phase coils as the midpoint voltage generated at the common connection node of the three coils.
  • the comparison is performed to generate a rotation position detection signal Srp that is periodically asserted.
  • the rotation position detection signal Srp is asserted every time the rotor rotates by a predetermined electric angle of 60 degrees.
  • the electric angle may be other than 60 degrees.
  • the motor drive device is not limited to sensorless, and may be driven with a sensor using, for example, a hall sensor.
  • the FG generation unit 2 generates a rotation number signal FG that transitions every 180 degrees of the machine angle of the rotor, that is, every 1/2 rotation of the motor 20, based on the rotation position detection signal Srp.
  • the rotation speed signal FG indicates the rotation speed of the motor 20.
  • the machine angle is not limited to 180 degrees and can be set as appropriate.
  • the PLL (Phase Locked Loop) unit 3 has a phase difference detection unit 31.
  • the phase difference detection unit 31 detects the phase difference between the rotation speed signal FG and the speed command signal S1 input from the outside of the motor drive device 10, and outputs the phase difference signal S2.
  • the speed command signal S1 indicates a target rotation speed.
  • the speed command signal S1, the rotation speed signal FG, and the phase difference signal S2 are all pulse signals. For example, PLL control is performed so that the frequency of the rotation speed signal FG matches the speed command signal S1 of 3 kHz.
  • the logic unit 4 includes a torque command generation unit 41, a PWM duty value generation unit 42, a drive pattern generation unit 43, a PWM signal generation unit 44, and a PWM frequency selection unit 45.
  • the logic unit 4 functions as a PWM drive control unit.
  • the torque command generation unit 41 generates a torque command signal Str based on the phase difference signal S2.
  • the torque command generation unit 41 generates a torque command signal Str by, for example, digitally converting and smoothing the phase difference signal S2.
  • the PWM duty value generation unit 42 converts the torque command signal Str into the corresponding PWM duty value Sdty and outputs it.
  • the drive pattern generation unit 43 generates the drive pattern Sdp based on the rotation position detection signal Srp.
  • the drive pattern generation unit 43 includes, for example, a period detection unit, a waveform readout unit, and a waveform memory (all not shown).
  • the waveform memory holds waveform data of a sine wave whose amplitude is normalized.
  • the waveform data of the sine wave is not limited to a perfect sine wave, but may be a pseudo sine wave or the like.
  • the cycle detection unit measures the cycle of the rotation position detection signal Srp and holds the value.
  • the waveform reading unit reads waveform data from the waveform memory so that the period of the rotation position detection signal Srp measured last time corresponds to a predetermined electric angle.
  • the waveform read corresponding to each of the U, V, and W phases is output as the drive pattern Sdp.
  • the PWM signal generation unit 44 multiplies the drive pattern Sdp with the PWM duty value Sdty and modulates the multiplication result with the pulse width to generate a PWM signal Spwm corresponding to each of the U, V, and W phases.
  • the PLL unit 3 is a detection signal indicating at a logical level whether the frequency of the rotation speed signal FG has reached the frequency of the speed command signal S1 (that is, whether the rotation speed of the motor 20 has reached the target rotation speed).
  • the speed lock signal SLK is output to the logic unit 4. More specifically, the speed lock signal SLK is output to the PWM duty value generation unit 42 and the PWM frequency selection unit 45.
  • the PWM frequency selection unit 45 selects the PWM frequency according to the speed lock signal SLK, and outputs the low frequency PWM mode enable signal LEN indicating the selection result at the logic level to the PWM signal generation unit 44.
  • the operation of the PWM duty value generation unit 42 and the PWM frequency selection unit 45 according to the speed lock signal SLK will be described in detail later.
  • the driver 5 generates a drive signal Sdr corresponding to the three phases based on the PWM signal Spwm corresponding to the three phases and supplies the drive signal Sdr to the motor 20.
  • the driver 5 includes, for example, a pre-driver and a bridge output stage (both not shown). Inverter type bridge output stages and pre-drivers are provided for each phase.
  • the bridge output stage is composed of, for example, a high-side polyclonal transistor and a low-side nanotube transistor.
  • the predriver switches the corresponding bridge output stage based on the PWM signal Spwm.
  • the drive signal (drive voltage) Sdr is output from the bridge output stage.
  • the drive signal Sdr corresponding to each of the U, V, and W phases is applied to one end of the coil of each phase of the motor 20.
  • FIG. 2 is a diagram showing an example of a signal waveform for explaining the problem to be solved in the present disclosure.
  • the start signal SS the speed lock signal SLK, the motor current Im flowing through the motor 20, and the junction temperature Tj of the motor drive device 10 are shown in order from the upper row.
  • the start signal SS is input to the logic unit 4 as shown in FIG. Further, in FIG. 2, the current fluctuates up and down in the portion indicated by the hatching of the motor current Im.
  • the logic unit 4 When the start signal SS rises from the Low level to the High level indicating activation at the timing t1 in FIG. 2, the logic unit 4 is activated, and the logic unit 4 starts supplying the motor current Im to the motor 20. As a result, the rotation speed of the motor 20 starts to increase.
  • the speed lock signal SLK is a Low level indicating that fact
  • the PWM duty value generation unit 42 is a torque command.
  • the PWM duty value Sdty is generated higher according to the signal Str. As a result, the motor current Im flowing through the motor 20 becomes large.
  • the speed lock signal SLK is switched to the High level indicating that fact, and the PWM duty value generation unit 42 lowers according to the torque command signal Str. Generates a PWM duty value Sdty. As a result, the motor current Im becomes smaller.
  • the junction temperature Tj starts to rise from timing t1 and peaks just before timing t2.
  • the PWM frequency is not changed between before and after the timing t2, and since the motor current Im is large up to the timing t2, heat generation due to switching in the driver 5 is likely to occur.
  • the peak of the junction temperature Tj exceeds the maximum junction temperature Tjmax. As shown in FIG.
  • the junction temperature Tj peaks immediately before the timing t2 because the motor 20 is accelerated from the timing t1 to t2 by the motor current Im of the limiting maximum current, and the timing t1 When the motor 20 is slowly accelerated from to t2, the peak of the junction temperature Tj is after the timing t2.
  • FIG. 3 is a diagram showing a signal waveform in the experiment.
  • the start signal SS, the speed lock signal SLK, and the junction temperature Tj are shown in order from the top.
  • FIG. 3 is the result of an experiment in which the PWM frequency is changed in the period from the timing t11, which is the start timing at which the start signal SS rises, to the timing t12, when the rotation speed of the motor 20 reaches the target rotation speed.
  • the junction temperature Tj in FIG. 3 indicated by an arrow indicates that the PWM frequency is lowered toward the lower part of the arrow.
  • the PWM frequency is changed from 200 kHz to 70 kHz.
  • the PWM frequency is common after timing t12, and here, 200 kHz is used as an example. That is, for example, when the PWM frequency is set to 70 kHz between the timings t11 and t12, the PWM frequency is switched from 70 kHz to 200 kHz at the timing t12.
  • the lower the PWM frequency between the timings t11 and t12 the lower the peak of the junction temperature Tj. This is because the lower the PWM frequency, the more the heat generation caused by the switching in the driver 5 can be suppressed. As a result, the peak of the junction temperature Tj can be suppressed even if the motor current Im is increased in order to shorten the start-up time from the timing t11 to t12. Therefore, it is possible to reduce the size of the package and speed up the startup at the same time.
  • the PWM frequency (first PWM frequency) between the timings t11 and t12 is 70 kHz
  • the PWM frequency (second PWM frequency) after t12 is 200 kHz
  • the first PWM frequency is half of the second PWM frequency.
  • the motor drive device 10 performs the following operations. This will be described with reference to the waveform diagram shown in FIG. In FIG. 4, in order from the upper row, the start signal SS, the signal RPM obtained by FV-converting the frequency of the rotation frequency signal FG into a voltage, the speed lock signal SLK, and the low frequency PWM mode enable signal LEN output by the PWM frequency selection unit 45 are displayed. show.
  • the logic unit 4 When the start signal SS rises to the High level at the timing ta in FIG. 4, the logic unit 4 is activated, and the logic unit 4 causes the motor 20 to motor by applying the drive signal Sdr to the motor 20 via the driver 5. Start flowing current Im. As a result, the rotation speed of the motor 20 starts to increase (RPM increase in FIG. 4).
  • the speed lock signal SLK output from the PLL unit 3 is at the Low level. Will be.
  • the PWM duty value generation unit 42 In response to such a level of the speed lock signal SLK, the PWM duty value generation unit 42 generates a higher PWM duty value Sdty according to the torque command signal Str.
  • the PWM frequency selection unit 45 sets the low frequency PWM mode enable signal LEN to the high level.
  • the High level of the low frequency PWM mode enable signal LEN indicates the enable of the low frequency PWM mode.
  • the PWM signal generation unit 44 generates a PWM signal Spwm with the PWM frequency as the first PWM frequency (for example, 70 kHz).
  • the speed lock signal SLK switches from the Low level to the High level. ..
  • the PWM duty value generation unit 42 generates a lower PWM duty value Sdty according to the torque command signal Str.
  • the PWM frequency selection unit 45 sets the low frequency PWM mode enable signal LEN to the Low level.
  • the Low level of the low frequency PWM mode enable signal LEN indicates that the low frequency PWM mode is disabled.
  • the PWM signal generation unit 44 generates a PWM signal Spwm with the PWM frequency as the second PWM frequency (for example, 200 kHz).
  • the second PWM frequency is higher than the first PWM frequency.
  • the rotation speed of the motor 20 is controlled to be constant at the target rotation speed (RPM in FIG. 4).
  • the motor current Im may be increased.
  • the PWM drive is performed with the PWM frequency set to a lower first PWM frequency, so that heat generation due to switching in the driver 5 can be suppressed.
  • the PWM drive is performed with the PWM frequency set to a higher second PWM frequency in order to prioritize the rotation accuracy of the motor 20 over the heat generation.
  • the drive target by the motor drive device of the present disclosure is not limited to the three-phase brushless DC motor, and may be, for example, a single-phase brushless DC motor.
  • the motor drive device (10) has a rotation speed signal (FG) indicating the rotation speed of the motor (20) and a speed command signal (S1) indicating the target rotation speed.
  • a PWM drive control unit (4) that generates a PWM signal (Spwm) based on the A driver (5) that generates a drive signal (Sdr) to be applied to the motor based on the PWM signal, and a driver (5). Equipped with Until it is detected based on the rotation speed signal and the speed command signal that the rotation speed of the motor has reached the target rotation speed, the PWM drive control unit sets the PWM frequency to be higher than the second PWM frequency.
  • the PWM signal is generated as a low first PWM frequency, When it is detected that the rotation speed of the motor has reached the target rotation speed, the PWM drive control unit is configured to switch the PWM frequency to the second PWM frequency (first configuration).
  • the PLL unit (3) having a phase difference detection unit (31) for detecting the phase difference between the rotation speed signal, which is a pulse signal, and the speed command signal is further provided.
  • the PWM drive control unit generates the PWM signal based on the detection signal of the phase difference detection unit.
  • the PLL unit may be configured to detect that the rotation speed of the motor has reached the target rotation speed based on the frequency of the rotation speed signal and the frequency of the speed command signal (second configuration).
  • the PLL unit outputs a speed lock signal (SLK) indicating at a logical level whether or not the rotation speed of the motor has reached the target rotation speed to the PWM drive control unit.
  • SLK speed lock signal
  • It may be a configuration (third configuration).
  • the PWM drive control unit responds to the detection signal (SLK) indicating whether or not the rotation speed of the motor has reached the target rotation speed.
  • a configuration having a PWM frequency selection unit (45) for selecting the PWM frequency from the first PWM frequency and the second PWM frequency may be provided (fourth configuration).
  • the PWM drive control unit has a PWM signal generation unit (44) that outputs the PWM signal.
  • the PWM frequency selection unit may be configured to output a low frequency PWM mode enable signal (LEN) indicating a selection result at a logical level to the PWM signal generation unit (fifth configuration).
  • LEN low frequency PWM mode enable signal
  • the first PWM frequency may be a configuration that is less than half of the second PWM frequency (sixth configuration).
  • the motor may be a three-phase brushless DC motor (seventh configuration).
  • the motor system (30) includes a motor drive device (10) having any of the first to seventh configurations, and a motor (20) driven by the motor drive device. , Equipped with.
  • This disclosure can be used, for example, in a motor system mounted on various devices.
  • Rotation position detection unit 2 FG generation unit 3 PLL unit 4 Logic unit 5
  • Driver 10 Motor drive device 20
  • Motor 30 Motor system 31
  • Phase difference detection unit 41 Torque command generation unit 42
  • PWM duty value generation unit 43
  • Drive pattern generation unit 44
  • PWM signal Generation unit 45 PWM frequency selection unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

モータ(20)の回転数を示す回転数信号(FG)と目標回転数を示す速度指令信号(S1)とに基づいてPWM信号(Spwm)を生成するPWM駆動制御部(4)と、前記PWM信号に基づいて前記モータに印加させる駆動信号(Sdr)を生成するドライバ(5)と、を備え、前記モータの回転数が前記目標回転数に到達したことが、前記回転数信号と前記速度指令信号とに基づいて検出されるまでは、前記PWM駆動制御部は、PWM周波数を第2PWM周波数よりも低い第1PWM周波数として前記PWM信号を生成し、前記モータの回転数が前記目標回転数に到達したことが検出されると、前記PWM駆動制御部は、前記PWM周波数を前記第2PWM周波数に切り替える、モータ駆動装置(10)としている。

Description

モータ駆動装置
 本開示は、モータ駆動装置に関する。
 従来、ブラシレスDCモータを駆動するモータ駆動装置は、半導体装置(ICパッケージ)として提供されることが多い。このようなモータ駆動装置には、速度指令信号の示す目標速度でモータの回転速度が一定となるようにモータをPWM(pulse width modulation:パルス幅変調)駆動するものがある(例えば特許文献1)。
特開2019-103369号公報
 ここで、近年では、モータ駆動装置のICパッケージの小型化、および当該ICパッケージを実装する基板の小型化が要望される。これにより、ICの発熱に対して厳しい条件となる。
 一方で、モータを停止状態から目標回転速度まで立ち上げる起動時の起動時間をなるべく短縮することが要望される。しかしながら、起動時間を短縮するためにはモータに流す電流を大きくする必要があるが、電流が大きくなるとICが発熱しやすくなるので、上記のようなサイズの小型化のためには、電流を大きくしにくい問題がある。すなわち、小型化と起動の高速化の両立が課題となっている。
 本開示は、サイズの小型化と起動の高速化を両立することが可能となるモータ駆動装置を提供することを目的とする。
 例えば、本開示のモータ駆動装置は、モータの回転数を示す回転数信号と目標回転数を示す速度指令信号とに基づいてPWM信号を生成するPWM駆動制御部と、前記PWM信号に基づいて前記モータに印加させる駆動信号を生成するドライバと、を備え、前記モータの回転数が前記目標回転数に到達したことが、前記回転数信号と前記速度指令信号とに基づいて検出されるまでは、前記PWM駆動制御部は、PWM周波数を第2PWM周波数よりも低い第1PWM周波数として前記PWM信号を生成し、前記モータの回転数が前記目標回転数に到達したことが検出されると、前記PWM駆動制御部は、前記PWM周波数を前記第2PWM周波数に切り替える構成としている。
 本開示のモータ駆動装置によれば、サイズの小型化と起動の高速化を両立することができる。
例示的な実施形態に係るモータシステムの全体構成を示すブロック図である。 本開示の解決すべき課題を説明するための波形図である。 実施した実験の結果を示す波形図である。 図1に示すモータ駆動装置の動作を説明するための波形図である。
 以下、本開示の例示的な実施形態について、図面を参照して説明する。
 まず、図1を参照して、本開示の例示的な実施形態に係るモータシステム全体の構成について説明する。図1は、例示的な実施形態に係るモータシステム30の全体構成を示すブロック図である。
 図1に示すモータシステム30は、モータ駆動装置10と、モータ20と、を備える。モータ駆動装置10は、後述するような構成によってモータ20を駆動する。
 モータ20は、3相ブラシレスDCモータであり、スター結線されたU相、V相、W相のコイルと永久磁石(いずれも不図示)を備える。モータ20の極数は、特に限定されず、例えば4である。
 モータ駆動装置10は、回転位置検出部1と、FG生成部2と、PLL部3と、ロジック部4と、ドライバ5と、を1つのチップに集積化して有する半導体装置である。モータ駆動装置10は、ICチップをパッケージ化して構成される。なお、モータ駆動装置10は、後述する速度指令信号S1、駆動信号Sdr、誘起電圧Veなどの各種信号を外部との間で入出力するための外部端子や、電源電圧の印加端および接地電圧の印加端とそれぞれ接続される外部端子を有する。
 モータ駆動装置10は、正弦波駆動(180度通電)により、モータ20を駆動制御する。また、モータ駆動装置10は、モータ20をPWM駆動する。
 回転位置検出部1は、モータ20に発生する誘起電圧(逆起電力)Veに基づき、ロータの回転位置を示す回転位置検出信号Srpを生成する。すなわち、モータ駆動装置10は、センサレス駆動に対応している。
 より具体的には例えば、回転位置検出部1は、スター結線されるU、V、W相のコイルそれぞれの一端に生じる誘起電圧Veを、3つの上記コイルの共通接続ノードに生じる中点電圧と比較し、周期的にアサートされる回転位置検出信号Srpを生成する。回転位置検出信号Srpは、ロータが所定の電気角60度回転するたびにアサートされる。なお、上記電気角は、60度以外であってもよい。
 なお、モータ駆動装置は、センサレスに限らず、例えばホールセンサを用いたセンサ付きの駆動に対応してもよい。
 FG生成部2は、回転位置検出信号Srpに基づき、ロータの機械角180度ごとに、すなわちモータ20の1/2回転ごとに遷移する回転数信号FGを生成する。回転数信号FGは、モータ20の回転数を示す。なお、上記機械角は、180度とは限らず、適宜設定可能である。
 PLL(Phase Locked Loop)部3は、位相差検出部31を有する。位相差検出部31は、回転数信号FGとモータ駆動装置10外部から入力される速度指令信号S1との位相差を検出し、位相差信号S2を出力する。速度指令信号S1は、目標回転数を示す。速度指令信号S1、回転数信号FG、および位相差信号S2は、いずれもパルス信号である。例えば3kHzの速度指令信号S1に対して回転数信号FGの周波数が一致するようにPLL制御が実施される。
 ロジック部4は、トルク指令生成部41と、PWMデューティ値生成部42と、駆動パターン生成部43と、PWM信号生成部44と、PWM周波数選択部45と、を有する。ロジック部4は、PWM駆動制御部として機能する。
 トルク指令生成部41は、位相差信号S2に基づき、トルク指令信号Strを生成する。トルク指令生成部41は、例えば位相差信号S2に対してデジタル変換・平滑化を行うことでトルク指令信号Strを生成する。
 PWMデューティ値生成部42は、トルク指令信号Strをそれに応じたPWMデューティ値Sdtyに変換して出力する。
 駆動パターン生成部43は、回転位置検出信号Srpに基づいて駆動パターンSdpを生成する。駆動パターン生成部43は、例えば周期検出部、波形読み出し部、波形メモリ(いずれも不図示)を含む。波形メモリは、振幅が正規化された正弦波の波形データを保持する。なお、正弦波の波形データは、完全な正弦波に限らず、疑似的な正弦波などであってもよい。
 周期検出部は、回転位置検出信号Srpの周期を測定し、その値を保持する。波形読み出し部は、前回に測定された回転位置検出信号Srpの周期が所定の電気角と対応するように、波形メモリから波形データを読み出す。U、V、W相の各相に対応して読み出された波形は、駆動パターンSdpとして出力される。
 PWM信号生成部44は、駆動パターンSdpをPWMデューティ値Sdtyと乗算し、乗算結果をパルス幅変調することで、U、V、W相の各相に対応したPWM信号Spwmを生成する。
 なお、PLL部3は、回転数信号FGの周波数が速度指令信号S1の周波数に到達したか(すなわち、モータ20の回転数が目標回転数に到達したか)否かを論理レベルで示す検出信号である速度ロック信号SLKをロジック部4へ出力する。より具体的には、速度ロック信号SLKは、PWMデューティ値生成部42とPWM周波数選択部45に出力される。
 PWM周波数選択部45は、速度ロック信号SLKに応じてPWM周波数を選択し、選択結果を論理レベルで示す低周波PWMモードイネーブル信号LENをPWM信号生成部44に出力する。速度ロック信号SLKに応じたPWMデューティ値生成部42とPWM周波数選択部45の動作については、後に詳述する。
 ドライバ5は、3相に対応したPWM信号Spwmに基づき、3相に対応した駆動信号Sdrを生成してモータ20に供給する。ドライバ5は、例えばプリドライバおよびブリッジ出力段(いずれも不図示)を含む。インバータ型のブリッジ出力段およびプリドライバは、相ごとに設けられる。ブリッジ出力段は、例えばハイサイドのPMOSトランジスタとローサイドのNMOSトランジスタとから構成される。プリドライバは、PWM信号Spwmに基づき、対応するブリッジ出力段をスイッチングする。ブリッジ出力段から駆動信号(駆動電圧)Sdrが出力される。
 U、V、W相の各相に対応した駆動信号Sdrは、モータ20の各相のコイルの一端にそれぞれ印加される。
 ここで、図2は、本開示の解決すべき課題を説明するための信号波形の一例を示す図である。図2においては、上段より順に、スタート信号SS、速度ロック信号SLK、モータ20に流れるモータ電流Im、モータ駆動装置10のジャンクション温度Tjを示す。なお、スタート信号SSは、図1に示すようにロジック部4に入力される。また、図2において、モータ電流Imのハッチングで示す部分では電流が上下に変動する。
 図2におけるタイミングt1にてスタート信号SSがLowレベルから起動を示すHighレベルに立ちあがると、ロジック部4が起動され、ロジック部4によりモータ20にモータ電流Imの供給が開始される。これにより、モータ20の回転数は上昇を開始する。
 モータ20の回転数が上昇する間、モータ20の回転数は目標回転数に到達していないので、速度ロック信号SLKはその旨を示すLowレベルであり、PWMデューティ値生成部42は、トルク指令信号Strに応じて高めにPWMデューティ値Sdtyを生成する。これにより、モータ20に流れるモータ電流Imは大きくなる。
 そして、タイミングt2にて、モータ20の回転数が目標回転数に到達すると、速度ロック信号SLKはその旨を示すHighレベルに切り替わり、PWMデューティ値生成部42は、トルク指令信号Strに応じて低めにPWMデューティ値Sdtyを生成する。これにより、モータ電流Imは小さくなる。
 ジャンクション温度Tjは、タイミングt1から上昇を開始し、タイミングt2の直前にてピークとなる。図2ではタイミングt2以前と以降とでPWM周波数は変えておらず、タイミングt2まではモータ電流Imが大きいので、ドライバ5におけるスイッチングによる発熱がしやすい。モータ駆動装置10のパッケージサイズを小型化すると、発熱に対する条件が厳しくなり、図2に示すようにジャンクション温度Tjのピークが最大ジャンクション温度Tjmaxを上回ってしまう。なお、図2に示すように、ジャンクション温度Tjがタイミングt2直前でピークとなるのは、タイミングt1からt2までを制限最大電流のモータ電流Imでモータ20を加速させる場合のためであり、タイミングt1からt2までモータ20をゆっくり加速させる場合では、ジャンクション温度Tjのピークはタイミングt2以降となる。
 そこで、次に示すような改善のための実験を行った。図3は、当該実験における信号波形を示す図である。図3では、上段から順に、スタート信号SS、速度ロック信号SLK、ジャンクション温度Tjを示す。
 図3は、スタート信号SSが立ち上がる起動開始タイミングであるタイミングt11からモータ20の回転数が目標回転数に到達するタイミングt12までの期間におけるPWM周波数を変化させる実験を行った結果である。図3におけるジャンクション温度Tjで矢印で示すのは、矢印の下方へ向かうほどPWM周波数を低くしていることを示す。ここでは、一例として、PWM周波数を200kHzから70kHzまで変化させた。
 なお、タイミングt12以降は、PWM周波数を共通としており、ここでは一例として200kHzとしている。すなわち、例えばタイミングt11からt12までの間はPWM周波数を70kHzとした場合は、タイミングt12にて70kHzから200kHzへ切り替える。
 図3に示すように、タイミングt11からt12の間におけるPWM周波数を低くするほど、ジャンクション温度Tjのピークが下がっている。これは、PWM周波数を低くするほど、ドライバ5におけるスイッチングに起因した発熱を抑えることができるためである。これにより、タイミングt11からt12までの起動時間を短縮すべく、モータ電流Imを大きくしても、ジャンクション温度Tjのピークを抑えることができる。従って、パッケージサイズの小型化と起動の高速化を両立できる。
 また、図3に示すように、タイミングt11からt12までの間におけるPWM周波数(第1PWM周波数)を70kHz、t12以降におけるPWM周波数(第2PWM周波数)を200kHzとし、第1PWM周波数を第2PWM周波数の半分以下とすることにより、ジャンクション温度Tjのピークを定常状態でのジャンクション温度Tjsと一致させることができ、ジャンクション温度Tjのピークを適切な値に調整できる。PWM周波数を犠牲にして上昇するジャンクション温度Tjのピークを定常状態でのジャンクション温度Tjsよりも低くする意義は少ないからである。
 上記の実験結果を踏まえて、本実施形態に係るモータ駆動装置10では、以下のような動作を行うこととしている。これについて、図4に示す波形図に基づき説明する。なお、図4において、上段から順に、スタート信号SS、回転数信号FGの周波数を電圧にFV変換した信号RPM、速度ロック信号SLK、PWM周波数選択部45が出力する低周波PWMモードイネーブル信号LENを示す。
 図4のタイミングtaにてスタート信号SSがHighレベルに立ち上がると、ロジック部4が起動され、ロジック部4は、ドライバ5を介して駆動信号Sdrをモータ20に印加させることにより、モータ20にモータ電流Imを流し始める。これにより、モータ20の回転数の上昇が開始される(図4のRPMの上昇)。
 回転数信号FGの周波数が速度指令信号S1の周波数に一致するまでは、すなわち、モータ20の回転数が目標回転数に到達するまでは、PLL部3から出力される速度ロック信号SLKはLowレベルとなる。このような速度ロック信号SLKのレベルを受けて、PWMデューティ値生成部42は、トルク指令信号Strに応じて高めのPWMデューティ値Sdtyを生成する。
 また、上記のような速度ロック信号SLKのレベルを受けて、PWM周波数選択部45は、低周波PWMモードイネーブル信号LENをHighレベルとする。低周波PWMモードイネーブル信号LENのHighレベルは、低周波PWMモードのイネーブルを示す。これを受けて、PWM信号生成部44は、PWM周波数を第1PWM周波数(例えば70kHz)としてPWM信号Spwmを生成する。
 そして、回転数信号FGの周波数が速度指令信号S1の周波数と一致する、すなわち、モータ20の回転数が目標回転数に到達するタイミングtbにて、速度ロック信号SLKはLowレベルからHighレベルに切り替わる。このような速度ロック信号SLKのレベルを受けて、PWMデューティ値生成部42は、トルク指令信号Strに応じて低めのPWMデューティ値Sdtyを生成する。
 また、上記のような速度ロック信号SLKのレベルを受けて、PWM周波数選択部45は、低周波PWMモードイネーブル信号LENをLowレベルとする。低周波PWMモードイネーブル信号LENのLowレベルは、低周波PWMモードのディセーブルを示す。これを受けて、PWM信号生成部44は、PWM周波数を第2PWM周波数(例えば200kHz)としてPWM信号Spwmを生成する。第2PWM周波数は、第1PWM周波数よりも高い。
 タイミングtb以降、モータ20の回転数は目標回転数で一定に制御される(図4のRPM)。
 このような本実施形態によれば、起動開始タイミングであるタイミングtaからモータ20の回転数が目標回転数に到達するタイミングtbまでの起動時間を短縮すべく、モータ電流Imを大きくしても、タイミングtaからtbまでの期間ではPWM周波数を低めの第1PWM周波数としてPWM駆動を行うので、ドライバ5におけるスイッチングによる発熱を抑制できる。また、タイミングtb以降ではモータ電流Imが小さくなるので、発熱よりもモータ20の回転精度を優先させるため、PWM周波数を高めの第2PWM周波数としてPWM駆動を行う。
 なお、本明細書中に開示されている種々の技術的特徴は、上記実施形態のほか、その技術的創作の主旨を逸脱しない範囲で種々の変更を加えることが可能である。すなわち、上記実施形態は、全ての点で例示であって制限的なものではないと考えられるべきであり、本発明の技術的範囲は、上記実施形態に限定されるものではなく、特許請求の範囲と均等の意味および範囲内に属する全ての変更が含まれると理解されるべきである。
 例えば、本開示のモータ駆動装置による駆動対象は、3相のブラシレスDCモータには限らず、例えば単相のブラシレスDCモータとしてもよい。
<付記>
 以上の通り、例えば、本開示の一態様に係るモータ駆動装置(10)は、モータ(20)の回転数を示す回転数信号(FG)と目標回転数を示す速度指令信号(S1)とに基づいてPWM信号(Spwm)を生成するPWM駆動制御部(4)と、
 前記PWM信号に基づいて前記モータに印加させる駆動信号(Sdr)を生成するドライバ(5)と、
 を備え、
 前記モータの回転数が前記目標回転数に到達したことが、前記回転数信号と前記速度指令信号とに基づいて検出されるまでは、前記PWM駆動制御部は、PWM周波数を第2PWM周波数よりも低い第1PWM周波数として前記PWM信号を生成し、
 前記モータの回転数が前記目標回転数に到達したことが検出されると、前記PWM駆動制御部は、前記PWM周波数を前記第2PWM周波数に切り替える構成としている(第1の構成)。
 また、上記第1の構成において、いずれもパルス信号である前記回転数信号と前記速度指令信号との位相差を検出する位相差検出部(31)を有するPLL部(3)をさらに備え、
 前記PWM駆動制御部は、前記位相差検出部の検出信号に基づき前記PWM信号を生成し、
 前記PLL部は、前記回転数信号の周波数と前記速度指令信号の周波数とに基づき、前記モータの回転数が前記目標回転数に到達したことを検出する構成としてもよい(第2の構成)。
 また、上記第2の構成において、前記PLL部は、前記モータの回転数が前記目標回転数に到達したか否かを論理レベルで示す速度ロック信号(SLK)を前記PWM駆動制御部に出力する構成としてもよい(第3の構成)。
 また、上記第1から第3のいずれかの構成において、前記PWM駆動制御部は、前記モータの回転数が前記目標回転数に到達したか否かを示す検出信号(SLK)に応じて、前記PWM周波数を前記第1PWM周波数と前記第2PWM周波数から選択するPWM周波数選択部(45)を有する構成としてもよい(第4の構成)。
 また、上記第4の構成において、前記PWM駆動制御部は、前記PWM信号を出力するPWM信号生成部(44)を有し、
 前記PWM周波数選択部は、選択結果を論理レベルで示す低周波PWMモードイネーブル信号(LEN)を前記PWM信号生成部に出力する構成としてもよい(第5の構成)。
 また、上記第1から第5のいずれかの構成において、前記第1PWM周波数は、前記第2PWM周波数の半分以下である構成としてもよい(第6の構成)。
 また、上記第1から第6のいずれかの構成において、前記モータは、3相ブラシレスDCモータである構成としてもよい(第7の構成)。
 また、本開示の一態様に係るモータシステム(30)は、上記第1から第7のいずれかの構成としたモータ駆動装置(10)と、前記モータ駆動装置により駆動されるモータ(20)と、を備える。
 本開示は、例えば、各種の機器に搭載されるモータシステムに利用することが可能である。
   1   回転位置検出部
   2   FG生成部
   3   PLL部
   4   ロジック部
   5   ドライバ
  10   モータ駆動装置
  20   モータ
  30   モータシステム
  31   位相差検出部
  41   トルク指令生成部
  42   PWMデューティ値生成部
  43   駆動パターン生成部
  44   PWM信号生成部
  45   PWM周波数選択部

Claims (8)

  1.  モータの回転数を示す回転数信号と目標回転数を示す速度指令信号とに基づいてPWM信号を生成するPWM駆動制御部と、
     前記PWM信号に基づいて前記モータに印加させる駆動信号を生成するドライバと、
     を備え、
     前記モータの回転数が前記目標回転数に到達したことが、前記回転数信号と前記速度指令信号とに基づいて検出されるまでは、前記PWM駆動制御部は、PWM周波数を第2PWM周波数よりも低い第1PWM周波数として前記PWM信号を生成し、
     前記モータの回転数が前記目標回転数に到達したことが検出されると、前記PWM駆動制御部は、前記PWM周波数を前記第2PWM周波数に切り替える、モータ駆動装置。
  2.  いずれもパルス信号である前記回転数信号と前記速度指令信号との位相差を検出する位相差検出部を有するPLL部をさらに備え、
     前記PWM駆動制御部は、前記位相差検出部の検出信号に基づき前記PWM信号を生成し、
     前記PLL部は、前記回転数信号の周波数と前記速度指令信号の周波数とに基づき、前記モータの回転数が前記目標回転数に到達したことを検出する、請求項1に記載のモータ駆動装置。
  3.  前記PLL部は、前記モータの回転数が前記目標回転数に到達したか否かを論理レベルで示す速度ロック信号を前記PWM駆動制御部に出力する、請求項2に記載のモータ駆動装置。
  4.  前記PWM駆動制御部は、前記モータの回転数が前記目標回転数に到達したか否かを示す検出信号に応じて、前記PWM周波数を前記第1PWM周波数と前記第2PWM周波数から選択するPWM周波数選択部を有する、請求項1から請求項3のいずれか1項に記載のモータ駆動装置。
  5.  前記PWM駆動制御部は、前記PWM信号を出力するPWM信号生成部を有し、
     前記PWM周波数選択部は、選択結果を論理レベルで示す低周波PWMモードイネーブル信号を前記PWM信号生成部に出力する、請求項4に記載のモータ駆動装置。
  6.  前記第1PWM周波数は、前記第2PWM周波数の半分以下である、請求項1から請求項5のいずれか1項に記載のモータ駆動装置。
  7.  前記モータは、3相ブラシレスDCモータである、請求項1から請求項6のいずれか1項に記載のモータ駆動装置。
  8.  請求項1から請求項7のいずれか1項に記載のモータ駆動装置と、前記モータ駆動装置により駆動されるモータと、を備える、モータシステム。
PCT/JP2021/027629 2020-08-06 2021-07-27 モータ駆動装置 WO2022030290A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-133636 2020-08-06
JP2020133636 2020-08-06

Publications (1)

Publication Number Publication Date
WO2022030290A1 true WO2022030290A1 (ja) 2022-02-10

Family

ID=80117323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027629 WO2022030290A1 (ja) 2020-08-06 2021-07-27 モータ駆動装置

Country Status (1)

Country Link
WO (1) WO2022030290A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198679A (ja) * 1989-12-27 1991-08-29 Mita Ind Co Ltd モータ制御装置における定常域到達検出装置
JPH07222478A (ja) * 1994-01-28 1995-08-18 Mitsubishi Electric Corp インバータ制御装置
JP2009194950A (ja) * 2008-02-12 2009-08-27 Meidensha Corp 電圧型pwmインバータの制御装置
JP2018057084A (ja) * 2016-09-26 2018-04-05 株式会社ジェイテクト モータ制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198679A (ja) * 1989-12-27 1991-08-29 Mita Ind Co Ltd モータ制御装置における定常域到達検出装置
JPH07222478A (ja) * 1994-01-28 1995-08-18 Mitsubishi Electric Corp インバータ制御装置
JP2009194950A (ja) * 2008-02-12 2009-08-27 Meidensha Corp 電圧型pwmインバータの制御装置
JP2018057084A (ja) * 2016-09-26 2018-04-05 株式会社ジェイテクト モータ制御装置

Similar Documents

Publication Publication Date Title
US8040090B2 (en) Brushless motor controller and brushless motor
US8217602B2 (en) Motor driving apparatus and control method thereof
US7402975B2 (en) Motor drive device and drive method
US8179075B2 (en) Motor driving integrated circuit
US6922032B2 (en) Electric motor control device
TWI699961B (zh) 馬達驅動電路及方法
US9787231B2 (en) Motor driving device and control method of motor driving device
JP2007110778A (ja) モータ駆動装置および駆動方法
JP2010045941A (ja) モータ制御回路,車両用ファン駆動装置及びモータ制御方法
JP2009178019A (ja) モータ制御回路,車両用ファン駆動装置及びモータ制御方法
JP4578142B2 (ja) ブラシレスdcモータの駆動装置
US8729839B2 (en) Driving apparatus for sensorless fan motor
JP5032184B2 (ja) モータ制御回路
JP2017184426A (ja) 三相モータの駆動回路および駆動方法、プリンタ装置
WO2022030290A1 (ja) モータ駆動装置
JP2004242432A (ja) Dcモータ駆動装置
JP2012105406A (ja) センサレスファンモータの駆動装置、それを用いた冷却装置および電子機器、ならびにセンサレスファンモータの起動方法
JP2005312216A (ja) ブラシレスdcモータの駆動装置
JP4531180B2 (ja) 同期モータおよび同期モータの起動方法
JP2008259360A (ja) ブラシレスモータ用通電制御回路
JP2006166587A (ja) モータ駆動装置、それを用いたファンモータ、それを用いた送風ファンおよびそれを用いた電子機器
JP4269921B2 (ja) ブラシレスモータの駆動装置
JP5606899B2 (ja) ブラシレスモータの駆動制御装置
JP2017184427A (ja) モータの駆動回路および起動方法、プリンタ装置
WO2020121368A1 (ja) モータ駆動装置及びモータ駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21854211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21854211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP