WO2022028047A1 - 一种高强度混凝土及其制备方法 - Google Patents

一种高强度混凝土及其制备方法 Download PDF

Info

Publication number
WO2022028047A1
WO2022028047A1 PCT/CN2021/095049 CN2021095049W WO2022028047A1 WO 2022028047 A1 WO2022028047 A1 WO 2022028047A1 CN 2021095049 W CN2021095049 W CN 2021095049W WO 2022028047 A1 WO2022028047 A1 WO 2022028047A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignin
cement
waste
concrete
water
Prior art date
Application number
PCT/CN2021/095049
Other languages
English (en)
French (fr)
Inventor
武科
杨洪娜
李国栋
陈榕
赵嘉辉
郝冬雪
韩宇聪
郑杨
孙杰
Original Assignee
山东大学
中国电建市政建设集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学, 中国电建市政建设集团有限公司 filed Critical 山东大学
Publication of WO2022028047A1 publication Critical patent/WO2022028047A1/zh
Priority to US18/152,145 priority Critical patent/US11753339B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/18Waste materials; Refuse organic
    • C04B18/24Vegetable refuse, e.g. rice husks, maize-ear refuse; Cellulosic materials, e.g. paper, cork
    • C04B18/26Wood, e.g. sawdust, wood shavings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/006Waste materials as binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to a high-strength concrete and a preparation method thereof, in particular to a high-strength concrete added with waste wood lignin and waste concrete recycled fine powder, and belongs to the technical field of concrete preparation.
  • the present invention achieves the goals of enhancing concrete strength and recycling construction waste by adding waste wood lignin and waste concrete regenerated fine powder during the preparation of ordinary concrete.
  • the present invention provides a high-strength concrete and a preparation method thereof, and specifically relates to a high-strength concrete added with waste wood lignin and waste concrete regenerated fine powder.
  • the present invention is suitable for common construction projects and can effectively improve the strength of concrete .
  • the technical scheme of the present invention is as follows:
  • a high-strength concrete comprising lignin, recycled micropowder, cement, water, sand, crushed stone and a water reducing agent
  • the regenerated micropowder is the regenerated micropowder of waste concrete, and the specific preparation method is as follows: the waste construction solid waste is separated and then subjected to impurity removal, crushing processing, and then being ground into dust with a particle size of less than 0.16 mm through a ball mill.
  • Waste concrete recycled fine powder is the dust with a particle size of less than 0.16mm, which accounts for about 5%-10% of the total waste concrete in the process of crushing and screening waste concrete, based on the crushing process and concrete strength. , floating in the atmosphere will cause serious air pollution, but also endanger people's health. Based on this, it can be obtained by separating the waste construction solid waste, carrying out impurity removal, crushing processing, and passing through a ball mill to powder.
  • the regenerated micropowder contains a large amount of SiO 2 , which can generate gel in the concrete to fill the pores in the concrete, and the regenerated micropowder contains a certain amount of hardened cement stone and incompletely hydrated cement, which has high activity and large
  • the specific surface area can increase the concrete strength of recycled micropowder after reaction with water.
  • the lignin is waste wood lignin, and the lignin extraction method is as follows:
  • Pulverize the wood use a 5% sodium hydroxide aqueous solution, and stir and extract at 80 ° C for 1-2 hours to obtain a black lignin alkali solution, add a 30% mass concentration hydrochloric acid solution to the alkali solution and stir. , the pH was lowered to 7.0, and the lignin was obtained after standing for stratification.
  • the lignin obtained by the invention is a highly cross-linked organic polymer, which can firmly glue the surrounding concrete together through its own structure, so that the concrete structure is more stable.
  • the invention By adding the lignin and regenerated fine powder prepared from the construction waste, the invention not only significantly improves the strength level of the concrete, but also realizes the recycling and reuse of the construction waste.
  • the weight ratio of cement, water, sand, crushed stone and water reducing agent in the high-strength concrete is 1:0.3:1.2:2.8:0.01.
  • the weight ratio of the lignin and the regenerated micropowder is: 0.1:5-10.
  • the weight ratio of the lignin to the cement is: 0.1-0.3:20.
  • the cement is P ⁇ O42.5 grade cement
  • the crushed stone is crushed stone with a particle size of 6mm-10mm
  • the water reducing agent is a polycarboxylic acid water reducing agent.
  • step (2) pouring the lignin and the regenerated micropowder mixed solution into the cement uniformly stirred in step (2), then adding a water-reducing agent, and mixing uniformly to obtain a mixed solution A;
  • step (3) Pour the gravel and sand into the mixed solution A of step (3), stir well, and get it.
  • the cement adopts P ⁇ O4 2.5 grade cement
  • the crushed stone adopts crushed stone with a particle size of 6mm-10mm
  • the water reducing agent adopts a polycarboxylic acid water reducing agent
  • the water in steps (3) and (4) is The ratio is 1:2.
  • the present invention has the following advantages:
  • Waste wood lignin is a high-molecular polymer, which can bond concrete together through its own structural properties, making the concrete structure more dense.
  • the waste concrete recycled micropowder can not only fill the concrete pores, but also hydrate with water to form a high-strength hydration product, which forms a certain protection for the concrete structure, thereby improving the concrete strength.
  • the present invention significantly improves the strength of concrete by limiting the content of each component and selecting the optimal mixing ratio according to the actual working conditions.
  • Embodiment 1 a kind of high-strength concrete and preparation method thereof
  • the cement adopts P ⁇ O42.5 grade cement, the crushed stone adopts the particle size of 6mm-10mm, and the water reducing agent adopts the polycarboxylate water reducing agent;
  • the waste construction solid waste is separated and then subjected to impurity removal, crushing processing, and then being ground into dust with a particle size of less than 0.16mm by a ball mill;
  • Preparation of lignin pulverize the wood, use sodium hydroxide solution with a mass concentration of 5%, stir and extract at 80 ° C for 1-2 hours to obtain a black lignin alkali solution, add a mass concentration of 30% to the alkali solution.
  • the hydrochloric acid solution was stirred to reduce the pH to 7.0, and the lignin was obtained after standing for stratification.
  • step (2) 4. Pour the mixed solution of lignin and regenerated micropowder into the cement that was stirred evenly in step (2), then add 0.2 kg of water reducing agent, mix well, and obtain mixed solution A.
  • Embodiment 2 a kind of high-strength concrete and preparation method thereof
  • the cement adopts P ⁇ O42.5 grade cement, the crushed stone adopts the particle size of 6mm-10mm, and the water reducing agent adopts the polycarboxylate water reducing agent;
  • Preparation of regenerated micropowder The waste construction solid waste is separated and then subjected to impurity removal, crushing processing, and then being ground into dust with a particle size of less than 0.16mm by a ball mill;
  • Preparation of lignin pulverize the wood, use sodium hydroxide solution with a mass concentration of 5%, stir and extract at 80 ° C for 1-2 hours to obtain a black lignin alkali solution, add a mass concentration of 30% to the alkali solution.
  • the hydrochloric acid solution was stirred to reduce the pH to 7.0, and the lignin was obtained after standing for stratification.
  • step (2) 4. Pour the mixed solution of lignin and regenerated micropowder into the cement that was stirred evenly in step (2), then add 0.2 kg of water reducing agent, mix well, and obtain mixed solution A.
  • Embodiment 3 a kind of high-strength concrete and preparation method thereof
  • the cement adopts P ⁇ O42.5 grade cement, the crushed stone adopts the particle size of 6mm-10mm, and the water reducing agent adopts the polycarboxylate water reducing agent;
  • Preparation of regenerated micropowder The waste construction solid waste is separated and then subjected to impurity removal, crushing processing, and then being ground into dust with a particle size of less than 0.16mm by a ball mill;
  • Preparation of lignin pulverize the wood, use sodium hydroxide solution with a mass concentration of 5%, stir and extract at 80 ° C for 1-2 hours to obtain a black lignin alkali solution, add a mass concentration of 30% to the alkali solution.
  • the hydrochloric acid solution was stirred to reduce the pH to 7.0, and the lignin was obtained after standing for stratification.
  • step (2) 4. Pour the mixed solution of lignin and regenerated micropowder into the cement that was stirred evenly in step (2), then add 0.2 kg of water reducing agent, mix well, and obtain mixed solution A.
  • the axial compressive strength test uses a 150mm ⁇ 150mm ⁇ 300mm prismatic specimen, which is cured to a specified age, and the specimen is placed upright. , to measure its axial compressive strength.
  • the experimental results are shown in Table 1:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

提供一种高强度混凝土及其制备方法。该混凝土包括木质素、再生微粉、水泥、水、沙子、碎石和减水剂;其中,再生微粉为废弃混凝土的再生微粉,制备方法为:将废弃建筑固体垃圾分离后进行除杂、破碎加工、再经过球磨机研磨为粒径小于0.16mm的粉尘;木质素为废弃木材木质素,提取方法为:将木材粉碎,用质量浓度为5%的氢氧化钠水溶液,在80℃下搅拌提取1-2小时,得到黑色的木质素碱溶液,向碱溶液中加入质量浓度为30%的盐酸溶液并搅拌,使pH降低到7.0,静置分层后获得。该混凝土不仅强度等级显著提高,还实现了建筑垃圾的循环再利用。

Description

一种高强度混凝土及其制备方法 技术领域
本发明涉及一种高强度混凝土及其制备方法,具体涉及一种添加废弃木材木质素和废弃混凝土再生微粉的高强度混凝土,属于混凝土制备技术领域。
背景技术
随着我国城市化水平不断加快,土木建筑行业在国内发展迅猛,但是也产生了很多突出问题。城市建造过程中老旧房屋的拆除和新建房屋的修建都会产生数量庞大的建筑垃圾。据有关研究表明,建筑垃圾的产量占我国城市垃圾总量的30%,年产量接近7亿吨左右。随着城市发展建造过程中产生的数量庞大的废弃混凝土和废弃木材,如何有效的处理以及形成可以循环利用的工程材料,达到降低对我国有限资源的消耗和资源环境循环再利用成为了当今关注的热点。基于此,本发明通过在普通混凝土制备过程中掺加废弃木材木质素和废弃混凝土再生微粉来实现增强混凝土强度和建筑垃圾再利用的目标。
发明内容
本发明针对上述问题,提供了一种高强度混凝土及其制备方法,具体涉及一种添加废弃木材木质素和废弃混凝土再生微粉的高强度混凝土,本发明适用于普通建筑工程,能有效提高混凝土强度。本发明的技术方案如下:
一种高强度混凝土,包括木质素、再生微粉、水泥、水、沙子、碎石和减水剂;
所述再生微粉为废弃混凝土的再生微粉,具体制备方法为:将废弃建筑固体垃圾分离后进行除杂、破碎加工、再经过球磨机研磨为粒径小于0.16mm的粉尘。
废弃混凝土再生微粉是废旧混凝土在破碎、筛分过程中,基于破碎工艺以及混凝土强度产生的约占废弃混凝土总量的5%-10%左右的粒径小于0.16mm的粉尘;由于粉尘颗粒较小,漂浮于大气中会造成严重的大气污染,同时也会危害人们的健康。基于此,可以通过将废弃建筑固体垃圾分离后进行除杂、破碎加工、在经过球磨机粉末得到。再生微粉中含有大量的SiO 2,可以在混凝土中生成凝胶充填混凝土中的孔隙,并且再生微粉中含有一定数量的硬化水泥石和未完全水化的水泥,具有很高的活性,加上较大的比表面积,与水反应后可以增加再生微粉的混凝土强度。
所述木质素为废弃木材木质素,木质素提取方法如下:
将木材粉碎,用质量浓度为5%的氢氧化钠水溶液,在80℃下搅拌提取1-2小时,得到黑色的木质素碱溶液,向碱溶液中加入质量浓度为30%的盐酸溶液并搅拌,使pH降低到7.0,静置分层后获得木质素。
本发明获得的木质素为一种高度交联的有机聚合物,可以通过自身结构将四周的混凝土牢牢胶结在一起,使混凝土结构更加稳定。
本发明通过掺加从建筑垃圾中制备的木质素和再生微粉,不仅显著的提高了混凝土强度等级,还实现了建筑垃圾的循环再利用。
优选的,所述高强度混凝土中水泥、水、沙子、碎石和减水剂的重量比为1:0.3:1.2:2.8:0.01。
更优选的,所述木质素和再生微粉的重量比为:0.1:5-10。
更优选的,所述木质素与水泥的重量比为:0.1-0.3:20。
更优选的,水泥采用P·O42.5级水泥,碎石采用粒径6mm-10mm碎石,减水剂采用聚羧酸系减水剂。
进一步的,上述高强度混凝土的制备方法,具体步骤如下:
(1)再生微粉的制备:将废弃建筑固体垃圾分离后进行除杂、破碎加工、再经过球磨机研磨为粒径小于0.16mm的粉尘;
(2)木质素的制备:将木材粉碎,用质量浓度为5%的氢氧化钠溶液,在80℃下搅拌提取1-2小时,得到黑色的木质素碱溶液,向碱溶液中加入质量浓度为30%的盐酸溶液并搅拌,使pH降低到7.0,静置分层后获得木质素。
(3)将木质素和再生微粉导入部分水中,混合均匀;
(5)将水泥倒入剩余水中,使用水泥搅拌机搅拌均匀;
(5)将木质素和再生微粉混合液倒入步骤(2)搅拌均匀的水泥中,然后加入减水剂,混合均匀,获得混合液A;
(6)将碎石和沙子倒入步骤(3)的混合液A中,充分搅拌,即得。
优选的,所述水泥采用P·O42.5级水泥;碎石采用粒径6mm-10mm碎石,减水剂采用聚羧酸系减水剂;步骤(3)和步骤(4)中水的比例为1:2。
本发明与现有技术相比具有以下优点:
1.我国每年都会产生数量庞大的建筑垃圾,废弃垃圾处理价格昂贵,并且占用大面积土地,严重制约着经济发展,通过对废弃建筑垃圾循环再利用,不仅大大降低的处理建筑垃圾的费用,还减少了废旧建筑垃圾带来的危害,符合我国可持续发展理念。
2.废旧木材木质素是一种高分子聚合物,可以通过自身结构特性将混凝土粘接在一起,使混凝土结构更加致密。
3.废弃混凝土再生微粉不仅可以充填混凝土孔隙,还可以与水发生水化 反应,形成高强度的水化产物,对混凝土结构形成一定保护,从而提高了混凝土强度。
4.本发明通过限定各组分的含量,根据实际工况选出最优配合比,使混凝土强度显著提高。
具体实施方式
下面结合具体实施例来进一步描述本发明,本发明的优点和特点将会随着描述而更为清楚。但实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。
实施例1:一种高强度混凝土及其制备方法
1.水泥采用P·O42.5级水泥,碎石采用粒径6mm-10mm碎石,减水剂采用聚羧酸系减水剂;
再生微粉的制备:将废弃建筑固体垃圾分离后进行除杂、破碎加工、再经过球磨机研磨为粒径小于0.16mm的粉尘;
木质素的制备:将木材粉碎,用质量浓度为5%的氢氧化钠溶液,在80℃下搅拌提取1-2小时,得到黑色的木质素碱溶液,向碱溶液中加入质量浓度为30%的盐酸溶液并搅拌,使pH降低到7.0,静置分层后获得木质素。
2.用计量器称取水泥20千克,水6千克,沙子24千克,碎石56千克,减水剂0.2千克。
3.将0.1千克的木质素和10千克的再生微粉倒入2千克水中混合均匀。
4.将20千克的水泥倒入4千克的水中,使用水泥搅拌机充分搅拌。
5.将木质素和再生微粉混合液倒入步骤(2)搅拌均匀的水泥中,然后添加0.2千克的减水剂,混合均匀,获得混合液A。
6.将56千克的碎石和24千克的沙子倒入步骤(3)的混合液A中,充分搅拌,即得高强度混凝土。
实施例2:一种高强度混凝土及其制备方法
1.水泥采用P·O42.5级水泥,碎石采用粒径6mm-10mm碎石,减水剂采用聚羧酸系减水剂;
再生微粉的制备:将废弃建筑固体垃圾分离后进行除杂、破碎加工、再经过球磨机研磨为粒径小于0.16mm的粉尘;
木质素的制备:将木材粉碎,用质量浓度为5%的氢氧化钠溶液,在80℃下搅拌提取1-2小时,得到黑色的木质素碱溶液,向碱溶液中加入质量浓度为30%的盐酸溶液并搅拌,使pH降低到7.0,静置分层后获得木质素。
2.用计量器称取水泥20千克,水6千克,沙子24千克,碎石56千克,减水剂0.2千克。
3.将0.2千克的木质素和12千克的再生微粉倒入1.5千克水中混合均匀。
4.将20千克的水泥倒入4.5千克的水中,使用水泥搅拌机充分搅拌。
5.将木质素和再生微粉混合液倒入步骤(2)搅拌均匀的水泥中,然后添加0.2千克的减水剂,混合均匀,获得混合液A。
6.将56千克的碎石和24千克的沙子倒入步骤(3)的混合液A中,充分搅拌,即得高强度混凝土。
实施例3:一种高强度混凝土及其制备方法
1.水泥采用P·O42.5级水泥,碎石采用粒径6mm-10mm碎石,减水剂采用聚羧酸系减水剂;
再生微粉的制备:将废弃建筑固体垃圾分离后进行除杂、破碎加工、再经过球磨机研磨为粒径小于0.16mm的粉尘;
木质素的制备:将木材粉碎,用质量浓度为5%的氢氧化钠溶液,在80℃下搅拌提取1-2小时,得到黑色的木质素碱溶液,向碱溶液中加入质量浓度为30%的盐酸溶液并搅拌,使pH降低到7.0,静置分层后获得木质素。
2.用计量器称取水泥20千克,水6千克,沙子24千克,碎石56千克,减水剂0.2千克。
3.将0.3千克的木质素和15千克的再生微粉倒入2千克水中混合均匀。
4.将20千克的水泥倒入4千克的水中,使用水泥搅拌机充分搅拌。
5.将木质素和再生微粉混合液倒入步骤(2)搅拌均匀的水泥中,然后添加0.2千克的减水剂,混合均匀,获得混合液A。
6.将56千克的碎石和24千克的沙子倒入步骤(3)的混合液A中,充分搅拌,即得高强度混凝土。
实验例1:轴心抗压实验
实验步骤:
轴心抗压强度实验采用150mm×150mm×300mm棱柱体试件,标准养护至规定齡期,将试件直立放置,试件轴心对准实验机下压板中心,按规定速度加荷,直至破坏,测定其轴心抗压强度。实验结果如表1所示:
表1
试件组号 抗压强度(MPa)
素混凝土 33.10
实施例1获得的高强度混凝土 37.62
实施例2获得的高强度混凝土 37.79
实施例3获得的高强度混凝土 38.29
实验结果:
通过分别对素混凝土和本发明获得的混凝土进行轴心抗压强度实验,实验结果表明,本发明获得的高强度混凝土抗压强度显著增加。

Claims (8)

  1. 一种高强度混凝土,其特征在于,所述高强度混凝土包括木质素、再生微粉、水泥、水、沙子、碎石和减水剂;
    所述再生微粉为废弃混凝土的再生微粉,具体制备方法为:将废弃建筑固体垃圾分离后进行除杂、破碎加工、再经过球磨机研磨为粒径小于0.16mm的粉尘;
    所述木质素为废弃木材木质素,木质素提取方法为:将木材粉碎,用质量浓度为5%的氢氧化钠水溶液,在80℃下搅拌提取1-2小时,得到黑色的木质素碱溶液,向碱溶液中加入质量浓度为30%的盐酸溶液并搅拌,使pH降低到7.0,静置分层后获得木质素。
  2. 根据权利要求1所述的高强度混凝土,其特征在于,所述高强度混凝土中水泥、水、沙子、碎石和减水剂的重量比为1:0.3:1.2:2.8:0.01。
  3. 根据权利要求2所述的高强度混凝土,其特征在于,所述木质素和再生微粉的重量比为:0.1:5-10。
  4. 根据权利要求2所述的高强度混凝土,其特征在于,所述木质素与水泥的重量比为:0.1-0.3:20。
  5. 根据权利要求2所述的高强度混凝土,其特征在于,所述水泥采用P·O42.5级水泥,碎石采用粒径6mm-10mm碎石,减水剂采用聚羧酸系减水剂。
  6. 如权利要求1-5任一项所述高强度混凝土的制备方法,具体步骤如下:
    (1)再生微粉的制备:将废弃建筑固体垃圾分离后进行除杂、破碎加工、再经过球磨机研磨为粒径小于0.16mm的粉尘;
    (2)木质素的制备:将木材粉碎,用质量浓度为5%的氢氧化钠溶液, 在80℃下搅拌提取1-2小时,得到黑色的木质素碱溶液,向碱溶液中加入质量浓度为30%的盐酸溶液并搅拌,使pH降低到7.0,静置分层后获得木质素;
    (3)将木质素和再生微粉导入部分水中,混合均匀;
    (4)将水泥倒入剩余水中,使用水泥搅拌机搅拌均匀;
    (5)将木质素和再生微粉混合液倒入步骤(2)搅拌均匀的水泥中,然后加入减水剂,混合均匀,获得混合液A;
    (6)将碎石和沙子倒入步骤(3)的混合液A中,充分搅拌,即得。
  7. 根据权利要求6所述的制备方法,其特征在于,所述水泥采用P·O42.5级水泥;碎石采用粒径6mm-10mm碎石,减水剂采用聚羧酸系减水剂。
  8. 根据权利要求6所述的制备方法,其特征在于,所述步骤(3)和步骤(4)中水的比例为1:2。
PCT/CN2021/095049 2020-08-04 2021-05-21 一种高强度混凝土及其制备方法 WO2022028047A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/152,145 US11753339B2 (en) 2020-08-04 2023-01-09 High-strength concrete and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010770750.2A CN111848051B (zh) 2020-08-04 2020-08-04 一种高强度混凝土及其制备方法
CN202010770750.2 2020-08-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/152,145 Continuation US11753339B2 (en) 2020-08-04 2023-01-09 High-strength concrete and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2022028047A1 true WO2022028047A1 (zh) 2022-02-10

Family

ID=72953185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095049 WO2022028047A1 (zh) 2020-08-04 2021-05-21 一种高强度混凝土及其制备方法

Country Status (3)

Country Link
US (1) US11753339B2 (zh)
CN (1) CN111848051B (zh)
WO (1) WO2022028047A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988797A (zh) * 2022-05-26 2022-09-02 湖北工业大学 一种不锈钢纤维再生混凝土在硫酸盐干湿循环下强度提高的方法
CN115677379A (zh) * 2022-11-23 2023-02-03 淮阴工学院 一种泡沫混凝土的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111848051B (zh) 2020-08-04 2021-12-03 山东大学 一种高强度混凝土及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103771776A (zh) * 2013-12-27 2014-05-07 中国矿业大学 一种再生微粉混凝土及其制备方法
CN106007556A (zh) * 2016-05-13 2016-10-12 广州大学 一种可泵送高强度循环再生混凝土及其制备工艺
CN106277953A (zh) * 2016-07-21 2017-01-04 武汉源锦商品混凝土有限公司 一种c30再生骨料混凝土及其制备方法
US20170283293A1 (en) * 2016-03-31 2017-10-05 Korea Institute Of Geoscience And Mineral Resources (Kigam) Method for recycling byproduct sludge in recycled aggregate producing process from waste concrete
CN107445529A (zh) * 2017-07-04 2017-12-08 深圳市华威环保建材有限公司 一种再生微粉加气混凝土砌块的制造工艺
CN107892497A (zh) * 2017-11-02 2018-04-10 上海建工集团股份有限公司 一种再生混凝土微粉制备方法
CN108752600A (zh) * 2018-05-04 2018-11-06 重庆工商大学 一种水热-碱同步活化法提制木质素的方法
CN109369087A (zh) * 2018-12-20 2019-02-22 贵州安凯达实业股份有限公司 一种建筑垃圾再生混凝土
CN110482959A (zh) * 2019-09-16 2019-11-22 广州铁诚工程质量检测有限公司 含再生微粉的混凝土及其制备方法
CN110590294A (zh) * 2019-10-29 2019-12-20 福州大学 一种良好耐久性的再生粉体混凝土及制备方法
CN111848051A (zh) * 2020-08-04 2020-10-30 山东大学 一种高强度混凝土及其制备方法
CN112062518A (zh) * 2020-08-12 2020-12-11 同济大学 一种海卵石海砂海水再生微粉混凝土的制备方法
CN113149536A (zh) * 2021-05-27 2021-07-23 金华职业技术学院 一种再生微粉混凝土及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160108772A (ko) * 2015-03-06 2016-09-20 주식회사 비에이스톤 산업폐기물을 이용한 인조화강문양 고강도 콘크리트 경계석 조성물 및 그 제조방법
CN104788054A (zh) * 2015-04-10 2015-07-22 浙江大学宁波理工学院 生态环保的废弃混凝土全再生利用自密实混凝土
CN110041028A (zh) * 2019-04-26 2019-07-23 四川衡鼎建材有限公司 一种利用建筑垃圾的再生混凝土及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103771776A (zh) * 2013-12-27 2014-05-07 中国矿业大学 一种再生微粉混凝土及其制备方法
US20170283293A1 (en) * 2016-03-31 2017-10-05 Korea Institute Of Geoscience And Mineral Resources (Kigam) Method for recycling byproduct sludge in recycled aggregate producing process from waste concrete
CN106007556A (zh) * 2016-05-13 2016-10-12 广州大学 一种可泵送高强度循环再生混凝土及其制备工艺
CN106277953A (zh) * 2016-07-21 2017-01-04 武汉源锦商品混凝土有限公司 一种c30再生骨料混凝土及其制备方法
CN107445529A (zh) * 2017-07-04 2017-12-08 深圳市华威环保建材有限公司 一种再生微粉加气混凝土砌块的制造工艺
CN107892497A (zh) * 2017-11-02 2018-04-10 上海建工集团股份有限公司 一种再生混凝土微粉制备方法
CN108752600A (zh) * 2018-05-04 2018-11-06 重庆工商大学 一种水热-碱同步活化法提制木质素的方法
CN109369087A (zh) * 2018-12-20 2019-02-22 贵州安凯达实业股份有限公司 一种建筑垃圾再生混凝土
CN110482959A (zh) * 2019-09-16 2019-11-22 广州铁诚工程质量检测有限公司 含再生微粉的混凝土及其制备方法
CN110590294A (zh) * 2019-10-29 2019-12-20 福州大学 一种良好耐久性的再生粉体混凝土及制备方法
CN111848051A (zh) * 2020-08-04 2020-10-30 山东大学 一种高强度混凝土及其制备方法
CN112062518A (zh) * 2020-08-12 2020-12-11 同济大学 一种海卵石海砂海水再生微粉混凝土的制备方法
CN113149536A (zh) * 2021-05-27 2021-07-23 金华职业技术学院 一种再生微粉混凝土及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BEIJING AGRICULTURAL UNIVERSITY (ED.): "Organic Chemistry, 3rd ed.", 31 March 1962, AGRICULTURAL PRESS, CN, article "Passage; Organic Chemistry", pages: 207 - 209, XP009534436 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988797A (zh) * 2022-05-26 2022-09-02 湖北工业大学 一种不锈钢纤维再生混凝土在硫酸盐干湿循环下强度提高的方法
CN114988797B (zh) * 2022-05-26 2023-06-30 湖北工业大学 一种不锈钢纤维再生混凝土在硫酸盐干湿循环下强度提高的方法
CN115677379A (zh) * 2022-11-23 2023-02-03 淮阴工学院 一种泡沫混凝土的制备方法
CN115677379B (zh) * 2022-11-23 2023-05-26 淮阴工学院 一种泡沫混凝土的制备方法

Also Published As

Publication number Publication date
CN111848051B (zh) 2021-12-03
CN111848051A (zh) 2020-10-30
US20230159391A1 (en) 2023-05-25
US11753339B2 (en) 2023-09-12

Similar Documents

Publication Publication Date Title
WO2022028047A1 (zh) 一种高强度混凝土及其制备方法
CN110255983B (zh) 一种再生混凝土及其制备方法
CN112374843B (zh) 一种利用湿磨钢渣矿浆制备矿山充填混凝土的方法
CN109516707B (zh) 一种抑制碱-骨料反应的再生骨料的制备方法
CN112028564B (zh) 一种利用co2强化再生粉体制备的再生混凝土砌块
CN102745929A (zh) 一种再生矿物掺合料及其应用
CN103553395A (zh) 一种低水泥用量再生绿色混凝土及其制备方法
CN107686298B (zh) 一种自密实复合混凝土及其制备方法
CN111393057B (zh) 一种废弃混凝土的再生方法及改性再生混凝土
CN103351105B (zh) 一种碱激发胶凝材料及其制备方法
CN110981234A (zh) 一种胶凝材料及其制备方法
CN112521115A (zh) 一种修补防护用绿色碱激发材料及其制备方法
CN104876519A (zh) 一种铅锌尾矿和再生混凝土骨料制备蒸压灰砂砖方法
CN106064897A (zh) 一种生态胶凝材料
CN108117348B (zh) 一种磷渣基环保型建筑材料及其制备方法
CN111056783A (zh) 废弃混凝土地聚物及其制备方法
CN107434374A (zh) 一种提高废弃玻璃粉水化活性的方法
CN114163156A (zh) 一种铜尾砂改性应用于混凝土的配方及其制备方法
CN103183489A (zh) 一种环境友好绿色混凝土
CN111960697A (zh) 一种节能环保型建筑用水泥及其生产工艺
CN116120002A (zh) 一种建筑垃圾再生骨料高抗渗性混凝土及其制备方法
CN113683355A (zh) 复合改性橡胶碾压混凝土及其制备方法
CN113277772A (zh) 一种高强度再生砼的加工工艺
CN104987003A (zh) 一种可再生掺合料制备混凝土的方法
CN110204232A (zh) 一种镍铁渣微细化砂混凝土及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21853913

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21853913

Country of ref document: EP

Kind code of ref document: A1