WO2022027207A1 - 微发光二极管显示器的光学贴合方法 - Google Patents

微发光二极管显示器的光学贴合方法 Download PDF

Info

Publication number
WO2022027207A1
WO2022027207A1 PCT/CN2020/106678 CN2020106678W WO2022027207A1 WO 2022027207 A1 WO2022027207 A1 WO 2022027207A1 CN 2020106678 W CN2020106678 W CN 2020106678W WO 2022027207 A1 WO2022027207 A1 WO 2022027207A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
colloid
micro
bonding method
accommodating space
Prior art date
Application number
PCT/CN2020/106678
Other languages
English (en)
French (fr)
Inventor
黄国俊
何俊庆
方柏盛
朱雅言
Original Assignee
承洺股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 承洺股份有限公司 filed Critical 承洺股份有限公司
Priority to PCT/CN2020/106678 priority Critical patent/WO2022027207A1/zh
Publication of WO2022027207A1 publication Critical patent/WO2022027207A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to a bonding method, in particular to a bonding method of a micro light-emitting diode display.
  • the display area traditionally made of Micro Light Emitting Diodes is composed of a plurality of Micro Light Emitting Diodes arranged in a matrix. Generally, it is not used as a touch screen, but only as a non-touch screen to display information played by related media.
  • micro-LEDs are designed in a matrix arrangement, a distance is maintained between each of the micro-LEDs to form a gap.
  • this type of micro-LED display product is only used as a device for displaying information, in principle, the display area of the display will be directly exposed to the external environment without any protective measures.
  • the micro-LED display is very easy to peel off the micro-LEDs (die) due to damage caused by human factors or natural factors in the external environment, thus affecting the original display performance of the display.
  • micro-LED displays can also be presented in irregular, curved, or flexible forms. Therefore, for micro-LED displays of different shapes, it is more likely to peel off at the bend due to external force factors, or the design of the product itself is not conducive to effectively fixing the micro-LED (die).
  • the inventor of the present invention has made improvements in view of the above-mentioned problems, and has thought about the idea of inventing and improving to start developing a solution, so after a long time of thinking, the optical bonding method of the micro-LED display of the present invention is produced. , in order to serve the public and promote the development of this industry.
  • the present invention provides an optical bonding method for a micro-LED display.
  • a display made of micro-LEDs can be effectively filled through the first colloid or/and the second colloid.
  • the voids formed by the matrix arrangement design can protect/fix the micro-LEDs of the display from being damaged due to external environmental influences, thereby maintaining the performance of the display.
  • the present invention provides an optical bonding method for a micro-LED display.
  • a protective film can be used to protect the first colloid or/and the second colloid, and the display will not suffer from external environmental influences. If damaged, maintain the original functions of the first colloid, the second colloid, and the display.
  • an optical bonding method for a micro-LED display which includes:
  • the second colloid is cured so that the protective film is attached to the second colloid.
  • the The adhesive layer is formed by covering the top surface of the first colloid.
  • the second colloid in the step of filling the accommodating space with a second colloid until the accommodating space is filled to form an adhesive layer, the second colloid fills the accommodating space and the first adhesive layer.
  • a glue is aligned, and the adhesive layer is formed on the top surfaces of the first glue and the second glue.
  • the first gel is coated on a non-display area of the display
  • the second colloid is coated on a display area of the display.
  • the non-display area is a frame structure of the display.
  • the accommodating space is located above the display area.
  • the method further includes: performing a defoaming process on the display.
  • the display is a flexible micro-LED display.
  • the first colloid and the second colloid are liquid transparent optical glue.
  • the second colloid in the step of curing the second colloid so that the protective film is attached to the second colloid, the second colloid is cured by an ultraviolet curing technology.
  • the present invention aims to disclose an optical bonding method of a micro light-emitting diode display, which adopts the steps of coating a colloid on the display, and then adhering a protective film through the colloid, so as to protect the display from the crystals in the display area caused by external environmental factors. The particles fall off, thereby affecting the performance of the display.
  • FIG. 1 is a flow chart of the optical bonding method of the micro-LED display according to the first embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of the optical bonding method of the micro-LED display according to the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram 1 of the operation of the optical bonding method of the micro-LED display according to the first embodiment of the present invention.
  • FIG. 4 is a second operation schematic diagram of the optical bonding method of the micro-LED display according to the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram 3 of the operation of the optical bonding method of the micro-LED display according to the first embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an optical bonding method for a micro-LED display according to a second embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an optical bonding method for a micro-LED display according to a third embodiment of the present invention.
  • FIG. 8 is a flowchart of an optical bonding method for a micro-LED display according to a fourth embodiment of the present invention.
  • FIG. 1 is a flow chart of the optical bonding method of the micro-LED display according to the first embodiment of the present invention.
  • the optical bonding method of the micro-LED display according to the first embodiment of the present invention comprises the following steps:
  • Step S10 providing a display
  • Step S12 coating a first colloid around the top of the display, and after curing, a accommodating space is formed with the part of the top of the display that is not coated with the first colloid;
  • Step S14 filling a second colloid in the accommodating space until the accommodating space is filled to form an adhesive layer
  • Step S16 disposing a protective film on the adhesive layer
  • Step S18 curing the second colloid so that the protective film is attached to the second colloid.
  • FIG. 2 is a schematic structural diagram of the optical bonding method of the micro-LED display according to the first embodiment of the present invention.
  • the above-mentioned display 10 is a product made of Micro Light Emitting Diode Display and sold in the market. Such as vehicle dashboards, wearable devices (such as APPLE WATCH, or devices whose panels use micro-LED displays and can be worn on various parts of the human body), liquid crystal screens, etc. That is, the display 10 can be a fixed/flexible/curved micro-LED display product with regular or irregular shapes, and the display screen of the display 10 can be a touch screen or a non-touch screen, which is not described here. limit.
  • the display 10 is a liquid crystal screen or/and a smart phone as an example for description.
  • first colloid 12 and second colloid 14 are liquid transparent optical glue (or water glue), such as LOCA (Liquid Optically Clear Adhesive) optical glue, OCR (Optically Clear Resin; ultraviolet curing resin) optical glue and the like.
  • LOCA Liquid Optically Clear Adhesive
  • OCR Optically Clear Resin; ultraviolet curing resin
  • the above-mentioned protective film 18 is an optical film cover made of GLASS, PC, IML, etc., or an optical film with various optical properties to improve the display performance of the display. It has flexible properties to facilitate effective attachment to the first colloid 12 or/and the second colloid 14 .
  • FIG. 3 to FIG. 5 are schematic diagrams 1 to 3 of the operation of the optical bonding method of the micro-LED display according to the first embodiment of the present invention.
  • a display 10 is provided (step S10).
  • a first glue 12 is successively coated around the top of the display 10 , and after curing, an accommodating space 120 is formed with the uncoated portion of the top of the display 10 with the first glue 12 (eg, step S12 ).
  • the first glue 12 is coated on the display 10 mainly around the periphery/edge of the display 10 .
  • the frame structure and the display 10 together form an accommodating space 120 for the convenience of subsequent steps.
  • a second glue 14 is continuously filled in the accommodating space 120 until the accommodating space 120 is filled and an adhesive layer 16 is formed above the display 10 (as in step S14).
  • the second colloid 14 is filled into the accommodating space 120 until the second colloid 14 fills the accommodating space 120 and covers the top surface of the first colloid 12 .
  • the surface of the second colloid 14 formed above the 120 is the adhesive layer 16 .
  • a protective film 18 is subsequently disposed on the adhesive layer 16 (as in step S16).
  • the protective film 18 can be attached to the adhesive layer 16 at the right time to complete the preliminary adhesion operation.
  • the protective film 18 itself also has viscosity, and the viscosity of the second colloid 14 increases the adhesion between the two components.
  • the second colloid 14 is cured, so that the protective film 18 is attached to the second colloid 14 (as in step S18 ).
  • the protective film 18 is attached to the adhesive layer 16 according to the adhesive force of the adhesive layer 16, the first glue 12 and the second glue 14 arranged above the display 10 can be irradiated by a curing light source (not shown).
  • the protective film 18 is also fixed on the display 10 according to the functions of the adhesive layer 16 and the curing light source.
  • the method of curing the protective film 18 is to use an ultraviolet curing (UV Curing) technology to perform a curing and irradiation operation on the protective film 18 .
  • UV Curing ultraviolet curing
  • the wavelength of irradiation can be UVA, UVB, UVC, UVV, etc., which is not limited thereto.
  • the preferred choice is UVV, and the preferred wavelength is 385-420 nm.
  • the first colloid 12 is disposed on the display 10 in advance, which can prevent the glue liquid from overflowing to the outside of the display 10 when the second colloid 14 is subsequently filled, and effectively prevent unnecessary coating from contaminating the display 10 . area. That is, if the coating step of the first gel 12 is not performed first, when the coating operation of the second gel 14 is directly performed, the problem of the gel overflowing to other areas of the display 10 is likely to occur. At the same time, using the accommodating space 120 formed by the first gel 12 and the display 10 can effectively allow the second gel 14 to completely fill the display area formed by the micro-LEDs arranged in a matrix in the display 10 . Therefore, each micro-LED is fixed/protected by the second colloid 14, so that some/all micro-LEDs in the display area will not be caused by external forces (natural factors such as weather, collision, etc. or/and human factors). Dropped/damaged LEDs.
  • FIG. 6 is a schematic structural diagram of an optical bonding method for a micro-LED display according to a second embodiment of the present invention.
  • the difference between the second embodiment of the optical bonding method of the micro-LED display of the present invention and the first embodiment is that step S14 is performed to fill the accommodating space with a second colloid until the accommodating space is filled.
  • the second colloid 14 When the space is placed to form an adhesive layer, in order to fill the second colloid 14 just until the accommodating space 120 is filled, and the top surface of the first colloid 12 is in a flush state, at this time, the first colloid 12, the second The top surface formed by the colloids 14 is used as the adhesive layer 16 , and the remaining steps and implementations are the same as those in the first embodiment, and thus will not be described again.
  • the first colloid 12 of the second embodiment of the present invention may be in a semi-cured state after being cured in step S12, and has a certain degree of viscosity. Therefore, when step S18 is performed, the first The colloid 12 is cured.
  • the second colloid 14 can also fill the accommodating space 120 and protrude out of the accommodating space 120 to be directly used as the adhesive layer 16 .
  • FIG. 7 is a schematic structural diagram of an optical bonding method for a micro-LED display according to a third embodiment of the present invention.
  • the difference between the third embodiment of the optical bonding method of the micro-LED display of the present invention and the first embodiment is that the display 10 of the first embodiment is a display designed with a borderless structure, and the display screen is For example, the entire display panel is the display area. Therefore, the coating area of the first colloid 12 is the outermost periphery of the display area, and the coating area of the second colloid 14 is the accommodating space 120 jointly constructed by the first colloid 12 and the display 10 .
  • the coating regions of the first gel 12 and the second gel 14 are both the display regions of the display 10 .
  • the display 10 includes a display area 100 and a non-display area 102 .
  • the non-display area 102 may be a frame structure of the display 10 , such as a casing of the display 10 , or a black matrix (BM area) adjacent to the display area 100 .
  • BM area black matrix
  • the non-display area 102 is used as the coating area, and the second colloid 14 can just fall into the display area 100 for coating when the third embodiment is executed.
  • Above the area 100 may be the accommodating space 120 .
  • FIG. 8 is a flowchart of the optical bonding method of the micro-LED display according to the fourth embodiment of the present invention.
  • the optical bonding method of the micro-LED display of the fourth embodiment of the present invention comprises the following steps:
  • Step S10 providing a display
  • Step S12 coating a first colloid around the top of the display, and after curing, a accommodating space is formed with the part of the top of the display that is not coated with the first colloid;
  • Step S14 filling a second colloid in the accommodating space until the accommodating space is filled to form an adhesive layer
  • Step S16 disposing a protective film on the adhesive layer
  • Step S17 performing a defoaming procedure on the display
  • Step S18 curing the second colloid so that the protective film is attached to the second colloid.
  • the difference between the fourth embodiment of the optical bonding method of the micro-LED display of the present invention and the first embodiment is that it further includes step S17 to perform a defoaming process on the display. That is, after the second colloid 14 is coated on the display area 100 (as shown in FIG. 7 ), some air may still exist in the matrix array of the micro-LEDs in the display area 100 covered by the second colloid 14 , resulting in generation of air. Several bubbles. These bubbles easily affect the normal operation performance of the display 10 , so it is necessary to perform a defoaming procedure to remove the bubbles.
  • the defoaming procedure generally includes two modes: dry defoaming and wet defoaming, of which the preferred choice can be wet defoaming.
  • the principle of degassing is to use any degassing instruments (such as vacuum CDA degassing machines) manufactured and sold on the market, and it is not limited to this.
  • the optical bonding method of the micro-LED display disclosed in the above-mentioned embodiments of the present disclosure can be applied to the products that have been manufactured and sold and are circulated in the market.
  • the amount of the glue applied to the display can be determined in the step of applying the glue to the display, so as to control the height/thickness of the glue applied to the display.
  • the user's consideration is to focus on the requirement of light and thin, so the height/thickness of the first gel and the second gel to the display can be controlled to a small amount of gel.
  • the user's consideration is to focus on safety requirements, and the height/thickness of the first gel and the second gel to the display can be controlled to a larger amount of gel.
  • the display of the present invention is mainly limited to the display made of micro light-emitting diodes as the main axis, such as the above-mentioned wearable devices, vehicle dashboards, liquid crystal screens, etc. fixed/flexible/curved type etc. Regular or irregular The regular form of micro-LED display products can be used. The reason is that the display area of the micro-LED display is composed of a plurality of micro-LEDs arranged in a matrix, which is generally not used as a touch screen, but only as a non-touch screen to display information played by related media.
  • the micro-LED display is equivalent to directly exposing the micro-LEDs to the external environment, and it is easy to peel off due to damage caused by human factors or natural factors in the external environment, thus affecting the original display performance of the display. Therefore, using the display bonding method of the present invention, the first colloid and the second colloid can be effectively used to protect/fix the micro-LEDs, so as to effectively fill each gap formed by the matrix arrangement of the micro-LEDs, and at the same time add The function of the protective film can also improve the defect that the conventional LED display is easily damaged due to external factors (man-made, natural).
  • the present invention is not limited to micro-LED display products. Generally, a screen with a display function, whether it is a touch screen or a non-touch screen, can also be protected by the bonding method of the present invention.
  • the present invention has indeed achieved the intended use purpose and efficacy, and is more ideal and practical compared with the technology in the art.
  • the above-mentioned embodiments are only specific descriptions for the preferred embodiments of the present invention, and are not intended to limit the scope of the invention. It should be included in the scope of the patent application covered by the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种微发光二极管显示器的光学贴合方法,其包含:提供一显示器(10);涂布一第一胶体(12)于该显示器(10)的顶部周围,经固化而与显示器(10)顶部未涂布该第一胶体(12)部分形成一容置空间(120);填充一第二胶体(14)于容置空间(120),直至填满容置空间(120)而形成一黏贴层(16);设置一保护膜(18)于黏贴层(16);以及固化第二胶体(14),使保护膜(18)贴覆于第二胶体(14)。该光学贴合方法采用涂布胶体(12,14)于显示器(10)上,再藉由胶体(12,14)黏附保护膜(18)等步骤,以防护显示器(10)不因外在环境因素致使显示区域的晶粒脱落,进而影响显示器(10)的效能。

Description

微发光二极管显示器的光学贴合方法 技术领域
本发明涉及一种贴合方法,特别是指一种微发光二极管显示器的贴合方法。
背景技术
传统采用微发光二极管所制成的显示器(Micro Light Emitting Diode Display),其显示区域是由复数微发光二极管以矩阵排列方式所构成。一般并非作为一触摸屏使用,而仅作为一非触摸屏放映相关媒体所播放的信息。
承接前段,由于该些微发光二极管采用矩阵排列方式设计,因此每一个微发光二极管之间皆会保持一距离而生成缝隙。然而,此类型的微发光二极管显示器产品因为仅作为一播放信息用途的设备,原则上显示器的显示区域会直接曝露于外部环境之中,而未具有任何防护措施存在。换言之,该微发光二极管显示器非常容易因为外在环境的人为因素或自然因素遭受破坏而剥落微发光二极管(晶粒),导致影响显示器原有的显示效能。
再者,科技的进步是根据社会大众的需求而不断地精进演化,微发光二极管显示器的产品亦可以不规则、曲线型、或者是可挠式等形式呈现。因此针对不同形状的微发光二极管显示器,其于弯曲处更容易因为外力因素,或者是产品本身设计不利于有效固定微发光二极管(晶粒)而导致剥落的事情发生。
由于这个原因,本发明人鉴于上述所衍生的问题进行改良,兹思及发明改良的意念着手研发解决方案,于是经过很长时间的构思而有本发明的微发光二极管显示器的光学贴合方法产生,以服务社会大众以及促进此业的发展。
发明内容
本发明提供了一种微发光二极管显示器的光学贴合方法,其应用本发明的贴合方法,可以经由第一胶体或/及第二胶体有效填补以微发光二极管所制成的显示器,其因矩阵排列设计所形成的空隙,藉此达成保护/固定显示器的该些微发光二极管不因外在环境影响受到破坏,得以保持显示器的效能。
本发明提供了一种微发光二极管显示器的光学贴合方法,其应用本发明的贴 合方法,可以透过保护膜作为防护第一胶体或/及第二胶体、显示器不因外在环境影响遭受损坏,维持第一胶体、第二胶体、显示器原本的功效。
为了达成上述所指称的各目的与功效,本发明公开了一种微发光二极管显示器的光学贴合方法,其包含:
提供一显示器;
涂布一第一胶体于该显示器的顶部周围,经固化而与该显示器顶部未涂布该第一胶体部分形成一容置空间;
填充一第二胶体于该容置空间,直至填满该容置空间而形成一黏贴层;
设置一保护膜于该黏贴层;以及
固化该第二胶体,使该保护膜贴覆于该第二胶体。
根据本发明的一个实施例,在填充一第二胶体于该容置空间,直至填满该容置空间而形成一黏贴层的步骤中,该第二胶体填满该容置空间后,更覆盖该第一胶体的顶部表面而形成该黏贴层。
根据本发明的一个实施例,在填充一第二胶体于该容置空间,直至填满该容置空间而形成一黏贴层的步骤中,该第二胶体填满该容置空间与该第一胶体贴齐,而于该第一胶体以及该第二胶体的顶部表面形成该黏贴层。
根据本发明的一个实施例,在涂布一第二胶体于该容置空间,而于该显示器上方形成一黏贴层的步骤中,该第一胶体涂布于该显示器的一非显示区域,该第二胶体涂布于该显示器的一显示区域。
根据本发明的一个实施例,该非显示区域为该显示器的一框体结构。
根据本发明的一个实施例,该容置空间位于该显示区域上方。
根据本发明的一个实施例,在设置一保护膜于该黏贴层的步骤后,更包含:将该显示器进行一脱泡程序。
根据本发明的一个实施例,该显示器为可挠式微发光二极管显示器。
根据本发明的一个实施例,该第一胶体以及该第二胶体为液态透明光学胶。
根据本发明的一个实施例,在固化该第二胶体,使该保护膜贴覆于该第二胶体的步骤中,系以紫外线固化技术对该第二胶体进行固化。
本发明的积极进步效果在于:
本发明旨在揭露一种微发光二极管显示器的光学贴合方法,其采用涂布胶体 于显示器上,再藉由胶体黏附保护膜等步骤,以防护显示器不因外在环境因素致使显示区域的晶粒脱落,进而影响显示器的效能。
附图概述
本发明上述的以及其他的特征、性质和优势将通过下面结合附图和实施例的描述而变的更加明显,在附图中相同的附图标记始终表示相同的特征,其中:
图1为本发明第一实施例的微发光二极管显示器的光学贴合方法的流程图。
图2为本发明第一实施例的微发光二极管显示器的光学贴合方法的结构示意图。
图3为本发明第一实施例的微发光二极管显示器的光学贴合方法的作动示意图一。
图4为本发明第一实施例的微发光二极管显示器的光学贴合方法的作动示意图二。
图5为本发明第一实施例的微发光二极管显示器的光学贴合方法的作动示意图三。
图6为本发明第二实施例的微发光二极管显示器的光学贴合方法的结构示意图。
图7为本发明第三实施例的微发光二极管显示器的光学贴合方法的结构示意图。
图8为本发明第四实施例的微发光二极管显示器的光学贴合方法的流程图。
【附图标记】
显示器                      10
显示区域                    100
非显示区域                  102
第一胶体                    12
容置空间                    120
第二胶体                    14
黏贴层                      16
保护膜                       18
本发明的较佳实施方式
为让本发明的上述目的、特征和优点能更明显易懂,以下结合附图对本发明的具体实施方式作详细说明。
现在将详细参考附图描述本发明的实施例。现在将详细参考本发明的优选实施例,其示例在附图中示出。在任何可能的情况下,在所有附图中将使用相同的标记来表示相同或相似的部分。
此外,尽管本发明中所使用的术语是从公知公用的术语中选择的,但是本发明说明书中所提及的一些术语可能是申请人按他或她的判断来选择的,其详细含义在本文的描述的相关部分中说明。
此外,要求不仅仅通过所使用的实际术语,而是还要通过每个术语所蕴含的意义来理解本发明。
在此说明本发明第一实施例的微发光二极管显示器的光学贴合方法所执行的流程步骤。请参阅图1,其为本发明第一实施例的微发光二极管显示器的光学贴合方法的流程图。如图所示,本发明第一实施例的微发光二极管显示器的光学贴合方法包含以下步骤:
步骤S10:提供一显示器;
步骤S12:涂布一第一胶体于该显示器的顶部周围,经固化而与该显示器顶部未涂布该第一胶体部分形成一容置空间;
步骤S14:填充一第二胶体于该容置空间,直至填满该容置空间而形成一黏贴层;
步骤S16:设置一保护膜于该黏贴层;
步骤S18:固化该第二胶体,使该保护膜贴覆于该第二胶体。
请参阅图2,其为本发明第一实施例的微发光二极管显示器的光学贴合方法的结构示意图。如图所示,上述的显示器10为以微发光二极管显示器(Micro Light Emitting Diode Display)制成而在市场上贩卖的产品。如车用仪表板、穿戴装置(如APPLE WATCH,或者是面板采用微发光二极管显示器而可穿戴于人体各部位之装置)、液晶屏幕等。也就是显示器10可以是固定式/可挠式/曲线型等规则或不规 则态样的微发光二极管显示器产品皆可为之,并且显示器10的显示屏幕可以为触摸屏,或者是非触摸屏,而不在此限。又,本发明以下所列举的这些实施例中,皆以显示器10为液晶屏幕或/及智能型手机为例进行说明。
上述的第一胶体12以及第二胶体14为液态透明光学胶(或称水胶),如LOCA(Liquid Optically Clear Adhesive)光学胶、OCR(Optically Clear Resin;紫外线硬化树酯)光学胶等。
上述的保护膜18为GLASS、PC、IML等材质的光学薄膜盖板,或者是具有各式光学特性以增进显示器显示效能的光学薄膜,更能随着可挠式显示器产品的设计态样,而具有可挠特性,以利于有效贴附于第一胶体12或/及第二胶体14上。
请参阅图3至图5,其为本发明第一实施例的微发光二极管显示器的光学贴合方法的作动示意图一至三。如图3所示,提供一显示器10(如步骤S10)。接续涂布一第一胶体12于显示器10的顶部周围,经固化而与显示器10顶部未涂布第一胶体12部分形成一容置空间120(如步骤S12)。如图4所示,第一胶体12涂布于显示器10的范围主要为显示器10的外围/边缘,目的是为了先由第一胶体12固化于显示器10上形成一封闭式框架结构,使得封闭式框架结构与显示器10一同构建出容置空间120,以便于后续步骤施行。
接续填充一第二胶体14在容置空间120,直至填满容置空间120而于显示器10上方形成一黏贴层16(如步骤S14)。如图5所示,将第二胶体14填充至容置空间120,直到第二胶体14布满容置空间120并且覆盖第一胶体12的顶部表面,此时在第一胶体12、容置空间120上方所形成的第二胶体14表面即为黏贴层16。接续设置一保护膜18于黏贴层16(如步骤S16)。如图2所示,由于第二胶体14的表面作为黏贴层16具有黏着性,此时即可适时将保护膜18贴附在黏贴层16上,完成初步的黏附作业。或者是保护膜18本身亦具有黏性,加上第二胶体14的黏性增加两组件之间的黏着力。
之后,固化第二胶体14,使保护膜18贴覆于第二胶体14(如步骤S18)。当保护膜18依据黏贴层16的黏着力贴附在黏贴层16上后,可借由一固化光源(未图示)照射设置在显示器10上方的第一胶体12、第二胶体14,以确实将第一胶体12、第二胶体14固定在显示器10上,同时保护膜18根据黏贴层16、固化光源的作用,亦一并固定在显示器10上,于此,即完成本发明第一实施例的显示器的贴 合方法。其中,固化保护膜18的方式兹采用紫外线固化(UV Curing)技术对保护膜18进行固化照射作业。而照射的波长可以是UVA、UVB、UVC、UVV等皆可为之,并不在此限。当中较佳的选择为UVV,较佳之波长为385-420nm。
本发明显示器的贴合方法,其借由第一胶体12先行设置在显示器10上,可以避免后续第二胶体14填充时溢出胶液至显示器10外,而有效防止沾染显示器10的非必要涂布区域。也就是倘若无先执行第一胶体12的涂布步骤,则直接执行第二胶体14涂布作业时,容易有溢胶至显示器10其他区域的问题。同时,利用第一胶体12与显示器10所构建的容置空间120,方能有效让第二胶体14完全填补于显示器10内以矩阵排列的微发光二极管所成形的显示区域。因此,透过第二胶体14固定/保护每一微发光二极管,解决显示区域的该些微发光二极管不因外力环境(气候、碰撞等自然因素或/及人为因素),而导致一部/全部微发光二极管掉落/毁损的事情。
请参阅图6,其为本发明第二实施例的微发光二极管显示器的光学贴合方法的结构示意图。如图6所示,本发明微发光二极管显示器的光学贴合方法的第二实施例与第一实施例的差异,在于执行步骤S14填充一第二胶体在该容置空间,直至填满该容置空间而形成一黏贴层时,为将第二胶体14刚好填补至容置空间120填满为止,而与第一胶体12的顶部表面呈现齐平状态,此时第一胶体12、第二胶体14所共同构成的顶部表面,即作为黏贴层16使用,其余步骤以及实施方式同于第一实施例,因此不再赘述说明。其中,本发明第二实施例的第一胶体12,其于步骤S12经固化的状态可以为半固化状态,而具有一定程度的黏性存在,因此在执行步骤S18时,可以一并对第一胶体12进行固化作业。又,除了第一实施例以及第二实施例所揭露的技术手段之外,第二胶体14亦可填满容置空间120而凸出于容置空间120,以直接作为黏贴层16使用。
请参阅图7,其为本发明第三实施例的微发光二极管显示器的光学贴合方法的结构示意图。如图7所示,本发明微发光二极管显示器的光学贴合方法的第三实施例与第一实施例的差异,在于第一实施例的显示器10为无边框结构设计的显示器,以显示屏幕为例,即整个显示面板皆为显示区域。因此,第一胶体12涂布区域为显示区域的最外围,而第二胶体14的涂布区域为第一胶体12、显示器10所共同构建的容置空间120。
换言之,第一胶体12、第二胶体14的涂布区域皆为显示器10的显示区域。而,本发明的第三实施例中,显示器10包含一显示区域100以及一非显示区域102。非显示区域102可以是显示器10的一框体结构,如显示器10的壳体,或者是邻近显示区域100的黑边(Black matrix,BM区)。而第一胶体12在第三实施例执行时,因此非显示区域102作为涂布区域,第二胶体14在第三实施例执行时,即可刚好落入显示区域100进行涂布,此时显示区域100上方可以即为容置空间120。
在此说明本发明第四实施例的微发光二极管显示器的光学贴合方法所执行的流程步骤。请参阅图8,其为本发明第四实施例的微发光二极管显示器的光学贴合方法的流程图。如图所示,本发明第四实施例的微发光二极管显示器的光学贴合方法包含以下步骤:
步骤S10:提供一显示器;
步骤S12:涂布一第一胶体在该显示器的顶部周围,经固化而与该显示器顶部未涂布该第一胶体部分形成一容置空间;
步骤S14:填充一第二胶体在该容置空间,直至填满该容置空间而形成一黏贴层;
步骤S16:设置一保护膜在该黏贴层;
步骤S17:将该显示器进行一脱泡程序;
步骤S18:固化该第二胶体,使该保护膜贴覆在该第二胶体。
承接前段,本发明微发光二极管显示器的光学贴合方法的第四实施例与第一实施例的差异,在于更包含步骤S17将该显示器进行一脱泡程序。亦即当第二胶体14涂布在显示区域100(如图7所示)之后,可能尚有部分空气存在于第二胶体14所包覆显示区域100的微发光二极管的矩阵数组里,而产生若干气泡。该些气泡容易影响显示器10的正常运作效能,因此有必要执行一脱泡程序进行清除作业。脱泡程序一般包含干式脱泡以及湿式脱泡两种模式,其中较佳的选择可以为湿式脱泡。而脱泡的原理为采用一般市面上所制造贩卖的脱泡仪器(如真空CDA脱泡机)执行皆可为之,并不以此为限。
综上所述,本发明上揭所列举的该些实施例,其所揭露的微发光二极管显示器的光学贴合方法可以应用在已经制造贩卖,而于市面上流通之商品。尔后依据使用者的需求,可以于涂布胶体至显示器的步骤时,决定涂布胶体的胶量多寡,以控 制涂布于显示器的胶量高度/厚度。例如使用者的考虑为着重于轻薄的需求,则于涂布第一胶体、第二胶体至显示器的高度/厚度可以控制为较少的胶量。又,例如使用者的考虑为着重于安全需求,则于涂布第一胶体、第二胶体至显示器的高度/厚度可以控制为较多的胶量。
此外,本发明的显示器主要限定以采用微发光二极管所制成的显示器为主轴,例如上述所载的穿戴装置、车用仪表板,液晶屏幕等固定式/可挠式/曲线型等规则或不规则态样的微发光二极管显示器产品皆可。原因在于微发光二极管显示器的显示区域系以复数微发光二极管以矩阵排列方式所构成,一般并非作为一触摸屏使用,而仅作为一非触摸屏放映相关媒体所播放的信息。此微发光二极管显示器等同于直接将该些微发光二极管曝露于外部环境之中,而容易因为外在环境之人为因素或自然因素遭受破坏而剥落,导致影响显示器原有的显示效能。因此,使用本发明的显示器的贴合方法,即可有效利用第一胶体、第二胶体保护/固定该些微发光二极管,以有效填补该些微发光二极管矩阵排列所生成的每一个缝隙,同时加上保护膜的作用,可以一并改善习知发光二极管显示器容易因为外力因素(人为、自然)遭受破坏之缺失。惟,本发明并不限定于微发光二极管显示器产品,一般具有显示器功能的屏幕,无论其为触摸屏或者是非触摸屏,亦可采用本发明的贴合方法进行保护。
因此,本发明已确实达到所预期的使用目的与功效,并且和本领域技术相比更理想、实用。上述实施例仅针对本发明的较佳实施例进行具体说明,并非用以限定本发明的申请专利范围,举凡其它未脱离本发明所揭示的技术手段下,而所完成的均等变化与修饰,均应包含于本发明所涵盖的申请专利范围中。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式作出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (10)

  1. 一种微发光二极管显示器的光学贴合方法,其特征在于,其包含:
    提供一显示器;
    涂布一第一胶体于该显示器的顶部周围,经固化而与该显示器顶部未涂布该第一胶体部分形成一容置空间;
    填充一第二胶体于该容置空间,直至填满该容置空间而形成一黏贴层;
    设置一保护膜于该黏贴层;以及
    固化该第二胶体,使该保护膜贴覆于该第二胶体。
  2. 如权利要求1所述的微发光二极管显示器的光学贴合方法,其特征在于,其中于填充一第二胶体于该容置空间,直至填满该容置空间而形成一黏贴层的步骤中,该第二胶体填满该容置空间后,更覆盖该第一胶体的顶部表面而形成该黏贴层。
  3. 如权利要求1所述的微发光二极管显示器的光学贴合方法,其特征在于,其中于填充一第二胶体于该容置空间,直至填满该容置空间而形成一黏贴层的步骤中,该第二胶体填满该容置空间与该第一胶体贴齐,而于该第一胶体以及该第二胶体的顶部表面形成该黏贴层。
  4. 如权利要求1所述的微发光二极管显示器的光学贴合方法,其特征在于,其中于填充一第二胶体于该容置空间,直至填满该容置空间而形成一黏贴层的步骤中,该第一胶体涂布于该显示器之一非显示区域,该第二胶体涂布于该显示器的一显示区域。
  5. 如权利要求4所述的微发光二极管显示器的光学贴合方法,其特征在于,其中该非显示区域为该显示器的一框体结构。
  6. 如权利要求4所述的微发光二极管显示器的光学贴合方法,其特征在于, 其中该容置空间位于该显示区域上方。
  7. 如权利要求1所述的微发光二极管显示器的光学贴合方法,其特征在于,其中于设置一保护膜于该黏贴层的步骤后,更包含:将该显示器进行一脱泡程序。
  8. 如权利要求1所述的微发光二极管显示器的光学贴合方法,其特征在于,其中该显示器为可挠式微发光二极管显示器。
  9. 如权利要求1所述的微发光二极管显示器的光学贴合方法,其特征在于,其中该第一胶体以及该第二胶体为液态透明光学胶。
  10. 如权利要求1或3所述的微发光二极管显示器的光学贴合方法,其特征在于,其中于固化该第二胶体,使该保护膜贴覆于该第二胶体的步骤中,是以紫外线固化技术对该第二胶体或/及该第一胶体进行固化。
PCT/CN2020/106678 2020-08-04 2020-08-04 微发光二极管显示器的光学贴合方法 WO2022027207A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106678 WO2022027207A1 (zh) 2020-08-04 2020-08-04 微发光二极管显示器的光学贴合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106678 WO2022027207A1 (zh) 2020-08-04 2020-08-04 微发光二极管显示器的光学贴合方法

Publications (1)

Publication Number Publication Date
WO2022027207A1 true WO2022027207A1 (zh) 2022-02-10

Family

ID=80119357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106678 WO2022027207A1 (zh) 2020-08-04 2020-08-04 微发光二极管显示器的光学贴合方法

Country Status (1)

Country Link
WO (1) WO2022027207A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051126A (zh) * 2006-04-07 2007-10-10 群康科技(深圳)有限公司 用于液晶显示器的面板
KR20100008602U (ko) * 2009-02-20 2010-08-30 민은홍 물걸레 청소가 가능한 스크린 도어용 광고판
CN104216589A (zh) * 2014-09-04 2014-12-17 厦门天马微电子有限公司 贴合面板及其贴合方法
CN204537483U (zh) * 2015-04-01 2015-08-05 宿州学院 一种外语教学展示屏
CN105720179A (zh) * 2016-02-04 2016-06-29 吴冬梅 一种防静电led显示屏及其制造方法
CN110333630A (zh) * 2019-02-19 2019-10-15 广州视源电子科技股份有限公司 显示组件、显示设备及其装配方法
CN110413149A (zh) * 2019-07-04 2019-11-05 深圳市华星光电半导体显示技术有限公司 触控显示装置及其制作方法
CN210796317U (zh) * 2019-08-16 2020-06-19 深圳市沃特沃德股份有限公司 背胶以及应用所述背胶的电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051126A (zh) * 2006-04-07 2007-10-10 群康科技(深圳)有限公司 用于液晶显示器的面板
KR20100008602U (ko) * 2009-02-20 2010-08-30 민은홍 물걸레 청소가 가능한 스크린 도어용 광고판
CN104216589A (zh) * 2014-09-04 2014-12-17 厦门天马微电子有限公司 贴合面板及其贴合方法
CN204537483U (zh) * 2015-04-01 2015-08-05 宿州学院 一种外语教学展示屏
CN105720179A (zh) * 2016-02-04 2016-06-29 吴冬梅 一种防静电led显示屏及其制造方法
CN110333630A (zh) * 2019-02-19 2019-10-15 广州视源电子科技股份有限公司 显示组件、显示设备及其装配方法
CN110413149A (zh) * 2019-07-04 2019-11-05 深圳市华星光电半导体显示技术有限公司 触控显示装置及其制作方法
CN210796317U (zh) * 2019-08-16 2020-06-19 深圳市沃特沃德股份有限公司 背胶以及应用所述背胶的电子设备

Similar Documents

Publication Publication Date Title
EP1973089B1 (en) Process for producing display and method of laminating
US11435841B2 (en) Touch display device and manufacturing method thereof
JP5155826B2 (ja) 表示装置の製造方法
US10429971B2 (en) Display panel, manufacturing method thereof and display device
JP2005055641A (ja) 液晶表示装置
JP2015103519A (ja) 一種のamoledモジュール構造とその組立方法
KR20180079096A (ko) 접착 테이프 및 이를 이용한 표시 장치
CN111640370A (zh) 粘接结构、显示装置及显示装置的粘接方法
JP7011155B2 (ja) パネルモジュール及び表示装置
JP6878225B2 (ja) 透明パネルの製造方法、光学装置の製造方法
CN109795190A (zh) 光学部件及具备触摸传感器的产品的生产方法、光学部件
JP6071212B2 (ja) 表示装置の製造方法
WO2016194323A1 (ja) 電子機器及びその製造方法
WO2012120838A1 (ja) 表示装置、マルチディスプレイシステム、及び表示装置の製造方法
US20130278845A1 (en) Embedded electrooptical display
WO2022027207A1 (zh) 微发光二极管显示器的光学贴合方法
JP5529428B2 (ja) 電気光学装置及びその製造方法並びに電子機器
TWI712166B (zh) 微發光二極體顯示器之光學貼合方法
CN108614371B (zh) 显示装置及其制造方法
TWI659679B (zh) 軟性顯示裝置及其製造方法
JP2004157171A (ja) 液晶表示装置およびその製造方法
JP2011075718A (ja) 表示装置及びその製造方法
WO2021245830A1 (ja) 表示パネル、表示装置、および表示パネルの製造方法
US20080079183A1 (en) Method for making an optical element
US11567541B1 (en) Self-illuminating touch electronic paper display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947901

Country of ref document: EP

Kind code of ref document: A1