WO2022027474A1 - 电池 - Google Patents

电池 Download PDF

Info

Publication number
WO2022027474A1
WO2022027474A1 PCT/CN2020/107494 CN2020107494W WO2022027474A1 WO 2022027474 A1 WO2022027474 A1 WO 2022027474A1 CN 2020107494 W CN2020107494 W CN 2020107494W WO 2022027474 A1 WO2022027474 A1 WO 2022027474A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
wall
battery
insulating member
cell module
Prior art date
Application number
PCT/CN2020/107494
Other languages
English (en)
French (fr)
Inventor
王雄华
韦佳辰
Original Assignee
东莞新能安科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞新能安科技有限公司 filed Critical 东莞新能安科技有限公司
Priority to PCT/CN2020/107494 priority Critical patent/WO2022027474A1/zh
Priority to CN202090000237.9U priority patent/CN214898743U/zh
Publication of WO2022027474A1 publication Critical patent/WO2022027474A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of new energy, and in particular, to a battery.
  • the glue filling process uses glue injection from the center of the surface of the battery module in the casing, and relies on the free flow of glue to fill between the casing and the battery module, or inside the battery module.
  • problems in the glue filling process effective filling in the casing cannot be achieved, the flow rate is slow, and the assembly of the insulating parts arranged between the casing and the cell module in the battery is inconvenient.
  • the present application provides a battery, the battery includes a casing, a battery core module and an insulating member disposed in the casing.
  • the insulating member is located between the battery core module and the casing;
  • the battery core module includes a plurality of stacked battery cells; colloid is filled between the insulating member and the battery core module;
  • a first groove for filling the gel is formed on the side wall of the insulating member facing the cell module, and along the stacking direction of the cells, the first groove penetrates through the side wall of the insulating member .
  • the cross section of the first groove is a rectangle, and the width W1 of the first groove satisfies: 8mm ⁇ W1 ⁇ 12mm.
  • the depth H1 of the depression of the first groove satisfies: 3mm ⁇ H1 ⁇ 7mm.
  • the number of the first grooves is multiple, and the multiple first grooves are provided on the sidewall of the insulating member; Spacing a1 satisfies: 65mm ⁇ a1 ⁇ 75mm.
  • the battery core module includes a first side and a second side arranged oppositely, and a third side and a fourth side arranged oppositely, wherein the third side of the battery core module is arranged on the opposite side.
  • the side wall of the insulating member includes a first wall located between the first side of the battery core module and the outer shell, and a second side located between the battery core module and the outer shell At least one of the first wall and the second wall is provided with the first groove.
  • the cross section of the first groove is a rectangle, and the width W1 of the first groove satisfies: 8mm ⁇ W1 ⁇ 12mm.
  • the depth H1 of the depression of the first groove satisfies: 3mm ⁇ H1 ⁇ 7mm.
  • At least one of the first wall and the second wall is provided with a second groove on the side facing the cell module, and the second groove is connected to the first wall.
  • the grooves are connected.
  • the cross section of the second groove is a rectangle, and the width W2 of the second groove satisfies: 8mm ⁇ W2 ⁇ 12mm.
  • the concave depth H2 of the second groove satisfies: 3mm ⁇ H2 ⁇ 7mm.
  • the number of the second grooves is multiple, and the distance a2 between two adjacent second grooves satisfies: 115mm ⁇ a2 ⁇ 125mm.
  • the side wall of the insulating member further includes a third wall located between the third side of the battery core module and the outer shell; the third wall faces the battery core module
  • a wire groove is provided on one side of the group, the wire groove penetrates the third wall, and the wire groove is used for accommodating the wire harness of the battery.
  • the side wall of the insulating member further includes a third wall located between the third side of the cell module and the casing, and a fourth wall located in the cell module.
  • the fourth wall between the side and the casing; at least one of the third wall and the fourth wall is provided with a third groove on the side facing the battery module; the third groove penetrates The third wall or the fourth wall, or the third groove penetrates through the third wall and the fourth wall.
  • the battery further includes a circuit board connected to the battery core module; an end of the first groove close to the circuit board is a glue injection port.
  • the insulating member further includes a fourth groove, a fifth groove and a sixth groove, and the fourth groove is provided in the first wall and the second wall at least. one side facing the battery module; the fifth groove is provided on the side of at least one of the first wall and the second wall facing the casing; the sixth groove is provided on between the fourth groove and the fifth groove, and communicate with the fourth groove and the fifth groove respectively.
  • the fourth groove communicates with the glue injection port.
  • a side wall of the insulating member away from the cell module is provided with a guide groove, and along the stacking direction of the cells, the guide groove penetrates through the side of the insulating member.
  • the shell is provided with a protruding part; the protruding part can be inserted into the guide groove and slide along the guide groove.
  • the insulating member is made of polypropylene foam material.
  • a first groove is arranged on the side wall of the insulating member, and the first groove is used to provide a flow guide for the colloid, so that the colloid is located between the insulating member and the battery module.
  • the first groove avoids the randomness of the colloid flowing automatically from the surface of the cell module to the surroundings, and improves the filling efficiency and filling uniformity of the colloid.
  • the first groove penetrates through the side wall of the insulating member, which improves the flow speed of the colloid in the first groove and improves the filling efficiency of the colloid.
  • FIG. 1 is a schematic structural diagram of a battery according to an embodiment of the present application when a part of a casing is removed.
  • FIG. 2 is a schematic structural diagram of the battery shown in FIG. 1 without the bottom wall of the casing in the casing.
  • FIG. 3 is a schematic structural diagram of the battery module shown in FIG. 2 with the battery removed.
  • FIG. 4 is a schematic structural diagram of the insulating member of the battery shown in FIG. 1 .
  • FIG. 5 is a schematic structural diagram of the insulating member of the battery shown in FIG. 4 from another perspective.
  • FIG. 6 is a schematic diagram of the path of colloid flow between the insulating member and the cell module in the battery shown in FIG. 1 .
  • FIG. 7 is a schematic structural diagram of the battery shown in FIG. 1 with the outer casing removed and the first wall of the insulating member.
  • FIG. 8 is a schematic cross-sectional structural diagram of the insulating member shown in FIG. 4 along line VIII-VIII.
  • FIG. 9 is a schematic cross-sectional structural diagram of the insulating member in the battery shown in FIG. 8 in another embodiment.
  • FIG. 10 is a schematic cross-sectional structural diagram of the insulating member in the battery shown in FIG. 8 in yet another embodiment.
  • FIG. 11 is a schematic cross-sectional structural diagram of the insulating member shown in FIG. 4 along the line XII-XII.
  • FIG. 12 is a schematic structural diagram of an experimental structure used in battery experiments of the present application.
  • the battery includes a casing, and a cell module and an insulating member disposed in the casing.
  • the insulating member is located between the battery core module and the casing.
  • the battery cell module includes a plurality of battery cells arranged in a stack.
  • the colloid is filled between the insulating member and the battery core module.
  • a first groove for filling the colloid is formed on the side wall of the insulating member facing the cell module. Along the stacking direction of the battery cells, the first groove penetrates the sidewall of the insulating member.
  • a first groove is arranged on the side wall of the insulating member, and the first groove is used to provide a flow guide for the colloid, so that the colloid is located between the insulating member and the battery module.
  • the first groove avoids the randomness of the colloid flowing automatically from the surface of the cell module to the surroundings, and improves the filling efficiency and filling uniformity of the colloid.
  • the first groove penetrates through the side wall of the insulating member, which improves the flow speed of the colloid in the first groove and improves the filling efficiency of the colloid.
  • the battery 100 includes a casing 10 , a cell module 20 , an insulating member 30 and a gel (not shown). Both the cell module 20 and the insulating member 30 are disposed in the casing 10 .
  • the housing 10 includes a casing 11 and an upper cover 13, as shown in FIG. 7 .
  • the casing 11 is provided with a cavity 101
  • the upper cover 13 is disposed on the casing 11 and closes the cavity 101 .
  • the cell module 20 and the insulating member 30 are arranged in the cavity 101.
  • the insulating member 30 is located between the cell module 20 and the casing 11 .
  • the cell module 20 includes a plurality of cells 21 , and the plurality of cells 21 are stacked along the stacking direction Z, as shown in FIG. 7 .
  • the insulating member 30 is provided with a first groove 33 toward the side wall of the cell module 20 .
  • the first groove 33 penetrates through the sidewall of the insulating member 30 along the stacking direction Z of the battery cells 21 .
  • the first groove 33 is used for injecting the colloid.
  • the colloid is filled between the insulating member 30 and the cell module 20 .
  • the first groove 33 provides a flow guide for the colloid, so that the colloid flows toward the bottom wall of the housing 10 along the stacking direction Z of the battery cells 21 , and then the first The colloid in the groove 33 flows to both sides of the first groove 33 to fill the peripheral side of the battery module 20 close to the bottom wall of the casing 10 , and then the colloid flows in reverse to fill evenly To the gap between the insulating member 30 and the cell module 20 , specifically, the colloid flows from the bottom wall of the casing 10 to the direction of the upper cover 13 to fill the insulating member 30 in the gap with the battery module 20 .
  • the first groove 33 avoids the randomness of the colloid flowing automatically from the surface of the cell module 20 to the surroundings, and improves the filling efficiency and filling uniformity of the colloid.
  • air bubbles may be formed due to the failure of air to be discharged in time, and there may also be air bubbles in the colloid.
  • these air bubbles can be discharged through the gap between the insulating member 30 and the cell module 20 .
  • first groove 33 penetrates the side wall of the insulating member 30 along the stacking direction Z of the battery cells 21 , which speeds up the flow of the colloid.
  • the insulating member 30 is substantially an annular structure and surrounds the peripheral side of the cell module 20, but is not limited thereto.
  • the insulating member 30 may also be substantially a plate-like or sheet-like structure and disposed on opposite sides of the cell module 20 , which can also insulate the cell module 20 . and the role of the housing 10.
  • the insulating member 30 is made of polypropylene foam, but not limited thereto.
  • the insulating member 30 insulates the cell module 20 from the housing 10 , and the insulating member 30 can buffer the cell module 20 from external force. It can be understood that, in other embodiments, the insulating member 30 may also be a structure with insulating function made of materials such as plastic.
  • the insulating member 30 is further provided with a second groove 34 on the side wall facing the cell module 20 .
  • the second groove 34 communicates with the first groove 33 .
  • the colloid in the first groove 33 flows into the second groove 34 and flows along the second groove 34, so that the colloid flows along the first groove 33 and the second groove 34 respectively.
  • the grooves 34 flow in staggered directions, which improves the uniformity of the flow of the colloid between the insulating member 30 and the battery module 20 , so that the colloid effectively fills the insulating member 30 and the battery module 20 . in the gaps between the cell modules 20 .
  • the colloid in the first groove 33 can flow to both sides of the first groove 33 in the direction of the arrow in the figure; the colloid in the second groove 34 can flow according to the direction of the arrow in the figure. In the figure, the direction of the arrow flows to both sides of the second groove 34 .
  • the filling efficiency of the gel is improved, and the uniformity of the flow of the gel between the insulating member 30 and the battery module 20 is further improved.
  • a first end surface 31 and a second end surface 32 are respectively provided on both ends of the side wall of the insulating member 30 along the stacking direction Z of the battery cells 21 .
  • the first end surface 31 and the second end surface 32 are respectively the end surfaces of the two outermost ends on opposite sides of the insulating member 30 .
  • the first end surface 31 is closer to the upper cover 13 than the second end surface 32 .
  • the first end surface 31 and the second end surface 32 may be respectively a plane or a stepped plane.
  • the second groove 34 is disposed between the first end surface 31 and the second end surface 32 .
  • the second groove 34 is filled with colloid, which enhances the bonding strength of the insulating member 30 and the cell module 20 .
  • the first groove 33 is perpendicular to the first end surface 31 and the second end surface 32 respectively, and the second groove 34 is perpendicular to the first groove 33, but not limited to this .
  • first groove 33 may also intersect the first end surface 31 at an acute angle or an obtuse angle, and the second groove 34 and the first groove 33 may also intersect at an angle. For other angles, as long as the first groove 33 guides the flow of the colloid and can flow into the second groove 34 .
  • the cell module 20 includes a first side 201 and a second side 202 arranged oppositely, and a third side 203 and a fourth side 204 arranged oppositely.
  • the third side 203 of the cell module 20 is provided with tabs (not shown).
  • the side wall of the insulating member 30 includes a first wall 301 located between the first side 201 of the cell module 20 and the casing 10 , a second side 202 of the cell module 20 and the outer casing 10 .
  • the second wall 302 between the housings 10 , the third wall 303 between the third side 203 of the cell module 20 and the housing 10 , and the fourth side of the cell module 20 204 and the fourth wall 304 between the housing 10 .
  • the first wall 301 and the second wall 302 respectively extend along the length direction X of the battery module 20
  • the third wall 303 and the fourth wall 304 respectively extend along the battery module 20
  • the width direction Y extends.
  • the length direction X, the width direction Y and the stacking direction Z of the cells 21 are perpendicular to each other.
  • the dimension of the first wall 301 in the length direction X is larger than the dimension of the third wall 303 in the width direction Y, but not limited thereto. In other embodiments, the dimension of the first wall 301 in the length direction X may also be equal to the dimension of the third wall 303 in the width direction Y.
  • the dimensions of the first wall 301 , the second wall 302 , the third wall 303 and the fourth wall 304 are set according to the length and width of the cell module 20 .
  • the first wall 301 and the second wall 302 are respectively provided with a first groove 33 ; the first wall 301 and the second wall 302 are respectively provided with a second groove 34 . It can be understood that, in other embodiments, the first groove 33 and the second groove 34 may be provided only on the first wall 301 or the second wall 302 .
  • the colloid is injected from the first groove 33, the first groove 33 is provided on the first wall 301 and the second wall 302, the first wall 301 and the second wall 302 There are no electrode tabs, wire harnesses and other structures between the battery module 20 , which further makes it easy for the colloid to be filled between the insulating member 30 and the battery module 20 .
  • the first wall 301 , the second wall 302 , the third wall 303 and the fourth wall 304 are separate structures, and are arranged in sequence around the The peripheral side of the cell module 20 .
  • the insulating member 30 includes two first parts 3001 , two second parts 3002 , one third part 3003 and one fourth part 3004 .
  • the second portion 3002 is substantially L-shaped.
  • the third portion 3003 is substantially U-shaped.
  • the same side of the two first parts 3001 is connected to the third part 3003 respectively, and the same other side is connected to the two second parts 3002 respectively.
  • the fourth portion 3004 is located between the two second portions 3002 .
  • Two of the first parts 3001, two of the second parts 3002, one of the third parts 3003 and one of the fourth parts 3004 substantially surround a rectangular cavity 3005, where the cell module 20 is located. inside the rectangular cavity 3005.
  • the insulating member 30 may also be integrally formed.
  • the cross-sections of the first groove 33 and the second groove 34 are respectively rectangular.
  • the number of the first grooves 33 on the first wall 301 and the second wall 302 is multiple, for example, the number of the first grooves 33 is three, but not limited thereto.
  • a plurality of the first grooves 33 are symmetrically arranged on the first wall 301 and the second wall 302 .
  • the number of the second grooves 34 on the first wall 301 and the second wall 302 is at least one respectively, for example, the number of the second grooves 34 is one, but not limited thereto.
  • the second grooves 34 of the first wall 301 and the second wall 302 communicate with the three first grooves 33 .
  • the number of the first grooves 33 and the second grooves 34 can be set according to the length and thickness of the battery module 20 , wherein the thickness direction of the battery module 20 is parallel to the battery module 20 .
  • the stacking direction Z of the cores 21 can be set according to the length and thickness of the battery module 20 , wherein the
  • the numbers of the first grooves 33 and the second grooves 34 may also be other numbers.
  • the insulating member 30 a has substantially the same structure as the insulating member 30 , except that the number of the first grooves 33 a of the insulating member 30 a is two.
  • the first groove 33 a has the same structure as the first groove 33 .
  • Two of the first grooves 33 a are symmetrically disposed on the side of the first wall 301 and the second wall 302 facing the cell module 20 , respectively.
  • the two first grooves 33a on the first wall 301 are respectively close to the intersections of the first wall 301 with the third wall 303 and the fourth wall 304, respectively.
  • the two first grooves 33a on the second wall 302 are respectively close to the intersections of the second wall 302 with the third wall 303 and the fourth wall 304, respectively.
  • the number of the second grooves 34a on the first wall 301 and the second wall 302 of the insulating member 30a is one, and the structure of the second groove 34a and the second groove 34 is the same.
  • the second grooves 34a on the first wall 301 and the second wall 302 communicate with the two first grooves 33a respectively.
  • the insulating member 30b has substantially the same structure as the insulating member 30a, except that the numbers of the second grooves 34b on the first wall 301 and the second wall 302 of the insulating member 30b are respectively for two.
  • the two second grooves 34b are symmetrically arranged on the first wall 301 and the second wall 302 . Specifically, the two second grooves 34b on the first wall 301 are respectively located on the side of the first groove 33b facing the third wall 303 and the fourth wall 304 . The two second grooves 34b on the second wall 302 are located on the side of the first groove 33b facing the third wall 303 and the fourth wall 304, respectively.
  • the second groove 34b communicates with the adjacent first groove 33b.
  • the battery 100 further includes a circuit board 40 connected to the cell module 20 .
  • the circuit board 40 is disposed between the cell module 20 and the upper cover 13 .
  • One end of the first groove 33 close to the circuit board 40 is a glue injection port 331 .
  • the glue injection port 331 is used to inject colloid, which is convenient for the glue injection operation.
  • the glue injection port 331 is located on the side of the circuit board 40 facing the bottom wall of the casing 11 , the glue injection through the glue injection port 331 can prevent the glue from being filled on the circuit board 40 .
  • the glue injection port 331 of each of the first grooves 33 is used for injecting glue, but is not limited thereto.
  • the glue can also be injected into the first wall 301 and the second wall 302 from the glue injection ports 331 of some of the first grooves 33 therein.
  • a wire slot 35 is provided on the side of the third wall 303 facing the cell module 20 .
  • the wire groove 35 penetrates through the first end surface 31 of the third wall 303 , but is not limited thereto.
  • the wire slot 35 is used for accommodating the wire harness 50 of the battery 100 .
  • the wire harness 50 is respectively connected to the tabs of the cell module 20 and the circuit board 40 .
  • the wire slot 35 penetrates through the side of the third wall 303 close to the circuit board 40 , so that the wire harness can be connected to the circuit board 40 through the wire slot 35 .
  • the wire slot 35 locates and guides the wire harness 50 of the battery 100 . It can be understood that, in other embodiments, the wire slot 35 may also be omitted.
  • the wire harness 50 is connected to the tabs and the circuit board 40 respectively through the gap between the cell module 20 and the housing 10 . In yet another embodiment, the wire groove 35 may also pass through the third wall 303 .
  • the third wall 303 and the fourth wall 304 are respectively provided with third grooves 36 on the side facing the cell module 20 .
  • the third groove 36 is approximately located at the center symmetry of the third wall 303 and the fourth wall 304, but is not limited thereto.
  • the number of the third grooves 36 on the third wall 303 and the fourth wall 304 is one, but not limited thereto.
  • the third grooves 36 penetrate through the third wall 303 and the fourth wall 304 respectively.
  • the third grooves 36 are not in contact with the first grooves 33 and the second grooves 34 respectively, but not limited thereto.
  • the colloid flows toward the bottom wall of the housing 11 along the first groove 33 .
  • the colloid enters the third groove 36 from the gaps between the third wall 303 and the fourth wall 304 and the cell module 20 respectively, and from the bottom wall of the casing 11 .
  • the colloid in the third groove 36 flows upward from the bottom wall of the housing 11, as shown in FIG. 6 .
  • the third groove 36 provides a guide for the colloid filling, so that the colloid is evenly filled between the third wall 303 and the battery module 20, and between the fourth wall 304 and the battery. between the core modules 20 .
  • the third groove 36 can discharge the air bubbles generated during the filling process of the colloid or the air bubbles contained in the colloid itself, which further improves the smoothness of the flow of the colloid.
  • the third groove 36 provided on the third wall 303 and the fourth wall 304 is filled with colloid, which improves the relationship between the third wall 303 and the fourth wall 304 the bonding strength of the cell module 20.
  • the third groove 36 may also communicate with the first groove 33 or the second groove 34 .
  • the number of the third grooves 36 may also be multiple, and a plurality of the third grooves 36 are symmetrically arranged on the third wall 303 and the fourth wall 304 . It can be understood that, in other embodiments, the third groove 36 may also be omitted.
  • the third groove 36 may be provided only on the third wall 303 or the fourth wall 304 .
  • a third groove 36 is provided on the fourth wall 304 , and the third groove 36 penetrates through the fourth wall 304 . Air bubbles that may exist in the colloid between the fourth wall 304 and the cell module 20 can be discharged through the third groove 36 .
  • the third groove 36 is not provided on the third wall 303 , the air bubbles that may exist in the colloid can be discharged through the gap between the third wall 303 and the cell module 20 .
  • the second end surface 32 is provided with a channel 37 .
  • the passage 37 communicates with two sides of the insulating member 30 facing the cell module 20 and the housing 11 respectively.
  • the channel 37 includes a fourth groove 371 , a fifth groove 373 and a sixth groove 375 .
  • the fourth groove 371 is disposed on the side of the first wall 301 and the second wall 302 facing the cell module 20 .
  • the fourth groove 371 penetrates through the second end surface 32 .
  • the fifth groove 373 is disposed on the second end surface 32 and is located on the side of the insulating member 30 facing the housing 11 .
  • the fifth grooves 373 are respectively disposed on the first wall 301 , the second wall 302 , the third wall 303 and the fourth wall 304 .
  • the sixth groove 375 is disposed between the fourth groove 371 and the fifth groove 373, and communicates with the fourth groove 371 and the fifth groove 373, respectively.
  • the fourth groove 371 and the fifth groove 373 extend along the circumference of the second end surface 32 and are substantially annular grooves respectively, but not limited thereto. It can be understood that, in other embodiments, the fifth groove 373 may also be disposed on the first wall 301 and the second wall 302 respectively.
  • the second end surface 32 of the insulating member 30 is in abutment with the bottom wall of the housing 11 or is disposed at intervals.
  • the colloid is injected from the first groove 33 and flows to the second end surface 32 , and is filled into the fourth groove 371 .
  • the colloid flows from the fourth groove 371 to the fifth groove 373 through the sixth groove 375 .
  • the colloid in the fifth groove 373 flows upward from the bottom wall of the housing 11 to fill the gap between the insulating member 30 and the housing 11 , so that the insulating member 30 and the The bonding strength of the case 11 is improved.
  • the fourth groove 371 can store the colloid flowing in from the first groove 33 .
  • the fifth groove 373 enables the glue to fill the gap between the insulating member 30 and the casing 10 , so as to improve the bonding strength of the insulating member 30 and the casing 11 .
  • the fourth groove 371 stores the colloid flowing in from the first groove 33 , which can improve the filling speed of the colloid into the gap between the battery module 20 and the insulating member 30 . .
  • the fourth groove 371 and/or the fifth groove 373 of the channel 37 may be omitted, and the sixth groove 375 penetrates through the insulating member 30 so that the channel 37 communicates with all the
  • the insulating members 30 may face two sides of the battery module 20 and the casing 11 respectively.
  • the colloid can flow from the gap between the insulating member 30 and the cell module 20 through the channel 37 to the gap between the insulating member 30 and the housing 11 .
  • the channel 37 can also be omitted.
  • the channel 37 may also be provided on the first end surface 31 of at least one of the first wall 301 and the second wall 302 .
  • the fourth groove 371 is disposed on the side of the first wall 301 and/or the second wall 302 facing the cell module 20 .
  • the fifth groove 373 is located on the side of the first wall 301 and/or the second wall 302 facing the housing 10 .
  • the sixth groove 375 is disposed between the fourth groove 371 and the fifth groove 373 and communicates with the fourth groove 371 and the fifth groove 373 respectively.
  • the fourth groove 371 It communicates with the glue injection port 331 .
  • the glue can enter the fourth groove from the glue injection port 331 371 , and enter the fifth groove 373 through the sixth groove 375 .
  • the colloid can also flow from the fifth groove 373 into the gap between the insulating member 30 and the housing 10 .
  • the fifth groove 373 can store excess glue between the cell module 20 and the insulating member 30 to prevent the glue from overflowing outside the first end surface 31 .
  • the fourth groove 371 can also be omitted, and the glue injection port 331 can be directly communicated with the sixth groove 375 , so that the glue can enter the fifth groove through the sixth groove 375 373.
  • the first end surface 31 is provided with a seventh groove 38 .
  • the seventh groove 38 is located on the side of the insulating member 30 away from the cell module 20 .
  • the seventh groove 38 extends along the circumference of the first end surface 31 and is substantially annular, but not limited thereto.
  • the seventh groove 38 can store colloid, so as to prevent the colloid between the insulating member 30 and the housing 11 from overflowing or spreading around the first end surface 31 , as shown in FIG. 4 .
  • the seventh groove 38 may also be an L-shaped, linear or other groove structure.
  • the insulating member 30 includes a first wall 301 , a second wall 302 , a third wall 303 and a fourth wall 304 whose side walls are respectively disposed on the side facing away from the cell module 20
  • the guide groove 39 penetrates the side wall of the insulating member.
  • the housing 11 is provided with a protruding portion 111 .
  • the protruding portion 111 can be inserted into the guide groove 39 and slide along the guide groove 39 .
  • the protruding portion 111 is provided with a connecting hole 1111 for connecting the upper cover 13 .
  • the guide groove 39 provides a guide for the insulating member 30 to be installed into the housing 10, so as to facilitate assembly; the guide groove 39 improves the matching accuracy of the insulating member 30 and the housing 11, and reduces the Assembly error. It can be understood that, in other embodiments, the guide groove 39 can also be omitted.
  • an experimental structure 500 is provided.
  • the experimental structure 500 is a structure made of a transparent material.
  • the experimental structure 500 includes two first pillars 501 , second pillars 502 and third pillars 503 .
  • the first post 501 includes a third end surface 5011 and a fourth end surface 5013 opposite to each other. The distance between the third end surface 5011 and the fourth end surface 5013 is equal to the distance between the first end surface 31 and the second end surface 32 .
  • Two ends of the third column 503 are respectively connected to the fourth end surfaces 5013 of the two first columns 501 .
  • Two ends of the second column 502 are respectively connected to the two first columns 501 and located between the third end surface 5011 and the fourth end surface 5013 .
  • a first groove 5015 is disposed in the first column 501 , and the first groove 5015 penetrates through the third end surface 5011 .
  • the second column 502 is provided with a second groove (not shown), and the second groove is connected to the first grooves 5015 of the two first columns 501 respectively.
  • the third column 503 is provided with a third groove (not shown in the figure), and the third groove communicates with the first grooves 5015 of the two first columns 501 respectively.
  • the structure and size of the first groove 5015 are respectively the same as those of the first groove 33; the structure and size of the second groove are respectively the same as those of the second groove 34; the structure and size of the third groove are respectively They are the same as the fourth grooves 371 respectively.
  • the width W1 and the recessed depth H1 of the first groove 33 and the second groove 34 are respectively the same, as shown in FIG. 3 and FIG. 8 .
  • the width W1 is preferably 10 mm, but not limited thereto.
  • the experimental data is as follows:
  • the glue filling effect is the best, but the width W1 satisfies 6mm ⁇ W1 ⁇ 14mm, preferably when 8mm ⁇ W1 ⁇ 12mm, the glue Both can be filled into the second groove 34 and the fourth groove 371 .
  • the concave depth H1 of the first groove 33 and the second groove 34 satisfies: 3mm ⁇ H1 ⁇ 7mm.
  • the structure and size of the third groove 36 and the first groove 33 are preferably the same.
  • the width W2 of the third groove 36 satisfies: 8mm ⁇ W2 ⁇ 12mm.
  • the concave depth H2 of the third groove 36 satisfies: 3mm ⁇ H2 ⁇ 7mm.
  • the length L of the fourth groove 371 along the direction of the second end surface 32 toward the first end surface 31 satisfies: 4 mm ⁇ L ⁇ 6 mm.
  • the distance a1 between the two adjacent side walls of the two adjacent first grooves 33 satisfies: 65mm ⁇ a1 ⁇ 75mm.
  • the distance a2 (not shown) between the two adjacent side walls of the two adjacent second grooves 34 satisfies: 115mm ⁇ a2 ⁇ 125mm .
  • the above-mentioned battery 100 is provided with a first groove 33 on the side wall of the insulating member 30, and the first groove 33 is used to provide a flow guide for the colloid, so that the colloid is formed between the insulating member 30 and the colloid.
  • the first groove 33 flows along the stacking direction Z of the cells 21 to flow to the peripheral side of the bottom wall of the housing 10, and then the colloid flows in the opposite direction to uniformly fill the gap between the insulating member 30 and the cell module 20 .
  • the first groove 33 prevents the random flow of the colloid from the surface of the cell module 20 to the surrounding, and improves the filling efficiency and filling uniformity of the colloid.
  • the first groove 33 penetrates the side wall of the insulating member 30 , which increases the flow speed of the colloid in the first groove 33 and improves the filling efficiency of the colloid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请公开了一种电池,电池包括外壳、及设置于外壳内的电芯模组、绝缘件和胶体。绝缘件位于电芯模组与外壳之间。电芯模组包括堆叠设置的多个电芯。胶体填充于绝缘件和电芯模组之间。绝缘件朝向电芯模组的侧壁设有用于填充胶体的第一凹槽。沿电芯的堆叠方向,第一凹槽贯通绝缘件的侧壁。该电池通过在绝缘件的侧壁上设置第一凹槽,利用第一凹槽为胶体提供流动导向,以均匀填充至绝缘件与电芯模组之间的间隙中,避免胶体从电芯模组表面向四周自动流动的随意性,提高了胶体的填充效率及填充均匀性。

Description

电池 技术领域
本申请涉及新能源技术领域,尤其涉及一种电池。
背景技术
电池装配中,灌胶工艺采用在外壳内从电芯模组的表面的中央注胶,依靠胶的自由流动来填充至外壳与电芯模组之间、或电芯模组的内部,但在灌胶过程中存在以下问题:无法实现外壳内有效的填充,流速慢,电池中设置在外壳与电芯模组之间的绝缘件装配不方便。
发明内容
有鉴于此,有必要提供一种灌胶充分的电池。
本申请提出一种电池,所述电池包括外壳、及设于所述外壳内的电芯模组和绝缘件。所述绝缘件位于所述电芯模组与所述外壳之间;所述电芯模组包括堆叠设置的多个电芯;胶体填充于所述绝缘件和所述电芯模组之间;所述绝缘件朝向所述电芯模组的侧壁设有用于填充所述胶体的第一凹槽,沿所述电芯的堆叠方向,所述第一凹槽贯通所述绝缘件的侧壁。
一种可能的实现方式中,所述第一凹槽的截面为矩形,所述第一凹槽的宽度W1满足:8mm≤W1≤12mm。
一种可能的实现方式中,所述第一凹槽的凹陷的深度H1满足:3mm<H1<7mm。
一种可能的实现方式中,所述第一凹槽数量为多个,多个所述第一凹槽设于所述绝缘件的侧壁上;相邻的两个所述第一凹槽的间距a1满足:65mm≤a1≤75mm。
一种可能的实现方式中,所述电芯模组包括相对设置的第一侧和第二侧、以及相对设置的第三侧和第四侧,其中所述电芯模组的第三侧设置有极耳; 所述绝缘件的侧壁包括位于所述电芯模组的第一侧和所述外壳之间的第一壁、及位于所述电芯模组的第二侧和所述外壳之间的第二壁,所述第一壁和所述第二壁中至少一个设有所述第一凹槽。
在一种实施方式中,所述第一凹槽的截面为矩形,所述第一凹槽的宽度W1满足:8mm≤W1≤12mm。
在一种实施方式中,所述第一凹槽的凹陷的深度H1满足:3mm<H1<7mm。
一种可能的实现方式中,所述第一壁和所述第二壁中至少一个朝向所述电芯模组的一侧设置有第二凹槽,所述第二凹槽与所述第一凹槽连通。
一种可能实现的方式中,所述第二凹槽的截面为矩形,所述第二凹槽的宽度W2满足:8mm≤W2≤12mm。
一种可能的实现方式中,所述第二凹槽凹陷的深度H2满足:3mm<H2<7mm。
一种可能的实现方式中,所述第二凹槽数量为多个,相邻的两个所述第二凹槽的间距a2满足:115mm≤a2≤125mm。
一种可能的实现方式中,所述绝缘件的侧壁还包括位于所述电芯模组的第三侧和所述外壳之间的第三壁;所述第三壁朝向所述电芯模组的一侧设置有线槽,所述线槽贯通所述第三壁,所述线槽用于容置所述电池的线束。
一种可能的实现方式中,所述绝缘件的侧壁还包括位于所述电芯模组的第三侧和所述外壳之间的第三壁、及位于所述电芯模组的第四侧和所述外壳之间的第四壁;所述第三壁和所述第四壁中至少一个朝向所述电芯模组的一侧设置有第三凹槽;所述第三凹槽贯通所述第三壁或所述第四壁,或所述第三凹槽贯通所述第三壁和所述第四壁。
一种可能的实现方式中,所述电池还包括与所述电芯模组连接的电路板;所述第一凹槽靠近所述电路板的一端为注胶口。
一种可能的实现方式中,所述绝缘件还包括第四凹槽、第五凹槽和第六凹槽,所述第四凹槽设置于所述第一壁和所述第二壁中至少一个朝向所述电芯模组的一侧;所述第五凹槽设置于所述第一壁和所述第二壁中至少一个朝 向所述外壳的一侧;所述第六凹槽设置于第四凹槽和第五凹槽之间,且分别与所述第四凹槽和所述第五凹槽连通。
一种可能的实现方式中,所述第四凹槽与所述注胶口连通。
一种可能的实现方式中,所述绝缘件的侧壁背离所述电芯模组的一侧设置有导向槽,沿所述电芯的堆叠方向,所述导向槽贯通所述绝缘件的侧壁;所述外壳上设置有凸出部;所述凸出部能够嵌入所述导向槽并沿所述导向槽滑动。
一种可能的实现方式中,所述绝缘件为聚丙烯泡沫材质制成。
上述电池通过在所述绝缘件的侧壁上设置第一凹槽,利用所述第一凹槽为所述胶体提供流动导向,使所述胶体在所述绝缘件与所述电芯模组之间、在所述第一凹槽内沿着所述电芯的堆叠方向流动,以流向所述外壳的底壁的周侧,然后所述胶体反向流动以均匀填充至所述绝缘件与所述电芯模组之间的间隙中。所述第一凹槽避免所述胶体从所述电芯模组表面向四周自动流动的随意性,提高了所述胶体的填充效率及填充均匀性。所述第一凹槽贯通所述绝缘件的侧壁,提高了胶体在所述第一凹槽内的流动速度,提高了胶体的填充效率。
附图说明
图1为根据本申请一实施例的电池去除外壳的部分时的结构示意图。
图2为图1所示的电池去掉外壳中壳体的底壁的结构示意图。
图3为图2所示的电池去掉电芯模组的结构示意图。
图4为图1所示的电池的绝缘件的结构示意图。
图5为图4所示的电池的绝缘件在另一视角的结构示意图。
图6为图1所示电池中绝缘件与电芯模组之间的胶体流动的路径示意图。
图7为图1所示电池去掉外壳的部分及绝缘件的第一壁的结构示意图。
图8为图4所示的绝缘件沿VIII-VIII线的剖视结构示意图。
图9为图8所示的电池中绝缘件在另一实施例中的剖视结构示意图。
图10为图8所示的电池中绝缘件在又一实施例中的剖视结构示意图。
图11为图4所示的绝缘件沿XII-XII线的剖视结构示意图。
图12为本申请电池实验用的一种实验结构的结构示意图。
主要元件符号说明
电池                   100
外壳                   10
壳体                   11
凸出部                 111
连接孔                 1111
上盖                   13
腔体                   101
电芯模组               20
电芯                   21
第一侧                 201
第二侧                 202
第三侧                 203
第四侧                 204
绝缘件                 30,30a,30b
第一端面               31
第二端面               32
第一凹槽               33,33a,33b
注胶口                 331
第二凹槽               34,34a,34b
线槽                   35
第三凹槽               36
通道                   37
第四凹槽              371
第五凹槽              373
第六凹槽              375
第七凹槽              38
导向槽                39
第一壁                301
第二壁                302
第三壁                303
第四壁                304
第一部                3001
第二部                3002
第三部                3003
第四部                3004
矩形腔                3005
电路板                40
线束                  50
实验结构              500
第一柱                501
第三端面              5011
第四端面              5013
第一槽                5015
第二柱                502
第三柱                503
长度方向              X
宽度方向              Y
堆叠方向              Z
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
本申请一些实施方式提出一种电池,所述电池包括外壳、及设置于所述外壳内的电芯模组和绝缘件。所述绝缘件位于所述电芯模组与所述外壳之间。电芯模组包括堆叠设置的多个电芯。胶体填充于所述绝缘件和所述电芯模组之间。所述绝缘件朝向所述电芯模组的侧壁设有用于填充所述胶体的第一凹槽。沿所述电芯的堆叠方向,所述第一凹槽贯通所述绝缘件的侧壁。
上述电池通过在所述绝缘件的侧壁上设置第一凹槽,利用所述第一凹槽为所述胶体提供流动导向,使所述胶体在所述绝缘件与所述电芯模组之间、在所述第一凹槽内沿着所述电芯的堆叠方向流动,以流向所述外壳的底壁的周侧,然后所述胶体反向流动以均匀填充至所述绝缘件与所述电芯模组之间的间隙中。所述第一凹槽避免所述胶体从所述电芯模组表面向四周自动流动的随意性,提高了所述胶体的填充效率及填充均匀性。所述第一凹槽贯通所述绝缘件的侧壁,提高了胶体在所述第一凹槽内的流动速度,提高了胶体的填充效率。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请同时参阅图1和图2,本申请的一实施例提出一种电池100。所述电池100包括外壳10、电芯模组20、绝缘件30和胶体(图未示)。所述电芯模组20和所述绝缘件30均设置于所述外壳10内。所述外壳10包括壳体11和上盖13,如图7所示。所述壳体11设置有腔体101,所述上盖13设置于所述壳体11上,并封闭所述腔体101。所述电芯模组20和所述绝缘件30设置于 所述腔体101内。所述绝缘件30位于所述电芯模组20与所述壳体11之间。所述电芯模组20包括多个电芯21,多个所述电芯21沿堆叠方向Z堆叠设置,如图7所示。所述绝缘件30朝向所述电芯模组20的侧壁设置有第一凹槽33。所述第一凹槽33沿所述电芯21的堆叠方向Z贯通所述绝缘件30的侧壁。所述第一凹槽33用于注入所述胶体。所述胶体填充于所述绝缘件30与所述电芯模组20之间。
请参阅图6,所述第一凹槽33为所述胶体提供流动导向,使所述胶体沿着所述电芯21的堆叠方向Z流向所述外壳10的底壁,然后,所述第一凹槽33内的胶体向所述第一凹槽33的两侧流动以填充至所述电芯模组20的靠近所述外壳10底壁的周侧,然后所述胶体反向流动以均匀填充至所述绝缘件30与所述电芯模组20之间的间隙中,具体的,所述胶体由所述外壳10的底壁向所述上盖13的方向流动以填充所述绝缘件30与所述电芯模组20之间的间隙内。所述第一凹槽33避免所述胶体从所述电芯模组20表面向四周自动流动的随意性,提高了所述胶体的填充效率及填充均匀性。
在胶体填充的过程中,可能因空气未能及时排出而形成气泡,胶体中也可能带有气泡。当所述胶体由所述外壳10的底壁向所述上盖13的方向流动时,这些气泡可以通过所述绝缘件30与所述电芯模组20之间的间隙排出。
进一步地,所述第一凹槽33沿所述电芯21的堆叠方向Z贯通所述绝缘件30的侧壁,加快了所述胶体流动的速度。
图示实施例中,所述绝缘件30大致为一环形结构,且围绕在所述电芯模组20的周侧,但不限于此。例如,其他实施例中,所述绝缘件30也可以大致为一板状或片状结构,且设置在所述电芯模组20的相对两侧,同样能够实现绝缘所述电芯模组20和所述外壳10的作用。
所述绝缘件30为聚丙烯泡沫材质制成,但不限于此。所述绝缘件30使所述电芯模组20与所述外壳10绝缘,且所述绝缘件30能够实现所述电芯模组20受到外力得到缓冲。可以理解,其他实施例中,所述绝缘件30也可以为塑胶等材质制成的具有绝缘功能的结构。
请同时参阅图3、图4和图5,所述绝缘件30朝向所述电芯模组20的侧壁还设置有第二凹槽34。所述第二凹槽34与所述第一凹槽33连通。所述第一凹槽33内的胶体流入所述第二凹槽34,并沿着所述第二凹槽34流动,使所述胶体分别沿着所述第一凹槽33和所述第二凹槽34在交错的方向上流动,提高了所述胶体在所述绝缘件30和所述电芯模组20之间流动的均匀性,使所述胶体有效填充所述绝缘件30和所述电芯模组20之间的间隙内。
进一步地,如图6所示,所述第一凹槽33内的胶体能够按照图示中箭头方向流向所述第一凹槽33的两侧;所述第二凹槽34内的胶体能够按照图示中箭头方向流向所述第二凹槽34的两侧。提高了胶体的填充效率,且进一步提高了所述胶体在所述绝缘件30和所述电芯模组20之间流动的均匀性。所述绝缘件30的侧壁沿所述电芯21的堆叠方向Z上的两端分别设置第一端面31和第二端面32。所述第一端面31和所述第二端面32分别为所述绝缘件30上相对两侧的两个最外端的端面。所述第一端面31较所述第二端面32靠近所述上盖13。所述第一端面31和所述第二端面32可以分别为平面或阶梯平面。所述第二凹槽34设置于所述第一端面31和所述第二端面32之间。所述第二凹槽34内填充有胶体,增强了所述绝缘件30与所述电芯模组20的结合强度。一实施例中,所述第一凹槽33分别垂直于所述第一端面31和所述第二端面32,所述第二凹槽34垂直于所述第一凹槽33,但不限于此。可以理解,其他实施例中,所述第一凹槽33也可以与所述第一端面31相交呈一锐角或钝角,所述第二凹槽34与所述第一凹槽33也可以相交呈一其他角度,只要所述第一凹槽33引导所述胶体流动、并能够流入所述第二凹槽34即可。
请继续参阅图1、图2和图7,所述电芯模组20包括相对设置的第一侧201和第二侧202、以及相对设置的第三侧203和第四侧204。其中所述电芯模组20的第三侧203设置有极耳(图未示)。所述绝缘件30的侧壁包括位于所述电芯模组20的第一侧201和所述外壳10之间的第一壁301、位于所述电芯模组20的第二侧202和所述外壳10之间的第二壁302、位于所述电芯模组20的第三侧203和所述外壳10之间的第三壁303、以及位于所述电芯 模组20的第四侧204和所述外壳10之间的第四壁304。所述第一壁301和所述第二壁302分别沿所述电芯模组20的长度方向X延伸,所述第三壁303和所述第四壁304分别沿所述电芯模组20的宽度方向Y延伸。所述长度方向X、所述宽度方向Y及所述电芯21的堆叠方向Z分别两两垂直。
所述第一壁301在所述长度方向X上的尺寸大于所述第三壁303在所述宽度方向Y的尺寸,但不限于此。其他实施例中,所述第一壁301在所述长度方向X上的尺寸也可以等于所述第三壁303在所述宽度方向Y的尺寸。所述第一壁301、所述第二壁302、所述第三壁303和所述第四壁304的尺寸依据所述电芯模组20的长度和宽度设定。
所述第一壁301和所述第二壁302上分别设置有第一凹槽33;所述第一壁301和所述第二壁302上分别设置有第二凹槽34。可以理解,其他实施例中,也可以仅在所述第一壁301或所述第二壁302上设置所述第一凹槽33和所述第二凹槽34。
所述胶体从所述第一凹槽33注入,所述第一凹槽33设置在所述第一壁301和所述第二壁302上,所述第一壁301和所述第二壁302与所述电芯模组20之间无极耳、线束等结构,进一步使胶体易于填充至所述绝缘件30与所述电芯模组20之间。
请参阅图3,图示实施例中,所述第一壁301、所述第二壁302、所述第三壁303和所述第四壁304为分体结构,且依次布置围绕在所述电芯模组20的周侧。具体地,所述绝缘件30包括两个第一部3001、两个第二部3002、一个第三部3003和一个第四部3004。所述第二部3002大致为L形结构。所述第三部3003大致为U形结构。两个所述第一部3001的相同的一侧分别与所述第三部3003相接,及相同的另一侧分别与两个所述第二部3002相接。所述第四部3004位于两个所述第二部3002之间。两个所述第一部3001、两个所述第二部3002、一个所述第三部3003和一个所述第四部3004大致围绕形成一矩形腔3005,所述电芯模组20位于所述矩形腔3005内。
可以理解,其他实施例中,所述绝缘件30也可以为一体成型结构。
请同时参阅图3、图4和图8,所述第一凹槽33和所述第二凹槽34的截面分别为矩形。所述第一壁301和所述第二壁302上所述第一凹槽33的数量分别为多个,例如,所述第一凹槽33的数量为三个,但不限于此。多个所述第一凹槽33对称设于所述第一壁301及所述第二壁302上。所述第一壁301和所述第二壁302上所述第二凹槽34的数量分别为至少一个,例如所述第二凹槽34的数量为一个,但不限于此。所述第一壁301和所述第二壁302的所述第二凹槽34与三个所述第一凹槽33均连通。所述第一凹槽33和所述第二凹槽34的数量可以依据所述电芯模组20的长度和厚度设定,其中,所述电芯模组20的厚度方向平行于所述电芯21的堆叠方向Z。
可以理解,其他实施例中,所述第一凹槽33和所述第二凹槽34的数量也可以为其他数量。例如,如图9所示,绝缘件30a与所述绝缘件30的结构大致相同,区别在于,所述绝缘件30a的第一凹槽33a的数量为两个。所述第一凹槽33a与所述第一凹槽33的结构相同。所述第一壁301和所述第二壁302朝向所述电芯模组20的一侧分别对称设置有两个所述第一凹槽33a。所述第一壁301上的两个第一凹槽33a分别靠近所述第一壁301分别与所述第三壁303及所述第四壁304的相交处。所述第二壁302上的两个第一凹槽33a分别靠近所述第二壁302分别与所述第三壁303及所述第四壁304的相交处。所述绝缘件30a的第一壁301和第二壁302上第二凹槽34a的数量为一个,所述第二凹槽34a与所述第二凹槽34的结构相同。所述第一壁301和所述第二壁302上的所述第二凹槽34a分别与两个所述第一凹槽33a连通。又如,如图10所示,绝缘件30b与所述绝缘件30a的结构大致相同,区别在于,所述绝缘件30b的第一壁301和第二壁302上第二凹槽34b的数量分别为两个。两个所述第二凹槽34b对称设置于所述第一壁301和所述第二壁302上。具体地,所述第一壁301上两个所述第二凹槽34b分别位于所述第一凹槽33b朝向所述第三壁303和所述第四壁304的一侧。所述第二壁302上两个所述第二凹槽34b分别位于所述第一凹槽33b朝向所述第三壁303和所述第四壁304的一侧。所述第二凹槽34b与其邻近的所述第一凹槽33b连通。
请同时参阅图1和图4,所述电池100还包括与所述电芯模组20连接的电路板40。所述电路板40设置于所述电芯模组20与所述上盖13之间。所述第一凹槽33靠近所述电路板40的一端为注胶口331。所述注胶口331用于注入胶体,便于注胶作业。另外,因所述注胶口331位于所述电路板40朝向壳体11的底壁的一侧,从该注胶口331灌胶能够防止胶体灌充在所述电路板40上。
每个所述第一凹槽33的注胶口331用于注入胶体,但不限于此。例如,其他实施例中,也可以在所述第一壁301和所述第二壁302上选择从其中的部分第一凹槽33的注胶口331注入所述胶体。
请同时参阅图1和图4,所述第三壁303朝向所述电芯模组20的一侧设置有线槽35。所述线槽35贯通所述第三壁303的第一端面31,但不限于此。所述线槽35用于容置所述电池100的线束50。所述线束50分别连接所述电芯模组20的极耳和所述电路板40。所述线槽35使所述第三壁303靠近所述电路板40的一侧贯通,以便于线束通过所述线槽35与所述电路板40连接。所述线槽35使所述电池100的线束50定位且为所述线束50提供导向。可以理解,其他实施例中,所述线槽35也可以省略。所述线束50通过所述电芯模组20和所述外壳10之间的间隙实现分别与所述极耳和所述电路板40连接。在又一实施例中,所述线槽35也可贯通所述第三壁303。
请同时参阅图4、图5和图11,所述第三壁303和所述第四壁304朝向所述电芯模组20的一侧分别设置有第三凹槽36。所述第三凹槽36大致位于所述第三壁303和所述第四壁304的中心对称处,但不限于此。所述第三壁303和所述第四壁304上所述第三凹槽36的数量分别为一个,但不限于此。所述第三凹槽36分别贯通所述第三壁303和所述第四壁304。所述第三凹槽36分别与所述第一凹槽33和所述第二凹槽34不相接,但不限于此。所述胶体沿所述第一凹槽33向所述壳体11的底壁流动。所述胶体从所述第三壁303和所述第四壁304分别与所述电芯模组20之间的间隙、及从所述壳体11的底壁进入所述第三凹槽36。所述第三凹槽36内的胶体从所述壳体11的底壁 向上流动,如图6所示。
所述第三凹槽36为所述胶体填充提供导向,使所述胶体均匀填充至所述第三壁303与所述电芯模组20之间、及所述第四壁304与所述电芯模组20之间。另外,所述第三凹槽36能够排出所述胶体填充过程中产生的气泡或所述胶体自身带有的气泡,进一步提高了所述胶体的流动顺畅性。
进一步地,设置于所述第三壁303和所述第四壁304上的所述第三凹槽36内填充有胶体,提高了所述第三壁303和所述第四壁304分别与所述电芯模组20的结合强度。
可以理解,其他实施例中,所述第三凹槽36也可以与所述第一凹槽33或所述第二凹槽34连通。
可以理解,其他实施例中,所述第三凹槽36的数量也可以为多个,多个所述第三凹槽36对称设于所述第三壁303和所述第四壁304上。可以理解,其他实施例中,所述第三凹槽36也可以省略。
可以理解,在其他实施例中,也可以仅在所述第三壁303或所述第四壁304上设置所述第三凹槽36。例如,在所述第四壁304上设置有第三凹槽36,所述第三凹槽36贯通所述第四壁304。所述第四壁304与所述电芯模组20之间的胶体中可能存在的气泡能够通过所述第三凹槽36排出。在所述第三壁303上未设置第三凹槽36时,所述胶体中可能存在的气泡可以通过所述第三壁303与所述电芯模组20之间的间隙排出。
请参阅图5,所述第二端面32上设置有通道37。所述通道37连通所述绝缘件30分别朝向所述电芯模组20和所述壳体11的两侧。所述通道37包括第四凹槽371、第五凹槽373和第六凹槽375。所述第四凹槽371设置于所述第一壁301和所述第二壁302朝向所述电芯模组20的一侧。所述第四凹槽371贯通所述第二端面32。所述第五凹槽373设置于所述第二端面32上,且位于所述绝缘件30朝向所述壳体11的一侧。所述第五凹槽373分别设置于所述第一壁301、所述第二壁302、所述第三壁303和所述第四壁304上。所述第六凹槽375设置于所述第四凹槽371和所述第五凹槽373之间,且分别 与所述第四凹槽371和所述第五凹槽373连通。所述第四凹槽371和所述第五凹槽373沿所述第二端面32的一周延伸,分别大致为环形槽,但不限于此。可以理解,其他实施例中,所述第五凹槽373也可以分别设置于所述第一壁301和所述第二壁302上。
请继续参阅图4和图5,所述绝缘件30的第二端面32与所述壳体11的底壁抵接或间隔设置。所述胶体从所述第一凹槽33注入并流至所述第二端面32,及填充至所述第四凹槽371内。胶体从所述第四凹槽371通过所述第六凹槽375流至所述第五凹槽373内。所述第五凹槽373内的胶体由所述壳体11的底壁向上流动以填充至所述绝缘件30与所述壳体11之间的间隙中,使所述绝缘件30与所述壳体11的结合强度提高。
所述第四凹槽371能够储存从所述第一凹槽33流入的胶体。所述第五凹槽373使所述胶体填充所述绝缘件30与所述外壳10之间的间隙中,提高所述绝缘件30与所述壳体11的结合强度。
进一步地,所述第四凹槽371储存从所述第一凹槽33流入的胶体,能够提高所述胶体向所述电芯模组20与所述绝缘件30之间的间隙内填充的速度。
可以理解,其他实施例中,所述通道37的第四凹槽371和/或第五凹槽373可以省略,所述第六凹槽375贯通所述绝缘件30,使所述通道37连通所述绝缘件30分别朝向所述电芯模组20和所述壳体11的两侧即可。所述胶体能够从所述绝缘件30与所述电芯模组20之间的间隙通过所述通道37,流至所述绝缘件30与所述壳体11之间的间隙内。
可以理解,在另一实施例中,当所述第二端面32与所述壳体11的底壁间隔设置时,所述通道37也可以省略。
可以理解,在其他实施例中,所述通道37也可以设置于所述第一壁301和所述第二壁302中至少一个的第一端面31上。第四凹槽371设置于所述第一壁301和/或所述第二壁302朝向所述电芯模组20的一侧。所述第五凹槽373位于所述第一壁301和/或所述第二壁302朝向所述外壳10的一侧。所述第六凹槽375设置于第四凹槽371和第五凹槽373之间,且分别与所述第 四凹槽371和所述第五凹槽373连通,所述第四凹槽371与注胶口331连通。当胶体沿所述电芯21的堆叠方向Z充满所述电芯模组20与所述绝缘件30之间的间隙时,所述胶体能够从所述注胶口331进入所述第四凹槽371,且通过所述第六凹槽375进入所述第五凹槽373。所述胶体也可以从所述第五凹槽373流至所述绝缘件30与所述外壳10的间隙内。所述第五凹槽373能够储存所述电芯模组20与所述绝缘件30之间多余的胶体,防止胶体溢出于第一端面31外。可以理解,所述第四凹槽371也可以省略,所述注胶口331可以直接与所述第六凹槽375连通,进而使胶体通过所述第六凹槽375进入所述第五凹槽373内。
请参阅图4,所述第一端面31上设置有第七凹槽38。所述第七凹槽38位于所述绝缘件30背离所述电芯模组20的一侧。所述第七凹槽38沿所述第一端面31的一周延伸,大致为环形,但不限于此。所述第七凹槽38能够储存胶体,避免所述绝缘件30与所述壳体11之间的胶体向所述第一端面31溢出或向其四周漫延的现象,如图4所示。可以理解,其他实施例中,所述第七凹槽38也可以为L形、直线形等槽结构。
请同时参阅图1和图5,所述绝缘件30包括第一壁301、第二壁302、第三壁303和第四壁304的侧壁背离所述电芯模组20的一侧分别设置有多个导向槽39。沿所述电芯的堆叠方向Z,所述导向槽39贯通所述绝缘件的侧壁。所述壳体11上设置有凸出部111。所述凸出部111能够嵌入所述导向槽39并沿所述导向槽39滑动。所述凸出部111上设置有用于连接所述上盖13的连接孔1111。所述导向槽39为所述绝缘件30装入所述外壳10内提供导向,使装配方便;所述导向槽39提高了所述绝缘件30与所述壳体11的配合精度,减小了装配误差。可以理解,其他实施例中,所述导向槽39也可以省略。
请参阅图12,为得出所述胶体的流动速度与所述第一凹槽33和所述第二凹槽34的尺寸关系,提供一实验结构500。所述实验结构500为一透明材质制成的结构。所述实验结构500包括两个第一柱501、第二柱502和第三柱503。所述第一柱501包括相对的第三端面5011和第四端面5013。所述第 三端面5011与所述第四端面5013的距离,等于所述第一端面31和所述第二端面32的距离。所述第三柱503的两端分别与两个所述第一柱501的第四端面5013相接。所述第二柱502的两端分别与两个所述第一柱501相接,且位于所述第三端面5011和所述第四端面5013之间。所述第一柱501内设置有第一槽5015,所述第一槽5015贯通所述第三端面5011。所述第二柱502内设置有第二槽(图未示),所述第二槽分别连通两个所述第一柱501的第一槽5015。所述第三柱503内设置有第三槽(图未示),所述第三槽分别连通两个所述第一柱501的第一槽5015。所述第一槽5015的结构、尺寸分别与所述第一凹槽33相同;所述第二槽的结构、尺寸分别与所述第二凹槽34相同;所述第三槽的结构、尺寸分别与所述第四凹槽371相同。所述第一凹槽33和所述第二凹槽34的宽度W1和凹陷的深度H1分别相同,如图3和图8所示。
所述宽度W1优选为10mm,但不限于此。设定不同数值的深度H1,且以不同的射入流速向所述第一槽5015内注入所述胶体,观察所述胶体是否能够填充至所述第二凹槽34和所述第四凹槽371内,当结果为是时验证所述第一凹槽33和所述第二凹槽34的尺寸合适(OK),否则不合适(N)。实验数据如下表:
Figure PCTCN2020107494-appb-000001
Figure PCTCN2020107494-appb-000002
所述第一凹槽33和所述第二凹槽34的宽度W1为10mm时,胶水填充效果最佳,但所述宽度W1满足6mm≤W1≤14mm,优选8mm≤W1≤12mm时所述胶体均能够填充至所述第二凹槽34和所述第四凹槽371内。
根据上述实验结果,为使所述胶体流动顺畅,所述第一凹槽33和所述第二凹槽34的凹陷的深度H1满足:3mm<H1<7mm。
请参阅图3和图11,所述第三凹槽36与所述第一凹槽33的结构和尺寸优选相同。所述第三凹槽36的宽度W2满足:8mm≤W2≤12mm。所述第三凹槽36的凹陷的深度H2满足:3mm<H2<7mm。
请参阅图8,所述第四凹槽371沿所述第二端面32朝向所述第一端面31的方向上的长度L满足:4mm≤L≤6mm。
请参阅图8,相邻的两个所述第一凹槽33的两个相邻的侧壁的间距a1满足:65mm≤a1≤75mm。
当所述第二凹槽34的数量为多个时,相邻的两个所述第二凹槽34的两个相邻的侧壁的间距a2(图未示)满足:115mm≤a2≤125mm。
请参阅图8,与所述第一端面31相邻的第二凹槽34的邻近所述第一端面31的侧壁与所述第一端面31的间距a3、及相邻于所述通道37的第二凹槽34与所述通道37的两个相邻的侧壁的间距a4满足:a3=a4及115mm≤a3≤125mm。
上述电池100通过在所述绝缘件30的侧壁上设置第一凹槽33,利用所 述第一凹槽33为所述胶体提供流动导向,使所述胶体在所述绝缘件30与所述电芯模组20之间、在所述第一凹槽33内沿着所述电芯21的堆叠方向Z流动,以流向所述外壳10的底壁的周侧,然后所述胶体反向流动以均匀填充至所述绝缘件30与所述电芯模组20之间的间隙中。所述第一凹槽33避免所述胶体从所述电芯模组20的表面向四周自动流动的随意性,提高了所述胶体的填充效率及填充均匀性。所述第一凹槽33贯通所述绝缘件30的侧壁,提高了胶体在所述第一凹槽33内的流动速度,提高了胶体的填充效率。
以上实施例仅用以说明本申请的技术方案而非限制,尽管参照较佳实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换,而不脱离本申请技术方案的精神和实质。

Claims (16)

  1. 一种电池,包括外壳、及设于所述外壳内的电芯模组和绝缘件,所述绝缘件位于所述电芯模组与所述外壳之间,所述电芯模组包括堆叠设置的多个电芯,其特征在于:
    所述电池还包括胶体,所述胶体填充于所述绝缘件和所述电芯模组之间;
    所述绝缘件朝向所述电芯模组的侧壁设有用于填充所述胶体的第一凹槽,沿所述电芯的堆叠方向,所述第一凹槽贯通所述绝缘件的侧壁。
  2. 如权利要求1所述的电池,其特征在于,所述第一凹槽的截面为矩形,所述第一凹槽的宽度W1满足:8mm≤W1≤12mm。
  3. 如权利要求1所述的电池,其特征在于:所述第一凹槽的凹陷的深度H1满足:3mm<H1<7mm。
  4. 如权利要求1所述的电池,其特征在于,所述第一凹槽数量为多个,多个所述第一凹槽设于所述绝缘件的侧壁上;相邻的两个所述第一凹槽的间距a1满足:65mm≤a1≤75mm。
  5. 如权利要求1所述的电池,其特征在于,所述电芯模组包括相对设置的第一侧和第二侧、以及相对设置的第三侧和第四侧,其中所述电芯模组的第三侧设置有极耳;
    所述绝缘件的侧壁包括位于所述电芯模组的第一侧和所述外壳之间的第一壁、及位于所述电芯模组的第二侧和所述外壳之间的第二壁,所述第一壁和所述第二壁中至少一个设有所述第一凹槽。
  6. 如权利要求5所述的电池,其特征在于:所述第一壁和所述第二壁中至少一个朝向所述电芯模组的一侧设置有第二凹槽,所述第二凹槽与所述第一凹槽连通。
  7. 如权利要求6所述的电池,其特征在于,所述第二凹槽的截面为矩形,所述第二凹槽的宽度W2满足:8mm≤W2≤12mm。
  8. 如权利要求6所述的电池,其特征在于:所述第二凹槽凹陷的深度H2满足:3mm<H2<7mm。
  9. 如权利要求6所述的电池,其特征在于,所述第二凹槽数量为多个,相邻的两个所述第二凹槽的间距a2满足:115mm≤a2≤125mm。
  10. 如权利要求5所述的电池,其特征在于,所述绝缘件的侧壁还包括:
    第三壁,位于所述电芯模组的第三侧和所述外壳之间;
    所述第三壁朝向所述电芯模组的一侧设置有线槽,所述线槽贯通所述第三壁,所述线槽用于容置所述电池的线束。
  11. 如权利要求5所述的电池,其特征在于,所述绝缘件的侧壁还包括:
    第三壁,位于所述电芯模组的第三侧和所述外壳之间;及
    第四壁,位于所述电芯模组的第四侧和所述外壳之间;
    所述第三壁和所述第四壁中至少一个朝向所述电芯模组的一侧设置有第三凹槽;所述第三凹槽贯通所述第三壁或所述第四壁,或所述第三凹槽贯通所述第三壁和所述第四壁。
  12. 如权利要求5所述的电池,其特征在于,所述电池还包括:
    与所述电芯模组连接的电路板;
    所述第一凹槽靠近所述电路板的一端为注胶口。
  13. 如权利要求12所述的电池,其特征在于,所述绝缘件还包括:
    第四凹槽,设置于所述第一壁和所述第二壁中至少一个朝向所述电芯模组的一侧;
    第五凹槽,设置于所述第一壁和所述第二壁中至少一个朝向所述外壳的一侧;及
    第六凹槽,设置于第四凹槽和第五凹槽之间,且分别与所述第四凹槽和所述第五凹槽连通。
  14. 如权利要求13所述的电池,其特征在于:所述第四凹槽与所述注胶口连通。
  15. 如权利要求1所述的电池,其特征在于:
    所述绝缘件的侧壁背离所述电芯模组的一侧设置有导向槽,沿所述电芯的堆叠方向,所述导向槽贯通所述绝缘件的侧壁;
    所述外壳上设置有凸出部;所述凸出部能够嵌入所述导向槽并沿所述导向槽滑动。
  16. 如权利要求1所述的电池,其特征在于:所述绝缘件为聚丙烯泡沫材质制成。
PCT/CN2020/107494 2020-08-06 2020-08-06 电池 WO2022027474A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/107494 WO2022027474A1 (zh) 2020-08-06 2020-08-06 电池
CN202090000237.9U CN214898743U (zh) 2020-08-06 2020-08-06 电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/107494 WO2022027474A1 (zh) 2020-08-06 2020-08-06 电池

Publications (1)

Publication Number Publication Date
WO2022027474A1 true WO2022027474A1 (zh) 2022-02-10

Family

ID=78865232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107494 WO2022027474A1 (zh) 2020-08-06 2020-08-06 电池

Country Status (2)

Country Link
CN (1) CN214898743U (zh)
WO (1) WO2022027474A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118156586A (zh) * 2024-05-11 2024-06-07 晶科储能科技有限公司 一种二次电池、电池包及储能箱

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497679A (zh) * 2022-01-28 2022-05-13 欣旺达电动汽车电池有限公司 电池包装配工艺及电池包

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160204441A1 (en) * 2014-09-02 2016-07-14 Panisolar, Inc. Wall Mounted Zinc Batteries
CN209016158U (zh) * 2018-12-27 2019-06-21 宁德时代新能源科技股份有限公司 电池模组
CN209447881U (zh) * 2019-01-18 2019-09-27 宁德时代新能源科技股份有限公司 一种电池模组
CN209526139U (zh) * 2019-01-11 2019-10-22 孚能科技(赣州)股份有限公司 电池模组以及具有该电池模组的电池系统和电动车辆
CN209860036U (zh) * 2019-07-25 2019-12-27 中车时代电动汽车股份有限公司 一种动力电池包及其涂胶结构
CN210092189U (zh) * 2019-08-15 2020-02-18 天津市捷威动力工业有限公司 一种软包电池模组注胶结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160204441A1 (en) * 2014-09-02 2016-07-14 Panisolar, Inc. Wall Mounted Zinc Batteries
CN209016158U (zh) * 2018-12-27 2019-06-21 宁德时代新能源科技股份有限公司 电池模组
CN209526139U (zh) * 2019-01-11 2019-10-22 孚能科技(赣州)股份有限公司 电池模组以及具有该电池模组的电池系统和电动车辆
CN209447881U (zh) * 2019-01-18 2019-09-27 宁德时代新能源科技股份有限公司 一种电池模组
CN209860036U (zh) * 2019-07-25 2019-12-27 中车时代电动汽车股份有限公司 一种动力电池包及其涂胶结构
CN210092189U (zh) * 2019-08-15 2020-02-18 天津市捷威动力工业有限公司 一种软包电池模组注胶结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118156586A (zh) * 2024-05-11 2024-06-07 晶科储能科技有限公司 一种二次电池、电池包及储能箱

Also Published As

Publication number Publication date
CN214898743U (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2022027474A1 (zh) 电池
KR102082906B1 (ko) 배터리 모듈 어셈블리
US11749852B2 (en) Battery module and manufacturing method thereof
US11811040B2 (en) Battery module having improved cooling structure
WO2020147755A1 (zh) 电池模块
CN214589167U (zh) 电池及电池模组
WO2023151304A1 (zh) 冷却组件及电池模组
JP2001283940A (ja) 組電池
KR20150058178A (ko) 연료전지
US20230261283A1 (en) Battery Module Having Cooling Structure Using Insulating Oil, and Battery Pack and Vehicle Comprising Same
CN115863864B (zh) 下塑胶组件、储能装置及用电设备
CN216213956U (zh) 绝缘隔板组件、电池模组及电池包
US11611134B2 (en) Battery and battery apparatus
CN101584073B (zh) 燃料电池
KR20040038697A (ko) 축전지의 배기 구조
WO2024113930A1 (zh) 电池包及用电设备
KR101846633B1 (ko) 연료전지 스택
US11211649B2 (en) Battery module
CN217589380U (zh) 一种电池
WO2023061164A1 (zh) 灌胶结构及设有该灌胶结构的电池模组
WO2023001263A1 (zh) 电池及用电装置
CN214589153U (zh) 电池及电池模组
CN210778818U (zh) 燃料电池双极板
KR20220061580A (ko) 배터리 모듈
JP7147253B2 (ja) 蓄電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948534

Country of ref document: EP

Kind code of ref document: A1