WO2022025462A1 - 볼로미터 장치 및 이의 제조방법 - Google Patents

볼로미터 장치 및 이의 제조방법 Download PDF

Info

Publication number
WO2022025462A1
WO2022025462A1 PCT/KR2021/008496 KR2021008496W WO2022025462A1 WO 2022025462 A1 WO2022025462 A1 WO 2022025462A1 KR 2021008496 W KR2021008496 W KR 2021008496W WO 2022025462 A1 WO2022025462 A1 WO 2022025462A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing layer
vanadium oxide
bolometer device
vanadium
thin film
Prior art date
Application number
PCT/KR2021/008496
Other languages
English (en)
French (fr)
Inventor
서형탁
한승익
강현우
신희철
Original Assignee
주식회사 보다
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 보다 filed Critical 주식회사 보다
Publication of WO2022025462A1 publication Critical patent/WO2022025462A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0853Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0881Compact construction
    • G01J5/0884Monolithic

Definitions

  • the present invention relates to a bolometer device capable of measuring the temperature of an incident electromagnetic wave by having a sensing layer whose resistance changes according to a change in temperature, and a method for manufacturing the same.
  • a bolometer is an infrared thermal imaging sensor operated at room temperature and is used in various industrial fields. Since the microbolometer is a method of detecting the amount of change compared to the reference resistance, it is important to secure an infrared sensing material with a high temperature coefficient of resistance (TCR) with respect to the reference resistance.
  • TCR temperature coefficient of resistance
  • vanadium oxide of 2%/K is used for TCR, but the resistance difference between pixels is large, which causes resource consumption of the image processing stage, and there is a problem of resistance increase due to re-oxidation.
  • Another object of the present invention is to provide a method for manufacturing the bolometer device.
  • a bolometer device includes a substrate; V 2 O 3 containing +3-valent vanadium ions, VO 2 containing +4-valent vanadium ions, and V 2 O 5 containing +5-valent vanadium ions are formed of at least a homogeneous vanadium oxide, on the substrate a sensing layer disposed on the; and a first electrode and a second electrode disposed on the substrate to be spaced apart from each other and contacting different portions of the sensing layer, respectively.
  • the vanadium oxide sensing layer may have a resistance change rate according to temperature of 2.0 to 3.5%/K and a resistance value of 50 to 300K ⁇ .
  • the sensing layer may have a resistance deviation of 0% or more and 15% or less.
  • the sensing layer may have a thickness of 5 to 20 nm.
  • the bolometer device may further include a protective layer formed of a polymer material, a metal oxide, or a metal nitride, and coating a surface of the sensing layer.
  • the protective layer may have a thickness of 5 to 20 nm.
  • a method of manufacturing a bolometer device includes a first step of forming a vanadium oxide thin film on a substrate through an atomic layer deposition process using a vanadium precursor and an oxidation reagent; a second step of heat-treating the vanadium oxide thin film; and a third step of forming first and second electrodes spaced apart from each other on the substrate and contacting the spaced apart portions of the vanadium oxide thin film, respectively.
  • the vanadium precursor may include VTOP (Vanadyl Trioxypropoxide), and the oxidation reagent may include water vapor.
  • VTOP Vadyl Trioxypropoxide
  • the oxidation reagent may include water vapor.
  • the vanadium oxide thin film in the second step, may be heat-treated at a temperature of 300 to 400° C. for 30 minutes to 1 hour.
  • the sensing layer is formed of vanadium oxide having various polymorphs, the resistance change rate according to the high temperature of about 2.0 to 3.5%/K (Temperature Coefficient of Resistance, TCR), a low resistance value of about 50 to 300 K ⁇ , and a low resistance variation of about 15% or less.
  • TCR Temporal Coefficient of Resistance
  • the sensing layer is formed at a high density through an atomic layer deposition process, it is possible to prevent oxidation of the vanadium oxide of the sensing layer by reacting with oxygen in the air, contamination of the surface, etc., thereby significantly improving the durability and lifespan of the bolometer device. can be significantly improved.
  • FIG. 1 is a view for explaining a bolometer device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart for explaining a method of manufacturing a bolometer device according to an embodiment of the present invention.
  • 3 and 4 are graphs respectively showing XRD analysis results and XPS analysis results before ('MOhm') and after ('KOhm') heat treatment for the vanadium oxide thin film.
  • FIG. 5 is a graph illustrating a measurement of a change in resistance for each temperature measured for a bolometer device manufactured according to an embodiment.
  • FIG. 6 is a graph measuring the resistance change by temperature measured after one week of aging ('one week later') and two weeks of aging ('two weeks later') for the bolometer device manufactured according to the embodiment.
  • FIG. 1 is a view for explaining a bolometer device according to an embodiment of the present invention.
  • a bolometer device 100 may include a substrate 110 , a sensing layer 120 , a first electrode 130a , and a second electrode 130b .
  • the substrate 110 may function as a support for the sensing layer 120 , the first electrode 130a , the second electrode 130b , and the protective layer 140 , and may function as such a supporter. If there is, the structure, shape, material, etc. are not particularly limited.
  • a metal substrate or a semiconductor substrate having an insulating film formed on its surface an oxide substrate formed of an insulating material, a polymer substrate, etc. may be applied without limitation.
  • the sensing layer 120 is disposed on the substrate 110 and may be formed of a material whose resistance changes according to temperature.
  • the sensing layer 120 may be formed of vanadium oxide.
  • the sensing layer 120 includes V 2 O 3 containing +trivalent vanadium ions, VO 2 containing +4-valent vanadium ions, and V 2 O 5 containing +5-valent vanadium ions. It can be formed of more than homogeneous vanadium oxide.
  • the sensing layer 120 may be formed through an atomic layer deposition (ALD) process using a vanadium precursor and an oxidation reagent.
  • ALD atomic layer deposition
  • vanadyl trioxypropoxide (VTOP) may be used as the vanadium precursor
  • water vapor (H 2 O) may be used as the oxidation reagent.
  • the sensing layer 120 may be formed to have a density of about 3.36 g/cm3 to 4.57 g/cm3. As such, when the sensing layer 120 is formed with a high density, even when exposed to the atmosphere, surface contamination can be reduced and re-oxidation can be suppressed, thereby improving the lifespan and durability of the sensing layer.
  • the vanadium oxide sensing layer 120 may have a temperature coefficient of resistance (TCR) of about 2.0 to 3.5%/K, and the first electrode 130a and the second electrode ( 130b) may have a resistance value of about 10 to 900 K ⁇ . In an embodiment, the sensing layer 120 may have a resistance value of about 50 to 200 K ⁇ . In addition, the vanadium oxide sensing layer 120 may have a resistance deviation of about 15% or less, preferably about 10% or less. The resistance deviation refers to a ratio of a difference in resistance between the region having the highest resistance value and the region having the lowest resistance value to the highest resistance value.
  • the sensing layer 120 may have a thickness of about 5 to 20 nm.
  • the sensing layer 120 may have a thickness of about 8 to 15 nm.
  • the first electrode 130a and the second electrode 130b are spaced apart from each other on the substrate 110 to contact different portions of the sensing layer 120 , and the first electrode 130a and each of the second electrodes 130b may be formed of a material having electrical conductivity.
  • each of the first electrode 130a and the second electrode 130b may be formed of a metal, a polymer, a ceramic, a carbon material, etc. having electrical conductivity independently of each other.
  • the first electrode 130a and the second electrode 130b may electrically connect the sensing layer 120 to an external circuit (not shown), and the external circuit may include the sensing layer 120 according to temperature. change in resistance can be measured.
  • the bolometer device 100 may further include a protective layer disposed to cover the surface of the sensing layer 120 .
  • the protective layer further prevents contamination of the surface of the sensing layer 120 and oxidation of the vanadium oxide of the sensing layer 120 by reacting with oxygen in the air without changing the electrical characteristics of the sensing layer 120 . can do.
  • the material of the protective layer is not particularly limited as long as the protective layer has insulating properties, can prevent penetration of external gas or contaminants, and can transmit light.
  • the passivation layer may be formed of an organic material such as a polymer material or an inorganic material such as a metal oxide or a metal nitride.
  • the protective layer may be formed of glass or aluminum oxide (Al 2 O 3 ).
  • FIG. 2 is a flowchart for explaining a method of manufacturing a bolometer device according to an embodiment of the present invention.
  • the method of manufacturing a bolometer device includes a first step of forming a vanadium oxide thin film through an atomic layer deposition process using a vanadium precursor and an oxidation reagent on a substrate ( S110); a second step of heat-treating the vanadium oxide thin film (S120); and a third step (S130) of forming first and second electrodes spaced apart from each other on the substrate and contacting the spaced apart portions of the vanadium oxide thin film, respectively.
  • a VTOP Vanadyl Trioxypropoxide
  • water vapor may be used as the oxidation reagent.
  • the atomic layer deposition process may be performed under the conditions described in Table 1 below.
  • ALD precursors VTOP (Vanadyl Trioxypropoxide)
  • Precursor Oxidizing agents Water vapor (H 2 O)
  • Reaction time program The feeding time of the precursor was 2 to 5 seconds, the purge was 12 to 17 seconds, the injection time of the reactant was 1 to 4 seconds, and the last exhaust was 12 to 17 seconds, which is the standard of 1 cycle.
  • Reaction temperature The temperature window to which the ALD Growth mechanism is applied was from 80°C to 100°C. (Appears to follow the CVD growth mechanism above 100°C)
  • Deposition rate The deposition rate per cycle at 80 °C (Growh per cycle) was 7 ⁇ 12 nm at 900 cycles within the ALD window.
  • the vanadium oxide thin film formed in the first step ( S110 ) may have a thickness of about 5 to 20 nm and may have an amorphous structure.
  • the vanadium oxide thin film may have a resistance value of several to several hundreds of M ⁇ .
  • the vanadium oxide thin film may be heat-treated at a temperature of about 300 to 400° C. for about 30 minutes to 1 hour, and through this heat treatment, the amorphous vanadium oxide thin film may be crystallized into a polycrystalline structure.
  • the resistance of the vanadium oxide thin film can be adjusted from K ⁇ to M ⁇ .
  • the resistance of the vanadium oxide thin film can be adjusted from K ⁇ to M ⁇ .
  • the heat treatment is performed in various atmospheres (vacuum, oxygen, nitrogen)
  • the resistance of the vanadium oxide thin film can be adjusted from K ⁇ to M ⁇ .
  • the heat treatment is performed in an oxygen atmosphere, a change in the TCR tendency is possible according to the oxygen process pressure, and may have a TCR value of about 2.5%/k to 3.5%/K.
  • the heat-treated vanadium oxide thin film contains V 2 O 3 containing +trivalent vanadium ions, VO 2 containing +4-valent vanadium ions, and V 2 O 5 containing +5-valent vanadium ions. It may be formed of more than homogeneous vanadium oxide containing.
  • the heat-treated vanadium oxide thin film may have a resistance value of about 10 to 900 K ⁇ , and a resistance deviation of about 15% or less, preferably about 10% or less.
  • the heat-treated vanadium oxide thin film may have a resistance value of about 50 to 200 K ⁇ , and a resistance deviation of about 10% or less.
  • a material having electrical conductivity is applied on portions spaced apart from each other of the heat-treated vanadium oxide thin film, and the first contacting the heat-treated vanadium oxide thin film is spaced apart from each other.
  • An electrode and the second electrode may be formed.
  • the first electrode and the second electrode may be formed by coating a conductive metal paste or depositing a metal on portions spaced apart from each other of the heat-treated vanadium oxide thin film.
  • the method for manufacturing a bolometer device according to an embodiment of the present invention is performed after the second step ( S120 ) and before the third step ( S130 ).
  • the method may further include forming a protective layer on the surface.
  • the protective layer may be formed of an organic material such as a polymer material or an inorganic material such as a metal oxide or metal nitride.
  • the protective layer may be formed to a thickness of about 5 to 20nm.
  • the protective layer may be formed to expose a portion of a surface of the heat-treated vanadium oxide thin film so that the first electrode and the second electrode can contact each other.
  • the sensing layer is formed of vanadium oxide having various polymorphs, the resistance change rate according to the high temperature of about 2.0 to 3.5%/K (Temperature Coefficient of Resistance, TCR), a low resistance value of about 50 to 200 K ⁇ , and a low resistance variation of about 15% or less.
  • TCR Temporal Coefficient of Resistance
  • the sensing layer is formed at a high density through an atomic layer deposition process, it is possible to prevent oxidation of the vanadium oxide of the sensing layer by reacting with oxygen in the air, contamination of the surface, etc., thereby significantly improving the durability and lifespan of the bolometer device. can be significantly improved.
  • a vanadium oxide thin film was formed on the substrate through the atomic layer deposition process performed under the conditions shown in Table 2 below.
  • ALD precursors VTOP (Vanadyl Trioxypropoxide)
  • Precursor Oxidizing agents Water vapor (H 2 O)
  • Reaction time program ALD process proceeds with 1 cycle of 3 sec of precursor feeding time, 15 sec of purge time, 2 sec of reactant injection time and 15 sec of final purge time.
  • the vanadium oxide thin film was heat-treated at a temperature of 350° C. for 30 minutes.
  • the resistance value of the vanadium oxide thin film which was at the M ⁇ level at the time of initial deposition, was reduced to the K ⁇ level.
  • Ti/Au electrodes (first and second electrodes) separated at 0.5 cm intervals were formed using the E-beam evaporator of the heat-treated vanadium oxide thin film to manufacture a bolometer device according to the embodiment.
  • 3 and 4 are graphs respectively showing XRD analysis results and XPS analysis results before ('MOhm') and after ('KOhm') heat treatment for the vanadium oxide thin film.
  • FIG. 5 is a graph illustrating a measurement of a change in resistance for each temperature measured for a bolometer device manufactured according to an embodiment.
  • the graph of FIG. 5 is the result of measurement at intervals of 10°C in a temperature range of 25 to 55°C.
  • the bolometer device manufactured according to the embodiment has a resistance that decreases as the temperature increases, has a resistance value of 50 to 167K ⁇ as a whole, and has a TCR value of about -2.795 to -2.222%/K can be checked
  • FIG. 6 is a graph measuring the resistance change by temperature measured after one week of aging ('one week later') and two weeks of aging ('two weeks later') for the bolometer device manufactured according to the embodiment.
  • the graph of FIG. 6 is the result of measurement at intervals of 10°C in a temperature range of 25 to 55°C.
  • the resistance value is maintained at the K ⁇ level even when the bolometer device manufactured according to the embodiment is left in the air for 2 weeks, and in particular, it can be confirmed that the characteristic is maintained almost the same at around 55°C. This is considered to be because the vanadium oxide of the sensing layer is deposited at a high density through the ALD process to prevent reoxidation by air.
  • bolometer device 110 substrate
  • sensing layer 130a first electrode

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Thermistors And Varistors (AREA)
  • Radiation Pyrometers (AREA)

Abstract

볼로미터 장치가 개시된다. 볼로미터 장치는 기판; 상기 기판 상에 배치되고, +3가의 바나듐 이온을 함유하는 V2O3, +4가의 바나듐 이온을 함유하는 VO2 및 +5가의 바나듐 이온을 함유하는 V2O5를 포함하는 동질이상의 바나듐 산화물로 형성된 감지층; 및 상기 기판 상에서 서로 이격되게 배치되어 상기 감지층의 서로 다른 부분에 각각 접촉하는 제1 전극과 제2 전극을 구비한다.

Description

볼로미터 장치 및 이의 제조방법
본 발명은 온도 변화에 따라 저항이 변화하는 감지층을 구비하여 입사된 전자기파의 온도를 측정할 수 있는 볼로미터 장치 및 이의 제조방법에 관한 것이다.
볼로미터(bolometer)는 상온 동작형 적외선 열영상 센서로서 다양한 산업 현장에서 이용된다. 마이크로 볼로미터는 기준 저항 대비 변화량을 감지하는 방식이기 때문에 기준 저항에 대한 저항의 변화율(Temperature Coefficient of Resistance, TCR)이 높은 적외선 감지 물질 확보가 중요하다. 현재 산업 현장에서는 TCR이 2%/K 대의 바나듐 산화물이 사용되고 있으나, 픽셀 간 저항 편차가 커서 이미지 처리단의 리소스를 소모하는 원인이 되고 있고, 재산화에 의한 저항 증가의 문제가 있다.
따라서, 높은 TCR, 낮은 저항 편차, 수십 KΩ의 저항 값을 가지는 감지물질의 개발이 필요하고, 공기 중 자연 산화로 인하여 저항특성이 바뀌는 열화 현상을 막을 수 있는 기술개발이 필요하다.
본 발명의 일 목적은 높은 TCR, 낮은 저항 편차, 수십 KΩ의 저항 값을 가지고, 재산화 문제를 해결할 수 있는 볼로미터 장치를 제공하는 것이다.
본 발명의 다른 목적은 상기 볼로미터 장치의 제조방법을 제공하는 것이다.
본 발명의 실시예에 따른 볼로미터 장치는 기판; +3가의 바나듐 이온을 함유하는 V2O3, +4가의 바나듐 이온을 함유하는 VO2 및 +5가의 바나듐 이온을 함유하는 V2O5를 포함하는 동질이상의 바나듐 산화물로 형성되고, 상기 기판 상에 배치된 감지층; 및 상기 기판 상에서 서로 이격되게 배치되어 상기 감지층의 서로 다른 부분에 각각 접촉하는 제1 전극과 제2 전극을 포함한다.
일 실시예에 있어서, 상기 바나듐 산화물 감지층은 2.0 내지 3.5 %/K의 온도에 따른 저항 변화율 및 50 내지 300KΩ의 저항값을 가질 수 있다.
일 실시예에 있어서, 상기 감지층은 0% 이상 15% 이하의 저항 편차를 가질 수 있다.
일 실시예에 있어서, 상기 감지층은 5 내지 20nm의 두께를 가질 수 있다.
일 실시예에 있어서, 상기 볼로미터 장치는 고분자 재료, 금속산화물 또는 금속질화물로 형성되고, 상기 감지층의 표면을 코팅하는 보호층을 더 포함할 수 있다.
일 실시예에 있어서, 상기 보호층은 5 내지 20nm의 두께를 가질 수 있다.
본 발명의 실시예에 따른 볼로미터 장치의 제조방법은 기판 상에 바나듐 전구체 및 산화반응제를 이용한 원자층 증착 공정을 통해 바나듐 산화물 박막을 형성하는 제1 단계; 상기 바나듐 산화물 박막을 열처리하는 제2 단계; 및 상기 기판 상에 서로 이격되게 배치되고, 상기 바나듐 산화물 박막의 서로 이격된 부분에 각각 접촉하는 제1 및 제2 전극을 형성하는 제3 단계를 포함한다.
일 실시예에 있어서, 상기 바나듐 전구체는 VTOP (Vanadyl Trioxypropoxide)를 포함하고, 상기 산화반응제는 수증기를 포함할 수 있다.
일 실시예에 있어서, 상기 제2 단계에서 상기 바나듐 산화물 박막은 300 내지 400℃의 온도에서 30분 내지 1시간 동안 열처리될 수 있다.
본 발명의 실시예에 따른 볼로미터 장치 및 이의 제조방법에 따르면, 감지층이 다양한 폴리모프(Polymorphs)를 가진 바나듐 산화물로 형성되므로 약 2.0 내지 3.5 %/K의 높은 온도에 따른 저항 변화율(Temperature Coefficient of Resistance, TCR), 약 50 내지 300KΩ의 낮은 저항 값, 약 15% 이하의 낮은 저항 편차를 가질 수 있다. 그리고 상기 감지층이 원자층 증착 공정을 통해 고밀도로 형성되므로, 상기 감지층의 바나듐 산화물이 공기 중의 산소와 반응하여 산화되는 것, 표면 오염 등을 방지할 수 있으므로, 볼로미터 장치의 내구성 및 수명을 현저하게 향상시킬 수 있다.
도 1은 본 발명의 실시예에 따른 볼로미터 장치를 설명하기 위한 도면이다.
도 2는 본 발명의 실시예에 따른 볼로미터 장치의 제조방법을 설명하기 위한 순서도이다.
도 3 및 도 4는 상기 바나듐 산화물 박막에 대한 열처리 전('MOhm') 및 후(‘KOhm’)의 XRD 분석결과 및 XPS 분석결과를 각각 나타내는 그래프들이다.
도 5는 실시예에 따라 제조된 볼로미터 장치에 대해 측정된 온도별 저항 변화를 측정한 그래프이다.
도 6은 실시예에 따라 제조된 볼로미터 장치에 대해 제작 후 1주일의 에이징(‘일주일후’) 및 2주일의 에이징(‘이주일후’) 이후에 측정된 온도별 저항 변화를 측정한 그래프이다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1은 본 발명의 실시예에 따른 볼로미터 장치를 설명하기 위한 도면이다.
도 1을 참조하면, 본 발명의 실시예에 따른 볼로미터 장치(100)는 기판(110), 감지층(120), 제1 전극(130a)및 제2 전극(130b)을 포함할 수 있다.
상기 기판(110)은 상기 감지층(120), 상기 제1 전극(130a), 상기 제2 전극(130b) 및 상기 보호층(140)에 대한 지지체로서 기능할 수 있고, 이러한 지지체로서 기능할 수 있다면 구조, 형상, 재료 등이 특별히 제한되지 않는다. 예를 들면, 상기 기판(110)으로는 표면에 절연막이 형성된 금속 기판이나 반도체 기판, 절연성 재료로 형성된 산화물 기판, 고분자 기판 등이 제한 없이 적용될 수 있다.
상기 감지층(120)은 상기 기판(110) 상에 배치되고, 온도에 따라 저항이 변화하는 재료로 형성될 수 있다. 일 실시예에 있어서, 상기 감지층(120)은 바나듐 산화물로 형성될 수 있다. 일 실시예로, 상기 감지층(120)은 +3가의 바나듐 이온을 함유하는 V2O3, +4가의 바나듐 이온을 함유하는 VO2 및 +5가의 바나듐 이온을 함유하는 V2O5를 포함하는 동질이상의 바나듐 산화물로 형성될 수 있다.
일 실시예에 있어서, 상기 감지층(120)은 바나듐 전구체 및 산화반응제를 이용한 원자층 증착(Atomic Layer Deposition, ALD) 공정을 통해 형성될 수 있다. 일 실시예로, 상기 바나듐 전구체로는 VTOP(Vanadyl Trioxypropoxide)이 사용될 수 있고, 상기 산화반응제로는 수증기(H2O)가 사용될 수 있다.
일 실시예에 있어서, 상기 감지층(120)은 약 3.36 g/cm3 내지 4.57 g/cm3의 밀도를 갖도록 형성될 수 있다. 이와 같이 상기 감지층(120)이 고밀도로 형성된 경우, 대기에 노출되더라도 표면 오염을 감소시킬 수 있을 뿐만 아니라 재산화를 억제할 수 있어서, 감지층의 수명 및 내구성을 향상시킬 수 있다.
한편, 상기 바나듐 산화물 감지층(120)은 약 2.0 내지 3.5 %/K의 온도에 따른 저항 변화율(Temperature Coefficient of Resistance, TCR)을 가질 수 있고, 상기 제1 전극(130a)과 상기 제2 전극(130b) 사이에서 약 10 내지 900 KΩ의 저항값을 가질 수 있다. 일 실시예로, 상기 감지층(120)은 약 50 내지 200 KΩ의 저항값을 가질 수 있다. 또한, 상기 바나듐 산화물 감지층(120)은 약 15% 이하, 바람직하게는 약 10% 이하의 저항 편차를 가질 수 있다. 저항 편차라 함은 최고 저항값을 갖는 영역과 최저 저항값을 갖는 영역 사이의 저항 차이값이 최고 저항값에 대해 갖는 비율을 의미한다.
일 실시예에 있어서, 상기 감지층(120)은 약 5 내지 20nm 두께를 가질 수 있다. 예를 들면, 상기 감지층(120)은 약 8 내지 15 nm의 두께를 가질 수 있다.
상기 제1 전극(130a) 및 상기 제2 전극(130b)은 상기 기판(110) 상에서 서로 이격되게 배치되어 상기 감지층(120)의 서로 다른 부분에 접촉할 수 있고, 상기 제1 전극(130a) 및 상기 제2 전극(130b) 각각은 전기 전도성을 갖는 재료로 형성될 수 있다. 예를 들면, 상기 제1 전극(130a) 및 상기 제2 전극(130b) 각각은 서로 독립적으로 전기 전도성을 갖는 금속, 고분자, 세라믹, 탄소 소재 등으로 형성될 수 있다. 상기 제1 전극(130a) 및 상기 제2 전극(130b)은 상기 감지층(120)을 외부 회로(미도시)에 전기적으로 연결시킬 수 있고, 상기 외부 회로는 온도에 따른 상기 감지층(120)의 저항 변화를 측정할 수 있다.
일 실시예에 있어서, 도면에 도시되진 않았지만, 본 발명의 실시예에 따른 볼로미터 장치(100)는 상기 감지층(120)의 표면을 피복하도록 배치된 보호층을 더 포함할 수 있다.
상기 보호층은 상기 감지층(120)의 전기적 특성을 변화시키지 않으면서 상기 감지층(120)의 표면 오염, 상기 감지층(120)의 바나듐 산화물이 공기 중의 산소와 반응하여 산화되는 것을 추가로 방지할 수 있다.
일 실시예에 있어서, 상기 보호층은 절연성 특성을 갖고 외부 가스 또는 오염물질의 침투를 방지할 수 있으며 광을 투과시킬 수 있다면, 상기 보호층의 재료는 특별히 제한되지 않는다. 예를 들면, 상기 보호층은 고분자 재료 등과 같은 유기 재료 또는 금속산화물, 금속질화물 등과 같은 무기 재료로 형성될 수 있다. 일 예로, 상기 보호층은 글라스(Glass) 또는 알루미늄 산화물(Al2O3)로 형성될 수 있다.
도 2는 본 발명의 실시예에 따른 볼로미터 장치의 제조방법을 설명하기 위한 순서도이다.
도 1과 함께 도 2를 참조하면, 본 발명의 실시예에 따른 볼로미터 장치의 제조방법은 기판 상에 바나듐 전구체 및 산화반응제를 이용한 원자층 증착 공정을 통해 바나듐 산화물 박막을 형성하는 제1 단계(S110); 상기 바나듐 산화물 박막을 열처리하는 제2 단계(S120); 및 상기 기판 상에 서로 이격되게 배치되고, 상기 바나듐 산화물 박막의 서로 이격된 부분에 각각 접촉하는 제1 및 제2 전극을 형성하는 제3 단계(S130)를 포함한다.
상기 제1 단계(S110)에 있어서, 상기 원자층 증착 공정은 VTOP (Vanadyl Trioxypropoxide) 전구체가 바나듐 전구체로 이용하고, 수증기를 상기 산화반응제로 이용할 수 있다. 일 실시예로, 상기 원자층 증착 공정은 하기 표 1에 기재된 조건으로 수행될 수 있다.
ALD 전구체: VTOP (Vanadyl Trioxypropoxide) 전구체
산화반응제: Water vapor (H2O)
반응시간 프로그램: 전구체의 주입시간(Feeding time)은 2 내지 5초이고, 배기(Purge)는 12 내지 17초이고, 반응물의 주입시간은 1 내지 4초이며, 마지막 배기는 12 내지 17초이었고, 이를 1cycle의 기준으로 함.
반응온도: ALD Growth mechanism이 적용되는 Temperature Window는 80℃ 부터 100℃였음. (100℃ 이상에서는 CVD Growth mechanism을 따르는 것으로 보임)
증착속도: 80 ℃에서 1cycle 당 증착속도 (Growh per cycle)는 ALD Window 내에서 900 cycle 에 7~12 nm이었음
상기 제1 단계(S110)에서 형성된 바나듐 산화물 박막은 약 5 내지 20nm 두께로 형성될 수 있고, 비정질 구조를 가질 수 있다. 그리고 상기 바나듐 산화물 박막은 수 내지 수백 MΩ 수준의 저항값을 가질 수 있다. 상기 제2 단계(S120)에 있어서, 상기 바나듐 산화물 박막은 약 300 내지 400℃의 온도에서 약 30분 내지 1시간 동안 열처리될 수 있고, 이러한 열처리를 통해 상기 비정질 바나듐 산화물 박막은 다결정 구조로 결정화될 수 있다.
다양한 분위기(진공, 산소, 질소)에서 열처리를 진행 하는 경우, 상기 바나듐 산화물 박막의 저항을 KΩ에서 MΩ까지 조절 할 수 있다. 예를 들면, 진공 분위기에서 열처리를 진행하는 경우, 수 KΩ 수준의 낮은 저항 달성이 가능하다. 그리고 산소 분위기에서 열처리를 진행하는 경우, 산소 공정 압력에 따라서 TCR 경향의 변화가 가능하며, 약 2.5%/k 내지 3.5%/K의 TCR 값을 가질 수 있다.
일 실시예에 있어서, 상기 열처리된 바나듐 산화물 박막은 +3가의 바나듐 이온을 함유하는 V2O3, +4가의 바나듐 이온을 함유하는 VO2 및 +5가의 바나듐 이온을 함유하는 V2O5를 포함하는 동질이상의 바나듐 산화물로 형성될 수 있다.
일 실시예에 있어서, 상기 열처리된 바나듐 산화물 박막은 약 10 내지 900 KΩ의 저항값을 갖고, 약 15% 이하, 바람직하게는 약 10% 이하의 저항 편차를 가질 수 있다. 예를 들면, 상기 열처리된 바나듐 산화물 박막은 약 50 내지 200 KΩ의 저항값을 갖고, 약 10% 이하의 저항 편차를 가질 수 있다.
상기 제3 단계(S130)에 있어서, 상기 열처리된 바나듐 산화물 박막의 서로 이격된 부분들 상에 전기 전도성을 갖는 재료를 도포하여, 서로 이격된 위치에서 상기 열처리된 바나듐 산화물 박막에 접촉하는 상기 제1 전극 및 상기 제2 전극을 형성할 수 있다. 예를 들면, 상기 열처리된 바나듐 산화물 박막의 서로 이격된 부분들 상에 전도성 금속 페이스트를 도포하거나, 금속을 증착하여 상기 제1 전극 및 상기 제2 전극을 형성할 수 있다.
일 실시예에 있어서, 도면에 도시되진 않았지만, 본 발명의 실시예에 따른 볼로미터 장치의 제조방법은 상기 제2 단계(S120) 이후 그리고 상기 제3 단계(S130) 전에 수행되는 상기 열처된 바나듐 산화물 박막 표면 상에 보호층을 형성하는 단계를 더 포함할 수 있다.
일 실시예에 있어서, 상기 보호층은 고분자 재료 등과 같은 유기 재료 또는 금속산화물, 금속질화물 등과 같은 무기 재료로 형성될 수 있다.
일 실시예에 있어서, 상기 보호층은 약 5 내지 20nm의 두께로 형성될 수 있다. 상기 제1 전극 및 상기 제2 전극이 접촉할 수 있도록, 상기 보호층은 상기 열처리된 바나듐 산화물 박막 표면 중 일부를 노출시키도록 형성될 수 있다.
본 발명의 실시예에 따른 볼로미터 장치 및 이의 제조방법에 따르면, 감지층이 다양한 폴리모프(Polymorphs)를 가진 바나듐 산화물로 형성되므로 약 2.0 내지 3.5 %/K의 높은 온도에 따른 저항 변화율(Temperature Coefficient of Resistance, TCR), 약 50 내지 200KΩ의 낮은 저항 값, 약 15% 이하의 낮은 저항 편차를 가질 수 있다. 그리고 상기 감지층이 원자층 증착 공정을 통해 고밀도로 형성되므로, 상기 감지층의 바나듐 산화물이 공기 중의 산소와 반응하여 산화되는 것, 표면 오염 등을 방지할 수 있으므로, 볼로미터 장치의 내구성 및 수명을 현저하게 향상시킬 수 있다.
이하 본 발명의 실시예에 대해 상술한다. 다만, 하기에 기재된 실시예는 본 발명의 일부 실시 형태에 불과한 것으로서, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
[실시예]
하기 표 2의 조건으로 수행된 원자층 증착 공정을 통해 기판 상에 바나듐 산화물 박막을 형성하였다.
ALD 전구체: VTOP (Vanadyl Trioxypropoxide) 전구체
산화반응제: Water vapor (H2O)
반응시간 프로그램: 3초의 전구체의 주입시간(Feeding time), 15초의 배기 시간(Purge time), 2초의 반응물의 주입시간 및 15초의 최종 배기시간(Purge time)을 1cycle로 하여 ALD 공정 진행
반응온도: Temperature Window는 80~100℃
증착속도: 80 ℃에서 1cycle 당 증착속도 (Growh per cycle)는 ALD Window 내에서 900 cycle에 9~10 nm로서, 약 0.11Å/cycle의 증착속도로 증착함
이어서, 상기 바나듐 산화물 박막을 350℃의 온도에서 30분간 열처리를 진행하였다. 이러한 열처리에 의해, 최초 증착시에 MΩ 수준이던 상기 바나듐 산화물 박막의 저항값이 KΩ 수준으로 감소되었다. 이어서, 상기 열처리된 바나듐 산화물 박막의 E-beam 증착기를 이용하여 0.5cm 간격으로 이결된 Ti/Au 전극들(제1 및 제2 전극)을 형성하여, 실시예에 따른 볼로미터 장치를 제조하였다.
[실험예]
도 3 및 도 4는 상기 바나듐 산화물 박막에 대한 열처리 전('MOhm') 및 후(‘KOhm’)의 XRD 분석결과 및 XPS 분석결과를 각각 나타내는 그래프들이다.
도 3 및 도 4를 참조하면, 원자층 증착 공정을 통해 형성된 바나듐 산화물 박막은 대한 열처리를 진행한 결과, 열처리 전의 박막과 비교하여 V4+에 대응되는 VO2 피크가 증가하였음을 알 수 있고, 또한, 산소 공공(‘VO’)에 대한 피크가 발생하였음을 확인할 수 있다. 이를 통해, 열처리에 의한 VO2의 증가 및 산소 공공의 증가 때문에 바나듐 산화물 박막의 저항값이 감소되는 것으로 판단된다.
도 5는 실시예에 따라 제조된 볼로미터 장치에 대해 측정된 온도별 저항 변화를 측정한 그래프이다. 도 5의 그래프는 25 내지 55℃의 온도 구간에서 10℃ 간격으로 측정한 결과들이다.
도 5를 참조하면, 실시예에 따라 제조된 볼로미터 장치는 온도가 증가함에 따라 저항이 감소하고, 전체적으로 50 내지 167KΩ의 저항값을 가지며, 약 -2.795 내지 -2.222 %/K의 TCR 값을 갖는 것을 확인할 수 있다.
도 6은 실시예에 따라 제조된 볼로미터 장치에 대해 제작 후 1주일의 에이징(‘일주일후’) 및 2주일의 에이징(‘이주일후’) 이후에 측정된 온도별 저항 변화를 측정한 그래프이다. 도 6의 그래프는 25 내지 55℃의 온도 구간에서 10℃ 간격으로 측정한 결과들이다.
도 6을 참조하면, 실시예에 따라 제조된 볼로미터 장치를 공기 중에 2주간 방치했을 경우에도 저항 값이 KΩ 수준으로 유지되고, 특히 55℃부근에서는 거의 동일하게 특성을 유지하는 것을 확인할 수 있다. 이는 감지층의 바나듐 산화물이 ALD 공정을 통해 고밀도로 증착되어 공기에 의한 재산화를 방지하기 때문인 것으로 판단된다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
[부호의 설명]
100: 볼로미터 장치 110: 기판
120: 감지층 130a: 제1 전극
130b: 제2 전극

Claims (10)

  1. 기판;
    +3가의 바나듐 이온을 함유하는 V2O3, +4가의 바나듐 이온을 함유하는 VO2 및 +5가의 바나듐 이온을 함유하는 V2O5를 포함하는 동질이상의 바나듐 산화물로 형성되고, 상기 기판 상에 배치된 감지층; 및
    상기 기판 상에서 서로 이격되게 배치되어 상기 감지층의 서로 다른 부분에 각각 접촉하는 제1 전극과 제2 전극을 포함하는, 볼로미터 장치.
  2. 제1항에 있어서,
    상기 감지층은 3.36 g/cm3 내지 4.57 g/cm3의 밀도를 갖는 것을 특징으로 하는, 볼로미터 장치.
  3. 제1항에 있어서,
    상기 감지층은 2.0 내지 3.5 %/K의 온도에 따른 저항 변화율 및 50 내지 300KΩ의 저항값을 가지는 것을 특징으로 하는, 볼로미터 장치.
  4. 제3항에 있어서,
    상기 감지층은 0% 이상 15% 이하의 저항 편차를 갖는 것을 특징으로 하는, 볼로미터 장치.
  5. 제1항에 있어서,
    상기 감지층은 5 내지 20nm의 두께를 갖는 것을 특징으로 하는, 볼로미터 장치.
  6. 제1항에 있어서,
    고분자 재료, 금속산화물 또는 금속질화물로 형성되고, 상기 감지층의 표면을 코팅하는 보호층을 더 포함하는 것을 특징으로 하는, 볼로미터 장치.
  7. 제6항에 있어서,
    상기 보호층은 5 내지 20nm의 두께를 갖는 것을 특징으로 하는, 볼로미터 장치.
  8. 기판 상에 바나듐 전구체 및 산화반응제를 이용한 원자층 증착 공정을 통해 바나듐 산화물 박막을 형성하는 제1 단계;
    상기 바나듐 산화물 박막을 열처리하는 제2 단계; 및
    상기 기판 상에 서로 이격되게 배치되고, 상기 바나듐 산화물 박막의 서로 이격된 부분에 각각 접촉하는 제1 및 제2 전극을 형성하는 제3 단계를 포함하는, 볼로미터 장치의 제조방법.
  9. 제8항에 있어서,
    상기 바나듐 전구체는 VTOP (Vanadyl Trioxypropoxide)를 포함하고, 상기 산화반응제는 수증기를 포함하는 것을 특징으로 하는, 볼로미터 장치의 제조방법.
  10. 제8항에 있어서,
    상기 제2 단계에서 상기 바나듐 산화물 박막은 300 내지 400℃의 온도에서 30분 내지 1시간 동안 열처리되는 것을 특징으로 하는, 볼로미터 장치의 제조방법.
PCT/KR2021/008496 2020-07-29 2021-07-05 볼로미터 장치 및 이의 제조방법 WO2022025462A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0094430 2020-07-29
KR1020200094430A KR102284749B1 (ko) 2020-07-29 2020-07-29 볼로미터 장치 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2022025462A1 true WO2022025462A1 (ko) 2022-02-03

Family

ID=77315796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008496 WO2022025462A1 (ko) 2020-07-29 2021-07-05 볼로미터 장치 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR102284749B1 (ko)
WO (1) WO2022025462A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230120336A (ko) * 2022-02-09 2023-08-17 아주대학교산학협력단 볼로미터 장치 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271145A (ja) * 1998-03-24 1999-10-05 Mitsubishi Electric Corp ボロメータ用検知膜とその製造方法、及びボロメータ素子
KR20110107366A (ko) * 2009-01-07 2011-09-30 로베르트 보쉬 게엠베하 전자기 복사선 센서 및 그 제조 방법
KR101439263B1 (ko) * 2013-11-22 2014-09-11 한국광기술원 마이크로 볼로미터용 적외선 감지 박막 제조방법
KR20150009772A (ko) * 2013-07-17 2015-01-27 한국광기술원 마이크로 볼로미터용 고특성 산화물 박막 제조방법
KR20200057607A (ko) * 2018-11-16 2020-05-26 한국과학기술연구원 마이크로 볼로미터 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271145A (ja) * 1998-03-24 1999-10-05 Mitsubishi Electric Corp ボロメータ用検知膜とその製造方法、及びボロメータ素子
KR20110107366A (ko) * 2009-01-07 2011-09-30 로베르트 보쉬 게엠베하 전자기 복사선 센서 및 그 제조 방법
KR20150009772A (ko) * 2013-07-17 2015-01-27 한국광기술원 마이크로 볼로미터용 고특성 산화물 박막 제조방법
KR101439263B1 (ko) * 2013-11-22 2014-09-11 한국광기술원 마이크로 볼로미터용 적외선 감지 박막 제조방법
KR20200057607A (ko) * 2018-11-16 2020-05-26 한국과학기술연구원 마이크로 볼로미터 및 그 제조 방법

Also Published As

Publication number Publication date
KR102284749B1 (ko) 2021-08-02

Similar Documents

Publication Publication Date Title
KR100204082B1 (ko) 내열 금속과 그 위의 알루미늄으로 구성된, 박막다중층산소확산장벽
CN1188546C (zh) 在具有金属部件的反应器中处理半导体时减小金属污染物的方法
US6221495B1 (en) Thin transparent conducting films of cadmium stannate
WO2016006943A1 (ko) 그래핀으로 코팅된 코어-쉘 구조를 가지는 금속 나노와이어 및 이의 제조방법
WO2022025462A1 (ko) 볼로미터 장치 및 이의 제조방법
WO2022025461A1 (ko) 볼로미터 장치 및 이의 제조방법
WO2016153172A1 (ko) 높은 전계 효과 이동도를 가지는 basno3 박막 트랜지스터 및 그의 제조 방법
WO2015080496A1 (ko) 전도성 구조체 전구체, 전도성 구조체 및 이의 제조방법
WO2023153738A1 (ko) 볼로미터 장치 및 이의 제조방법
WO2021261723A1 (ko) 수소 검출 센서 및 이의 제조방법
US20240201125A1 (en) SEMICONDUCTOR APPARATUS, ELECTRONIC DEVICE, pH SENSOR, BIOSENSOR, PRODUCTION METHOD FOR SEMICONDUCTOR APPARATUS, AND PRODUCTION METHOD FOR ELECTRONIC DEVICE
WO2015182888A1 (ko) 산화물 반도체 박막 트랜지스터의 제조방법
WO2017122985A1 (ko) 산화물 박막 제조방법, 산화물 박막 및 그 전자소자
KR101686879B1 (ko) 산화물 반도체 가스센서 및 그 제조방법
WO2016137233A1 (ko) 아연이 도핑된 주석 산화물 박막의 제조 방법
WO2019004561A1 (ko) 고방열 박막 및 그 제조 방법
WO2019103328A1 (ko) 수직 적층된 온습도 복합 센서 및 그 제조방법
WO2018056522A1 (ko) 열화학 센서 및 그 제조 방법
Mbarek et al. Screen-printed tin-doped indium oxide films for low temperature and fast response methanol gas sensing
KR101812947B1 (ko) 볼로미터용 저항 박막 제조방법, 이에 의해서 제조된 볼로미터용 저항 박막 및 볼로미터 제조방법
WO2022211554A1 (ko) 수소 가스 센서 및 이의 제조방법
US20050023138A1 (en) Gas sensor with sensing particle receptacles
WO2017030352A1 (ko) Azo/ag/azo 다층박막 구조를 갖는 플렉시블 투명 전극 및 그 제조방법
WO2024106620A1 (ko) 성능이 향상된 산화물 박막 트랜지스터 및 그 제조 방법
WO2021256765A1 (ko) 박막 다층 코팅이 구비된 투명 기재

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21849366

Country of ref document: EP

Kind code of ref document: A1