WO2022024855A1 - 光コネクタ及び光コネクタモジュール - Google Patents

光コネクタ及び光コネクタモジュール Download PDF

Info

Publication number
WO2022024855A1
WO2022024855A1 PCT/JP2021/027051 JP2021027051W WO2022024855A1 WO 2022024855 A1 WO2022024855 A1 WO 2022024855A1 JP 2021027051 W JP2021027051 W JP 2021027051W WO 2022024855 A1 WO2022024855 A1 WO 2022024855A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
optical connector
refractive index
transmission line
Prior art date
Application number
PCT/JP2021/027051
Other languages
English (en)
French (fr)
Inventor
勝健 角田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP21849743.6A priority Critical patent/EP4191296A1/en
Priority to US18/017,638 priority patent/US20240036269A1/en
Priority to CN202180059802.8A priority patent/CN116134353A/zh
Publication of WO2022024855A1 publication Critical patent/WO2022024855A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3853Lens inside the ferrule
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • G02B6/327Optical coupling means having lens focusing means positioned between opposed fibre ends with angled interfaces to reduce reflections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type

Definitions

  • This disclosure relates to an optical connector and an optical connector module.
  • Patent Document 1 discloses an optical connector that can contribute to miniaturization while reducing coupling loss.
  • the optical connector according to the embodiment of the present disclosure is An optical connector attached to a substrate and an optical transmission line having an optical waveguide laminated on the substrate.
  • the optical connector module according to the embodiment of the present disclosure is With the above optical connector, A refractive index matching agent that is interposed between the end surface of the optical transmission line and the first side surface to adjust the refractive index, To prepare for.
  • FIG. 3 is an external perspective view showing an enlarged top view of the optical transmission line unit of FIG. 1.
  • FIG. 3 is an external perspective view showing a single optical connector of FIG. 1. It is a figure which shows the cross section of the optical connector module of FIG. 1 schematically from the front. It is sectional drawing which follows the VV arrow line of FIG. It is an enlarged view which expanded the broken line box VI of FIG. It is an enlarged view which further expanded the broken line box VII of FIG. It is an enlarged cross-sectional view along the VIII-VIII arrow line of FIG. It is a schematic diagram which shows the state of the light propagating in the edge channel of FIG.
  • FIG. 8 in the absence of a refractive index matching agent. It is a schematic diagram which shows the state of the light propagating in the central channel of FIG. 8 in the absence of a refractive index matching agent. It is a schematic diagram corresponding to FIG. 9A in the case where the refractive index matching agent is present. It is a schematic diagram corresponding to FIG. 9B in the case where the refractive index matching agent is present. It is an enlarged sectional view corresponding to FIG. 8 which shows the modification of the optical connector module.
  • the number of the first lens constituting the first lens portion and the number of the second lenses constituting the second lens portion are each the number of cores constituting the optical transmission path and the number of cores constituting the optical transmission path. It is the same.
  • the performance of the optical connector is affected by the characteristics of the materials constituting the optical connector. For example, when an optical connector has a plurality of lenses formed of a resin material, the molding of each lens and the high precision between the first lens and the second lens are caused by the warp and shrinkage of the members caused in manufacturing. It was difficult to align the optical axis. As a result, the optical axes of the first lens and the second lens are displaced, and it is difficult to obtain desired high-precision optical characteristics.
  • optical connector and the optical connector module according to the embodiment of the present disclosure, desired high-precision optical characteristics can be easily obtained even when the first lens and the second lens are provided.
  • the "light propagation direction” includes, for example, the front-back direction.
  • the "first direction orthogonal to the light propagation direction” includes, for example, a left-right direction.
  • the “second direction orthogonal to the light propagation direction and the first direction” includes, for example, the vertical direction.
  • the first direction orthogonal to the light propagation direction may include the vertical direction
  • the light propagation direction and the second direction orthogonal to the first direction may include the left-right direction.
  • FIG. 1 is an external perspective view showing an optical connector module 1 including an optical connector 20 according to an embodiment in a top view. An outline of the configuration and function of the optical connector module 1 will be described with reference to FIG. 1.
  • the optical connector module 1 is a refraction that adjusts the refractive index of the optical transmission path 10, the optical connector 20 that is optically coupled to the optical transmission path 10, and the first space S1 between the optical transmission path 10 and the optical connector 20. It has a rate matching agent 30 and.
  • the optical connector 20 is attached to the optical transmission line 10 based on a mounting method including a plurality of steps.
  • the mounting method includes, for example, a first step of positioning the optical connector 20 in a state of being mounted on the optical transmission line 10.
  • an agent is applied between the optical connector 20 and the optical transmission line 10 from both the left and right sides of the optical connector 20 positioned in the first step.
  • the second step is a step for fixing the optical connector 20 to the optical transmission line 10 by using such an agent.
  • the "agent” includes, for example, any filler having an adhesive function.
  • the agent comprises an adhesive.
  • the mounting method is, for example, between the optical transmission path 10 and the optical connector 20 from below the optical connector 20 fixed to the optical transmission path 10 in the second step, as shown by an arrow along the upward direction in FIG.
  • the refractive index matching agent 30 has an adhesive function for fixing the optical connector 20 to the optical transmission line 10 and a function for adjusting the refractive index in the first space S1.
  • the third step is a step for fixing the optical connector 20 to the optical transmission line 10 by using such a refractive index matching agent 30.
  • the optical connector module 1 is optically coupled to another optical transmission line such as an optical fiber and an optical waveguide.
  • the optical connector 20 attached to the optical transmission path 10 is connected to a ferrule holding an optical fiber to form an optical coupling between the optical transmission path 10 and the optical fiber.
  • the optical connector module 1 can be connected to the optical transmission path 10 by connecting the optical connector 20 attached to the optical transmission path 10 to another optical connector also attached to the optical waveguide. Allows optical coupling with optical waveguides.
  • FIG. 2 is an enlarged external perspective view of the optical transmission line 10 of FIG. 1 as an enlarged view.
  • the configuration of the optical transmission line 10 will be mainly described with reference to FIG. 2.
  • the optical transmission line 10 has a substrate 11 and an optical waveguide 12 laminated on the substrate 11.
  • the optical transmission line 10 includes, for example, a substrate 11 composed of a rigid type printed wiring board, and an optical waveguide portion 12 laminated on the upper surface of the substrate 11.
  • the optical waveguide 12 is formed in a convex shape so as to project upward from the upper surface of the substrate 11, for example.
  • the optical waveguide 12 is formed so that the end face coincides with the end face of the substrate 11 for optical coupling with, for example, the optical connector 20.
  • the end face of the optical waveguide 12 is formed in a plane along the end face of the substrate 11, for example.
  • the waveguide mode of the optical waveguide unit 12 may be either a single mode or a multi-mode.
  • the optical waveguide 12 has a core 121 and a clad 122 laminated on the substrate 11 in a stacking direction orthogonal to the substrate 11. More specifically, the optical waveguide portion 12 is laminated with the first clad 122a laminated on the upper surface of the substrate 11, the core 121 laminated on the first clad 122a, and the core 121 together with the first clad 122a. It has a second clad 122b that is sandwiched in the direction and surrounds the core 121.
  • a plurality of cores 121 are formed so as to be separated from each other at predetermined intervals in the left-right direction. Each core 121 extends in the anteroposterior direction.
  • the core 121 and the clad 122 are formed of an appropriate material such as quartz-based glass.
  • the refractive index of the core 121 is higher than that of the clad 122.
  • the optical waveguide portion 12 will be described as, for example, an embedded optical waveguide, but the present invention is not limited thereto.
  • the optical waveguide portion 12 may be an optical waveguide of an appropriate type such as a slab type or a semi-embedded type.
  • the core size of the core 121 is included in the range of, for example, 5 ⁇ m or more and 15 ⁇ m or less.
  • the core size of the core 121 is, for example, 35 ⁇ m or more and 62.5 ⁇ m or less.
  • the "core size" includes, for example, the actual size of the core 121 rather than the mode field diameter.
  • the refractive index of the core 121 is, for example, 1.6.
  • the optical transmission line 10 is manufactured using, for example, photolithography.
  • the manufacturing method is carried out in the order of the first clad 122a, the core 121, and the second clad 122b.
  • the method for manufacturing the optical transmission line 10 includes a step of laminating the first clad 122a constituting the optical waveguide portion 12 on the substrate 11 in a laminating direction orthogonal to the substrate 11.
  • the method for manufacturing the optical transmission line 10 includes a step of laminating the core 121 constituting the optical waveguide portion 12 on the first clad 122a.
  • the method for manufacturing the optical transmission line 10 includes a step of laminating the second clad 122b constituting the optical waveguide portion 12 together with the first clad 122a so as to sandwich the core 121 in the laminating direction.
  • FIG. 3 is an external perspective view showing a single optical connector 20 of FIG. An example of the configuration of the optical connector 20 of FIG. 1 will be mainly described with reference to FIG.
  • the optical connector 20 is formed in an L shape, for example, by a translucent resin material.
  • first lens means 225 hereinafter, simply referred to as the first lens
  • second side surface A2 located on the opposite side of the first side surface A1.
  • the formed second lens means 226 (hereinafter, simply referred to as a second lens) is formed of, for example, a translucent resin material.
  • the optical connector 20 is made of a material having a refractive index close to that of the core 121 of the optical waveguide section 12.
  • the material of the optical connector 20 includes, for example, Polyetherimide (PEI).
  • PEI Polyetherimide
  • the material of the optical connector 20 is not limited to this, and may include any other resin material such as, for example, Polyca (PC) and PolyMethylMethacrylate (PMMA).
  • the refractive index of the optical connector 20 is included in the range of, for example, 1.4 or more and 1.7 or less.
  • the refractive index of the optical connector 20 varies depending on the wavelength and temperature of the propagating light.
  • the material of the optical connector 20 may include a material other than the resin material.
  • the first lens 225 and the second lens 226 of the optical connector 20 described later may be formed of a material other than the resin material.
  • the optical connector 20 has a first base portion 21 extending in the front-rear direction.
  • the optical connector 20 has a lower surface 211 which is flush with the lower surface of the side wall 215 described later in the first base portion 21.
  • the optical connector 20 has a recess 212 that is recessed one step upward from the central portion of the lower surface 211 in the left-right direction of the first base portion 21 to the upward direction, that is, inward in the first base portion 21.
  • the optical connector 20 has a contact portion 213 that protrudes one step outward in the vertical direction from the lower surface 211 of the first base portion 21.
  • the contact portion 213 is located on both the left and right sides with respect to the recess 212.
  • the contact portion 213 includes a contact surface 213a located at the lowermost portion of the first base portion 21 in the downward direction, that is, at the tip of the first base portion 21.
  • the contact surface 213a is formed at the position most protruding toward the optical transmission path 10 in the first base portion 21.
  • the contact surface 213a constitutes the lower tip surface of the first base portion 21.
  • the contact portion 213 and the contact surface 213a extend in the front-rear direction over substantially the entire first base portion 21.
  • the optical connector 20 has a first adhesive portion 214 formed in a region different from the contact portion 213 in the first base portion 21.
  • the first adhesive portion 214 includes a part of the lower surface 211 in the first base portion 21.
  • the first adhesive portion 214 is located on the left and right sides of the recess 212 on the outside in the left-right direction with respect to the contact portion 213.
  • the first adhesive portion 214 includes an adhesive surface 214a located one step upward, that is, one step inward with respect to the contact surface 213a in the first base portion 21.
  • the adhesive surface 214a is located on the side opposite to the optical transmission path 10 with respect to the contact surface 213a in the first base portion 21.
  • the adhesive surface 214a has a larger area than the contact surface 213a.
  • the first adhesive portion 214 and the adhesive surface 214a extend in the front-rear direction over the entire first base portion 21.
  • the optical connector 20 has a side wall 215 that constitutes a side end portion of the first base portion 21.
  • the side wall 215 is located on both the left and right sides with respect to the recess 212.
  • the first adhesive portion 214 is formed on the side wall 215.
  • the adhesive surface 214a of the first adhesive portion 214 constitutes a lower surface of the side wall 215, that is, a part of the lower surface 211.
  • the side wall 215 projects on both sides in the left-right direction with respect to the second base portion 22, which will be described later.
  • the side wall 215 extends in the front-rear direction over the entire first base 21 at the side end of the first base 21.
  • the optical connector 20 has a relief recess 216 formed in the first base portion 21 so as to separate the contact portion 213 and the first adhesive portion 214.
  • the relief recess 216 is formed in a groove shape, for example, as a relief groove.
  • the relief recess 216 is sandwiched between the contact portion 213 and the first adhesive portion 214, and is located on both the left and right sides of the recess 212.
  • the relief recess 216 extends in the front-rear direction over the entire first base 21.
  • the optical connector 20 has a positioning portion 217 recessed in the first base portion 21 so as to sandwich the contact portion 213 together with the side wall 215. From another viewpoint, the positioning portion 217 is recessed in the central portion of the contact portion 213. The positioning portion 217 is located on both the left and right sides with respect to the recess 212. The positioning portion 217 extends in the front-rear direction over the entire first base portion 21. The positioning portion 217 is formed continuously from the through hole 221 of the second base portion 22, which will be described later, to the rear end of the first base portion 21. The positioning portion 217 is a concave portion formed in a semicircular shape in a cross-sectional view. The through hole 221 and the positioning portion 217 are formed concentrically with each other.
  • the optical connector 20 is formed in an L shape and has a second base portion 22 protruding from the first base portion 21 in a direction orthogonal to the extending direction of the first base portion 21.
  • the second base portion 22 projects forward of the first base portion 21 and is formed so as to be continuous with the first base portion 21.
  • the second base portion 22 is formed so as to project downward from the first base portion 21.
  • the second base portion 22 is formed with a first side surface A1 and a second side surface A2, which will be described later.
  • the optical connector 20 has a circular through hole 221 in a cross-sectional view that penetrates from the front surface to the rear surface of the second base portion 22.
  • Through holes 221 are formed at both left and right ends of the second base portion 22 so as to correspond to the positioning portion 217 of the first base portion 21 and to be located on both the left and right sides of the recess 212 of the first base portion 21.
  • the optical connector 20 has a first notched portion 222 in which the inner surface of the second base portion 22, that is, the rear surface is cut out to the first side surface A1.
  • the first notch 222 is formed as a concave shape.
  • the optical connector 20 has a second surface composed of four side surfaces, top, bottom, left, and right, constituting the first notch 222, a first side surface A1, and an inner surface of a second base 22 located directly below the first notch 222. It has an adhesive portion 223.
  • the optical connector 20 has a second notched portion 224 in which the outer surface of the second base portion 22, that is, the front surface is cut out to the second side surface A2.
  • the second notch 224 is formed in a concave shape.
  • the optical connector 20 has, for example, one first lens 225 formed with a large radius of curvature over substantially the entire left-right direction on the first side surface A1 forming a part of the first notch 222.
  • the first lens 225 is a single lens that is gently curved along the left-right direction on the first side surface A1.
  • the number of the first lens 225 is smaller than the number of the second lens 226 described later.
  • the optical connector 20 constitutes a part of the second notch 224 and has a plurality of second lenses 226 formed on the second side surface A2 located on the side opposite to the first side surface A1 in the light propagation direction.
  • the plurality of second lenses 226 are arranged in a row in the first direction orthogonal to the light propagation direction.
  • the plurality of second lenses 226 are formed on the second side surface A2 over substantially the entire left-right direction.
  • Each second lens 226 is formed on the second side surface A2 at a position facing the first lens 225 in the light propagation direction.
  • the second lens 226 is a lens that curves with a radius of curvature sufficiently smaller than the radius of curvature of the first lens 225.
  • the number of second lenses 226 corresponds to the number of cores 121 of the optical transmission line 10.
  • FIG. 4 is a diagram schematically showing a cross section of the optical connector module 1 of FIG. 1 from the front. With reference to FIG. 4, the configuration and function of the optical connector 20 related to the optical transmission line 10 will be mainly described.
  • the first base 21 is mounted on the optical transmission line 10.
  • the contact portion 213 formed on the first base portion 21 comes into contact with the mounting surface of the optical transmission line 10.
  • the contact surface 213a formed as the tip surface of the first base portion 21 abuts on the upper surface of the first clad 122a of the optical waveguide portion 12.
  • the vertical position of the optical connector 20 with respect to the optical transmission path 10 is determined based on the contact between the contact surface 213a of the first base portion 21 and the upper surface of the first clad 122a of the optical waveguide portion 12. ..
  • the optical connector 20 may be positioned in the front-back and left-right directions with respect to the optical transmission line 10 by an appropriate method.
  • the optical connector 20 may be positioned in the front-rear and left-right directions by engaging the positioning portion 217 with the stud pin formed on the first clad 122a.
  • the first adhesive portion 214 is separated from the surface of the optical transmission path 10.
  • the adhesive surface 214a located one step inside the contact surface 213a in the first base portion 21 is separated from the upper surface of the first clad 122a of the optical waveguide portion 12.
  • a second space S2 in which the agent A for attaching the optical connector 20 to the optical transmission line 10 is interposed is formed between the first adhesive portion 214 and the surface of the optical transmission line 10.
  • the second space S2 is surrounded by the surface of the optical transmission line 10, the adhesive surface 214a, and the contact portion 213. More specifically, the second space S2 is surrounded by the upper surface of the first clad 122a, the adhesive surface 214a, and the outer wall in the left-right direction at the contact portion 213.
  • the agent A is filled from the left and right sides of the optical connector 20 into the second space S2 formed between the optical connector 20 and the optical transmission path 10. At this time, the agent A forms a fillet F in the vicinity of the corner C of the side wall 215 of the optical connector 20. Even if the amount of the agent A is excessive, the surplus amount of the agent A is stored in the escape recess 216.
  • the optical connector 20 is fixed to the optical transmission line 10 by the agent A.
  • the adhesive surface 214a of the optical connector 20 and the agent A adhere to each other.
  • the upper surface of the first clad 122a of the optical transmission line 10 and the agent A adhere to each other.
  • FIG. 5 is a cross-sectional view taken along the VV arrow line of FIG.
  • FIG. 6 is an enlarged view of the dashed line box VI of FIG.
  • FIG. 7 is an enlarged view of the broken line box VII of FIG. 6 which is further enlarged.
  • the optical connector 20 is mounted on the optical waveguide 12 from above the optical transmission line 10.
  • the optical connector 20 is arranged in a state where the first base portion 21 is in contact with the upper surface of the optical waveguide portion 12 and partially covers a part of the optical transmission path 10.
  • the second base portion 22 is arranged so as to project forward from the end portion of the substrate 11 and project downward from the first base portion 21.
  • the second base portion 22 projects downward so that its lower surface is located further below the vertical position of the optical waveguide portion 12.
  • the second base 22 faces the surface of the optical transmission line 10, that is, the end surface of the optical transmission line 10 orthogonal to the upper surface.
  • the first space S1 is formed between the optical transmission line 10 and the optical connector 20.
  • the inner surface of the second base 22 on which the first notch 222 of the optical connector 20 is formed is separated from the end surface of the substrate 11.
  • the refractive index matching agent 30 is filled from below so as to fill the first space S1.
  • the refractive index matching agent 30 is made of a material having a refractive index close to that of the core 121 of the optical transmission line 10.
  • the material of the refractive index matching agent 30 is determined to be the optimum material suitable for the refractive index of the core 121 of the optical transmission line 10.
  • the material of the refractive index matching agent 30 includes, for example, a polymer.
  • the refractive index matching agent 30 may be a so-called matching oil.
  • the refractive index of the refractive index matching agent 30 is included in the range of, for example, 1.3 or more and 1.8 or less.
  • the refractive index of the refractive index matching agent 30 varies depending on the wavelength and temperature of the propagating light.
  • the refractive index n1 of the optical connector 20 and the refractive index n2 of the refractive index matching agent 30 have a relationship as shown in the following formula 1.
  • the difference between the refractive index n1 and the refractive index n2 is included within 15% of the refractive index n2.
  • the value of the refractive index n1 is larger than the value of the refractive index n2 or is the same as the value of the refractive index n2.
  • the value of the refractive index n1 may be smaller than the value of the refractive index n2 within the range in which the difference between the refractive index n1 and the refractive index n2 is within 15% of the refractive index n2. good.
  • Equation 1 The conditions of Equation 1 are calculated from Snell's law so that the optical connector module 1 has the desired high-precision optical characteristics.
  • the "desired high-precision optical property” is, for example, the coupling efficiency of light via the refractive index matching agent 30 between the optical transmission line 10 and the optical connector 20, and is a required specification. Includes binding efficiencies higher than predetermined values based on.
  • the refractive index matching agent 30 is interposed between the end surface of the optical transmission path 10 and the first side surface A1 to adjust the refractive index on the optical path between the core 121 and the first side surface A1.
  • the refractive index matching agent 30 is interposed between the end face of the optical waveguide 12 and the first lens 225.
  • the second adhesive portion 223 of the optical connector 20 and the refractive index matching agent 30 are adhered to each other.
  • the end face of the optical transmission line 10 and the refractive index matching agent 30 adhere to each other.
  • the refractive index matching agent 30 is in close contact with the end faces of the second adhesive portion 223 and the optical transmission path 10 in a state of being filled inside the first lens 225 and the first notch portion 222.
  • the optical connector 20 is fixed to the optical transmission line 10 by the refractive index matching agent 30.
  • the optical connector 20 is optically coupled to the optical waveguide 12 included in the optical transmission line 10 in a state of being fixed to the optical transmission line 10.
  • the first side surface A1 faces the end surface of the optical transmission line 10, for example, the end surface of the core 121.
  • the first lens 225 faces the end face of the optical waveguide 12, for example, the end face of the core 121.
  • the refractive index matching agent 30 is interposed between the first lens 225 and the end face of the core 121.
  • the second lens 226 faces the first lens 225 via the second base 22 of the optical connector 20.
  • the second lens 226 is formed as a convex shape on the second side surface A2.
  • the second lens 226 is formed as a convex lens on the second side surface A2.
  • the second lens 226 is formed in an arc shape in a cross-sectional view as shown in FIG. 6 along the light propagation direction.
  • the vertical half width (radius) of the second lens 226 is larger than the radius of the core 121 of the optical transmission line 10.
  • the center P1 of the first lens 225 through which the optical axis passes and the center P2 of the entire plurality of second lenses 226 coincide with each other.
  • the vertical position of the center P1 of the first lens 225 and the vertical position of the center P2 of the second lens 226 coincide with each other.
  • the optical transmission line 10 will be described as transmitting light from a light emitting element. Not limited to this, the optical transmission path 10 may transmit light to the light receiving element. In this case, it should be understood that the following explanation applies with the light propagation direction reversed.
  • the refractive index matching agent 30 is composed of a material having a refractive index close to the refractive index of the core 121, the Frenell reflection of light incident on the interface between the refractive index matching agent 30 and the core 121 is a refractive index matching. Is suppressed by. Therefore, the light incident on the boundary surface is emitted to the inside of the refractive index matching agent 30 with high transmittance.
  • the light emitted from the core 121 is incident on the first lens 225 while spreading due to the diffraction effect inside the refractive index matching agent 30.
  • the optical connector 20 is made of a material having a refractive index close to that of the refractive index matching agent 30, the Frenell reflection of light incident on the interface between the optical connector 20 and the refractive index matching agent 30 is refracted. Suppressed by rate matching. Therefore, the light incident on the boundary surface is emitted to the inside of the optical connector 20, for example, the second base portion 22 with high transmittance.
  • the optical connector module 1 propagates, for example, the light emitted from the optical transmission line 10 to the outside in a collimated state.
  • the light emitted from the optical connector module 1 is coupled to another optical transmission line.
  • the light is coupled to an optical fiber held by a ferrule connected to the optical connector 20.
  • light is coupled to an optical waveguide to which another optical connector connected to the optical connector 20 is attached.
  • FIG. 7 shows the state of the end face of the optical transmission line 10 of FIG.
  • the end face of the optical waveguide portion 12 coincides with the end face of the substrate 11.
  • the end faces of the core 121 and the clad 122 are formed in the same plane along the end faces of the substrate 11.
  • the present invention is not limited to this, and the end face of the optical waveguide 12, for example, the end face of the core 121 may be a curved surface protruding toward the optical connector 20.
  • the end face of the core 121 may be a curved surface that protrudes toward the optical connector 20 from the end face of the clad 122.
  • FIG. 8 is an enlarged cross-sectional view taken along the arrow line VIII-VIII of FIG. 8 shows a region from the left end channel CH1 to the central channel CH2 located at the center in the left-right direction among the plurality of transmission channels included in the optical transmission line 10.
  • the first lens 225 is formed as a concave shape on the first side surface A1.
  • the first lens 225 is formed as a concave lens on the first side surface A1.
  • the first lens 225 is gently formed in an arc shape along the first direction orthogonal to the light propagation direction.
  • the radius of curvature of the first lens 225 is sufficiently larger than the radius of curvature of the second lens 226.
  • the first lens 225 is formed so as to overlap the entire plurality of second lenses 226 in the first direction orthogonal to the light propagation direction.
  • the center P1 of the first lens 225 through which the optical axis passes and the center P2 of the entire plurality of second lenses 226 coincide with each other.
  • the center P1 of the arc along the left-right direction of the first lens 225 coincides with the center P2 of the entire plurality of second lenses 226 in the left-right direction.
  • the radius of curvature of the first lens 225 is included in the range of 200 mm or more and 400 mm or less.
  • the radius of curvature of the first lens 225 may be 250 mm.
  • the radius of curvature of the second lens 226 is included in the range of 0.2 mm or more and 0.5 mm or less.
  • the interplanetary distance L shown in FIG. 8 means the optical path length between the lens surface of the first lens 225 and the lens surface of the second lens 226.
  • Such an inter-plane distance L changes depending on the position of the second lens 226 in the left-right direction.
  • the interplane distance L is included in the range of 1.0 mm or more and 2.0 mm or less.
  • the interchannel pitch P shown in FIG. 8 is the distance between the center of the first second lens 226 in the left-right direction and the center of the other second lens 226 adjacent to the first second lens 226 in the left-right direction. means.
  • Such an inter-channel pitch P is included in the range of, for example, 0.125 mm or more and 0.250 mm or less.
  • the inter-channel pitch P may be the same value for each of the plurality of second lenses 226.
  • the plurality of second lenses 226 may be formed at equal intervals in the left-right direction.
  • the plurality of transmission channels of the optical transmission line 10 are also arranged at equal intervals in the left-right direction, and the left-right position of the second lens 226 is the same as or close to the left-right position of the corresponding transmission channel.
  • the parameters of the optical connector 20 including the radius of curvature of the first lens 225, the radius of curvature of the second lens 226, the interplane distance L, the pitch P between channels, and the refractive index n1 of the optical connector 20 as described above are the parameters of the core 121. It is determined so as to obtain the desired high-precision optical characteristics in relation to the core size and the refractive index, the refractive index of the clad 122, and the refractive index n2 of the refractive index matching agent 30.
  • the parameter of the optical connector 20 is that the diffused light emitted from the core 121 of the optical transmission path 10 passes through the refractive index matching agent 30 and is incident on the first lens 225, and the optical connector 20 is used as parallel light from the second lens 226. It is determined to emit to the outside of.
  • the parameter of the optical connector 20 is that parallel light incident on the second lens 226 from the outside of the optical connector 20 passes through the first lens 225 and the refractive index matching agent 30 and is collected with respect to the core 121 of the optical transmission path 10. Determined to be illuminated.
  • the radius of curvature of the first lens 225 and the radius of curvature of the second lens 226 are determined depending on the interplane distance L.
  • FIG. 9A is a schematic diagram showing the state of light propagating in the end channel CH1 of FIG. 8 in the absence of the refractive index matching agent 30.
  • FIG. 9B is a schematic diagram showing the state of light propagating in the central channel CH2 of FIG. 8 in the absence of the refractive index matching agent 30.
  • the refractive index matching agent 30 does not exist between the optical connector 20 and the optical transmission line 10, and the light propagates in the air.
  • the propagation of light in the absence of the refractive index matching agent 30 will be mainly described.
  • the left-right end portion of the first lens 225 is schematically tilted as if it were an inclined surface. Shows. However, in reality, the left-right end of the first lens 225 constitutes a part of an arc that is gently curved in the left-right direction.
  • the beam diameter ⁇ is included in the range of, for example, 75 ⁇ m or more and 100 ⁇ m or less.
  • the light incident on the second lens 226 and passing through the inside of the optical connector 20 is the first lens 225 that approximates a plane along the first direction orthogonal to the light propagation direction. It is incident on the lens surface of.
  • the light incident on the lens surface of the first lens 225 in the central channel CH2 is refracted at an angle guided by Snell's law using the refractive index n1 of the optical connector 20 and the refractive index of air.
  • the refractive index of air is smaller than the refractive index n1 of the optical connector 20, and the lens surface of the first lens 225 is close to a plane.
  • the light that has passed through the first lens 225 converges, and a part of the light is focused on the core 121 of the optical transmission path 10.
  • the light incident on the second lens 226 and passing through the inside of the optical connector 20 is an inclined surface inclined at a predetermined angle along the first direction orthogonal to the propagation direction of the light. It is incident on the lens surface of the first lens 225, which is close to.
  • the light incident on the lens surface of the first lens 225 in the end channel CH1 is refracted at an angle guided by Snell's law using the refractive index n1 of the optical connector 20 and the refractive index of air.
  • the refractive index of air is smaller than the refractive index n1 of the optical connector 20, and the lens surface of the first lens 225 approximates an inclined surface.
  • the light that has passed through the first lens 225 converges, but only a small part of the light is coupled to the core 121 of the optical transmission line 10. Most of the light is applied to a portion of the optical transmission line 10 different from the core 121.
  • the refractive index matching agent 30 does not exist and a large refractive index difference occurs between the optical connector 20 and air, the refraction on the lens surface of the first lens 225 of the optical connector 20 The effect will be greater.
  • the first lens 225 is formed in an arc shape that is gently curved in the left-right direction, and the shape of the lens surface changes for each channel depending on the left-right position of each channel. Therefore, the coupling efficiency of the light emitted from the first lens 225 of the optical connector 20 to the optical transmission path 10 differs for each channel.
  • FIG. 10A is a schematic diagram corresponding to FIG. 9A in the presence of the refractive index matching agent 30.
  • FIG. 10B is a schematic diagram corresponding to FIG. 9B in the presence of the refractive index matching agent 30.
  • the refractive index matching agent 30 exists between the optical connector 20 and the optical transmission line 10, and the light is contained in the refractive index matching agent 30. Propagate.
  • the effectiveness of the refractive index matching agent 30 of the present disclosure for the cases of FIGS. 9A and 9B will be mainly described with reference to FIGS. 10A and 10B.
  • the beam diameter ⁇ is included in the range of, for example, 75 ⁇ m or more and 100 ⁇ m or less, as in FIGS. 9A and 9B.
  • the light incident on the second lens 226 and passing through the inside of the optical connector 20 is the first lens 225 that approximates a plane along the first direction orthogonal to the light propagation direction. It is incident on the lens surface of.
  • the refractive index n1 of the optical connector 20 and the refractive index n2 of the refractive index matching agent 30 satisfy the relationship as shown in Equation 1 and are close to each other, the light incident on the lens surface of the first lens 225 in the central channel CH2 The effect of refraction is suppressed. In the central channel CH2, the angle change due to the refraction of the light incident on the lens surface of the first lens 225 is suppressed. At this time, if the optical connector 20 is formed faithfully to each parameter of the optical connector 20 determined to satisfy the desired high-precision optical characteristics, substantially the entire light is connected to the core 121 of the optical transmission line 10. It is efficiently focused.
  • the light incident on the second lens 226 and passing through the inside of the optical connector 20 is an inclined surface inclined at a predetermined angle along the first direction orthogonal to the propagation direction of the light. It is incident on the lens surface of the first lens 225, which is close to.
  • the end channel CH1 also has the same as the central channel CH2 of the first lens 225.
  • the effect of refraction of light incident on the lens surface is suppressed.
  • the angle change due to the refraction of the light incident on the lens surface of the first lens 225 is suppressed.
  • the lens surface of the first lens 225 of the optical connector 20 The effect of refraction is reduced. Therefore, even if the first lens 225 is formed in an arc shape that is gently curved in the left-right direction and the shape of the lens surface changes for each channel depending on the left-right position of each channel, the first lens 225 The change in angle due to refraction of light when light passes through the lens surface is uniformly suppressed in the left-right direction. As a result, the coupling efficiency of the light emitted from the first lens 225 of the optical connector 20 to the optical transmission path 10 is uniformly improved in the left-right direction.
  • the coupling efficiency of the light emitted from the first lens 225 to the optical transmission path 10 due to the presence of the refractive index matching agent 30 varies from individual to individual. It improves uniformly.
  • the desired high-precision optical characteristics can be easily obtained even when the first lens 225 and the second lens 226 are provided.
  • the number of the first lens 225 is smaller than the number of the second lens 226 and is not the same as the number of the second lens 226, it is necessary to have a one-to-one correspondence between the first lens 225 and the second lens 226. No. It is not necessary to perform one-to-one and accurate optical axis alignment between the first lens and the second lens as in the prior art.
  • the degree of freedom regarding the optical design of the first lens 225 and the second lens 226 is increased.
  • the radius of curvature of the first lens 225 can be made larger than the radius of curvature of the second lens 226.
  • the desired optical design for the first lens 225 and the second lens 226 can be easily realized. As a result, the desired high-precision optical characteristics of the optical connector module 1 can be easily maintained.
  • the optical connector 20 has a first lens 225 and a second lens 226, which enables optical adjustment by a lens system combining these.
  • the optical connector 20 can improve the degree of freedom of optical adjustment by using two lenses. Thereby, the optical connector module 1 can easily provide the emitted light having a desired beam state.
  • the number of the first lenses 225 is one, it is sufficient to determine the formation positions of the plurality of second lenses 226 only for one first lens 225. This further increases the degree of freedom regarding the optical design of the first lens 225 and the second lens 226, and makes it easier to maintain the desired high-precision optical characteristics for the optical connector module 1.
  • one first lens 225 is formed in an arc shape that is gently curved in the left-right direction on the first side surface A1, the first lens 225 is not formed on the first side surface A1 and the first side surface is a perfect flat surface.
  • the molding process becomes easier as compared with the case of forming A1.
  • warpage and shrinkage of members are likely to occur in the manufacture of the optical connector 20. Therefore, it has been difficult to form the ideal plane optically required on the first side surface A1.
  • the optical connector 20 is an optical transmission line having a plurality of transmission channels arranged in a row in the same direction. Optical coupling is possible even for 10. Therefore, the optical connector module 1 can transmit a plurality of optical signals in parallel based on a plurality of transmission channels formed over the optical transmission line 10 and the optical connector 20. This improves the transmission efficiency of the optical signal using the optical connector module 1.
  • the first lens 225 is formed so as to overlap the entire plurality of second lenses 226 in the first direction orthogonal to the light propagation direction, so that the light passing through each of the plurality of second lenses 226 can be seen. Therefore, the first lens 225 can be optically actuated.
  • This enables optical adjustment by a lens system in which the first lens 225 and the second lens 226 are combined for each of the plurality of transmission channels in the optical connector module 1.
  • the optical connector module 1 makes it possible to improve the degree of freedom of optical adjustment by using two lenses for each of the plurality of transmission channels. Thereby, the optical connector module 1 can easily provide the emitted light having a desired beam state for each of the plurality of transmission channels.
  • the first lens 225 formed in an arc shape is symmetrically arranged in the vertical and horizontal directions with respect to the entire plurality of second lenses 226.
  • the first lens 225 formed on the first side surface A1 is like the second lens 226 formed on the second side surface A2. No fine structure is required. Therefore, the formation of the first lens 225 on the first side surface A1 becomes easy.
  • the optical connector 20 can forcibly spread the light emitted from the core 121 of the optical transmission path 10.
  • the concave lens is formed at the position facing the core 121 on the first side surface A1
  • the light whose spread is suppressed by the refractive index matching agent 30 can be forcibly spread at an early stage after emission.
  • the light that has passed through the second lens 226 from the outside of the optical connector 20 and is incident on the first lens 225 is condensed and can be efficiently coupled to the core 121.
  • the optical connector 20 can convert the light spread by, for example, the first lens 225 of the concave lens into collimated light.
  • the optical connector 20 can provide collimated light having a large aperture by combining a concave lens and a convex lens with the first lens 225 and the second lens 226. As a result, the optical connector 20 can provide collimated light that can be efficiently focused on a smaller spot.
  • the optical connector 20 can irradiate collimated light having good characteristics.
  • the optical connector 20 can expand the allowable range of optical coupling by collimated light having a large diameter. In other words, the optical connector 20 enables optical coupling within a predetermined allowable range even if the optical axis is slightly deviated from another optical transmission line to be optical coupled.
  • the optical connector 20 can collect the light incident on the second lens 226 as collimated light.
  • the optical connector 20 can effectively collect light by the combination of the concave lens and the convex lens by the first lens 225 and the second lens 226. As a result, the optical connector 20 can efficiently couple light to the core 121 of the optical transmission line 10.
  • the optical connector 20 is formed in an L shape by the first base portion 21 and the second base portion 22, and the first side surface A1 and the second side surface A2 are formed on the second base portion 22 facing the end surface of the optical transmission path 10.
  • the first lens 225 and the second lens 226 can be compactly arranged at the tip of the L-shape. Therefore, even if the optical connector 20 is miniaturized, the desired high-precision optical characteristics can be easily obtained.
  • the optical connector 20 is made of a resin material, warpage and shrinkage of members are likely to occur in the manufacture of the optical connector 20. Even in such a case, as described above, the desired optical design for the first lens 225 and the second lens 226 can be easily realized. As a result, the desired high-precision optical characteristics of the optical connector module 1 can be easily maintained.
  • the optical connector module 1 has a refractive index matching agent 30 interposed between the end surface of the optical transmission line 10 and the first side surface A1, so that the coupling loss between the optical transmission line 10 and the optical connector 20 can be reduced. ..
  • the refractive index matching agent 30 is interposed between the end surface of the optical waveguide 12 and the first lens 225, the optical connector module 1 is caused by a loss due to the diffraction effect and foreign matter mixed in the first space S1 from the outside. Loss due to light scattering or absorption, loss due to Fresnel reflection, and the like can be reduced.
  • the refractive index matching agent 30 having a refractive index close to the refractive index of the core 121 is arranged in the optical path, so that light due to the diffraction effect is compared with the case of being in the air. Can suppress the spread of light. As a result, the optical connector module 1 can reduce the proportion of the light emitted from the core 121 that does not combine with the first lens 225 due to the diffraction effect.
  • the refractive index matching agent 30 also plays a role of suppressing the mixing of foreign substances.
  • the first space S1 is filled with the refractive index matching agent 30, so that foreign matter can be suppressed from being mixed in from the outside.
  • the optical connector module 1 can suppress the loss due to scattering or absorption of light due to foreign matter from the outside, and can reduce the coupling loss.
  • the optical connector module 1 since the refractive index of the refractive index matching agent 30 is close to the refractive index of the core 121 and the refractive index of the optical connector 20, Frenel reflection at each boundary surface can be suppressed.
  • the optical connector module 1 can emit light from the core 121 with high transmittance and improve the coupling efficiency.
  • the optical connector module 1 can emit light from the optical connector 20 with high transmittance and improve the coupling efficiency.
  • the optical transmission line 10 and the optical connector 20 are fixed by the refractive index matching agent 30, so that the optical axis shift due to use and deterioration over time can be suppressed. Therefore, the optical connector module 1 can maintain the same optical characteristics for a long period of time in a state where the relative positions with respect to each other are determined by the initial positioning. In this way, the optical connector module 1 can improve the quality as a product.
  • the optical connector module 1 is made of a material having a refractive index close to the refractive index of the core 121 together with the refractive index matching agent 30, the optical connector 20 can suppress Frenel reflection and reduce the coupling loss.
  • the shape, arrangement, orientation, and number of each component described above are not limited to the contents shown in the above description and drawings.
  • the shape, arrangement, orientation, and number of each component may be arbitrarily configured as long as the function can be realized.
  • each parameter relating to the optical transmission line 10, the optical connector 20, and the refractive index matching agent 30 are not limited to the above-mentioned values.
  • Each parameter may include any value that gives the optical connector module 1 the desired high-precision optical properties.
  • the core size of the core 121 of the optical transmission line 10 is included in the range of, for example, 5 ⁇ m or more and 15 ⁇ m or less, but the present invention is not limited to this.
  • the core size of the core 121 may be 0.2 ⁇ m.
  • the refractive index of the core 121 of the optical transmission line 10 may be included in the range of, for example, 3.0 or more and 4.0 or less.
  • the refractive index of the refractive index matching agent 30 may be included in the range of, for example, 3.0 or more and 4.0 or less.
  • the refractive index of the optical connector 20 may be included in the range of, for example, 3.0 or more and 4.0 or less.
  • the difference between the refractive index n1 and the refractive index n2 is included within 15% of the refractive index n2, but the present invention is not limited to this.
  • the difference between the refractive index n1 and the refractive index n2 may be contained within 20% of the refractive index n2, or may be contained within 25%.
  • the number of the first lenses 225 is one, but the number is not limited to this.
  • the number of the first lens 225 may be two or more as long as it is smaller than the number of the second lens 226.
  • FIG. 11 is an enlarged cross-sectional view corresponding to FIG. 8 showing a modified example of the optical connector module 1.
  • the number of the first lenses 225 may be 6 while the total number of the 2nd lenses 226 is 12.
  • the center of the first lens 225 through which the optical axis passes and the center of the two second lenses 226 corresponding to the first lens 225. May match each other.
  • one first lens 225 is formed so as to overlap two corresponding second lenses 226 in the first direction orthogonal to the light propagation direction.
  • the plurality of second lenses 226 are arranged in a row in the first direction orthogonal to the light propagation direction, but the present invention is not limited to this.
  • a plurality of rows of the second lens 226 along the first direction orthogonal to the light propagation direction may be formed in the vertical direction.
  • the first lens 225 may be formed as one or one row with respect to the plurality of rows of the second lens 226, or a plurality of rows in the vertical direction in accordance with the plurality of rows of the second lens 226. It may be formed in.
  • the plurality of second lenses 226 are formed at equal intervals in the left-right direction, but the present invention is not limited to this.
  • the plurality of second lenses 226 may be formed at non-equal intervals in the left-right direction.
  • a plurality of transmission channels of the optical transmission line 10 may also be arranged at non-equal intervals in the left-right direction.
  • the first lens 225 is formed so as to overlap the entire plurality of second lenses 226 in the first direction orthogonal to the light propagation direction, but the present invention is not limited to this.
  • the first lens 225 may be formed so as to overlap a part of the plurality of second lenses 226 in the first direction orthogonal to the light propagation direction.
  • the center P1 of the first lens 225 and the center P2 of the entire plurality of second lenses 226 coincide with each other in the first direction orthogonal to the light propagation direction, but the present invention is not limited to this. ..
  • the center P1 of the first lens 225 and the center P2 of the entire plurality of second lenses 226 do not have to coincide with each other in the left-right direction.
  • the center P1 of the first lens 225 and the center P2 of the entire plurality of second lenses 226 coincide with each other in the light propagation direction and the second direction orthogonal to the first direction. Not limited to this.
  • the center P1 of the first lens 225 and the center P2 of the entire plurality of second lenses 226 do not have to coincide with each other in the vertical direction.
  • the radius of curvature of the first lens 225 is larger than the radius of curvature of the second lens 226, but the present invention is not limited to this.
  • the radius of curvature of the first lens 225 may be the same as the radius of curvature of the second lens 226.
  • the first lens 225 is formed as a concave lens, but the present invention is not limited to this.
  • the first lens 225 may be any type of lens such as a convex lens as long as the desired high-precision optical characteristics can be obtained.
  • the second lens 226 is formed as a convex lens, but the present invention is not limited to this.
  • the second lens 226 may be any type of lens such as a concave lens as long as the desired high-precision optical characteristics can be obtained.
  • the shapes of the first lens 225 and the second lens 226 have been described as being arcuate in cross-sectional view, but the shape is not limited thereto.
  • the shapes of the first lens 225 and the second lens 226 may be spherical or aspherical.
  • the optical waveguide portion 12 is formed on the upper surface of the substrate 11, but the present invention is not limited to this.
  • the optical waveguide 12 may be embedded inside the substrate 11.
  • the end face of the optical waveguide portion 12 may be formed so as to coincide with the end face of the substrate 11 and the end face of the core 121 to be exposed from the substrate 11.
  • the refractive index matching agent 30 satisfies only the first space S1, but the present invention is not limited to this.
  • the refractive index matching agent 30 may be filled in addition to the first space S1 so as to fill the recess 212 of the optical connector 20 that covers the optical transmission path 10.
  • the refractive index matching agent 30 is interposed between the end face of the optical waveguide portion 12 and the first lens 225, but the present invention is not limited to this.
  • the refractive index matching agent 30 may intervene between the end face of the optical transmission path 10 and the first side surface A1 except between the end face of the optical waveguide 12 and the first lens 225. .. Even in such a case, the refractive index matching agent 30 also plays a role of suppressing the mixing of foreign substances.
  • the optical connector module 1 can suppress the loss due to scattering or absorption of light due to foreign matter from the outside as described above, and can reduce the coupling loss.
  • the optical connector module 1 has an optical transmission path 10 having an optical waveguide portion 12 laminated on the substrate 11 and the substrate 11, but the present invention is not limited to this.
  • the optical connector module 1 may have only the optical connector 20 and the refractive index matching agent 30 without having the optical transmission path 10.
  • Optical connector module 10 Optical transmission path 11
  • Base 12 Optical waveguide 121 Core 122 Clad 122a First clad 122b Second clad 20
  • Optical connector 21 First base 211 Bottom surface 212 Recess 213 Contact 213a Contact surface 214 First bonding 214a Adhesive surface 215 Side wall 216 Relief recess 217 Positioning part 22 Second base part 221 Through hole 222 First notch part 223 Second adhesive part 224 Second notch part 225 First lens 226 Second lens 30
  • Refractive index matching agent A Agent A1 1st side A2 2nd side C Angle CH1 End channel CH2 Center channel F Fillet L Face-to-plane distance P Channel-to-channel pitch P1 Center P2 Center S1 First space S2 Second space n1 Refractive index n2 Refractive index ⁇ Beam diameter

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

本開示に係る光コネクタ(20)は、基体(11)及び基体(11)に積層される光導波部(12)を有する光伝送路(10)に対して取り付けられる光コネクタ(20)であって、光伝送路(10)の端面と対向する第1側面(A1)と、光の伝搬方向において第1側面(A1)と反対側に位置する第2側面(A2)と、第1側面(A1)において形成され、光導波部(12)の端面と対向する少なくとも1つの第1レンズ(225)と、第2側面(A2)において第1レンズ(225)と伝搬方向に対向する位置に形成されている複数の第2レンズ(226)と、を備え、第1レンズ(225)の数は、第2レンズ(226)の数よりも少ない。

Description

光コネクタ及び光コネクタモジュール 関連出願の相互参照
 本出願は、2020年7月29日に日本国に特許出願された特願2020-128660号の優先権を主張するものであり、この出願の開示全体をここに参照のために取り込む。
 本開示は、光コネクタ及び光コネクタモジュールに関する。
 従来、光伝送路同士を光結合するための光コネクタが知られている。例えば、特許文献1には、結合損失を低減しつつ、小型化に寄与できる光コネクタが開示されている。
特許第6401888号公報
 本開示の一実施形態に係る光コネクタは、
 基体及び前記基体に積層される光導波部を有する光伝送路に対して取り付けられる光コネクタであって、
 前記光伝送路の端面と対向する第1側面と、
 光の伝搬方向において前記第1側面と反対側に位置する第2側面と、
 前記第1側面において形成され、前記光導波部の端面と対向する少なくとも1つの第1レンズと、
 前記第2側面において前記第1レンズと前記伝搬方向に対向する位置に形成されている複数の第2レンズと、
 を備え、
 前記第1レンズの数は、前記第2レンズの数よりも少ない。
 本開示の一実施形態に係る光コネクタモジュールは、
 上記の光コネクタと、
 前記光伝送路の端面と前記第1側面との間に介在し、屈折率を調整する屈折率整合剤と、
 を備える。
一実施形態に係る光コネクタを含む光コネクタモジュールを上面視で示した外観斜視図である。 図1の光伝送路単体を拡大して上面視で示した外観斜視図である。 図1の光コネクタ単体を示した外観斜視図である。 図1の光コネクタモジュールの断面を正面から模式的に示した図である。 図1のV-V矢線に沿う断面図である。 図5の破線囲み部VIを拡大した拡大図である。 図6の破線囲み部VIIをさらに拡大した拡大図である。 図1のVIII-VIII矢線に沿う拡大断面図である。 屈折率整合剤が存在しない場合に図8の端チャネルにおいて伝搬する光の様子を示す模式図である。 屈折率整合剤が存在しない場合に図8の中心チャネルにおいて伝搬する光の様子を示す模式図である。 屈折率整合剤が存在する場合の図9Aに対応する模式図である。 屈折率整合剤が存在する場合の図9Bに対応する模式図である。 光コネクタモジュールの変形例を示す図8に対応する拡大断面図である。
 特許文献1に記載の光コネクタでは、第1レンズ部を構成する第1レンズの数、及び第2レンズ部を構成する第2レンズの数のそれぞれは、光伝送路を構成するコアの数と同一である。このように第1レンズと第2レンズとが一対一で対応する場合、光コネクタを構成する材料の特性により光コネクタの性能が影響を受ける。例えば樹脂材料によって形成されている複数のレンズを光コネクタが有する場合、製造において生じる部材の反り及び収縮などが原因となって、各レンズの成形並びに第1レンズ及び第2レンズ同士の高精度な光軸合わせが困難であった。結果的に、第1レンズ及び第2レンズ同士の光軸がずれて所望の高精度な光学特性を得ることが困難であった。
 本開示の一実施形態に係る光コネクタ及び光コネクタモジュールによれば、第1レンズ及び第2レンズを有する場合であっても所望の高精度な光学特性を容易に得ることができる。
 以下、添付図面を参照しながら本開示の一実施形態について詳細に説明する。以下の説明中の前後、左右、及び上下の方向は、図中の矢印の方向を基準とする。各矢印の方向は、図1乃至図10Bにおいて、異なる図面同士で互いに整合している。
 本明細書において、「光の伝搬方向」は、例えば前後方向を含む。「光の伝搬方向と直交する第1方向」は、例えば左右方向を含む。「光の伝搬方向及び第1方向に直交する第2方向」は、例えば上下方向を含む。これらに限定されず、光の伝搬方向と直交する第1方向が上下方向を含み、光の伝搬方向及び第1方向に直交する第2方向が左右方向を含んでもよい。
 図1は、一実施形態に係る光コネクタ20を含む光コネクタモジュール1を上面視で示した外観斜視図である。図1を参照しながら、光コネクタモジュール1の構成及び機能に関する概略を説明する。
 光コネクタモジュール1は、光伝送路10と、光伝送路10と光学的に結合する光コネクタ20と、光伝送路10と光コネクタ20との間の第1空間S1の屈折率を調整する屈折率整合剤30と、を有する。
 光コネクタ20は、複数の工程を含む実装方法に基づき光伝送路10に対して取り付けられる。実装方法は、例えば、光コネクタ20を光伝送路10に対して載置した状態で位置決めする第1工程を含む。
 実装方法は、例えば、図1の左右方向に沿った矢印で示すとおり、第1工程において位置決めされた光コネクタ20の左右両側から光コネクタ20と光伝送路10との間に剤料を塗布する第2工程を含む。第2工程は、このような剤料を用いて光コネクタ20を光伝送路10に対して固定するための工程である。本明細書において、「剤料」は、例えば、接着の機能を有する任意の充填剤を含む。例えば、剤料は、接着剤を含む。
 実装方法は、例えば、図1の上方向に沿った矢印で示すとおり、第2工程において光伝送路10に対し固定された光コネクタ20の下方から、光伝送路10と光コネクタ20との間に形成されている第1空間S1に屈折率整合剤30を流し込む第3工程を含む。屈折率整合剤30は、光コネクタ20を光伝送路10に対して固定するための接着の機能と第1空間S1における屈折率を調整する機能とを有する。第3工程は、このような屈折率整合剤30を用いて光コネクタ20を光伝送路10に対して固定するための工程である。
 光コネクタモジュール1は、例えば、光ファイバ及び光導波路などの他の光伝送路と光学的に結合する。例えば、光コネクタモジュール1は、光伝送路10に対して取り付けられている光コネクタ20が光ファイバを保持したフェルールと接続されることで、光伝送路10と光ファイバとの間の光結合を可能とする。例えば、光コネクタモジュール1は、光伝送路10に対して取り付けられている光コネクタ20が、同じく光導波路に対して取り付けられている他の光コネクタと接続されることで、光伝送路10と光導波路との間の光結合を可能とする。
 図2は、図1の光伝送路10単体を拡大して上面視で示した外観斜視図である。図2を参照しながら、光伝送路10の構成について主に説明する。一実施形態では、光伝送路10は、基体11と、基体11に積層される光導波部12と、を有する。
 光伝送路10は、例えば、リジッド式のプリント配線基板により構成されている基体11と、基体11の上面に積層される光導波部12と、を有する。光導波部12は、例えば、基体11の上面から上方に突出するように凸字状に形成されている。光導波部12は、例えば、光コネクタ20と光結合するために、端面が基体11の端面と一致するように形成されている。光導波部12の端面は、例えば、基体11の端面に沿って平面状に形成されている。光導波部12の導波モードは、シングルモード及びマルチモードのいずれであってもよい。
 光導波部12は、基体11と直交する積層方向において基体11に積層されているコア121及びクラッド122を有する。より具体的には、光導波部12は、基体11の上面に積層されている第1クラッド122aと、第1クラッド122a上に積層されているコア121と、第1クラッド122aと共にコア121を積層方向に挟み込んでコア121を囲む第2クラッド122bと、を有する。
 コア121は、左右方向に所定の間隔で互いに離間するように複数形成されている。各コア121は、前後方向に延伸する。コア121及びクラッド122は、例えば石英系のガラスなどの適宜な材料により形成されている。コア121の屈折率は、クラッド122の屈折率よりも高い。以下では、光導波部12は、例えば、埋め込み型の光導波路であるとして説明するが、これに限定されない。光導波部12は、スラブ型及び半埋め込み型などの適宜な方式の光導波路であってもよい。
 光導波部12の導波モードがシングルモードである場合、コア121のコアサイズは例えば5μm以上15μm以下の範囲に含まれる。光導波部12の導波モードがマルチモードである場合、コア121のコアサイズは例えば35μm以上62.5μm以下である。本明細書において、「コアサイズ」は、例えばモードフィールド径ではなくコア121の実際の大きさを含む。コア121の屈折率は、例えば1.6である。
 光伝送路10は、例えばフォトリソグラフィーを用いて製造される。第1クラッド122a、コア121、及び第2クラッド122bの順番で、製造方法が実施される。光伝送路10の製造方法は、光導波部12を構成する第1クラッド122aを、基体11と直交する積層方向において基体11上に積層する工程を含む。光伝送路10の製造方法は、光導波部12を構成するコア121を、第1クラッド122a上に積層する工程を含む。光伝送路10の製造方法は、光導波部12を構成する第2クラッド122bを、第1クラッド122aと共にコア121を積層方向に挟み込むように積層する工程を含む。
 図3は、図1の光コネクタ20単体を示した外観斜視図である。図3を参照しながら、図1の光コネクタ20の構成の一例について主に説明する。
 光コネクタ20は、例えば、透光性の樹脂材料によりL字状に形成されている。後述する光伝送路10の端面と対向する第1側面A1に形成された第1レンズ手段225(以下、単に第1レンズという。)及び第1側面A1と反対側に位置する第2側面A2に形成された第2レンズ手段226(以下、単に第2レンズという。)は、例えば、透光性の樹脂材料により形成されている。例えば、光コネクタ20は、光導波部12のコア121の屈折率に近似する屈折率を有する材料により形成されている。
 光コネクタ20の材料は、例えば、ポリエーテルイミド(Polyetherimide(PEI))を含む。これに限定されず、光コネクタ20の材料は、例えば、ポリカ(Polyca(PC))及びポリメチルメタクリレート(Poly Methyl Methacrylate(PMMA))などの任意の他の樹脂材料を含んでもよい。光コネクタ20の屈折率は、例えば1.4以上1.7以下の範囲に含まれる。光コネクタ20の屈折率は、伝搬する光の波長及び温度によって変化する。以上に限定されず、光コネクタ20の材料は、樹脂材料以外の他の材料を含んでもよい。このとき、後述する光コネクタ20の第1レンズ225及び第2レンズ226は、樹脂材料以外の他の材料により形成されていてもよい。
 光コネクタ20は、前後方向に延在する第1基部21を有する。光コネクタ20は、第1基部21において後述の側壁215の下面と同面をなす下面211を有する。光コネクタ20は、第1基部21の左右方向における下面211中央部から第1基部21における上方向、すなわち内側に向けて一段凹んだ凹部212を有する。
 光コネクタ20は、第1基部21における下面211から上下方向における外側に一段突出した当接部213を有する。当接部213は、凹部212に対して左右両側に位置する。当接部213は、第1基部21の下方向における最下部、すなわち第1基部21の先端に位置する当接面213aを含む。当接面213aは、第1基部21において光伝送路10側に最も突出した位置に形成されている。当接面213aは、第1基部21において下方の先端面を構成する。当接部213及び当接面213aは、第1基部21の略全体にわたって前後方向に延在する。
 光コネクタ20は、第1基部21において当接部213と異なる領域に形成されている第1接着部214を有する。第1接着部214は、第1基部21における下面211の一部を含む。第1接着部214は、当接部213よりも左右方向の外側で、凹部212に対して左右両側に位置する。第1接着部214は、第1基部21において当接面213aに対し一段上方向、すなわち一段内側に位置する接着面214aを含む。接着面214aは、第1基部21において当接面213aに対し光伝送路10と反対側に位置する。第1基部21において、接着面214aは、当接面213aよりも面積が広い。第1接着部214及び接着面214aは、第1基部21の全体にわたって前後方向に延在する。
 光コネクタ20は、第1基部21の側端部を構成する側壁215を有する。側壁215は、凹部212に対して左右両側に位置する。第1接着部214は、側壁215に形成されている。第1接着部214の接着面214aは、側壁215の下面、すなわち下面211の一部を構成する。側壁215は、後述する第2基部22に対して左右方向の両側に突出する。側壁215は、第1基部21の側端部において、第1基部21の全体にわたって前後方向に延在する。
 光コネクタ20は、第1基部21において当接部213と第1接着部214とを隔てるように形成されている逃げ凹部216を有する。逃げ凹部216は、例えば逃げ溝として溝状に形成されている。逃げ凹部216は、当接部213と第1接着部214との間に挟まれ、凹部212に対して左右両側に位置する。逃げ凹部216は、第1基部21の全体にわたって前後方向に延在する。
 光コネクタ20は、側壁215と共に当接部213を挟むように第1基部21に凹設されている位置決め部217を有する。別の観点では、位置決め部217は、当接部213の中央部に凹設されている。位置決め部217は、凹部212に対して左右両側に位置する。位置決め部217は、第1基部21の全体にわたって前後方向に延在する。位置決め部217は、後述する第2基部22の貫通孔221から連続して第1基部21の後端まで形成されている。位置決め部217は、断面視で半円状に形成されている凹部である。貫通孔221と位置決め部217とは、互いに同心円状に形成されている。
 光コネクタ20は、L字状に形成され、第1基部21の延在方向に直交する方向に第1基部21から張り出した第2基部22を有する。第2基部22は、第1基部21の前方に突出し、第1基部21と連続するように形成されている。第2基部22は、第1基部21から下方に張り出すように形成されている。第2基部22には、後述する第1側面A1及び第2側面A2が形成されている。
 光コネクタ20は、第2基部22の前面から後面まで貫通する、断面視で円形状の貫通孔221を有する。貫通孔221は、第1基部21の位置決め部217に対応させて、第1基部21の凹部212に対して左右両側に位置するように、第2基部22の左右両端に形成されている。
 光コネクタ20は、第2基部22の内面、すなわち後面を第1側面A1まで切り欠いた第1切欠部222を有する。第1切欠部222は、凹形状として形成されている。光コネクタ20は、第1切欠部222を構成する上下左右の4つの側面と、第1側面A1と、第1切欠部222の直下に位置する第2基部22の内面とにより構成される第2接着部223を有する。
 光コネクタ20は、第2基部22の外面、すなわち前面を第2側面A2まで切り欠いた第2切欠部224を有する。第2切欠部224は、凹形状として形成されている。
 光コネクタ20は、第1切欠部222の一部を構成する第1側面A1において左右方向の略全体にわたり大きな曲率半径で形成されている例えば1つの第1レンズ225を有する。例えば、第1レンズ225は、第1側面A1において左右方向に沿って緩やかに曲率する単一のレンズである。例えば、第1レンズ225は、光伝送路10のコア121の数とは異なり1つのみ形成されている。第1レンズ225の数は、後述する第2レンズ226の数よりも少ない。
 光コネクタ20は、第2切欠部224の一部を構成し、光の伝搬方向において第1側面A1と反対側に位置する第2側面A2に形成されている複数の第2レンズ226を有する。複数の第2レンズ226は、光の伝搬方向と直交する第1方向に一列に配列されている。複数の第2レンズ226は、第2側面A2において左右方向の略全体にわたり形成されている。各第2レンズ226は、第2側面A2において第1レンズ225と光の伝搬方向に対向する位置に形成されている。第2レンズ226は、第1レンズ225の曲率半径よりも十分に小さい曲率半径で曲率するレンズである。第2レンズ226の数は、光伝送路10のコア121の数に対応する。
 図4は、図1の光コネクタモジュール1の断面を正面から模式的に示した図である。図4を参照しながら、光伝送路10に関連する光コネクタ20の構成及び機能について主に説明する。
 上述した実装方法の第1工程において光コネクタ20が光伝送路10の上方から光導波部12上に載置されると、第1基部21が光伝送路10に載置される。例えば、第1基部21に形成されている当接部213が、光伝送路10の載置面に当接する。例えば、第1基部21において先端面として形成されている当接面213aが、光導波部12の第1クラッド122aの上面に当接する。
 このように、光伝送路10に対する光コネクタ20の上下方向の位置は、第1基部21の当接面213aと光導波部12の第1クラッド122aの上面との当接に基づいて決定される。
 加えて、上述した実装方法の第1工程において、光コネクタ20は、光伝送路10に対して、適宜な方法により前後左右方向に位置決めされてもよい。例えば、光コネクタ20は、第1クラッド122a上に形成されたスタッドピンに位置決め部217が係合することで前後左右方向に位置決めされてもよい。
 第1接着部214は、光伝送路10の表面と離間する。例えば、第1基部21において当接面213aに対し一段内側に位置する接着面214aが、光導波部12の第1クラッド122aの上面と離間する。このとき、第1接着部214と光伝送路10の表面との間には、光コネクタ20を光伝送路10に取り付ける剤料Aが介在する第2空間S2が形成される。第2空間S2は、光伝送路10の表面、接着面214a、及び当接部213により囲まれる。より具体的には、第2空間S2は、第1クラッド122aの上面、接着面214a、及び当接部213における左右方向の外側の壁により囲まれる。
 上述した実装方法の第2工程において、剤料Aは、光コネクタ20の左右両側から、光コネクタ20と光伝送路10との間に形成されている第2空間S2に対して充填される。このとき、剤料Aは、光コネクタ20の側壁215の角C近傍にフィレットFを形成する。仮に剤料Aの量が過剰であっても、剤料Aの余剰分は、逃げ凹部216に収容される。
 以上により、剤料Aを塗布する第2工程において、光コネクタ20が、剤料Aにより光伝送路10に対して固定される。このとき、光コネクタ20の接着面214aと剤料Aとが接着する。同様に、光伝送路10の第1クラッド122aの上面と剤料Aとが接着する。
 図5は、図1のV-V矢線に沿う断面図である。図6は、図5の破線囲み部VIを拡大した拡大図である。図7は、図6の破線囲み部VIIをさらに拡大した拡大図である。図5乃至図7を参照しながら、屈折率整合剤30に関する構成及び機能、並びに光コネクタ20の光学的な機能について主に説明する。
 図1に示すとおり、光コネクタ20は、光伝送路10の上方から光導波部12上に載置されている。光コネクタ20は、第1基部21が光導波部12の上面と当接して、光伝送路10の一部を覆った状態で配置されている。第2基部22は、基体11の端部から前方に突出し、第1基部21から下方に張り出すように配置されている。第2基部22は、その下面が光導波部12の上下位置よりもさらに下方に位置するように下方に向けて突出する。第2基部22は、光伝送路10の表面、すなわち上面に直交する光伝送路10の端面と対向する。
 このとき、図5に示すとおり、光伝送路10と光コネクタ20との間には、第1空間S1が形成されている。光コネクタ20の第1切欠部222が形成されている第2基部22の内面は、基体11の端面と離間する。
 上述した実装方法の第3工程において、屈折率整合剤30は、第1空間S1を満たすように下方から充填される。屈折率整合剤30は、光伝送路10のコア121の屈折率に近似する屈折率を有する材料により構成される。屈折率整合剤30の材料は、光伝送路10のコア121の屈折率に適合する最適な材料に決定される。
 屈折率整合剤30の材料は、例えばポリマーを含む。屈折率整合剤30は、いわゆるマッチングオイルであってもよい。屈折率整合剤30の屈折率は、例えば1.3以上1.8以下の範囲に含まれる。屈折率整合剤30の屈折率は、伝搬する光の波長及び温度によって変化する。
 例えば、光コネクタ20の屈折率n1と屈折率整合剤30の屈折率n2とは、以下の式1のような関係を有する。屈折率n1と屈折率n2との間の差分が屈折率n2の15%以内に含まれる。このとき、屈折率n1の値は、屈折率n2の値よりも大きいか、又は屈折率n2の値と同一である。
 [数1]
 1≦n1/n2≦1.15  (式1)
 これに限定されず、屈折率n1の値は、屈折率n1と屈折率n2との間の差分が屈折率n2の15%以内に含まれる範囲内で、屈折率n2の値よりも小さくてもよい。
 式1の条件は、光コネクタモジュール1が所望の高精度な光学特性を有するようにスネルの法則から算出したものである。本明細書において、「所望の高精度な光学特性」は、例えば、光伝送路10と光コネクタ20との間の屈折率整合剤30を介した光の結合効率であって、要求される仕様に基づく所定値よりも高い結合効率を含む。
 屈折率整合剤30は、光伝送路10の端面と第1側面A1との間に介在して、コア121と第1側面A1との間の光路上の屈折率を調整する。例えば、屈折率整合剤30は、光導波部12の端面と第1レンズ225との間に介在する。このとき、光コネクタ20の第2接着部223と屈折率整合剤30とが接着する。同様に、光伝送路10の端面と屈折率整合剤30とが接着する。屈折率整合剤30は、第1レンズ225及び第1切欠部222の内部に充填された状態で、第2接着部223及び光伝送路10の端面と密着する。以上により、光コネクタ20は、屈折率整合剤30により光伝送路10に対して固定される。
 光コネクタ20は、光伝送路10に対して固定された状態で、光伝送路10に含まれる光導波部12と光学的に結合する。図6に示すとおり、第1側面A1は、光伝送路10の端面、例えばコア121の端面と対向する。同様に、第1レンズ225は、光導波部12の端面、例えばコア121の端面と対向する。屈折率整合剤30は、第1レンズ225とコア121の端面との間に介在する。
 図6に示すとおり、第2レンズ226は、光コネクタ20の第2基部22を介して第1レンズ225と対向する。一例として、第2レンズ226は、第2側面A2において凸形状として形成されている。第2レンズ226は、第2側面A2において凸レンズとして形成されている。第2レンズ226は、光の伝搬方向に沿った図6のような断面視において、円弧状に形成されている。第2レンズ226の上下方向の半幅(半径)は、光伝送路10のコア121の半径よりも大きい。
 光の伝搬方向及び第1方向に直交する第2方向において、光軸が通る第1レンズ225の中心P1と、複数の第2レンズ226全体の中心P2と、が互いに一致する。第1レンズ225の中心P1の上下位置と第2レンズ226の中心P2の上下位置とが互いに一致する。
 図6を用いて、一例として、光伝送路10の端面から光が出射する場合の光の伝搬の様子について説明する。光伝送路10は、発光素子からの光を伝送するとして説明する。これに限定されず、光伝送路10は、受光素子へと光を伝送してもよい。この場合、光の伝搬方向を真逆にした状態で以下の説明が当てはまると理解されたい。
 屈折率整合剤30がコア121の屈折率に近似する屈折率を有する材料により構成される場合、屈折率整合剤30とコア121との境界面に入射した光のフレネル反射は、屈折率の整合により抑制される。したがって、当該境界面に入射した光は、高い透過率で屈折率整合剤30の内部へと出射する。
 コア121から出射した光は、屈折率整合剤30の内部で回折効果によって拡がりながら第1レンズ225へと入射する。光コネクタ20が屈折率整合剤30の屈折率に近似する屈折率を有する材料により形成されている場合、光コネクタ20と屈折率整合剤30との境界面に入射した光のフレネル反射は、屈折率の整合により抑制される。したがって、当該境界面に入射した光は、高い透過率で光コネクタ20、例えば第2基部22の内部へと出射する。
 後述するとおり第1レンズ225が凹レンズとして形成されている場合、第2基部22の内部へと出射した光は、さらに拡がりながら第2レンズ226へと入射する。第2レンズ226が凸レンズとして形成されている場合、外部と光コネクタ20との境界面に入射した光は、例えば、第2レンズ226によりコリメートされる。このように、光コネクタモジュール1は、例えば、光伝送路10から出射した光をコリメートした状態で外部へと伝搬させる。
 光コネクタモジュール1から出射した光は、他の光伝送路に結合する。例えば、光は、光コネクタ20に接続されているフェルールが保持する光ファイバに結合する。例えば、光は、光コネクタ20に接続されている他の光コネクタが取り付けられている光導波路に結合する。
 図7は、図1の光伝送路10の端面の様子を示す。図7に示すとおり、光導波部12の端面は、基体11の端面と一致する。コア121及びクラッド122の端面が、基体11の端面に沿って、同一平面上に形成されている。しかしながら、これに限定されず、光導波部12の端面、例えばコア121の端面は、光コネクタ20側に突出する曲面であってもよい。例えば、コア121の端面は、クラッド122の端面よりも光コネクタ20側に突出する曲面であってもよい。
 図8は、図1のVIII-VIII矢線に沿う拡大断面図である。図8では、光伝送路10に含まれる複数の伝送チャネルのうち、左の端チャネルCH1から左右方向の中心部に位置する中心チャネルCH2までの領域が示されている。
 一例として、第1レンズ225は、第1側面A1において凹形状として形成されている。第1レンズ225は、第1側面A1において凹レンズとして形成されている。第1レンズ225は、光の伝搬方向と直交する第1方向に沿って円弧状に緩やかに形成されている。第1レンズ225の曲率半径は、第2レンズ226の曲率半径よりも十分に大きい。
 第1レンズ225は、光の伝搬方向と直交する第1方向において複数の第2レンズ226の全体と重なるように形成されている。光の伝搬方向と直交する第1方向において、光軸が通る第1レンズ225の中心P1と、複数の第2レンズ226全体の中心P2と、が互いに一致する。第1レンズ225の左右方向に沿った円弧の中心P1が複数の第2レンズ226全体の左右方向の中心P2と一致する。
 例えば、第1レンズ225の曲率半径は、200mm以上400mm以下の範囲に含まれる。例えば、第1レンズ225の曲率半径は、250mmであってもよい。例えば、第2レンズ226の曲率半径は、0.2mm以上0.5mm以下の範囲に含まれる。
 例えば、図8に示す面間距離Lは、第1レンズ225のレンズ面と第2レンズ226のレンズ面との間の光路長を意味する。このような面間距離Lは、第2レンズ226の左右方向の位置に依存して変化する。例えば、面間距離Lは、1.0mm以上2.0mm以下の範囲に含まれる。
 例えば、図8に示すチャネル間ピッチPは、一の第2レンズ226の左右方向の中心と一の第2レンズ226に隣接する他の第2レンズ226の左右方向の中心との間の距離を意味する。このようなチャネル間ピッチPは、例えば、0.125mm以上0.250mm以下の範囲に含まれる。チャネル間ピッチPは、複数の第2レンズ226のそれぞれに対して同一の値であってもよい。複数の第2レンズ226は、左右方向に等間隔に形成されていてもよい。このとき、光伝送路10の複数の伝送チャネルも左右方向に等間隔に配置されており、第2レンズ226の左右位置は、対応する伝送チャネルの左右位置と同一か又は近似する。
 以上のような第1レンズ225の曲率半径、第2レンズ226の曲率半径、面間距離L、チャネル間ピッチP、及び光コネクタ20の屈折率n1を含む光コネクタ20のパラメータは、コア121のコアサイズ及び屈折率、クラッド122の屈折率、並びに屈折率整合剤30の屈折率n2とも関連しながら所望の高精度な光学特性が得られるように決定される。
 例えば、光コネクタ20のパラメータは、光伝送路10のコア121から出射した拡散光が屈折率整合剤30を通過して第1レンズ225に入射し、第2レンズ226から平行光として光コネクタ20の外部に出射するように決定される。例えば、光コネクタ20のパラメータは、光コネクタ20の外部から第2レンズ226に入射した平行光が第1レンズ225及び屈折率整合剤30を通過して光伝送路10のコア121に対して集光されるように決定される。
 例えば、第1レンズ225の曲率半径及び第2レンズ226の曲率半径は、面間距離Lに依存して決定される。
 図9Aは、屈折率整合剤30が存在しない場合に図8の端チャネルCH1において伝搬する光の様子を示す模式図である。図9Bは、屈折率整合剤30が存在しない場合に図8の中心チャネルCH2において伝搬する光の様子を示す模式図である。
 図9A及び図9Bに示すケースでは、本開示と異なり光コネクタ20と光伝送路10との間に屈折率整合剤30が存在せず、光は空気中を伝搬する。図10A及び図10Bを用いて屈折率整合剤30の光学的機能を後述する前に、その比較として屈折率整合剤30が存在しない場合の光の伝搬について主に説明する。
 図9Aでは、端チャネルCH1における第1レンズ225の円弧形状を強調して説明をより簡便にするために、第1レンズ225の左右方向の端部を傾斜面のように大きく傾けて模式的に示している。しかしながら、実際は、第1レンズ225の左右方向の端部は、左右方向に緩やかに曲率する円弧の一部を構成する。
 図9A及び図9Bに示すとおり、各チャネルに対応する第2レンズ226に対してビーム直径φの光が光コネクタ20の外部から入射する。ビーム直径φは、例えば75μm以上100μm以下の範囲に含まれる。
 このとき、例えば、中心チャネルCH2では、第2レンズ226に入射し、光コネクタ20の内部を通過した光は、光の伝搬方向と直交する第1方向に沿った平面に近似する第1レンズ225のレンズ面に入射する。
 中心チャネルCH2において第1レンズ225のレンズ面に入射した光は、光コネクタ20の屈折率n1と空気の屈折率とを用いてスネルの法則により導かれる角度で屈折する。例えば、空気の屈折率が光コネクタ20の屈折率n1よりも小さく、かつ第1レンズ225のレンズ面が平面に近似する。このとき、第1レンズ225を通過した光は収束し、光の一部が光伝送路10のコア121に集光される。
 同様に、例えば、端チャネルCH1では、第2レンズ226に入射し、光コネクタ20の内部を通過した光は、光の伝搬方向と直交する第1方向に沿って所定の角度で傾斜する傾斜面に近似する第1レンズ225のレンズ面に入射する。
 端チャネルCH1において第1レンズ225のレンズ面に入射した光は、光コネクタ20の屈折率n1と空気の屈折率とを用いてスネルの法則により導かれる角度で屈折する。例えば、空気の屈折率が光コネクタ20の屈折率n1よりも小さく、かつ第1レンズ225のレンズ面が傾斜面に近似する。このとき、第1レンズ225を通過した光は収束するが、光のごく一部のみが光伝送路10のコア121に結合する。光の大部分は、光伝送路10においてコア121とは異なる部分に照射される。
 図9A及び図9Bに示すとおり、屈折率整合剤30が存在せず、光コネクタ20と空気との間で大きな屈折率差が生じる場合、光コネクタ20の第1レンズ225のレンズ面における屈折の効果が大きくなる。加えて、第1レンズ225が左右方向に緩やかに曲率する円弧状に形成されており、そのレンズ面の形状は、各チャネルの左右位置に依存してチャネルごとに変化する。したがって、光コネクタ20の第1レンズ225から出射した光の光伝送路10に対する結合効率は、チャネルごとに異なる。
 本開示における屈折率整合剤30は、以上のようなチャネル間における光の結合効率のばらつきを抑制する。図10Aは、屈折率整合剤30が存在する場合の図9Aに対応する模式図である。図10Bは、屈折率整合剤30が存在する場合の図9Bに対応する模式図である。
 図10A及び図10Bに示すケースでは、図9A及び図9Bに示すケースと異なり光コネクタ20と光伝送路10との間に屈折率整合剤30が存在し、光は屈折率整合剤30の中を伝搬する。図10A及び図10Bを用いて、図9A及び図9Bのケースに対する本開示の屈折率整合剤30の有効性について主に説明する。
 図10A及び図10Bに示すとおり、各チャネルに対応する第2レンズ226に対してビーム直径φの光が光コネクタ20の外部から入射する。ビーム直径φは、図9A及び図9Bと同様に例えば75μm以上100μm以下の範囲に含まれる。
 このとき、例えば、中心チャネルCH2では、第2レンズ226に入射し、光コネクタ20の内部を通過した光は、光の伝搬方向と直交する第1方向に沿った平面に近似する第1レンズ225のレンズ面に入射する。
 光コネクタ20の屈折率n1と屈折率整合剤30の屈折率n2とが式1のような関係を満たし、互いに近似することから、中心チャネルCH2において第1レンズ225のレンズ面に入射した光の屈折の効果は抑制される。中心チャネルCH2において第1レンズ225のレンズ面に入射した光の屈折による角度変化が抑制される。このとき、所望の高精度な光学特性が満たされるように決定された光コネクタ20の各パラメータに忠実に光コネクタ20が形成されていれば、光の略全体が光伝送路10のコア121に効率的に集光される。
 同様に、例えば、端チャネルCH1では、第2レンズ226に入射し、光コネクタ20の内部を通過した光は、光の伝搬方向と直交する第1方向に沿って所定の角度で傾斜する傾斜面に近似する第1レンズ225のレンズ面に入射する。
 光コネクタ20の屈折率n1と屈折率整合剤30の屈折率n2とが式1のような関係を満たし、互いに近似することから、端チャネルCH1においても中心チャネルCH2と同様に第1レンズ225のレンズ面に入射した光の屈折の効果は抑制される。端チャネルCH1において第1レンズ225のレンズ面に入射した光の屈折による角度変化が抑制される。このとき、所望の高精度な光学特性が満たされるように決定された光コネクタ20の各パラメータに忠実に光コネクタ20が形成されていれば、光の略全体が光伝送路10のコア121に効率的に集光される。
 図10A及び図10Bに示すとおり、屈折率整合剤30が存在し、光コネクタ20と屈折率整合剤30との間で屈折率差が小さい場合、光コネクタ20の第1レンズ225のレンズ面における屈折の効果が小さくなる。したがって、第1レンズ225が左右方向に緩やかに曲率する円弧状に形成されており、そのレンズ面の形状が各チャネルの左右位置に依存してチャネルごとに変化したとしても、第1レンズ225のレンズ面を光が通過するときの光の屈折による角度変化が左右方向にわたって一様に抑制される。結果として、光コネクタ20の第1レンズ225から出射した光の光伝送路10に対する結合効率が、左右方向にわたって一様に向上する。
 例えば、第1レンズ225の形状が光コネクタ20ごとに製造上ばらついたとしても、屈折率整合剤30の存在によって第1レンズ225から出射した光の光伝送路10に対する結合効率が、個体ごとに一様に向上する。
 以上のような一実施形態に係る光コネクタ20によれば、第1レンズ225及び第2レンズ226を有する場合であっても所望の高精度な光学特性を容易に得ることができる。例えば、第1レンズ225の数が第2レンズ226の数よりも少なく、第2レンズ226の数と同一ではないことで、第1レンズ225と第2レンズ226とを一対一で対応させる必要がない。従来技術のように第1レンズ及び第2レンズ同士の光軸合わせを一対一で精度良く行う必要がない。
 したがって、第1レンズ225及び第2レンズ226の光学設計に関する自由度が増大する。例えば、第1レンズ225の曲率半径を第2レンズ226の曲率半径よりも大きくすることも可能である。仮に光コネクタ20を構成する材料の特性により熱歪などに起因して製造において光コネクタ20の部材の反り及び収縮などが生じ、第1レンズ225に対して第2レンズ226の光学的な設計値が多少ずれたとしても、第1レンズ225及び第2レンズ226に関する所望の光学設計を容易に実現可能である。これにより、光コネクタモジュール1について所望の高精度な光学特性が容易に維持される。
 光コネクタ20は、第1レンズ225及び第2レンズ226を有することで、これらを組み合わせたレンズ系により光学調整を可能とする。光コネクタ20は、2つのレンズによって光学調整の自由度を向上可能である。これにより、光コネクタモジュール1は、所望のビーム状態を有する出射光を容易に提供できる。
 第1レンズ225の数が1つであることで、1つの第1レンズ225に対してのみ複数の第2レンズ226の形成位置を決定すればよい。これにより、第1レンズ225及び第2レンズ226の光学設計に関する自由度がさらに増大し、光コネクタモジュール1について所望の高精度な光学特性がより容易に維持される。
 加えて、第1側面A1において第1レンズ225が複数形成されるような場合と比較して、微細な成形加工が不要となり、第1側面A1における第1レンズ225の成形加工が容易となる。
 1つの第1レンズ225が、第1側面A1において左右方向に緩やかに曲率する円弧状に形成されることで、第1側面A1において第1レンズ225を形成せず、完全な平面として第1側面A1を形成する場合と比較しても、成形加工が容易になる。例えば、光コネクタ20のように樹脂材料に基づいて成形加工が行われる場合、光コネクタ20の製造において部材の反り及び収縮などが生じやすい。したがって、光学的に要求される理想的な平面を第1側面A1において形成することは困難であった。本開示では、このような部材の反り及び収縮などを逆に利用して、第1側面A1において左右方向に緩やかに曲率する円弧状の1つの第1レンズ225が容易に形成可能である。
 複数の第2レンズ226が光の伝搬方向と直交する第1方向に一列に配列されていることで、光コネクタ20は、同一方向に一列に配列されている複数の伝送チャネルを有する光伝送路10に対しても光結合可能となる。したがって、光コネクタモジュール1は、光伝送路10及び光コネクタ20にわたって形成されている複数の伝送チャネルに基づいて、複数の光信号を並列的に伝送することが可能となる。これにより、光コネクタモジュール1を用いた光信号の伝送効率が向上する。
 第1レンズ225が、光の伝搬方向と直交する第1方向において複数の第2レンズ226の全体と重なるように形成されていることで、複数の第2レンズ226のそれぞれを通過する光に対して、第1レンズ225を光学的に作用させることが可能となる。これにより、光コネクタモジュール1における複数の伝送チャネルのそれぞれに対して、第1レンズ225及び第2レンズ226を組み合わせたレンズ系による光学調整が可能となる。光コネクタモジュール1は、複数の伝送チャネルのそれぞれに対して、2つのレンズにより光学調整の自由度を向上可能にする。これにより、光コネクタモジュール1は、複数の伝送チャネルのそれぞれに対して、所望のビーム状態を有する出射光を容易に提供できる。
 光の伝搬方向と直交する第1方向並びに光の伝搬方向及び第1方向に直交する第2方向において、光軸が通る第1レンズ225の中心P1と、複数の第2レンズ226全体の中心P2と、が互いに一致することで、円弧状に形成されている第1レンズ225が複数の第2レンズ226全体に対して上下左右方向に対称的に配置される。これにより、光コネクタモジュール1の左右方向の中心に対して左側及び右側のそれぞれに位置する複数の伝送チャネルにおいて互いに同一の光学特性が得られる。これにより、光コネクタモジュール1における複数の伝送チャネルの全体にわたって光学特性の一様性が向上する。
 第1レンズ225の曲率半径が第2レンズ226の曲率半径よりも大きいことで、第1側面A1に形成される第1レンズ225については、第2側面A2に形成される第2レンズ226のような微細な構造が必要とされない。したがって、第1側面A1における第1レンズ225の形成が容易となる。
 第1レンズ225が凹レンズとして形成されていることで、光コネクタ20は、光伝送路10のコア121から出射した光を強制的に拡げることができる。例えば、第1側面A1においてコア121と対向する位置に凹レンズが形成されていることで、屈折率整合剤30によって拡がりが抑制された光を出射後の早い段階で強制的に拡げることができる。逆に、光コネクタ20の外部から第2レンズ226を通過して第1レンズ225に入射した光は、集光されてコア121に効率良く結合可能である。
 第2レンズ226が凸レンズとして形成されていることで、光コネクタ20は、例えば凹レンズの第1レンズ225によって拡げられた光をコリメート光に変換できる。光コネクタ20は、第1レンズ225及び第2レンズ226による凹レンズ及び凸レンズの組み合わせによって、大口径のコリメート光を提供できる。これにより、光コネクタ20は、より小さなスポットに効率良く集光可能なコリメート光を提供できる。光コネクタ20は、特性の良いコリメート光を照射できる。
 光コネクタ20は、大口径のコリメート光によって光結合の許容範囲を広げることができる。換言すると、光コネクタ20は、光結合の対象となる他の光伝送路との間で光軸が多少ずれていたとしても、所定の許容範囲において光結合を可能とする。
 第2レンズ226が凸レンズとして形成されていることで、光コネクタ20は、コリメート光として第2レンズ226に入射した光を集光することができる。光コネクタ20は、第1レンズ225及び第2レンズ226による凹レンズ及び凸レンズの組み合わせによって、光を効果的に集光することができる。これにより、光コネクタ20は、光伝送路10のコア121に光を効率良く結合させることができる。
 光コネクタ20が第1基部21及び第2基部22によってL字状に形成され、第1側面A1及び第2側面A2が光伝送路10の端面と対向する第2基部22に形成されていることで、第1レンズ225及び第2レンズ226は、L字の先端においてコンパクトに配置可能である。したがって、光コネクタ20が小型化された状態であっても、所望の高精度な光学特性が容易に得られる。
 光コネクタ20が樹脂材料によって形成されていることで、光コネクタ20の製造において部材の反り及び収縮などが生じやすい。このような場合であっても、上述したとおり、第1レンズ225及び第2レンズ226に関する所望の光学設計を容易に実現可能である。これにより、光コネクタモジュール1について所望の高精度な光学特性が容易に維持される。
 光コネクタモジュール1は、光伝送路10の端面と第1側面A1との間に介在する屈折率整合剤30を有することで、光伝送路10と光コネクタ20との間の結合損失を低減できる。例えば、屈折率整合剤30が光導波部12の端面と第1レンズ225との間に介在することで、光コネクタモジュール1は、回折効果による損失、外部から第1空間S1に混入する異物による光の散乱又は吸収に伴う損失、及びフレネル反射による損失などを低減できる。
 具体的には、光コネクタモジュール1は、コア121の屈折率に近似する屈折率を有する屈折率整合剤30が光路中に配置されることで、空気中の場合と比較して回折効果による光の拡がりを抑制できる。これにより、光コネクタモジュール1は、コア121から出射した光のうち、回折効果によって第1レンズ225と結合しない光の割合を低減できる。
 屈折率整合剤30は、異物の混入を抑制する役割も果たす。光コネクタモジュール1は、第1空間S1が屈折率整合剤30によって充填されることで、外部からの異物の混入を抑制できる。これにより、光コネクタモジュール1は、外部からの異物による光の散乱又は吸収に伴う損失を抑制して、結合損失を低減できる。
 光コネクタモジュール1は、屈折率整合剤30の屈折率がコア121の屈折率及び光コネクタ20の屈折率のそれぞれに近似するので、各境界面におけるフレネル反射を抑制できる。光コネクタモジュール1は、高い透過率で光をコア121から出射させ、結合効率を向上できる。光コネクタモジュール1は、高い透過率で光を光コネクタ20から出射させ、結合効率を向上できる。
 光コネクタモジュール1は、屈折率整合剤30により光伝送路10と光コネクタ20とが固定されることで、使用及び経年劣化などによる光軸ずれを抑制できる。したがって、光コネクタモジュール1は、最初の位置決めにより互いの相対位置が定められた状態で、長期にわたって同一の光学特性を維持できる。このように、光コネクタモジュール1は、製品としての品質を向上できる。
 光コネクタモジュール1は、屈折率整合剤30と共に光コネクタ20もコア121の屈折率に近似する屈折率を有する材料によって形成されていることで、フレネル反射を抑制して、結合損失を低減できる。
 本開示は、その精神又はその本質的な特徴から離れることなく、上述した実施形態以外の他の所定の形態で実現できることは当業者にとって明白である。したがって、先の記述は例示的であり、これに限定されない。開示の範囲は、先の記述によってではなく、付加した請求項によって定義される。あらゆる変更のうちその均等の範囲内にあるいくつかの変更は、その中に包含されるとする。
 例えば、上述した各構成部の形状、配置、向き、及び個数は、上記の説明及び図面における図示の内容に限定されない。各構成部の形状、配置、向き、及び個数は、その機能を実現できるのであれば、任意に構成されてもよい。
 例えば、光伝送路10、光コネクタ20、及び屈折率整合剤30に関する各パラメータの数値は、上述した値に限定されない。各パラメータは、光コネクタモジュール1において所望の高精度な光学特性が得られる任意の値を含んでもよい。
 上記実施形態では、光伝送路10のコア121のコアサイズは例えば5μm以上15μm以下の範囲に含まれると説明したが、これに限定されない。例えば、コア121のコアサイズは0.2μmであってもよい。例えば、光伝送路10のコア121の屈折率は、例えば3.0以上4.0以下の範囲に含まれてもよい。同様に、屈折率整合剤30の屈折率も、例えば3.0以上4.0以下の範囲に含まれてもよい。同様に、光コネクタ20の屈折率も、例えば3.0以上4.0以下の範囲に含まれてもよい。
 上記実施形態では、屈折率n1と屈折率n2との間の差分が屈折率n2の15%以内に含まれると説明したが、これに限定されない。例えば、屈折率n1と屈折率n2との間の差分が屈折率n2の20%以内に含まれてもよいし、25%以内に含まれてもよい。
 上記実施形態では、第1レンズ225の数が1つであると説明したが、これに限定されない。第1レンズ225の数は、第2レンズ226の数よりも少なければ、2つ以上であってもよい。
 図11は、光コネクタモジュール1の変形例を示す図8に対応する拡大断面図である。例えば、図11に示すとおり、第1レンズ225の数は、第2レンズ226の全体の数が12個であるのに対して、6個であってもよい。このとき、例えば、光の伝搬方向と直交する第1方向において、光軸が通る一の第1レンズ225の中心と、一の第1レンズ225に対応する2つの第2レンズ226の中心と、が互いに一致してもよい。加えて、一の第1レンズ225は、光の伝搬方向と直交する第1方向において対応する2つの第2レンズ226と重なるように形成されている。
 上記実施形態では、複数の第2レンズ226が光の伝搬方向と直交する第1方向に一列に配列されていると説明したが、これに限定されない。光の伝搬方向と直交する第1方向に沿った第2レンズ226の列が上下方向に複数形成されていてもよい。このとき、第1レンズ225は、第2レンズ226の複数の列に対して1つ又は一列に形成されていてもよいし、第2レンズ226の複数の列に合わせて上下方向の複数の列に形成されていてもよい。
 上記実施形態では、複数の第2レンズ226は、左右方向に等間隔に形成されていると説明したが、これに限定されない。複数の第2レンズ226は、左右方向に非等間隔に形成されていてもよい。このとき、光伝送路10の複数の伝送チャネルも左右方向に非等間隔に配置されていてもよい。
 上記実施形態では、第1レンズ225は、光の伝搬方向と直交する第1方向において複数の第2レンズ226の全体と重なるように形成されていると説明したが、これに限定されない。例えば、第1レンズ225は、光の伝搬方向と直交する第1方向において複数の第2レンズ226の一部と重なるように形成されていてもよい。
 上記実施形態では、光の伝搬方向と直交する第1方向において、第1レンズ225の中心P1と、複数の第2レンズ226全体の中心P2と、が互いに一致すると説明したが、これに限定されない。例えば、第1レンズ225の中心P1と、複数の第2レンズ226全体の中心P2と、は左右方向に互いに一致していなくてもよい。
 上記実施形態では、光の伝搬方向及び第1方向に直交する第2方向において、第1レンズ225の中心P1と、複数の第2レンズ226全体の中心P2と、が互いに一致すると説明したが、これに限定されない。例えば、第1レンズ225の中心P1と、複数の第2レンズ226全体の中心P2と、は上下方向に互いに一致していなくてもよい。
 上記実施形態では、第1レンズ225の曲率半径は、第2レンズ226の曲率半径よりも大きいと説明したが、これに限定されない。例えば、第1レンズ225の曲率半径は、第2レンズ226の曲率半径と同一であってもよい。
 上記実施形態では、第1レンズ225は、凹レンズとして形成されていると説明したがこれに限定されない。所望の高精度な光学特性が得られるのであれば、第1レンズ225は、凸レンズなどの任意のタイプのレンズであってもよい。
 上記実施形態では、第2レンズ226は、凸レンズとして形成されていると説明したがこれに限定されない。所望の高精度な光学特性が得られるのであれば、第2レンズ226は、凹レンズなどの任意のタイプのレンズであってもよい。
 上記実施形態では、第1レンズ225及び第2レンズ226の形状は、断面視において円弧状であると説明したが、これに限定されない。第1レンズ225及び第2レンズ226の形状は、球面であってもよいし、非球面であってもよい。
 上記実施形態では、光導波部12は、基体11の上面に形成されていると説明したが、これに限定されない。例えば、光導波部12は、基体11の内部に埋め込まれていてもよい。この場合、光導波部12の端面は、基体11の端面と一致し、コア121の端面が基体11から露出するように形成されていてもよい。
 上記実施形態では、屈折率整合剤30は、第1空間S1のみを満たすと説明したが、これに限定されない。例えば、屈折率整合剤30は、第1空間S1に加えて、光伝送路10を覆う光コネクタ20の凹部212を満たすように充填されてもよい。
 上記実施形態では、屈折率整合剤30は、光導波部12の端面と第1レンズ225との間に介在すると説明したが、これに限定されない。屈折率整合剤30は、光伝送路10の端面と第1側面A1との間において、光導波部12の端面と第1レンズ225との間を除く他の任意の部分に介在してもよい。このような場合であっても、屈折率整合剤30は、異物の混入を抑制する役割も果たす。これにより、光コネクタモジュール1は、上述したとおり外部からの異物による光の散乱又は吸収に伴う損失を抑制して、結合損失を低減できる。
 上記実施形態では、光コネクタモジュール1は、基体11及び基体11に積層される光導波部12を有する光伝送路10を有すると説明したが、これに限定されない。光コネクタモジュール1は、光伝送路10を有さずに、光コネクタ20及び屈折率整合剤30のみを有してもよい。
1    光コネクタモジュール
10   光伝送路
11   基体
12   光導波部
121  コア
122  クラッド
122a 第1クラッド
122b 第2クラッド
20   光コネクタ
21   第1基部
211  下面
212  凹部
213  当接部
213a 当接面
214  第1接着部
214a 接着面
215  側壁
216  逃げ凹部
217  位置決め部
22   第2基部
221  貫通孔
222  第1切欠部
223  第2接着部
224  第2切欠部
225  第1レンズ
226  第2レンズ
30   屈折率整合剤
A    剤料
A1   第1側面
A2   第2側面
C    角
CH1  端チャネル
CH2  中心チャネル
F    フィレット
L    面間距離
P    チャネル間ピッチ
P1   中心
P2   中心
S1   第1空間
S2   第2空間
n1   屈折率
n2   屈折率
φ    ビーム直径

Claims (12)

  1.  基体及び前記基体に積層される光導波部を有する光伝送路に対して取り付けられる光コネクタであって、
     前記光伝送路の端面と対向する第1側面と、
     光の伝搬方向において前記第1側面と反対側に位置する第2側面と、
     前記第1側面において形成され、前記光導波部の端面と対向する少なくとも1つの第1レンズと、
     前記第2側面において前記第1レンズと前記伝搬方向に対向する位置に形成されている複数の第2レンズと、
     を備え、
     前記第1レンズの数は、前記第2レンズの数よりも少ない、
     光コネクタ。
  2.  前記第1レンズの数は、1つである、
     請求項1に記載の光コネクタ。
  3.  複数の前記第2レンズは、前記伝搬方向と直交する第1方向に一列に配列されている、
     請求項2に記載の光コネクタ。
  4.  前記第1レンズは、前記伝搬方向と直交する第1方向において複数の前記第2レンズの全体と重なるように形成されている、
     請求項2又は3に記載の光コネクタ。
  5.  前記伝搬方向と直交する第1方向並びに前記伝搬方向及び前記第1方向に直交する第2方向において、光軸が通る前記第1レンズの中心と、複数の前記第2レンズ全体の中心と、が互いに一致する、
     請求項2乃至4のいずれか1項に記載の光コネクタ。
  6.  前記第1レンズの曲率半径は、前記第2レンズの曲率半径よりも大きい、
     請求項1乃至5のいずれか1項に記載の光コネクタ。
  7.  前記第1レンズは、前記第1側面において凹レンズとして形成されている、
     請求項1乃至6のいずれか1項に記載の光コネクタ。
  8.  前記第2レンズは、前記第2側面において凸レンズとして形成されている、
     請求項1乃至7のいずれか1項に記載の光コネクタ。
  9.  前記光伝送路に載置される第1基部と、前記第1基部の延在方向に直交する方向に前記第1基部から張り出し、前記光伝送路の端面と対向する第2基部と、を備え、
     前記第1側面及び前記第2側面は、前記第2基部に形成されている、
     請求項1乃至8のいずれか1項に記載の光コネクタ。
  10.  樹脂材料によって形成されている、
     請求項1乃至9のいずれか1項に記載の光コネクタ。
  11.  請求項1乃至10のいずれか1項に記載の光コネクタと、
     前記基体及び前記基体に積層される前記光導波部を有する前記光伝送路と、
     前記光伝送路の端面と前記第1側面との間に介在し、屈折率を調整する屈折率整合剤と、
     を備える、
     光コネクタモジュール。
  12.  前記屈折率整合剤は、前記光導波部の端面と前記第1レンズとの間に介在する、
     請求項11に記載の光コネクタモジュール。
PCT/JP2021/027051 2020-07-29 2021-07-19 光コネクタ及び光コネクタモジュール WO2022024855A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21849743.6A EP4191296A1 (en) 2020-07-29 2021-07-19 Optical connector and optical connector module
US18/017,638 US20240036269A1 (en) 2020-07-29 2021-07-19 Optical connector and optical connector module
CN202180059802.8A CN116134353A (zh) 2020-07-29 2021-07-19 光连接器以及光连接器模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020128660A JP7449808B2 (ja) 2020-07-29 2020-07-29 光コネクタ及び光コネクタモジュール
JP2020-128660 2020-07-29

Publications (1)

Publication Number Publication Date
WO2022024855A1 true WO2022024855A1 (ja) 2022-02-03

Family

ID=80035567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027051 WO2022024855A1 (ja) 2020-07-29 2021-07-19 光コネクタ及び光コネクタモジュール

Country Status (6)

Country Link
US (1) US20240036269A1 (ja)
EP (1) EP4191296A1 (ja)
JP (1) JP7449808B2 (ja)
CN (1) CN116134353A (ja)
TW (1) TWI803921B (ja)
WO (1) WO2022024855A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304966A (ja) * 1999-04-21 2000-11-02 Nippon Telegr & Teleph Corp <Ntt> 光導波路用コネクタ及び光結合装置
JP2003004960A (ja) * 2001-06-25 2003-01-08 Fujitsu Ltd 光伝送装置
US20130287339A1 (en) * 2012-04-27 2013-10-31 Electronics And Telecommunications Research Institute Planar waveguide element
JP6401888B1 (ja) 2017-06-16 2018-10-10 京セラ株式会社 光コネクタモジュール
US20190170945A1 (en) * 2016-07-29 2019-06-06 Corning Optical Communications LLC Waveguide connector elements and optical assemblies incorporating the same
JP2020128660A (ja) 2019-02-08 2020-08-27 株式会社城南製作所 ウインドレギュレータ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103339543B (zh) * 2011-01-20 2016-12-21 康宁股份有限公司 具有梯度折射率透镜的插座套管组件和使用其的光纤连接器
JP5625138B1 (ja) * 2013-07-05 2014-11-12 古河電気工業株式会社 光モジュール、光モジュールの実装方法、光モジュール搭載回路基板、光モジュール評価キットシステム、回路基板および通信システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304966A (ja) * 1999-04-21 2000-11-02 Nippon Telegr & Teleph Corp <Ntt> 光導波路用コネクタ及び光結合装置
JP2003004960A (ja) * 2001-06-25 2003-01-08 Fujitsu Ltd 光伝送装置
US20130287339A1 (en) * 2012-04-27 2013-10-31 Electronics And Telecommunications Research Institute Planar waveguide element
US20190170945A1 (en) * 2016-07-29 2019-06-06 Corning Optical Communications LLC Waveguide connector elements and optical assemblies incorporating the same
JP6401888B1 (ja) 2017-06-16 2018-10-10 京セラ株式会社 光コネクタモジュール
JP2020128660A (ja) 2019-02-08 2020-08-27 株式会社城南製作所 ウインドレギュレータ

Also Published As

Publication number Publication date
CN116134353A (zh) 2023-05-16
JP7449808B2 (ja) 2024-03-14
JP2022025691A (ja) 2022-02-10
TW202210886A (zh) 2022-03-16
TWI803921B (zh) 2023-06-01
EP4191296A1 (en) 2023-06-07
US20240036269A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
CN110741295B (zh) 光连接器模块
US7359594B2 (en) Optical waveguide structure and optical module
WO2014034458A1 (ja) 光モジュールと光コネクタとの接続構造
US7577328B2 (en) Optical reflector, optical system and optical multiplexer/demultiplexer device
JP2005157302A (ja) 光合分波器及びその製造方法
US7302189B2 (en) Optical component provided with demultiplexing function and wavelength dispersion compensator
WO2022024855A1 (ja) 光コネクタ及び光コネクタモジュール
JP6979381B2 (ja) 光コネクタモジュール
JP6681751B2 (ja) 光レセプタクルおよび光モジュール
WO2022014419A1 (ja) 光コネクタ及び光コネクタモジュール
JP2008233556A (ja) レンズ筐体及び光モジュール
JP2008209916A (ja) 光合分波器およびこれを用いた光送受信器
JP2007178602A (ja) 光部品及びその製造方法
JP2005274700A (ja) 光合分波器
WO2023195280A1 (ja) 光ケーブル、電子機器および光通信システム
CA2395111A1 (en) Optical module unit and optical module employing the optical module unit
JP2002023004A (ja) 光結合構造
JP2008292641A (ja) 光通信モジュール
KR100493098B1 (ko) 평면 도파로 구조의 광 모듈
JP2006091684A (ja) 光導波路構造体および光モジュール
JP2004078158A (ja) 光導波路、光モジュールおよびその製造方法
JPH01281411A (ja) 光合分波素子
JP2004004949A (ja) 光合分波器及び光入出力部
JP2003121671A (ja) 光分岐器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849743

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18017638

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021849743

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021849743

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE