WO2022022147A1 - Glsi多层布线高价金属在cmp中的应用 - Google Patents
Glsi多层布线高价金属在cmp中的应用 Download PDFInfo
- Publication number
- WO2022022147A1 WO2022022147A1 PCT/CN2021/100632 CN2021100632W WO2022022147A1 WO 2022022147 A1 WO2022022147 A1 WO 2022022147A1 CN 2021100632 W CN2021100632 W CN 2021100632W WO 2022022147 A1 WO2022022147 A1 WO 2022022147A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wiring
- valent
- cmp
- copper
- cobalt
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 38
- 239000002184 metal Substances 0.000 title claims abstract description 38
- 238000005498 polishing Methods 0.000 claims abstract description 69
- 239000007800 oxidant agent Substances 0.000 claims abstract description 13
- 230000001590 oxidative effect Effects 0.000 claims abstract description 12
- 150000001875 compounds Chemical class 0.000 claims abstract description 6
- 239000007788 liquid Substances 0.000 claims description 27
- 150000002736 metal compounds Chemical class 0.000 claims description 26
- 239000002738 chelating agent Substances 0.000 claims description 14
- FWBOFUGDKHMVPI-UHFFFAOYSA-K dicopper;2-oxidopropane-1,2,3-tricarboxylate Chemical compound [Cu+2].[Cu+2].[O-]C(=O)CC([O-])(C([O-])=O)CC([O-])=O FWBOFUGDKHMVPI-UHFFFAOYSA-K 0.000 claims description 11
- 150000001879 copper Chemical class 0.000 claims description 10
- 150000003839 salts Chemical class 0.000 claims description 10
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 8
- 229910052707 ruthenium Inorganic materials 0.000 claims description 8
- IEKWPPTXWFKANS-UHFFFAOYSA-K trichlorocobalt Chemical compound Cl[Co](Cl)Cl IEKWPPTXWFKANS-UHFFFAOYSA-K 0.000 claims description 7
- 229910017052 cobalt Inorganic materials 0.000 claims description 6
- 239000010941 cobalt Substances 0.000 claims description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 6
- VVYPIVJZLVJPGU-UHFFFAOYSA-L copper;2-aminoacetate Chemical compound [Cu+2].NCC([O-])=O.NCC([O-])=O VVYPIVJZLVJPGU-UHFFFAOYSA-L 0.000 claims description 6
- VMDTXBZDEOAFQF-UHFFFAOYSA-N formaldehyde;ruthenium Chemical compound [Ru].O=C VMDTXBZDEOAFQF-UHFFFAOYSA-N 0.000 claims description 5
- 229910021581 Cobalt(III) chloride Inorganic materials 0.000 claims description 4
- 229910021583 Cobalt(III) fluoride Inorganic materials 0.000 claims description 4
- GZLCNRXKVBAALW-UHFFFAOYSA-N O=[Ru](=O)=O Chemical compound O=[Ru](=O)=O GZLCNRXKVBAALW-UHFFFAOYSA-N 0.000 claims description 4
- SCNCIXKLOBXDQB-UHFFFAOYSA-K cobalt(3+);2-hydroxypropane-1,2,3-tricarboxylate Chemical compound [Co+3].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O SCNCIXKLOBXDQB-UHFFFAOYSA-K 0.000 claims description 4
- WZJQNLGQTOCWDS-UHFFFAOYSA-K cobalt(iii) fluoride Chemical compound F[Co](F)F WZJQNLGQTOCWDS-UHFFFAOYSA-K 0.000 claims description 4
- 229910001927 ruthenium tetroxide Inorganic materials 0.000 claims description 4
- ZTWIEIFKPFJRLV-UHFFFAOYSA-K trichlororuthenium;trihydrate Chemical compound O.O.O.Cl[Ru](Cl)Cl ZTWIEIFKPFJRLV-UHFFFAOYSA-K 0.000 claims description 4
- 239000000126 substance Substances 0.000 abstract description 9
- 238000000034 method Methods 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 3
- 238000003860 storage Methods 0.000 abstract description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 18
- 229910021645 metal ion Inorganic materials 0.000 description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 15
- 229910052802 copper Inorganic materials 0.000 description 15
- 239000010949 copper Substances 0.000 description 15
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 14
- 238000004377 microelectronic Methods 0.000 description 12
- 239000010410 layer Substances 0.000 description 11
- 239000008367 deionised water Substances 0.000 description 10
- 229910021641 deionized water Inorganic materials 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 230000004888 barrier function Effects 0.000 description 8
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical group O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000013543 active substance Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000003082 abrasive agent Substances 0.000 description 4
- 239000012190 activator Substances 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 3
- 229920002050 silicone resin Polymers 0.000 description 3
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910001431 copper ion Inorganic materials 0.000 description 2
- 239000013530 defoamer Substances 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- -1 dodecylcarbonyl Chemical group 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 150000004684 trihydrates Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09G—POLISHING COMPOSITIONS; SKI WAXES
- C09G1/00—Polishing compositions
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09G—POLISHING COMPOSITIONS; SKI WAXES
- C09G1/00—Polishing compositions
- C09G1/02—Polishing compositions containing abrasives or grinding agents
Definitions
- the invention relates to the technical field of microelectronics, and more particularly, to the application of a GLSI multilayer wiring high-valent metal in CMP, and a CMP polishing solution containing a wiring high-valent metal compound.
- the wiring is first etched by photolithography to make a wiring groove, and the wire metal is laid on it by electroplating. After electroplating, a layer of wiring metal appears inside and outside the wiring groove, and has a height difference between the low and the outside of the groove, and it is flat in the multi-layer wiring.
- the degree difference should be lower than the wavelength of photolithography, and IBM invented chemical mechanical polishing technology to achieve planarization (CMP). Experts believe that there would be no microelectronics development without CMP.
- the wiring metals are copper, ruthenium, cobalt, etc., and the chemical action is to oxidize the zero-valent wiring metal into a water-soluble product under CMP conditions through the action of an oxidant.
- the oxidant used to prepare the polishing liquid is hydrogen peroxide (ie, hydrogen peroxide), but because the hydrogen peroxide is unstable and easy to decompose, the CMP rate is unstable, and it has to be used and prepared.
- hydrogen peroxide is dangerous to transport and store, and it is easy to corrode equipment. Therefore, it is urgent to develop a kind of polishing liquid with good stability and safe use.
- the existing polishing liquid is prone to generate biofilm during transportation and storage. Since the effective components of the polishing liquid that generates the biofilm have changed, they can only be discarded, causing losses to users. Therefore, the antibacterial research of polishing liquid is also a technical problem that needs to be solved urgently in the microelectronics industry.
- the purpose of the present invention is to aim at the technical defects existing in the prior art, and to provide an application in the field of CMP using a wiring high-valent metal compound to replace the current oxidant.
- Another object of the present invention is to provide a CMP polishing solution with good stability and safe use.
- the multi-layer wiring high-valent metal compound replaces the oxidant.
- the polishing liquid used for CMP contains wiring high-priced metal compounds of the same type as wiring metals.
- the wiring high-valent metal compound is an inorganic copper salt, an organic copper salt, a high-valent salt of cobalt or a high-valent salt of ruthenium.
- the wiring high-valent metal compound is copper citrate, chelated copper citrate, copper glycinate, [Co(NH 3 ) 6 ]Cl 3 , cobalt trichloride, cobalt trifluoride, cobalt citrate, and ruthenium chloride trihydrate , dodecacarbonyl triruthenium, ruthenium trioxide or ruthenium tetroxide.
- a CMP polishing solution contains 0.1-60 g/L of a wiring high-priced metal compound of the same type as the wiring metal.
- the wiring high-valent metal compound is an inorganic copper salt, an organic copper salt, a high-valent salt of cobalt or a high-valent salt of ruthenium.
- the application of GLSI multi-layer wiring high-valent metal in CMP of the present invention adopts wiring high-valent metal ion compound to replace the oxidant in CMP.
- the pressure and kinetic energy of the convex part are larger than that of the concave part, and the high-valent metal ion of the wiring is in the convex part. Overcome the chemical barrier to reach the valence bond distance and undergo oxidation reaction with the zero-valent wiring metal to become low-valent metal ions.
- the wiring high-valent metal compound is used as an oxidant instead of hydrogen peroxide, etc.
- the pressure and kinetic energy of the convex part are larger than that of the concave part, and the high-valent metal ion of the wiring overcomes the chemical potential barrier at the convex part to reach the valence bond distance and
- the zero-valent wiring metal undergoes oxidation reaction to become low-valent metal ions, and the low-valent metal ions are complexed by the chelating agent into soluble complexes and taken away, or oxidized into water-soluble products and taken away; while the pressure in the recess is small ,
- the kinetic energy is small, the wiring high-priced metal ions are difficult to overcome the chemical barrier, do not react or react slowly, the convex and the concave are flattened by the difference of high and low rates, which meets the requirements of use, simplifies the process, and improves the cost performance.
- it is safe to transport and store
- the polishing liquid of the present invention when the polishing liquid contains high-valent copper ions, under normal temperature conditions, the high-valent copper ions denature and sterilize the protein, so as to avoid destroying the effective components in the polishing liquid and ensure the safety of transportation and storage. , easy to store, high stability and easy to use.
- the wiring high-priced metal compound is used as an oxidant instead of hydrogen peroxide, which ensures the polishing rate and has a good polishing effect.
- the polishing liquid of the present invention can be stable for more than 6 months and can be used directly. When in use, the configuration of special equipment is not required, which simplifies the process.
- the stabilizer-added polishing solution can only be stored for 3 to 5 days, after which the polishing rate drops rapidly and can only be used and prepared. Therefore, the technical solution of the present invention greatly improves the stability of the polishing liquid.
- the application of the high-valent metal of the GLSI multi-layer wiring of the present invention in CMP the compound of the high-valent metal of the multi-layer wiring replaces the oxidant.
- the polishing liquid used for CMP contains wiring high-priced metal compounds of the same type as wiring metals.
- the wiring high-valent metal compound is any one of inorganic copper salts, organic copper salts, high-valent cobalt salts, and high-valent salts of ruthenium.
- the CMP polishing solution of the present invention replaces the oxidizing agent with a wiring high-valent metal compound in the existing polishing solution.
- the metal ion species of the wiring high-valent metal compound is the same as the wiring metal species.
- the wiring metal is copper, and the high-priced metal compound for wiring is copper citrate.
- Abrasive, copper citrate, FA/O activator, JFC, and silicone resin were sequentially added to deionized water, mixed and fully stirred to prepare 1000 g of alkaline polishing liquid.
- the abrasive is silica sol with a particle size of 15nm, and the dosage is 0.1wt%; copper citrate is 0.5g/L; FA/O active agent is 0.1mL/L; JFC is 0.1mL/L; silicone resin is 1wt ⁇ , make up to 1000g with deionized water.
- Immediate polishing Use the French E460 polishing machine, under the conditions of working pressure of 1 Psi, speed of 90 rpm, temperature of 23 ° C, and flow rate of 300 mL/min, use the above-mentioned polishing liquid to polish the copper film for 3 minutes, and the rate is After testing, the indicators after polishing meet the requirements of the microelectronics field.
- polishing solution was placed for 183 days, and a sterile membrane was produced. Polishing is carried out under the same conditions, and the rate is The polishing rate remained very stable after 183 days. After testing, the indicators after polishing meet the requirements of the microelectronics field.
- the wiring metal is copper, and the high-priced metal compound for wiring is citric acid chelated copper.
- Abrasives, FA/O chelating agent, citric acid chelated copper, FA/O active agent, JFC, and GPE were added to deionized water in turn, mixed and fully stirred to prepare 1000 g of alkaline polishing liquid.
- the abrasive is made of silica sol with a particle size of 80-100nm, and the concentration is 20wt%; FA/O chelating agent 30g/L, citric acid chelated copper 30g/L, FA/O active agent 30mL/L, JFC 30mL/L , Defoamer GPE 10wt ⁇ , deionized water to make up 1000g.
- the working pressure is 5Psi
- the speed is 90 rpm
- the temperature is 23 °C
- the flow rate is 300 mL/min.
- the rate of polishing the copper film for 3 minutes is After standing for 183 days, the copper film was CMP planarized under the same conditions at a rate of Still very stable after 183 days. After testing, the indicators after polishing meet the requirements of the microelectronics field.
- the wiring metal is copper, and the high-priced metal compound for wiring is citric acid chelated copper.
- Abrasives, citric acid chelated copper, FA/O active agent, JFC, and silicone resin were sequentially added to deionized water, mixed and fully stirred to prepare 1000 g of alkaline polishing liquid.
- the abrasive is made of silica sol with a particle size of 80-100nm, and the concentration is 10wt%; citric acid chelated copper 30g/L, FA/O activator 30mL/L, defoamer GPE 5wt ⁇ , deionized water to make up 1000g .
- Polishing immediately after preparation Polishing for 3 minutes in a French E460 polishing machine at a working pressure of 3 Psi, a rotational speed of 140 rpm, a temperature of 23 °C, and a flow rate of 300 mL/min for 3 minutes
- the copper film was CMP planarized under the same conditions at a rate of very stable.
- the indicators after polishing meet the requirements of the microelectronics field.
- the wiring metal is copper, and the high-priced metal compound of the wire is copper glycinate.
- V medium of Vcu After standing for 180 days, polish the barrier pattern sheet under the same standard, V medium is Vcu is Good stability.
- the selection ratio is 1.66, and the degree of flatness is ⁇ 3%, which well meets the production requirements in the field of microelectronics.
- the wiring metal is ruthenium, and the high-valent metal compound for wiring is selected from dodecacarbonyl triruthenium.
- a polishing liquid was prepared by mixing abrasives, FA/O chelating agent, activating agent 50 mL/L, triruthenium dodecylcarbonyl and deionized water.
- the abrasives were selected as the particle size of 40nm silica sol 10wt%, FA/O chelating agent 5mL/L, activator 50mL/L, dodecacarbonyl triruthenium 15g/L, and the balance of deionized water.
- the indicators after polishing meet the requirements of the microelectronics field. After being placed for 180 days, the polishing rate did not decrease under the same conditions, and the indicators met the requirements of the microelectronics field.
- the wiring metal is cobalt, and the high-valent metal compound for wiring is selected from trichlorocobalt ammine complex.
- Silica sol, trichlorocobalt ammine complex, FA/O activator, FA/O chelating agent and deionized water are prepared into polishing liquid.
- the particle size of the silica sol is 60nm, the concentration is 5wt%, the trichlorocobalt ammine complex is 15mL/L; the FA/O active agent is 50mL/L; the FA/O chelating agent is 10mL/L, and the balance of deionized water.
- the indicators after polishing meet the requirements of the microelectronics field. After being placed for 180 days, the polishing rate did not decrease under the same conditions, and the indicators met the requirements of the microelectronics field.
- the soluble salt of the wiring high-valent metal ion is used as the oxidant instead of hydrogen peroxide, and the stability of more than 6 months is realized.
- the wiring high-valent metal ions usually do not react with the zero-valent wiring metal. Under the pressure of CMP, the wiring high-valent metal ions and the free state zero-valent wiring metal overcome the chemical barrier to reach the valence bond distance, and have high-speed rotation and high kinetic energy, resulting in high wiring costs. Metal ions react with zero-valent wiring metals to generate wiring low-valent metal ions, while wiring high-valent metal ions are unstable. It is taken away with the polishing liquid in the form of a soluble complex.
- the FA/O chelating agent When the FA/O chelating agent with more than 13 chelating rings invented by Professor Liu Yuling of Hebei University of Technology is used, the FA/O chelating agent is a strong chelating agent and is easily soluble. , The surface of the device is rarely attached.
- the metal ions of the CMP polishing solution of Hebei University of Technology are greater than 2000ppm, while the Cabot of the United States is less than 1 ppm, the IC leakage current of Hebei University of Technology is 10-12 A, and the Cabot leakage The current is 10-11 A, an order of magnitude lower.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
本发明公开了一种GLSI多层布线高价金属在CMP中的应用,为化学机械抛光平坦化提高稳定性提供一种新技术。所述多层布线高价金属的化合物替代氧化剂。CMP所用抛光液中含有与布线金属种类相同的布线高价金属化合物。采用本发明技术方案的抛光液可以稳定6个月以上,直接使用。使用时,不用专用设备的配置,简化了工艺,大大提高了抛光液的稳定性。而且,运输保存安全,不对设备产生腐蚀,使用更安全。
Description
本申请要求于2020年07月28日提交中国专利局、申请号为202010735582.3、发明名称为“GLSI多层布线高价金属在CMP中的应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及微电子技术领域,更具体的说,是涉及一种GLSI多层布线高价金属在CMP中的应用,以及含有布线高价金属化合物的CMP抛光液。
极大规模集成电路(GLSI)从上世纪90年代集成度按摩尔定律以18个月翻一翻增加,每个几十平方毫米芯片可集成近百亿元器件,互联后才有设计功能,联线总长度达地球赤道几圈长。由于单层连会产生线线短路,IBM发明了分层连线的方法,连线间需绝缘介质。为防止布线金属工作中扩散连通短路,在介质与布线金属间加一层惰性金属即阻档层。布线首先用光刻蚀,做出布线槽,用电镀法把导线金属铺上,电镀后布线槽内外出现一层布线金属,且具有槽内低槽外高的高度差,在多层布线中平整度差应低于光刻的波长,IBM公司发明了化学机械抛光技术实现平坦化(CMP)。专家认为没有CMP就没有微电子发展。
目前,布线金属为铜、钌、钴等,化学作用就是在CMP条件下通过氧化剂作用将零价布线金属氧化成溶于水的产物被带走。目前,用于制备抛光液的氧化剂为双氧水(即过氧化氢),但由于双氧水不稳定易分解,使得CMP速率不稳,只得现用现配。而且,双氧水运输保存危险,容易腐蚀设备。因此,急需研究一种稳定性好,使用安全的抛光液。
同时,现有抛光液在运输及储存过程中容易生成菌膜,由于生成菌膜的抛光液的有效成分发生了变化,只能废弃掉,给用户造成了损失。因此,抛光液的抑菌研究也是微电子行业急需解决的技术问题。
发明内容
本发明的目的是针对现有技术中存在的技术缺陷,而提供一种采用布线高价金属化合物替代目前的氧化剂在CMP领域的应用。
本发明的另一个目的是提供一种稳定性好,使用安全的CMP抛光液。
为实现本发明的目的所采用的技术方案是:
一种GLSI多层布线高价金属在CMP中的应用。
所述多层布线高价金属的化合物替代氧化剂。
CMP所用抛光液中含有与布线金属种类相同的布线高价金属化合物。
所述布线高价金属化合物为无机铜盐、有机铜盐、钴的高价盐或钌的高价盐。
所述布线高价金属化合物为柠檬酸铜、柠檬酸螯合铜、甘氨酸铜、[Co(NH
3)
6]Cl
3、三氯化钴、三氟化钴、柠檬酸钴、三水氯化钌、十二羰基三钌、三氧化钌或四氧化钌。
一种CMP抛光液,所述抛光液中含有与布线金属种类相同的布线高价金属化合物0.1~60g/L。
还包括螯合剂0.1~60g/L。
所述布线高价金属化合物为无机铜盐、有机铜盐、钴的高价盐或钌的高价盐。
与现有技术相比,本发明的有益效果是:
1、本发明GLSI多层布线高价金属在CMP中的应用采用布线高价金属离子化合物代替了CMP中的氧化剂,在CMP的条件下,凸处压力及动能大于凹处,布线高价金属离子在凸处克服化学势垒达到价键距离与零价布线金属发生氧化反应成为低价金属离子,低价金属离子被螯合剂络合为易溶的络合物带走,或者被氧化成溶于水的产物被带走;而凹处压力小,动能小,布线高价金属离子难以克服化学势垒,不反应或慢反应,凸处与凹处以高低速率差实现了平坦化。通过本发明的方案为化学机械抛光平坦化及稳定性开辟了新技术。
2、本发明的抛光液中以布线高价金属化合物替代双氧水等作为氧化剂,在CMP的条件下,凸处压力及动能大于凹处,布线高价金属离子在凸处克服化学势垒达到价键距离与零价布线金属发生氧化反应成为低价 金属离子,低价金属离子被螯合剂络合为易溶的络合物带走,或者被氧化成溶于水的产物被带走;而凹处压力小,动能小,布线高价金属离子难克服化学势垒,不反应或慢反应,凸处与凹处以高低速率差实现了平坦化,满足了使用要求,简化了工艺,提高了性价比。而且,运输保存安全,不对设备产生腐蚀,使用更安全。
3、本发明的抛光液中,当抛光液中含有高价铜离子时,在常温条件下,高价铜离子使蛋白变性而杀菌,从而避免破坏抛光液中的有效成分,保障了运输和储存的安全,便于储存,稳定性高,使用方便。
4、本发明抛光液中以布线高价金属化合物替代双氧水等作为氧化剂,保障了抛光的速率,抛光效果好。
5、本发明的抛光液可以稳定6个月以上,直接使用。使用时,不用专用设备的配置,简化了工艺。而现有技术中加稳定剂的抛光液也只能存放3~5天,之后抛光速率迅速下降,只能现用现配。因此,本发明的技术方案大大提高了抛光液的稳定性。
以下结合具体实施例对本发明进行详细说明。
本发明GLSI多层布线高价金属在CMP中的应用,所述多层布线高价金属的化合物替代氧化剂。CMP所用抛光液中含有与布线金属种类相同的布线高价金属化合物。
其中,所述布线高价金属化合物为无机铜盐、有机铜盐、钴的高价盐、钌的高价盐中的任一种。可以选择柠檬酸铜、柠檬酸螯合铜、甘氨酸铜、[Co(NH
3)
6]Cl
3、三氯化钴、三氟化钴、柠檬酸钴、三水氯化钌、十二羰基三钌、三氧化钌及四氧化钌中的至少一种。
本发明的CMP抛光液在现有抛光液中使用布线高价金属化合物替代氧化剂。布线高价金属化合物的金属离子种类与布线金属种类相同。
实施例1
布线金属为铜,布线高价金属化合物选用柠檬酸铜。
将磨料、柠檬酸铜、FA/O活性剂、JFC、硅树脂依次加入去离子水中混合充分搅拌配制成1000g碱性抛光液。其中:磨料采用粒径为15nm的硅溶胶,用量为0.1wt%;柠檬酸铜为0.5g/L;FA/O活性剂为0.1mL/L; JFC为0.1mL/L;硅树脂为1wt‰,去离子水补齐至1000g。
立即抛光:使用法国E460抛光机,在工作压力为1Psi,转速为90转/分钟,温度为23℃,流量为300mL/min的条件下使用上述抛光液对铜膜抛光3min,速率为
经检测,抛光后各项指标满足微电子领域的使用要求。
实施例2
布线金属为铜,布线高价金属化合物选用柠檬酸螯合铜。
将磨料、FA/O螯合剂、柠檬酸螯合铜、FA/O活性剂、JFC、GPE依次加入去离子水中混合充分搅拌配制成1000g碱性抛光液。
其中,磨料采用粒径为80~100nm的硅溶胶,浓度为20wt%;FA/O螯合剂30g/L,柠檬酸螯合铜30g/L,FA/O活性剂30mL/L,JFC 30mL/L,消泡剂GPE 10wt‰,去离子水补齐1000g。
配置后立即抛光:在法国E460抛光机,工作压力为5Psi,转速为90转/分钟,温度为23℃,流量为300mL/min的条件下对铜膜抛光3分钟速率为
放置183天,在相同条件下对铜膜CMP平坦化,速率为
183天后仍然非常稳定。经检测,抛光后各项指标满足微电子领域的使用要求。
实施例3
布线金属为铜,布线高价金属化合物选用柠檬酸螯合铜。
将磨料、柠檬酸螯合铜、FA/O活性剂、JFC、硅树脂依次加入去离子水中混合充分搅拌配制成1000g碱性抛光液。
其中,磨料采用粒径为80~100nm的硅溶胶,浓度为10wt%;柠檬酸螯合铜30g/L,FA/O活性剂30mL/L,消泡剂GPE 5wt‰,去离子水补齐1000g。
配制后立即抛光:在法国E460抛光机在工作压力为3Psi,转速为140转/分钟,温度为23℃,流量为300mL/min的条件下抛光3分钟速率为
放置180天,在相同条件下对铜膜CMP平坦化,速率为
很稳定。经检测,抛光后各项指标满足微电子领域的使用要求。
实施例4
布线金属为铜,线高价金属化合物选用甘氨酸铜。
在配制好的阻挡层抛光液中加入2g/L的甘氨酸铜,在标准条件下抛阻挡层图型片速率V介质为
Vcu为
放置180天后,在同样标准情况下抛光阻挡层图型片,V介质为
Vcu为
稳定性好。选择比为1.66,平坦化度<3%,很好的满足了微电子领域的生产要求。
实施例5
布线金属为钌,布线高价金属化合物选用十二羰基三钌。
将磨料、FA/O螯合剂、活性剂50mL/L、十二羰基三钌与去离子水混合配置成抛光液。磨料选用粒径为40nm硅溶胶10wt%,FA/O螯合剂5mL/L,活性剂50mL/L,十二羰基三钌l5g/L,去离子水余量。
使用上述抛光液在标准条件下抛光,经检测,抛光后各项指标满足微电子领域的要求。放置180天后,在相同条件下抛光,抛光速率没有下降,各项指标满足微电子领域的要求。
实施例6
布线金属为钴,布线高价金属化合物选用三氯钴氨络合物。
将硅溶胶、三氯钴氨络合物、FA/O活性剂、FA/O螯合剂、去离子水配置成抛光液。其中,硅溶胶粒径60nm,浓度5wt%,三氯钴氨络合物15mL/L;FA/O活性剂50mL/L;FA/O螯合剂10mL/L,去离子水余量。
使用上述抛光液在标准条件下抛光,经检测,抛光后各项指标满足微电子领域的要求。放置180天后,在同样条件下抛光,抛光速率没有下降,各项指标满足微电子领域的要求。
本发明的抛光液中,以布线高价金属离子的可溶性盐替代双氧水作为氧化剂,实现了6个月以上的稳定性。布线高价金属离子通常与零价布线金属不反应,在CMP压力下使凸处的布线高价金属离子与游离态零价布线金属克服化学势垒达到价键距离,又有高速旋转高动能,致使布线高价金属离子与零价布线金属反应生成布线低价金属离子,布线高价金属离子 不稳定,一部分被使用强螯合剂络合成极稳定易溶的布线金属氨络合物,一部分被溶解在溶液中,以易溶络合物形式随抛光液带走,当采用河北工业大学刘玉岭教授发明的具有13个以上螯合环的FA/O螯合剂时,FA/O螯合剂为强螯合剂,且易溶,器件表面附很少,在美国硅谷新产品测试中心检测,河北工业大学CMP抛光液金属离子大于2000ppm,而美国Cabot小于1个ppm,河北工业大学IC漏电流10
-12A,而美国Cabot漏电流为10
-11A,低一个数量级。
以上所述仅是本发明的优选实施方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (11)
- 一种GLSI多层布线高价金属在CMP中的应用。
- 根据权利要求1所述的应用,其特征在于,所述多层布线高价金属的化合物替代氧化剂。
- 根据权利要求2所述的应用,其特征在于,所述多层布线高价金属的化合物代替CMP抛光液中的氧化剂。
- 根据权利要求1所述的应用,其特征在于,CMP所用抛光液中含有与布线金属种类相同的布线高价金属化合物。
- 根据权利要求4所述的应用,其特征在于,所述布线高价金属化合物为无机铜盐、有机铜盐、钴的高价盐或钌的高价盐。
- 根据权利要求4或5所述的应用,其特征在于,所述布线高价金属化合物为柠檬酸铜、柠檬酸螯合铜、甘氨酸铜、[Co(NH 3) 6]Cl 3、三氯化钴、三氟化钴、柠檬酸钴、三水氯化钌、十二羰基三钌、三氧化钌或四氧化钌。
- 一种CMP抛光液,其特征在于,所述抛光液中含有与布线金属种类相同的布线高价金属化合物0.1~60g/L。
- 根据权利要求7所述的CMP抛光液,其特征在于,还包括螯合剂0.1~60g/L。
- 根据权利要求8所述的CMP抛光液,其特征在于,所述螯合剂包括FA/O螯合剂。
- 根据权利要求7~9任意一项所述的CMP抛光液,其特征在于,所述布线高价金属化合物为无机铜盐、有机铜盐、钴的高价盐或钌的高价盐。
- 根据权利要求10所述的CMP抛光液,其特征在于,所述布线高价金属化合物为柠檬酸铜、柠檬酸螯合铜、甘氨酸铜、[Co(NH 3) 6]Cl 3、三氯化钴、三氟化钴、柠檬酸钴、三水氯化钌、十二羰基三钌、三氧化钌或四氧化钌。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010735582.3A CN111826089B (zh) | 2020-07-28 | 2020-07-28 | Glsi多层布线高价金属在cmp中的应用 |
CN202010735582.3 | 2020-07-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022022147A1 true WO2022022147A1 (zh) | 2022-02-03 |
Family
ID=72926339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/100632 WO2022022147A1 (zh) | 2020-07-28 | 2021-06-17 | Glsi多层布线高价金属在cmp中的应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111826089B (zh) |
WO (1) | WO2022022147A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111826089B (zh) * | 2020-07-28 | 2021-09-28 | 河北工业大学 | Glsi多层布线高价金属在cmp中的应用 |
CN112355884B (zh) * | 2020-11-05 | 2022-04-08 | 河北工业大学 | 用于多层铜互连阻挡层cmp速率选择性的控制方法 |
CN112322190A (zh) * | 2020-11-05 | 2021-02-05 | 河北工业大学 | 多层铜互连阻挡层抛光液及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1721493A (zh) * | 2004-02-23 | 2006-01-18 | Cmp罗姆和哈斯电子材料控股公司 | 用于化学机械平坦化的多步抛光液 |
CN101649162A (zh) * | 2008-08-15 | 2010-02-17 | 安集微电子(上海)有限公司 | 一种用于化学机械研磨的抛光液 |
CN102181232A (zh) * | 2011-03-17 | 2011-09-14 | 清华大学 | Ulsi多层铜布线铜的低下压力化学机械抛光的组合物 |
CN104955914A (zh) * | 2013-01-30 | 2015-09-30 | 嘉柏微电子材料股份公司 | 含氧化锆及金属氧化剂的化学机械抛光组合物 |
WO2016171350A1 (ko) * | 2015-04-24 | 2016-10-27 | 삼성에스디아이 주식회사 | 구리 배선 연마용 cmp 슬러리 조성물 및 이를 이용한 연마방법 |
CN111826089A (zh) * | 2020-07-28 | 2020-10-27 | 河北工业大学 | Glsi多层布线高价金属在cmp中的应用 |
-
2020
- 2020-07-28 CN CN202010735582.3A patent/CN111826089B/zh active Active
-
2021
- 2021-06-17 WO PCT/CN2021/100632 patent/WO2022022147A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1721493A (zh) * | 2004-02-23 | 2006-01-18 | Cmp罗姆和哈斯电子材料控股公司 | 用于化学机械平坦化的多步抛光液 |
CN101649162A (zh) * | 2008-08-15 | 2010-02-17 | 安集微电子(上海)有限公司 | 一种用于化学机械研磨的抛光液 |
CN102181232A (zh) * | 2011-03-17 | 2011-09-14 | 清华大学 | Ulsi多层铜布线铜的低下压力化学机械抛光的组合物 |
CN104955914A (zh) * | 2013-01-30 | 2015-09-30 | 嘉柏微电子材料股份公司 | 含氧化锆及金属氧化剂的化学机械抛光组合物 |
WO2016171350A1 (ko) * | 2015-04-24 | 2016-10-27 | 삼성에스디아이 주식회사 | 구리 배선 연마용 cmp 슬러리 조성물 및 이를 이용한 연마방법 |
CN111826089A (zh) * | 2020-07-28 | 2020-10-27 | 河北工业大学 | Glsi多层布线高价金属在cmp中的应用 |
Also Published As
Publication number | Publication date |
---|---|
CN111826089B (zh) | 2021-09-28 |
CN111826089A (zh) | 2020-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022022147A1 (zh) | Glsi多层布线高价金属在cmp中的应用 | |
CN1131125C (zh) | 用于金属cmp的组合物和浆料 | |
JP6940557B2 (ja) | 酸化物エロージョン低減のためのタングステン化学機械研磨 | |
TWI597356B (zh) | 於鎢化學機械硏磨降低淺盤效應 | |
CN101180379B (zh) | 用于含有金属离子氧化剂的化学机械抛光组合物中的二羟基烯醇化合物 | |
CN101608098B (zh) | 一种用于金属化学机械抛光的抛光浆料及其用途 | |
CN102112567A (zh) | 一种用于化学机械研磨的抛光液 | |
CN101591508A (zh) | 一种用于金属化学机械抛光的抛光浆料及其用途 | |
CN112322190A (zh) | 多层铜互连阻挡层抛光液及其制备方法 | |
CN102051126B (zh) | 一种用于钨化学机械抛光的抛光液 | |
CN101684393B (zh) | 一种化学机械抛光浆料 | |
CN102051129B (zh) | 一种化学机械抛光液 | |
CN102533121B (zh) | 一种抛光钨的化学机械抛光液 | |
CN101906269A (zh) | 一种金属化学机械抛光的浆料及其使用方法 | |
CN103265893A (zh) | 一种基于金属Mo的抛光工艺的抛光液、其制备方法及应用 | |
CN113278366B (zh) | 一种基板的铜互连钴阻挡层 | |
CN102834476B (zh) | 一种化学机械抛光液 | |
CN102816529A (zh) | 一种利于抛光后清洗的钨化学机械抛光液 | |
CN102850937A (zh) | 一种化学机械抛光液 | |
CN115160933B (zh) | 一种用于钴互连集成电路钴cmp的碱性抛光液及其制备方法 | |
Wang et al. | Improvement of Ruthenium Polishing Rate by Addition of Guanidinium Ions | |
CN102452036B (zh) | 一种钨化学机械抛光方法 | |
WO2012009959A1 (zh) | 一种化学机械抛光液 | |
DeNardis et al. | Impact of gaseous additives on copper CMP in neutral and alkaline solutions using a CAP system | |
CN101747840A (zh) | 一种化学机械抛光液 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21851150 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21851150 Country of ref document: EP Kind code of ref document: A1 |