WO2022024227A1 - 熱交換器用コーティング組成物 - Google Patents

熱交換器用コーティング組成物 Download PDF

Info

Publication number
WO2022024227A1
WO2022024227A1 PCT/JP2020/028928 JP2020028928W WO2022024227A1 WO 2022024227 A1 WO2022024227 A1 WO 2022024227A1 JP 2020028928 W JP2020028928 W JP 2020028928W WO 2022024227 A1 WO2022024227 A1 WO 2022024227A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
resin
water
coating composition
spherical particles
Prior art date
Application number
PCT/JP2020/028928
Other languages
English (en)
French (fr)
Inventor
育弘 吉田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP20947783.5A priority Critical patent/EP4190875A4/en
Priority to CN202080102996.0A priority patent/CN115867617B/zh
Priority to JP2021500985A priority patent/JP6949265B1/ja
Priority to US18/009,985 priority patent/US20230228503A1/en
Priority to PCT/JP2020/028928 priority patent/WO2022024227A1/ja
Publication of WO2022024227A1 publication Critical patent/WO2022024227A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • C09D5/028Pigments; Filters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/43Thickening agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/04Coatings; Surface treatments hydrophobic

Definitions

  • the present disclosure relates to a coating composition for a heat exchanger used in a heat exchanger.
  • a coating composition for a heat exchanger used for surface-treating a heat exchanger used in an air conditioner or the like is known.
  • improvements are being made in terms of improving cooling efficiency, heating efficiency, and comfort of the air-conditioning environment.
  • a method of treating the condensed water generated during the cooling operation has become an issue. If condensed water stays in the gaps between the fins of the heat exchanger, the ventilation resistance increases and the cooling efficiency decreases. Therefore, conventionally, a technique for hydrophilizing the surface of fins has been proposed.
  • the fin is made of, for example, aluminum.
  • Patent Document 1 discloses a hydrophilic metal surface treatment agent containing a hydrophilic substance such as a water-soluble resin and colloidal silica.
  • a hydrophilic substance such as a water-soluble resin and colloidal silica.
  • Patent Document 2 discloses a water-repellent coating composition composed of a solution composed of a silicone-based resin compound or a fluorine-based resin compound and inorganic fine particles subjected to a hydrophobic treatment.
  • the surface of the heat exchanger has high water repellency, so that the condensed water rolls off the surface.
  • the hydrophilicity tends to decrease due to contamination or the like. Further, if the surface is locally hydrophilized, water droplets may be retained or the accumulated water droplets may be scattered by the air flow. Further, since the hydrophilic substance easily adsorbs the odorous substance, the odor may be generated during the cooling operation. Further, in the composition for water-repellent coating disclosed in Patent Document 2, although condensed water rolls off, there is a possibility that water droplets may adhere to the surface due to dust adhering to the surface or deterioration of the surface. .. Therefore, the durability of the surface treatment is low.
  • the present disclosure has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide a coating composition for a heat exchanger having improved drainage without making it hydrophilic and highly water repellent. ..
  • the coating composition for a heat exchanger includes an aqueous dispersion having a water-repellent resin containing spherical particles having an average particle diameter of 2 ⁇ m or more and 50 ⁇ m or less.
  • the coating composition for a heat exchanger includes an aqueous dispersion having a water-repellent resin containing spherical particles having an average particle diameter of 2 ⁇ m or more and 50 ⁇ m or less.
  • a coating is formed on the surface of the heat exchanger.
  • the coating film does not have hydrophilicity and has appropriate water repellency.
  • the heat exchanger coating composition can improve the drainage property of the heat exchanger without making it hydrophilic and highly water repellent.
  • FIG. It is a perspective view which shows the heat exchanger which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows the fin which concerns on a comparative example. It is sectional drawing which shows the fin which concerns on Embodiment 1.
  • FIG. It is a perspective view which shows the fin which concerns on Embodiment 1.
  • FIG. It is a perspective view which shows that the water drop adhered to the fin which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows the fin which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows the fin which concerns on the modification.
  • FIG. 1 is a perspective view showing the heat exchanger 1 according to the first embodiment.
  • the heat exchanger 1 exchanges heat between, for example, a refrigerant and air.
  • the heat exchanger 1 is a fin tube type heat exchanger.
  • the heat exchanger 1 includes a heat transfer tube 2 and fins 3.
  • the heat transfer tube 2 is a tube through which a refrigerant flows, and a plurality of heat transfer tubes 2 are arranged and made of aluminum or an aluminum alloy.
  • the case where the heat transfer tube 2 is a circular tube having a circular cross section and one flow path through which the refrigerant flows is formed inside is illustrated.
  • the heat transfer tube 2 may be a flat tube having a flat cross section and having a plurality of flow paths through which the refrigerant flows.
  • the fin 3 is a member that transfers the heat of the refrigerant flowing inside the heat transfer tube 2, and is made of aluminum or an aluminum alloy.
  • the fin 3 is a plate-shaped plate fin in which the heat transfer tube 2 is inserted into a hole formed in advance.
  • the fin 3 may be, for example, a corrugated fin that is bent and arranged between the heat transfer tube 2 and the heat transfer tube 2.
  • the fin 3 is formed with a coating film 4 coated with the heat exchanger coating composition (see FIG. 3).
  • FIG. 2 is a cross-sectional view showing the fin 3 according to the comparative example.
  • the coating film 4 formed on the fins 3 of the first embodiment will be described.
  • the coating film 4b formed on the fins 3 according to the comparative example will be described.
  • a flat coating film 4b is formed on the fin 3 according to the comparative example.
  • the contact angle 6 is an angle at the end point of water with respect to the water-repellent resin 10.
  • the contact angle 6 of the resin constituting the coating film 4b is approximately 40 degrees or more and 120 degrees or less.
  • the condensed water 5 adheres as hemispherical water droplets, and in the heat exchanger 1, a phenomenon called bridging in which water collects between the adjacent fins 3 occurs.
  • the ventilation resistance may increase, or water droplets may pop out due to the flow of air.
  • FIG. 3 is a cross-sectional view showing the fin 3 according to the first embodiment.
  • the coating film 4 formed on the fins 3 of the first embodiment will be described.
  • a coating composition for a heat exchanger is applied to the fins 3, whereby a film 4 having irregularities is formed.
  • the surface of the coating film 4 is inclined, the normal direction of the surface is inclined. Therefore, even if the condensed water 5 adheres to the surface, the apparent contact angle 6 becomes smaller by the amount that the normal direction is tilted. Therefore, the curvature of the surface of the condensed water 5 becomes small, and the height of the water droplets is unlikely to increase.
  • the condensed water 5 adheres to the surface the way the condensed water 5 spreads differs depending on the presence or absence of unevenness on the surface of the coating film 4.
  • FIG. 4 is a perspective view showing the fin 3 according to the first embodiment
  • FIG. 5 is a perspective view showing that water droplets have adhered to the fin 3 according to the first embodiment.
  • the coating film 4 formed by the heat exchanger coating composition has irregularities due to the spherical particles 11 (see FIG. 6) contained therein.
  • a large number of convex portions 7 are distributed over the entire surface of the coating film 4, so that the coating film 4 has an uneven shape. That is, the recesses are formed in a mesh shape.
  • FIG. 5 when a large amount of the condensed water 5 adheres to the coating film 4, the condensed water 5 spreads so as to be filled in the recesses formed in a mesh shape.
  • the advantage of forming a wet surface on the surface of the heat exchanger 1 in the water-repellent resin 10 will be described.
  • the hydrophilic substance easily adsorbs various substances in the air, so that there is a risk of odor or deterioration of hydrophilicity. be. If it smells, an unpleasant odor will be generated from the air conditioning equipment during cooling or the like.
  • the hydrophilicity is lowered, the drainage property is lowered, so that the efficiency of heat exchange is lowered and water droplets are ejected by the air flow.
  • the wet surface is formed only by the water-repellent resin 10 (see FIG. 6), the above-mentioned problem does not occur. That is, no odor is generated due to odor, and no deterioration in drainage property occurs due to pollution.
  • the coating film 4 of the first embodiment has high anticorrosion properties.
  • the surface of the fin 3 which is aluminum is oxidized by the permeated moisture, so that it is necessary to use a rust preventive treatment such as a chemical conversion treatment or an anticorrosive coating together. Since the coating film 4 of the first embodiment is made of a water-repellent resin 10 having low moisture permeability and corrosion resistance, the rust prevention treatment may be simplified or omitted.
  • FIG. 6 is a cross-sectional view showing the fin 3 according to the first embodiment.
  • the coating composition for a heat exchanger includes an aqueous dispersion 8 having a water-repellent resin 10 containing spherical particles 11 having an average particle diameter of 2 ⁇ m or more and 50 ⁇ m or less. As shown in FIG. 6, the spherical particles 11 have little overlap in the coating film 4 and are arranged substantially side by side. The inclusion of the spherical particles 11 forms irregularities on the surface of the water-repellent resin 10. In the coating film 4 as shown in FIG. 6, the condensed water 5 is held in the recess formed by the spherical particles 11 to form a wet surface, and the heat exchanger 1 having high drainage property can be realized.
  • the spherical particles 11 are firmly fixed to the fins 3 by the water-repellent resin 10, they have high resistance to friction and collision. Further, since the coating film 4 is thin, there is an advantage that the surface of the heat exchanger 1 is less likely to inhibit heat transfer from the fins 3 to the air.
  • FIG. 7 is a cross-sectional view showing the fin 3 according to the modified example.
  • the fin 3 according to the modified example is in a state where the heat exchanger coating composition is thicker than that in FIG. A large amount of spherical particles 11 are overlapped with each other, and larger irregularities are formed on the surface.
  • the condensed water 5 is held in the recess formed by the spherical particles 11 as in the case of FIG.
  • the recesses are deeper, the wet surface formed by the condensed water 5 becomes more stable.
  • this is used in the heat exchanger 1, it is not easily affected by environmental changes such as temperature and humidity, and it is possible to stably maintain high drainage.
  • the spherical particles 11 are covered with the water-repellent resin 10 and are not exposed on the surface of the coating film 4. Therefore, even if the hydrophilic spherical particles 11 are used, the hydrophilic substance is not exposed on the surface of the coating film 4.
  • the spherical particles 11 have an average particle diameter of 2 ⁇ m or more and 50 ⁇ m or less. It is more preferable that the spherical particles 11 have an average particle diameter of 4 ⁇ m or more and 20 ⁇ m or less.
  • the average particle diameter indicates the average value of the number of particles excluding fine particles having a particle diameter of 1 ⁇ m or less. If the average particle size is less than 2 ⁇ m, the unevenness of the formed surface is too fine, so that a wet surface is not formed. On the other hand, with particles having an average particle diameter of more than 50 ⁇ m, it becomes difficult to form a film 4 in which the spherical particles 11 are evenly dispersed, and good drainage property cannot be obtained when the particles are applied to the heat exchanger 1.
  • the spherical particles 11 are, for example, inorganic particles.
  • the inorganic particles are, for example, fused silica or fused alumina.
  • the spherical particles 11 are metal particles.
  • the metal particles are, for example, iron, nickel, cobalt, silver, aluminum, copper or alloys thereof.
  • the spherical particles 11 are produced by a molten silica or molten alumina in the case of inorganic particles and by an atomizing method or the like in the case of metal particles, and have a dense composition that is solid and not porous. preferable.
  • the particles not coated with the water-repellent resin 10 are easily exposed from the surface of the film 4.
  • exposed particles may spread to change the physical characteristics of the coating film 4 or cause adsorption of odors.
  • the spherical particles 11 have high thermal conductivity. If the heat conductivity of the coating film 4 of the heat exchanger 1 is low, the function of the heat exchanger 1 is deteriorated. The high thermal conductivity of the inorganic particles not only prevents the function of the heat exchanger 1 from deteriorating, but also contributes to the improvement of the function of the heat exchanger 1 by increasing the surface area.
  • the spherical particles 11 may be resin particles.
  • the resin particles are, for example, a methacrylic resin, a polystyrene resin, a silicone resin, a phenol resin, or the like.
  • the flexibility of the coating film 4 becomes high, and defects such as peeling are unlikely to occur. Further, since the spherical particles 11 are difficult to settle, it is easy to use as a coating composition for a heat exchanger.
  • the contact angle 6 when water adheres to the water-repellent resin 10 is 30 degrees or more and 100 degrees or less.
  • the contact angle 6 is more preferably 40 degrees or more and 80 degrees or less.
  • the contact angle 6 of water is less than 30 degrees, the hydrophilicity of the surface of the coating film 4 is too high, so that high drainage property can be obtained when it is initially used as the heat exchanger 1, but the hydrophilicity is lowered due to contamination or the like. Since it is easy, the hydrophilicity may become non-uniform and the drainage property may decrease.
  • the contact angle 6 of water exceeds 100 degrees, the water repellency is too high, and even if unevenness is formed on the surface, it may not be possible to form a wet surface.
  • the water-repellent resin 10 is an alkyd resin, a urethane resin, a polyolefin resin, a polyvinyl chloride resin, an ester resin, an epoxy resin, an acrylic resin, a silicone resin, a fluororesin, or the like.
  • the water-repellent resin 10 may be a mixture thereof.
  • the coating composition for a heat exchanger is a state in which the water-repellent resin 10 is dispersed in water.
  • a dispersant such as a surfactant or an organic solvent may be used to disperse the resin.
  • the coating composition for a heat exchanger based on an organic solvent is applied to the heat exchanger 1, it is difficult to adjust the fluidity or the evaporation rate so that the internal fine structure becomes homogeneous. Since the aqueous dispersion 8 can be a low-viscosity and low-volatile liquid as in the first embodiment, it can be applied to the heat exchanger 1 by a simple means such as immersion.
  • the average value of the distance S between the vertices of the spherical particles 11 is 2 ⁇ m or more and 500 ⁇ m or less.
  • the uneven shape of the surface of the coating film 4 changes depending on the particle diameter or the planar distribution of the spherical particles 11.
  • the state of unevenness can be defined by using the distance S between the vertices of the convex portions 7 formed by the spherical particles 11. In the state where the spherical particles 11 are arranged in a single layer as shown in FIG. 6, the distance S between the vertices of the convex portions 7 formed by the particles having a particle diameter larger than the flat particle diameter.
  • the distance S between the vertices of the convex portions 7 formed by the particles having a particle diameter larger than the average particle diameter indicates the average value of the number of particles excluding fine particles having a particle diameter of 1 ⁇ m or less.
  • the average value of the distance S between the vertices of the spherical particles 11 is more preferably 4 ⁇ m or more and 100 ⁇ m or less.
  • the average value of the interval S is less than 2 ⁇ m, the water repellency of the surface of the coating film 4 tends to be high, and it is often impossible to form a wet film.
  • the average value of the interval S exceeds 500 ⁇ m, a uniform wet film is difficult to be formed, which is not preferable.
  • the amount of the spherical particles 11 added is 30% by mass or more and 200% by mass or less with respect to the water-repellent resin 10.
  • the amount of the spherical particles 11 added is more preferably 40% by mass or more and 150% by mass or less with respect to the water-repellent resin 10.
  • the amount of the spherical particles 11 added is less than 30% by mass, the spherical particles 11 become sparse, and the uneven shape that can form a wet film with dew condensation water is not formed, especially when the spherical particles 11 are applied as a thin film.
  • the amount of the spherical particles 11 added exceeds 200% by mass, the amount of the water-repellent resin 10 functioning as a binder is too small, the particles are easily peeled off, or the particles are not sufficiently covered with the water-repellent resin 10. It is not preferable because it becomes.
  • metal particles it is 50% by mass or more and 1000% by mass or less with respect to the water-repellent resin 10. Further, it is more preferably 100% by mass or more and 800% by mass or less with respect to the water-repellent resin 10.
  • the amount of the spherical particles 11 added is less than 50% by mass, the spherical particles 11 become sparse, and the uneven shape that can form a wet film with dew condensation water is not formed, especially when the spherical particles 11 are applied as a thin film.
  • the amount of the spherical particles 11 added exceeds 1000% by mass, the amount of the water-repellent resin 10 functioning as a binder is too small, the particles are easily peeled off, or the particles are not sufficiently covered with the water-repellent resin 10. It is not preferable because it becomes.
  • the amount of the spherical particles 11 and the water-repellent resin 10 added is 5% by mass or more and 40% by mass or less with respect to the whole. Further, the amount of the spherical particles 11 and the water-repellent resin 10 added is more preferably 10% by mass or more and 30% by mass or less with respect to the whole. If the amount of the spherical particles 11 and the water-repellent resin 10 added is 5% by mass or less, the thickness of the obtained film 4 is too thin and it is easy to peel off, so that sufficient durability cannot be obtained.
  • the amount of the spherical particles 11 and the water-repellent resin 10 added exceeds 40% by mass, the viscosity of the coating composition for the heat exchanger is too high, it is difficult to apply it to the heat exchanger 1, or the coating film 4 becomes thick. This is not preferable because it may lead to deterioration of the performance of the heat exchanger 1.
  • the water dispersion 8 may further include a thickener that increases the viscosity.
  • a thickener that increases the viscosity.
  • thickener examples include water-soluble polymers such as polyacrylic acid and polyethylene glycol, thickening polysaccharides such as carboxymethyl cellulose, hydroxyethyl cellulose, xanthan gum, guar gum, locust bean gum, carrageenan and tamarind gum.
  • the thickener is preferably a polysaccharide having a pseudoplastic property such as xanthan gum and guar gum.
  • the dispersion liquid to which these are added exhibits high fluidity when the liquid is applied to the heat exchanger 1 and the excess liquid is shaken off, and the fluidity decreases in the process of forming a liquid film and drying. Thereby, even for the heat exchanger 1 having a complicated shape, the film 4 in which the spherical particles 11 are uniformly dispersed can be formed.
  • Xanthan gum and guar gum can impart good pseudoplastic properties even in a small amount.
  • the amount of the hydrophilic substance in the coating film 4 increases, and the drainage property of the heat exchanger 1 may deteriorate due to contamination and deterioration.
  • the amount of xanthan gum and guar gum added is very small, it is possible to avoid deterioration of drainage.
  • the amount of the thickener added is preferably 0.01% by mass or more and 1% by mass or less.
  • the amount of the thickener added is more preferably 0.02% by mass or more and 0.2% by mass or less. If the amount of the thickener added is less than 0.01% by mass, the effect of sufficient viscosity adjustment cannot be obtained. When the amount of the thickener added exceeds 1% by mass, not only the viscosity becomes too high, but also the coating film 4 tends to deteriorate, which is not preferable.
  • the method of applying the coating composition for a heat exchanger to the heat exchanger 1 corresponds to, for example, two methods.
  • the first is a precoating method in which the heat exchanger 1 is assembled after the heat exchanger coating composition is applied to the components of the heat exchanger 1 such as the aluminum fins 3.
  • the precoat method the coating is mainly applied to the aluminum fin 3 using a roll coater.
  • the coating composition for a heat exchanger of the first embodiment is composed of the water-repellent resin 10 and the spherical particles 11, the gold which becomes a problem with the water-repellent resin 10 and the coating film 4 containing an inorganic substance such as silica, which has become the mainstream in recent years. Mold wear is unlikely to occur.
  • the second is a post-coating method in which the heat exchanger coating composition is applied to the assembled heat exchanger 1.
  • the post-coating method includes a method of immersing the heat exchanger 1 in the heat exchanger coating composition, or a method of spraying or pouring the heat exchanger coating composition onto the heat exchanger 1. In either method, after the surface of the heat exchanger 1 is wetted with the heat exchanger coating composition, the excess heat exchanger coating composition is removed and dried. The removal of the excess heat exchanger coating composition is carried out by free fall due to gravity, shaking off by inertial force due to vibration or rotational motion.
  • Drying may be a method of leaving it to dry naturally, but it may also be a method of accelerating by sending wind. Further, for drying, a method of heating the heat exchanger 1 with hot air or infrared rays is also preferable. By heating at 60 ° C. or higher, the coating composition for heat exchanger is surely dried, so that the generation of microorganisms such as mold can be prevented. By heating at 100 ° C. or higher, preferably 130 ° C. or higher, the strength of the coating film 4 can be improved and the water resistance can be improved.
  • the coating composition for a heat exchanger includes an aqueous dispersion 8 having a water-repellent resin 10 containing spherical particles 11 having an average particle diameter of 2 ⁇ m or more and 50 ⁇ m or less.
  • a film 4 is formed on the surface of the heat exchanger 1.
  • the coating film 4 does not have hydrophilicity and has appropriate water repellency.
  • the heat exchanger coating composition can improve the drainage property of the heat exchanger 1 without making it hydrophilic and highly water repellent.
  • Examples 1 to 7 and Comparative Examples 1 to 4 Polyurethane dispersion UW-5002E (manufactured by Ube Kosan Co., Ltd.) is 10% by mass as the water-repellent resin 10, polyoxyethylene lauryl ether 0.2% by mass as a surfactant, and xanthan gum (echo gum, DSP5) as a thickener. Kyo Food & Chemical Co., Ltd.) 0.1% by mass, spherical particles 11 were mixed in the composition shown in Table 1 to prepare a coating liquid. This coating liquid was sprayed onto a glass plate having a thickness of 10 mm and dried at 130 ° C. for 10 minutes.
  • the spherical particles 11 have a particle diameter obtained by appropriately mixing fused silica (manufactured by Denka Co., Ltd.), silica spherical fine particles SO-C (manufactured by Admatex Co., Ltd.), and metal particles PF-10R (manufactured by Epson Atmix Co., Ltd.). Was adjusted and used.
  • the coated glass plate was cooled to ⁇ 10 ° C. and placed so that the coated surface was vertical in an environment of saturated steam at 80 ° C., and the wet state of the surface was observed. Table 1 shows the state of the condensed water 5 after about 5 minutes.
  • the water contact angle 6 has a value equivalent to that of Comparative Example 4 not including the spherical particles 11.
  • the contact angle 6 is measured by a method in which water droplets having a diameter of about 3 mm are attached. That is, this result indicates that the water repellency of the surface did not change with the addition of the spherical particles 11.
  • the contact angle 6 shows high water repellency of 102 degrees.
  • the fine uneven shape of spherical silica having a small particle size shows that it has an effect of increasing water repellency.
  • the state of the condensed water 5 is such that a wet surface is formed in Examples 1 to 5 and 7.
  • Example 6 a wet surface is formed, but a mesh-like water film is formed in which the convex portions 7 due to the molten silica are distributed without getting wet in dots.
  • a water film was formed on the surface of the coated film 4 even though it had water repellency, and water flowed downward. When applied to the surface of the heat exchanger 1, it is expected to have high drainage as in the case of the hydrophilic coating 4.
  • Example 8 and 9 and Comparative Examples 5 to 8 The coating liquids used in Examples 2 and 4 were spray-coated on an aluminum plate and dried by heating at 130 ° C. for 10 minutes, which were designated as Examples 8 and 9, respectively.
  • Colloidal silica ST-PS-S manufactured by Nissan Chemical Co., Ltd.
  • acrylic emulsion 3% by mass acrylic emulsion 3% by mass
  • polyoxyethylene lauryl ether 0.2% by mass acrylic emulsion 3% by mass
  • polyoxyethylene lauryl ether 0.2% by mass as a surfactant
  • xanthan gum echo gum, DSP5
  • a thickener Manufactured by Kyo Food & Chemical Co., Ltd.
  • Comparative Example 6 Comparative Example 6 to which spherical silica was added was designated as Comparative Example 6.
  • Comparative Example 7 was obtained by applying Polysilazane (Aquamica NP140, manufactured by AZ Electronic Materials Co., Ltd.) on an aluminum plate by spraying and leaving it at room temperature for about 2 weeks to form a silica film.
  • Comparative Example 8 was prepared by adding spherical silica to Comparative Example 7.
  • Example 8 and 9 and Comparative Examples 5 to 8 were evaluated for water repellency and odor due to contamination.
  • a 30 mm x 50 mm piece of each sample is enclosed in a 2 L glass container together with a non-woven fabric impregnated with an equal amount of ⁇ -pinene, nonenal and butyl acetate, and the whole container is heated to 40 ° C and left for 6 hours.
  • the sample was contaminated.
  • the effect of pollution was confirmed by the amount of change in the water contact angle 6 before and after pollution.
  • the odor was quantified by 5 monitors by smelling the test piece. Each person made a judgment in 5 stages from 1 without odor to 5 with strong odor, and the average value was calculated. The above results are shown in Table 2.
  • the hydrophilicity is non-uniform inside the heat exchanger 1, the flow of the condensed water 5 becomes poor, which leads to a decrease in drainage property and an increase in ventilation resistance. It can be seen that in Comparative Examples 5 to 8, the odor is also large. Since silica for improving hydrophilicity is exposed on the surface, it is considered that odor molecules are adsorbed here. Regarding odor, it is easier to odor when the spherical particles 11 are added. It is considered that this is because the surface area of the coating film 4 is increased by the spherical particles 11 and the amount of adsorbed odor molecules is increased.
  • Example 10 to 12 and Comparative Examples 9 to 11 As the coating composition for the heat exchanger, those in which the thickener was changed were prepared with reference to Example 8 to prepare Examples 10 to 12 and Comparative Examples 9 to 11. These coatability was evaluated using a heat exchanger 1 composed of an aluminum fin 3 having a fin pitch of 1.2 mm and a copper heat transfer tube 2. The dimensions of the heat exchanger 1 are 30 mm ⁇ 250 mm ⁇ 100 mm. After immersing the heat exchanger 1 in the heat exchanger coating composition, the coating composition was allowed to flow out from between the aluminum fins 3 so as to be tilted about 60 degrees from the horizontal plane and left for about 30 minutes. The state of the coating film 4 after coating was confirmed from the appearance and the state of the surface of the cut fin 3. The above results are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

熱交換器用コーティング組成物は、平均粒子径が2μm以上50μm以下の球状粒子を含有する撥水性樹脂を有する水分散液を備える。

Description

熱交換器用コーティング組成物
 本開示は、熱交換器に用いられる熱交換器用コーティング組成物に関する。
 従来、空調機器等に使用される熱交換器を表面処理するために用いられる熱交換器用コーティング組成物が知られている。空調機器の開発過程において、冷房効率の向上、暖房効率の向上及び空調環境の快適性の向上等について、改良が進められている。ここで、熱交換器において、冷房運転時に生じる凝結水の処理方法が課題となっている。熱交換器のフィン等の隙間に凝結水が滞留すると、通風抵抗が増加して冷房効率が低下する。このため、従来、フィンの表面が親水化処理される技術が提案されている。なお、フィンは、例えばアルミニウムからなる。
 特許文献1には、水溶性樹脂及びコロイダルシリカ等の親水性物質を含む親水性金属表面処理剤が開示されている。特許文献1は、アルミニウム製のフィンの表面が親水化されることによって、凝結水が水滴に変形することなく、フィンの表面から流れ去るようにしたものである。特許文献2には、シリコーン系樹脂化合物又はフッ素系樹脂化合物からなる溶液と、疎水化処理が施された無機微粒子とからなる撥水性コーティング用組成物が開示されている。特許文献2における撥水性コーティング用組成物が熱交換器の表面に塗布されると、熱交換器の表面は高い撥水性を有するため、凝結水が表面から転がり落ちるようになる。
特開平6-264001号公報 特開平3-244680号公報
 しかしながら、特許文献1に開示された親水性金属表面処理剤によって表面が親水化されると、汚染等によって親水性が低下し易い。また、表面が局所的に親水化されると、水滴が滞留したり、滞留した水滴が空気の流れによって飛散したりするおそれがある。更に、親水性物質は、臭気物質を吸着し易いため、冷房運転時に臭気が発生するおそれがある。また、特許文献2に開示された撥水性コーティング用組成物は、凝結水が転がり落ちるものの、表面に粉塵が付着したり、表面が劣化したりすることによって、表面に水滴が付着するおそれがある。このため、表面処理の持続性が低い。
 本開示は、上記のような課題を解決するためになされたものであり、親水化及び高撥水化することなく、排水性が向上する熱交換器用コーティング組成物を提供することを目的とする。
 本開示に係る熱交換器用コーティング組成物は、平均粒子径が2μm以上50μm以下の球状粒子を含有する撥水性樹脂を有する水分散液を備える。
 本開示によれば、熱交換器用コーティング組成物は、平均粒子径が2μm以上50μm以下の球状粒子を含有する撥水性樹脂を有する水分散液を備える。熱交換器用コーティング組成物が熱交換器の表面に塗布されると、熱交換器の表面に被膜が形成される。被膜は、親水性を有しておらず、適度な撥水性を有している。このように、熱交換器用コーティング組成物は、親水化及び高撥水化することなく、熱交換器の排水性を向上させることができる。
実施の形態1に係る熱交換器を示す斜視図である。 比較例に係るフィンを示す断面図である。 実施の形態1に係るフィンを示す断面図である。 実施の形態1に係るフィンを示す斜視図である。 実施の形態1に係るフィンに水滴が付着したことを示す斜視図である。 実施の形態1に係るフィンを示す断面図である。 変形例に係るフィンを示す断面図である。
 以下、本開示の熱交換器用コーティング組成物の実施の形態について、図面を参照しながら説明する。なお、本開示は、以下に説明する実施の形態によって限定されるものではない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の説明において、本開示の理解を容易にするために方向を表す用語を適宜用いるが、これは本開示を説明するためのものであって、これらの用語は本開示を限定するものではない。方向を表す用語としては、例えば、「上」、「下」、「右」、「左」、「前」又は「後」等が挙げられる。
実施の形態1.
 図1は、実施の形態1に係る熱交換器1を示す斜視図である。熱交換器1は、例えば冷媒と空気との間で熱交換を行うものである。本実施の形態1では、熱交換器1は、フィンチューブ型熱交換器である。熱交換器1は、伝熱管2と、フィン3とを備えている。伝熱管2は、内部に冷媒が流れるチューブであり、複数並べられており、アルミニウム製又はアルミニウム合金製である。本実施の形態1では、伝熱管2が、断面が円形で、冷媒が流れる流路が内部に一つ形成された円管である場合について例示している。なお、伝熱管2は、断面が扁平し、冷媒が流れる流路が内部に複数形成された扁平管でもよい。
 フィン3は、伝熱管2の内部に流れる冷媒の熱を伝達する部材であり、アルミニウム製又はアルミニウム合金製である。本実施の形態1では、フィン3が、予め形成された穴に伝熱管2が挿入された板状のプレートフィンである場合に例示している。なお、フィン3は、例えば伝熱管2と伝熱管2との間に折り曲げて配置されたコルゲートフィンでもよい。このように、フィン3が、熱伝導性が高いアルミニウムで構成され、広い面積を有しているため、冷媒と空気との熱交換が効率よく行われる。ここで、フィン3には、熱交換器用コーティング組成物が塗布された被膜4が形成されている(図3参照)。
 図2は、比較例に係るフィン3を示す断面図である。次に、本実施の形態1のフィン3に形成された被膜4について説明する。本実施の形態1のフィン3の被膜4の説明を分かり易くするために、先ず、比較例に係るフィン3に形成された被膜4bについて説明する。図2に示すように、比較例に係るフィン3には、平坦な被膜4bが形成されている。比較例に係るフィン3の被膜4bの表面に、凝結水5が付着する場合、凝結水5は、被膜4bを構成する樹脂によって定まる一定の接触角6で付着する。接触角6とは、撥水性樹脂10を基準とした水の端点における角度である。ここで、被膜4bを構成する樹脂の接触角6は、概ね40度以上120度以下である。この場合、凝結水5は半球状の水滴となって付着して、熱交換器1において、隣り合うフィン3間に水が溜まるブリッジングという現象が起こる。これにより、通風抵抗が大きくなったり、水滴が空気の流れによって飛び出したりするおそれがある。
 図3は、実施の形態1に係るフィン3を示す断面図である。次に、本実施の形態1のフィン3に形成された被膜4について説明する。図3に示すように、フィン3には、熱交換器用コーティング組成物が塗布されており、これにより、凹凸を有する被膜4が形成されている。このように、被膜4の表面が傾斜しているため、表面の法線方向が傾く。従って、表面に凝結水5が付着しても、法線方向が傾いた分だけみかけ上の接触角6が小さくなる。よって、凝結水5の表面の曲率が小さくなって、水滴の高さが高くなり難い。このように、凝結水5が表面に付着した場合、被膜4の表面の凹凸の有無によって、凝結水5の拡がり方が異なる。
 図4は、実施の形態1に係るフィン3を示す斜視図であり、図5は、実施の形態1に係るフィン3に水滴が付着したことを示す斜視図である。図4に示すように、熱交換器用コーティング組成物によって形成された被膜4は、内包される球状粒子11(図6参照)によって凹凸を有するものとなる。図4に示すように、被膜4の表面の全体に凸部7が多数分布することによって、被膜4は凹凸形状をなしている。即ち、凹部は網目状に形成されている。図5に示すように、被膜4に、凝結水5が多量に付着すると、凝結水5は、網目状に形成された凹部に充填されるように拡がる。これにより、濡れ膜が形成される。これにより、熱交換器用コーティング組成物が撥水性の樹脂を有していても、凝結水5を濡れ拡がらせることができる。従って、熱交換器1において、高い排水性が得られる。
 撥水性樹脂10において、熱交換器1の表面に濡れ面が形成されることによる利点について説明する。熱交換器1が親水性物質で親水化して濡れ面が形成される場合、親水性物質は空気中の多様な物質を吸着し易いため、着臭したり、親水性が低下したりするおそれがある。着臭した場合には、冷房時等に空調機器から不快臭が生じることになる。親水性が低下した場合には、排水性が低下するため、熱交換の効率が低下したり、水滴が気流で飛び出したりする。本実施の形態1では、撥水性樹脂10(図6参照)のみで濡れ面が形成されているため、上記のような問題は発生しない。即ち、着臭による臭気発生がなく、また汚染による排水性の低下が生じない。
 更に、本実施の形態1の被膜4は、防食性が高い。親水性樹脂の被膜4では、透過する水分によってアルミニウムであるフィン3の表面が酸化するため、化成処理又は防食塗装等の防錆処理が併用される必要が生じる。本実施の形態1の被膜4は、透湿性が低く防食性がある撥水性樹脂10からなるものであるため、防錆処理が簡略化又は省略されてもよい。
 図6は、実施の形態1に係るフィン3を示す断面図である。熱交換器用コーティング組成物は、平均粒子径が2μm以上50μm以下の球状粒子11を含有する撥水性樹脂10を有する水分散液8を備える。図6に示すように、球状粒子11は、被膜4内での重なりは少なく、ほぼ横並びで配置されている。球状粒子11が含まれることによって、撥水性樹脂10からなる表面に凹凸が形成される。図6で示すような被膜4では、球状粒子11によって形成された凹部に凝結水5が保持されることで濡れ面を形成し、高い排水性を有する熱交換器1を実現することができる。フィン3に対して球状粒子11が撥水性樹脂10で強固に固定されるため、摩擦及び衝突に対する耐性が高い。また、被膜4が薄いため、熱交換器1の表面においては、フィン3から空気に対する熱伝達を阻害しにくいという長所がある。
 図7は、変形例に係るフィン3を示す断面図である。図7に示すように、変形例に係るフィン3は、熱交換器用コーティング組成物が図6よりも厚塗りされた場合の状態である。多量の球状粒子11が重なり合った状態となり、より大きな凹凸が表面に形成されている。図7に示すような厚い被膜4aでは、図6の場合と同様に、球状粒子11によって形成された凹部に凝結水5が保持される。しかし、凹部がより深いものとなっているため、凝結水5によって形成される濡れ面は、より安定する。これが熱交換器1に使用された場合には、温湿度等の環境変化の影響を受け難く、安定して高い排水性を保持することが可能になる。図6及び図7のいずれの場合も、球状粒子11は撥水性樹脂10で覆われており、被膜4の表面に露出していない。このため、親水性の球状粒子11が使用されても、被膜4の表面には、親水性物質が露出することはない。
 球状粒子11は、前述の如く、平均粒子径が2μm以上50μm以下である。なお、球状粒子11は、平均粒子径が4μm以上20μm以下であることが更に好ましい。ここで、平均粒子径は、粒子径が1μm以下の微小粒子を除いた粒子の数平均値を示す。平均粒子径が2μm未満では、形成される表面の凹凸が細か過ぎるため、濡れ面が形成されない。一方、平均粒子径が50μmを超える粒子では、球状粒子11が均等に分散された被膜4の形成が困難になり、熱交換器1に塗布されたときに、良好な排水性が得られない。
 ここで、球状粒子11は、例えば無機粒子である。無機粒子は、例えば溶融シリカ又は溶融アルミナ等である。また、球状粒子11は、金属粒子である。金属粒子は、例えば鉄、ニッケル、コバルト、銀、アルミニウム、銅又はそれらの合金である。更に、球状粒子11は、無機粒子においては溶融シリカ又は溶融アルミナ等、金属粒子においては、アトマイズ法等で製造されたもので、中実であって、多孔質ではない緻密な組成であることが好ましい。球状でなく角を有する粒子又は多孔質の粒子が撥水性樹脂10に混合されて被膜4が形成された場合、撥水性樹脂10で被覆されていない粒子が被膜4の表面から露出し易い。熱交換器1として使用されるときには、露出した粒子が拡がって被膜4の物性が変化したり、臭気の吸着を起こしたりするおそれがある。また、球状粒子11は、高い熱伝導性を有していることも好ましい。熱交換器1の被膜4の熱伝導性が低い場合、熱交換器1としての機能を低下させてしまう。無機粒子が高い熱伝導性を有していることによって、熱交換器1の機能の低下を防ぐだけでなく、表面積が拡大することによって熱交換器1の機能が向上することに寄与する。
 なお、球状粒子11は、樹脂粒子であってもよい。樹脂粒子は、例えばメタクリル樹脂、ポリスチレン樹脂、シリコーン樹脂又はフェノール樹脂等である。樹脂粒子が用いられる場合、被膜4の柔軟性が高くなって、剥離等の欠陥が起こり難い。また、球状粒子11が沈降し難いため、熱交換器用コーティング組成物として使い易い。
 撥水性樹脂10に水が付着したときの接触角6は、30度以上100度以下である。なお、接触角6は40度以上80度以下であることが更に好ましい。水の接触角6が30度未満の場合、被膜4の表面の親水性が高過ぎるため、熱交換器1として初期に使用するときには高い排水性が得られるものの、汚染等により親水性が低下し易いため、親水性が不均一となり排水性が低下するおそれがある。水の接触角6が100度を超えるような場合には、撥水性が高過ぎて、表面に凹凸が形成されても、濡れ面を形成することができない場合がある。
 撥水性樹脂10は、アルキド樹脂、ウレタン樹脂、ポリオレフィン樹脂、ポリ塩化ビニル樹脂、エステル樹脂、エポキシ樹脂、アクリル樹脂、シリコーン樹脂又はフッ素樹脂等である。なお、撥水性樹脂10は、これらの混合物であってもよい。
 熱交換器用コーティング組成物は、撥水性樹脂10が水に分散した状態となったものである。なお、樹脂を分散させるために、界面活性剤等の分散剤又は有機溶剤等が使用されてもよい。有機溶剤をベースとした熱交換器用コーティング組成物は、熱交換器1に塗布される場合、内部の微細な構造が均質となるように、流動性又は蒸発速度を調整することが困難である。本実施の形態1のように、水分散液8は、低粘度で且つ低揮発性の液とすることができるため、浸漬等の簡易な手段で熱交換器1に塗布されることができる。
 ここで、球状粒子11の頂点同士の間隔Sの平均値は、2μm以上500μm以下である。図6及び図7に示すように、被膜4の表面の凹凸形状は、球状粒子11の粒子径又は平面分布によって変化する。凹凸の状態は、球状粒子11が形成する凸部7の頂点同士の間隔Sを用いて規定することができる。図6のように球状粒子11が一層に並んだ状態では、平粒粒子径より粒子径が大きな粒子が形成する凸部7の頂点の間隔Sである。また、図7のように球状粒子11が積層した状態では、積層最上層に位置する球状粒子11のうち、平均粒子径より粒子径が大きな粒子が形成する凸部7の頂点の間隔Sである。ここで、平均粒子径は、粒子径が1μm以下の微小粒子を除いた粒子の数平均値を示す。
 また、球状粒子11の頂点同士の間隔Sの平均値は、4μm以上100μm以下が更に好ましい。間隔Sの平均値が2μm未満では、被膜4の表面の撥水性が高くなる傾向があり、濡れ膜を形成することができない場合が多い。間隔Sの平均値が500μmを超える場合には、均一な濡れ膜が形成され難く好ましくない。
 球状粒子11の添加量は、無機粒子、あるいは樹脂粒子の場合には、撥水性樹脂10に対し30質量%以上200質量%以下である。また、球状粒子11の添加量は、撥水性樹脂10に対し40質量%以上150質量%以下が更に好ましい。球状粒子11の添加量が30質量%未満では、特に薄膜として塗布された場合に、球状粒子11が疎らになり、結露水で濡れ膜を形成することができる凹凸形状にならない。球状粒子11の添加量が200質量%を超える量では、バインダーとして機能する撥水性樹脂10が少な過ぎ、粒子の剥離が起こり易くなったり、粒子が撥水性樹脂10によって十分に被覆されていない状態となったりして好ましくない。金属粒子の場合には、撥水性樹脂10に対し50質量%以上1000質量%以下である。また、撥水性樹脂10に対し100質量%以上800質量%以下が更に好ましい。球状粒子11の添加量が50質量%未満では、特に薄膜として塗布された場合に、球状粒子11が疎らになり、結露水で濡れ膜を形成することができる凹凸形状にならない。球状粒子11の添加量が1000質量%を超える量では、バインダーとして機能する撥水性樹脂10が少な過ぎ、粒子の剥離が起こり易くなったり、粒子が撥水性樹脂10によって十分に被覆されていない状態となったりして好ましくない。
 球状粒子11及び前記撥水性樹脂10の添加量は、全体に対し5質量%以上40質量%以下である。また、球状粒子11及び前記撥水性樹脂10の添加量は、全体に対し10質量%以上30質量%以下が更に好ましい。球状粒子11及び撥水性樹脂10の添加量が5質量%以下では、得られる被膜4の厚さが薄過ぎて剥離し易い等、十分な耐久性が得られない。球状粒子11及び撥水性樹脂10の添加量が40質量%を超える濃度では、熱交換器用コーティング組成物の粘度が高過ぎ、熱交換器1への塗布が困難であったり、被膜4が厚くなり過ぎて熱交換器1としての性能低下につながったりするため好ましくない。
 水分散液8は、粘性を増加させる増粘剤を更に備えていてもよい。微量の増粘剤が水分散液8に添加されることにより、熱交換器用コーティング組成物の熱交換器1への塗布性が向上する。熱交換器用コーティング組成物は、熱交換器1の複雑な構造の表面に均質に塗布される必要がある。塗布された熱交換器用コーティング組成物が、液膜として熱交換器1の表面を流動する過程で、球状粒子11が不均一に分布し易い。熱交換器用コーティング組成物に微量の増粘剤が添加されることによって、球状粒子11の均一化が可能になる。増粘剤としては、ポリアクリル酸、ポリエチレングリコール等の水溶性高分子、カルボキシメチルセルロース、ヒドロキシエチルセルロース、キサンタンガム、グァーガム、ローカストビーンガム、カラギーナン又はタマリンドガム等の増粘多糖類等が挙げられる。
 これらの中でも、増粘剤は、キサンタンガム及びグァーガム等といったシュードプラスチック性を有する多糖類が好ましい。これらが添加された分散液は、熱交換器1に液を塗布して余剰液を振り切るときには高い流動性を示し、液膜となって乾燥する過程では流動性が低下すること。これにより、複雑形状の熱交換器1に対しても、球状粒子11が均一に分散した被膜4を形成することができる。キサンタンガム及びグァーガムは、添加量が微量であっても、良好なシュードプラスチック性を付与することができる。親水性物質である増粘剤が多量に添加された場合、被膜4中の親水性物質が多くなり、汚染及び劣化による熱交換器1としての排水性の低下が起こり得る。本実施の形態1は、キサンタンガム及びグァーガムの添加量が微量であるため、排水性の低下を回避することができる。
 増粘剤の添加量は、増粘剤がキサンタンガム又はグァーガムの場合、0.01質量%以上1質量%以下が好ましい。また、増粘剤の添加量は、増粘剤がキサンタンガム又はグァーガムの場合、0.02質量%以上0.2質量%以下が更に好ましい。増粘剤の添加量が0.01質量%未満では、十分な粘度調整の効果が得られない。増粘剤の添加量が1質量%を超える場合には、粘度が高くなり過ぎるのみでなく、被膜4が劣化しやすくなり好ましくない。
 (塗布方法)
 次に、熱交換器用コーティング組成物を熱交換器1に塗布する塗布方法について説明する。熱交換器用コーティング組成物の熱交換器1への塗布方法は、例えば2つの方法に対応している。一つ目は、アルミニウム製のフィン3等の熱交換器1の構成部品に熱交換器用コーティング組成物が塗布された後、熱交換器1を組み立てるプレコート法である。プレコート法ではロールコーターを用いるアルミニウム製のフィン3への塗布が主となる。本実施の形態1の熱交換器用コーティング組成物は、撥水性樹脂10と球状粒子11とからなるため、撥水性樹脂10と近年主流であるシリカ等の無機物を含む被膜4とで問題になる金型の摩耗は起こり難い。
 二つ目は、組み立てられた熱交換器1に熱交換器用コーティング組成物が塗布されるポストコート法である。ポストコート法は、熱交換器用コーティング組成物に熱交換器1を浸漬する方法、又は、熱交換器1に対して、熱交換器用コーティング組成物を吹き付けたり、流し掛けたりする方法がある。いずれの方法でも、熱交換器1の表面が熱交換器用コーティング組成物で濡らされた後、余剰の熱交換器用コーティング組成物が除去されて乾燥する。余剰の熱交換器用コーティング組成物の除去は、重力による自然落下、振動又は回転運動による慣性力による振り切りによって行われる。
 乾燥は、放置して自然乾燥する方法でよいが、風を送って加速する方法でもよい。また、乾燥は、熱風又は赤外線により熱交換器1を加熱する方法も好ましい。60℃以上で加熱されることによって、熱交換器用コーティング組成物が確実に乾燥されるため、かび等の微生物の発生を防止することができる。100℃以上、好ましくは130℃以上で加熱されることによって、被膜4の強度が向上したり、耐水性が向上したりする効果も得られる。
 本実施の形態1によれば、熱交換器用コーティング組成物は、平均粒子径が2μm以上50μm以下の球状粒子11を含有する撥水性樹脂10を有する水分散液8を備える。熱交換器用コーティング組成物が熱交換器1の表面に塗布されると、熱交換器1の表面に被膜4が形成される。被膜4は、親水性を有しておらず、適度な撥水性を有している。このように、熱交換器用コーティング組成物は、親水化及び高撥水化することなく、熱交換器1の排水性を向上させることができる。
 以下、実施例を示して実施の形態1を具体的に説明するが、実施の形態1は下記の実施例に限定されるものではない。
〔実施例1~7及び比較例1~4〕
 撥水性樹脂10として、ポリウレタンディスパージョンUW-5002E(宇部興産株式会社製)を10質量%、界面活性剤として、ポリオキシエチレンラウリルエーテル0.2質量%、増粘剤としてキサンタンガム(エコーガム、DSP五協フード&ケミカル株式会社製)0.1質量%、球状粒子11を表1の組成で混合した塗布液を作成した。この塗布液を、厚さ10mmのガラスの板上にスプレーで塗布し、130度で10分間乾燥した。球状粒子11は、溶融シリカ(デンカ株式会社製)、シリカ球状微粒子SO-C(アドマテックス株式会社製)、及び金属粒子PF-10R(エプソンアトミックス株式会社製)を適度に混合して粒子径を調整して用いた。塗布後のガラス板を、-10℃に冷却し、80℃の飽和水蒸気の環境において塗布面が鉛直になるように設置し、表面の濡れ状態を観察した。約5分後の凝結水5の状態を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~7、比較例2及び3において、水の接触角6は、球状粒子11を含まない比較例4と同等の値となっている。接触角6の測定は、直径3mm程度の水滴を付着させて行う方法で行われている。即ち、この結果は、球状粒子11の添加では、表面の撥水性は変化していないことを示している。比較例1では、接触角6が102度と高い撥水性を示している。粒子径が小さい球状シリカによる微細な凹凸形状は、撥水性を高くする効果があることを示している。また、凝結水5の状態は、実施例1~5、7において、濡れ面を形成したものとなっている。実施例6では、濡れ面が形成されているが、溶融シリカによる凸部7が点状に濡れずに分布する網目状の水膜を形成している。いずれの実施例においても、塗布された被膜4の表面は、撥水性を有しているにもかかわらず水膜が形成され、水は下方に流れる状態となった。熱交換器1の表面に適用された場合には、親水性の被膜4の場合と同様に高い排水性を有することが期待される。
 一方、比較例2~4では、凝結水5は水滴となり、大きな水滴は重力によって流れ落ちたが、直径3~6mmの水滴は表面に残留する状態であった。熱交換器1の表面に適用された場合には、凝結水5は排出され難く、通風抵抗が大きくなると考えられる。比較例1では、大きく成長した水滴は滑り落ちたが、無数の小さな水滴が残留した状態となった。この場合も、熱交換器1の表面に適用された場合には、凝結水5は排出され難く、通風抵抗が大きくなると考えられる。
〔実施例8、9及び比較例5~8〕
 実施例2及び4で用いたコーティング液をアルミニウムの板上にスプレーで塗布し、130℃、10分間加熱乾燥したものを、それぞれ実施例8及び9とした。コロイダルシリカST-PS-S(日産化学株式会社製)5質量%、アクリルエマルジョンを3質量%、界面活性剤としてポリオキシエチレンラウリルエーテル0.2質量%、増粘剤としてキサンタンガム(エコーガム、DSP五協フード&ケミカル株式会社製)0.1質量%、混合したコーティング液を調整し、アルミニウムの板上に、スプレーで塗布して100℃、10分間加熱乾燥したものを比較例5とした。比較例5に、球状シリカを添加したものを比較例6とした。ポリシラザン(アクアミカNP140、A Z エレクトロニック マテリアルズ株式会社製)を、アルミニウムの板上に、スプレーで塗布し、約2週間常温放置し、シリカ膜を形成したものを比較例7とした。比較例7に、球状シリカを添加して作製したものを比較例8とした。
 実施例8、9及び比較例5~8の試料について、汚染による撥水化及び着臭の評価を行った。各試料の30mm×50mmの小片を、αピネン、ノネナール及び酢酸ブチルを等量染み込ませた不織布と共に、2Lのガラス製容器に封入し、容器ごと40℃に加温して6時間放置することで試料を汚染した。汚染の影響は、汚染前後での水の接触角6の変化量で確認した。着臭は、5人のモニターが試験片のにおいを嗅いで定量化した。各人が、臭気なしの1から強い臭気を感じる5までの5段階で判定し、平均値を求めた。以上の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例8及び9では、汚染の前後で接触角6の変化はなく、着臭もほとんどない。被膜4が撥水性樹脂10のみで構成されているため、汚染物質の吸着の影響がないためである。これは、熱交換器1として適用される場合、汚染により排水性が低下したり、凝結水5が飛び出したりするおそれがないことを示している。また、着臭もほとんどないことを示している。比較例5~8では、汚染前の接触角6は小さく、高い親水性を示しているが、汚染後には接触角6が大きくなり撥水化していることがわかる。汚染により撥水化するような被膜4では、熱交換器1の形態では、局所的に撥水化が進む可能性が高い。熱交換器1の内部で、親水性が不均一な場合、凝結水5の流れが悪くなり、排水性の低下及び通風抵抗の増大につながる。比較例5~8では、着臭も大きいことがわかる。親水性向上のためのシリカが表面に露出しているため、ここに臭気分子が吸着するためと考えられる。着臭に関しては球状粒子11を添加したほうが、着臭しやすい結果となっている。これは、球状粒子11によって、被膜4の表面積が大きくなり、臭気分子の吸着量が増えたことによると考えられる。
〔実施例10~12及び比較例9~11〕
 熱交換器用コーティング組成物として、実施例8を基準として、増粘剤を変化させたものを調合して、実施例10~12、比較例9~11とした。これらの塗布性を、フィンピッチ1.2mmのアルミニウム製のフィン3と銅製の伝熱管2とからなる熱交換器1を用いて評価した。熱交換器1の寸法は、30mm×250mm×100mmである。熱交換器用コーティング組成物に熱交換器1を浸漬した後、アルミニウム製のフィン3間からコーティング組成物が流れ出るように、水平面から約60度傾斜するように立て掛けて約30分放置した。塗布後の被膜4の状態を、外観及び切断したフィン3の表面の状態から確認した。以上の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 接触角6に関しては、増粘剤が添加されていない比較例9と比較して、実施例10~12では変化がなく、増粘剤の添加は表面の親水性に影響していないことがわかる。増粘剤の添加量が多い比較例10及び11では、ごく僅かな親水化が認められる。比較例9では、熱交換器1の全体に均質な被膜4が形成されていたが、アルミニウム製のフィン3の表面の観察では、球状粒子11がうろこ状に不均一に分布していることが確認された。比較例10及び11では、均質な被膜4が形成されているが、フィン3間で熱交換器用コーティング組成物が滞留し、乾燥して形成されたブリッジングが認められた。これは、コーティング組成物の粘性が高過ぎて、良好な塗布を行うことができなかったためである。実施例10~12では、いずれについても、被膜4は均質であり、ブリッジングを生じることもなく、良好な被膜4の形成が可能であることがわかる。
 1 熱交換器、2 伝熱管、3 フィン、4 被膜、4a 被膜、4b 被膜、5 凝結水、6 接触角、7 凸部、8 水分散液、10 撥水性樹脂、11 球状粒子。

Claims (12)

  1.  平均粒子径が2μm以上50μm以下の球状粒子を含有する撥水性樹脂を有する水分散液を備える
     熱交換器用コーティング組成物。
  2.  前記球状粒子は、
     無機粒子である
     請求項1記載の熱交換器用コーティング組成物。
  3.  前記無機粒子は、
     溶融シリカ又は溶融アルミナである
     請求項2記載の熱交換器用コーティング組成物。
  4.  前記球状粒子は、
     金属粒子である
     請求項1記載の熱交換器用コーティング組成物。
  5.  前記球状粒子は、
     樹脂粒子である
     請求項1記載の熱交換器用コーティング組成物。
  6.  前記樹脂粒子は、
     メタクリル樹脂、ポリスチレン樹脂、シリコーン樹脂又はフェノール樹脂である
     請求項5記載の熱交換器用コーティング組成物。
  7.  前記撥水性樹脂に水が付着したときに、前記撥水性樹脂を基準とした水の端点における角度である接触角は、30度以上100度以下である
     請求項1~6のいずれか1項に記載の熱交換器用コーティング組成物。
  8.  前記撥水性樹脂は、
     アルキド樹脂、ウレタン樹脂、ポリオレフィン樹脂、ポリ塩化ビニル樹脂、エステル樹脂、エポキシ樹脂、アクリル樹脂、シリコーン樹脂又はフッ素樹脂である
     請求項1~7のいずれか1項に記載の熱交換器用コーティング組成物。
  9.  前記球状粒子の頂点同士の間隔の平均値は、2μm以上500μm以下である
     請求項1~8のいずれか1項に記載の熱交換器用コーティング組成物。
  10.  前記球状粒子の添加量は、
     前記撥水性樹脂に対し30質量%以上200質量%以下である
     請求項1~9のいずれか1項に記載の熱交換器用コーティング組成物。
  11.  前記球状粒子及び前記撥水性樹脂の添加量は、
     全体に対し5質量%以上40質量%以下である
     請求項1~10のいずれか1項に記載の熱交換器用コーティング組成物。
  12.  前記水分散液は、
     粘性を増加させる増粘剤を更に備え、
     前記増粘剤の添加量は、
     全体に対し0.01質量%以上1質量%以下である
     請求項1~11のいずれか1項に記載の熱交換器用コーティング組成物。
PCT/JP2020/028928 2020-07-28 2020-07-28 熱交換器用コーティング組成物 WO2022024227A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20947783.5A EP4190875A4 (en) 2020-07-28 2020-07-28 COATING COMPOSITION FOR HEAT EXCHANGERS
CN202080102996.0A CN115867617B (zh) 2020-07-28 2020-07-28 热交换器用涂布组合物
JP2021500985A JP6949265B1 (ja) 2020-07-28 2020-07-28 熱交換器用コーティング組成物
US18/009,985 US20230228503A1 (en) 2020-07-28 2020-07-28 Heat exchanger coating composition
PCT/JP2020/028928 WO2022024227A1 (ja) 2020-07-28 2020-07-28 熱交換器用コーティング組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/028928 WO2022024227A1 (ja) 2020-07-28 2020-07-28 熱交換器用コーティング組成物

Publications (1)

Publication Number Publication Date
WO2022024227A1 true WO2022024227A1 (ja) 2022-02-03

Family

ID=78001367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028928 WO2022024227A1 (ja) 2020-07-28 2020-07-28 熱交換器用コーティング組成物

Country Status (5)

Country Link
US (1) US20230228503A1 (ja)
EP (1) EP4190875A4 (ja)
JP (1) JP6949265B1 (ja)
CN (1) CN115867617B (ja)
WO (1) WO2022024227A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220145152A1 (en) * 2020-11-11 2022-05-12 Hangzhou Sanhua Research Institute Co., Ltd. Coating material and preparation method thereof, heat exchanger and method for treating heat exchanger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03244680A (ja) 1990-02-22 1991-10-31 Matsushita Refrig Co Ltd 撥水性コーティング用組成物及び撥水性コーティング用組成物を用いた熱交換器
JPH06264001A (ja) 1993-03-11 1994-09-20 Nippon Light Metal Co Ltd アルミニウム材料の表面に親水性を付与する表面処理
JPH08285491A (ja) * 1995-04-13 1996-11-01 Kobe Steel Ltd 表面処理アルミニウムフィン材
JP2004176979A (ja) * 2002-11-26 2004-06-24 Daikin Ind Ltd 冷凍装置用蒸発器及び冷凍装置
JP2011163715A (ja) * 2010-02-12 2011-08-25 Kobe Steel Ltd 熱交換器用アルミニウムフィン材
JP2011196585A (ja) * 2010-03-18 2011-10-06 Ricoh Co Ltd 熱交換器及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181558A (en) * 1990-11-13 1993-01-26 Matsushita Refrigeration Company Heat exchanger
CA2202834C (en) * 1996-04-17 2001-08-07 Susumu Fujimori Water repellent coating composition and coating films and coated articles using the same
JP4969341B2 (ja) * 2007-07-03 2012-07-04 古河スカイ株式会社 金属塗装材及びその製造方法
JP5462578B2 (ja) * 2009-10-15 2014-04-02 株式会社Uacj 撥水性金属塗装材
JP5392371B2 (ja) * 2011-05-31 2014-01-22 ダイキン工業株式会社 熱交換器のフィン、熱交換器および空気調和装置
CN110248800B (zh) * 2017-02-14 2021-03-09 三菱电机株式会社 防水性被膜及形成有其的制品
JP7471080B2 (ja) * 2019-12-25 2024-04-19 株式会社レゾナック・パッケージング 熱交換器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03244680A (ja) 1990-02-22 1991-10-31 Matsushita Refrig Co Ltd 撥水性コーティング用組成物及び撥水性コーティング用組成物を用いた熱交換器
JPH06264001A (ja) 1993-03-11 1994-09-20 Nippon Light Metal Co Ltd アルミニウム材料の表面に親水性を付与する表面処理
JPH08285491A (ja) * 1995-04-13 1996-11-01 Kobe Steel Ltd 表面処理アルミニウムフィン材
JP2004176979A (ja) * 2002-11-26 2004-06-24 Daikin Ind Ltd 冷凍装置用蒸発器及び冷凍装置
JP2011163715A (ja) * 2010-02-12 2011-08-25 Kobe Steel Ltd 熱交換器用アルミニウムフィン材
JP2011196585A (ja) * 2010-03-18 2011-10-06 Ricoh Co Ltd 熱交換器及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4190875A4

Also Published As

Publication number Publication date
EP4190875A1 (en) 2023-06-07
CN115867617B (zh) 2024-07-26
JP6949265B1 (ja) 2021-10-13
US20230228503A1 (en) 2023-07-20
JPWO2022024227A1 (ja) 2022-02-03
CN115867617A (zh) 2023-03-28
EP4190875A4 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
KR940007204B1 (ko) 열교환기
US6102994A (en) Alumina-based hydrophilic antimicrobial coating
JP2009229040A (ja) 熱交換器および熱交換器の製造方法
WO2014034514A1 (ja) 防汚コーティング、それを備えた熱交換器及びその製造方法
WO2022024227A1 (ja) 熱交換器用コーティング組成物
JP2011163715A (ja) 熱交換器用アルミニウムフィン材
JP6887366B2 (ja) プレコートフィン材
JP6374219B2 (ja) 熱交換器用フィン材及びその製造方法
CN109923367B (zh) 防污性高亲水性烧结涂膜及其制造方法、以及热交换器用铝翅片件和热交换器以及冷热设备
US20070114011A1 (en) Heat exchanger
US6904962B2 (en) Enthalpy exchanger
WO2017145946A1 (ja) フィン材及び熱交換器
JP2013096631A (ja) 熱交換器
JP3430482B2 (ja) 熱交換材
JP2009103434A (ja) アルミニウム熱交換器
JP2012078081A (ja) アルミニウム製フィン材
JP2012076456A (ja) アルミニウム製フィン材
JP2834228B2 (ja) 撥水性コーティング用組成物及び撥水性コーティング用組成物を用いた熱交換器
JPH1123175A (ja) 熱交換材
JP2019074281A (ja) 親水性塗膜を備えたアルミニウムフィンと親水性塗膜形成用塗料およびアルミニウムフィンの製造方法と熱交換器
JPH08259851A (ja) 撥水性塗膜、撥水性塗料及び熱交換器用フィン
JP5436481B2 (ja) 熱交換器及びその製造方法
JP5781726B2 (ja) 熱交換用フィン材
JP2012211745A (ja) 熱交換器の製造方法および製造装置
JP5408770B2 (ja) 伝熱体用の伝達装置、特に波形リブ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021500985

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947783

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020947783

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020947783

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE