WO2022022071A1 - 阵列基板、液晶显示面板及液晶显示装置 - Google Patents

阵列基板、液晶显示面板及液晶显示装置 Download PDF

Info

Publication number
WO2022022071A1
WO2022022071A1 PCT/CN2021/098816 CN2021098816W WO2022022071A1 WO 2022022071 A1 WO2022022071 A1 WO 2022022071A1 CN 2021098816 W CN2021098816 W CN 2021098816W WO 2022022071 A1 WO2022022071 A1 WO 2022022071A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
strip
array substrate
connection electrode
electrodes
Prior art date
Application number
PCT/CN2021/098816
Other languages
English (en)
French (fr)
Inventor
于美娜
方正
崔贤植
梁蓬霞
陈小川
张慧
刘立伟
李昌峰
李付强
王宇瑶
石戈
韩佳慧
杨松
刘玉杰
张世玉
孙艳六
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/922,533 priority Critical patent/US20230168553A1/en
Publication of WO2022022071A1 publication Critical patent/WO2022022071A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to an array substrate, a liquid crystal display panel and a liquid crystal display device.
  • Liquid Crystal Display is widely used in modern information equipment such as monitors, televisions, mobile phones and digital products due to its advantages of light weight, low power consumption, low radiation and easy portability.
  • the main structure of the liquid crystal display device is composed of an array substrate, a color filter substrate and a liquid crystal layer filled between the two substrates.
  • an array substrate including:
  • the pixel unit has a first extending in the second direction and opposite in the first direction side and second side;
  • the pixel unit includes a first electrode, wherein:
  • the first electrode includes a plurality of strip electrodes, and at least part of the strip electrodes has a first part and a second part with different extension directions, the first parts are connected to each other on the first side, and the second part is The parts are disconnected from each other on the second side, and the lengths of the first part and the second part are different.
  • the included angle between the extending direction of the first portion and the extending direction of the second portion is greater than 0° and less than or equal to 45°.
  • the included angle between the extending direction of the first portion and the extending direction of the second portion is greater than or equal to 10° and less than or equal to 15°.
  • the length of the second portion is greater than or equal to 1 ⁇ m and less than or equal to 3 ⁇ m.
  • the first part is a straight type
  • the second part is a curved type that is curved deviating from an extending direction of the first part.
  • At least part of the radians of the second parts are the same.
  • the line width of the first portion is the same as the line width of the second portion.
  • a farthest end of the second portion relative to the first portion is rounded.
  • the plurality of strip electrodes extend along a third direction and are arranged along a fourth direction crossing the third direction;
  • the first electrode further includes a connection electrode, and the connection electrode includes a first connection electrode and a second connection electrode extending in the first direction and arranged along the second direction, and a connection electrode in the first direction. a third connection electrode on the side and connected with the first connection electrode and the second connection electrode;
  • the first part is connected to the first connection electrode or the third connection electrode; the orthographic projection length in the first direction is smaller than the distance between the first side and the second side and is the same as the distance between the first side and the second side.
  • the strip electrodes whose second sides do not overlap each other are connected between the second connection electrode and the third connection electrode.
  • the plurality of strip electrodes include: a plurality of first strip electrodes and a plurality of second strip electrodes; wherein the plurality of first strip electrodes The extending direction of the electrodes is different from the extending direction of the plurality of second strip electrodes.
  • the plurality of first strip electrodes and the plurality of second strip electrodes are symmetrical with respect to the first direction.
  • the included angle between the plurality of first strip electrodes and the plurality of second strip electrodes is greater than or equal to 80° and less than or equal to 100° °, or, the included angle between the plurality of first strip electrodes and the plurality of second strip electrodes is greater than 0° and less than or equal to 10°.
  • the second portions are all bent to a side away from the symmetry axis of the plurality of first strip electrodes and the plurality of second strip electrodes fold.
  • the second portions are all bent to a side close to the symmetry axis of the plurality of first strip electrodes and the plurality of second strip electrodes fold.
  • the distance between the strip electrode and the symmetry axis gradually decreases from an end close to the first side to an end close to the second side.
  • the first electrode further includes a connection electrode
  • the connection electrode includes: extending in the first direction and arranged in the second direction A first connection electrode and a second connection electrode, and a third connection electrode connected to the first connection electrode and the second connection electrode at the first side.
  • the orthographic projection length in the first direction is smaller than the distance between the first side and the second side and is smaller than the distance between the second side and the second side.
  • first strip electrodes and the second strip electrodes that do not overlap with each other, one end of the first strip electrode that is symmetrical with respect to the mid-perpendicular line of the third connection electrode and the second strip One end of the shaped electrode is connected, and the other end is connected to the third connection electrode;
  • the first portion included in the first strip electrode is connected to the first connection electrode or the third connection electrode, and the first portion included in the second strip electrode is connected to the first connection electrode or the third connection electrode.
  • the two connection electrodes or the third connection electrode are connected.
  • the distance between the strip electrode and the symmetry axis gradually increases from an end close to the first side to an end close to the second side.
  • the first electrode further includes a connection electrode
  • the connection electrode includes: extending in the first direction and arranged in the second direction A first connection electrode, a fourth connection electrode, and a second connection electrode, and a third connection electrode connected to the first connection electrode, the fourth connection electrode, and the second connection electrode at the first side.
  • the orthographic projection length in the first direction is smaller than the distance between the first side and the second side and is smaller than the distance between the second side and the second side.
  • the first strip-shaped electrode is connected between the first connection electrode and the third connection electrode
  • the first strip-shaped electrode is connected between the first connection electrode and the third connection electrode.
  • two strip electrodes are connected between the second connection electrode and the third connection electrode;
  • the first part included in the first strip electrode is connected to the third connection electrode or the fourth connection electrode; the first part included in the second strip electrode is connected to the first connection electrode.
  • the three connection electrodes or the fourth connection electrode are connected.
  • the array substrate further includes: a first electrode located between the first electrode and the base substrate or located on a side of the first electrode away from the base substrate Two electrodes, the second electrodes are planar electrodes.
  • the orthographic projection of the first electrode on the base substrate is located within the orthographic projection of the second electrode.
  • the distance between the orthographic boundary of the second electrode on the base substrate and the orthographic projection of the adjacent data lines is smaller than the The distance between the orthographic boundary of the first electrode on the base substrate and the orthographic projection of the adjacent data lines.
  • the above-mentioned array substrate provided by the embodiment of the present disclosure, it further comprises: a first alignment layer located on a side of the layer where the plurality of pixel units are located away from the base substrate, the alignment of the first alignment layer The direction is from the first side to the second side.
  • an embodiment of the present disclosure also provides a liquid crystal display panel, including:
  • the array substrate is the above-mentioned array substrate
  • the liquid crystal layer is located between the array substrate and the color filter substrate.
  • the color filter substrate includes a black matrix, or the array substrate includes a black matrix on the side of the pixel electrode facing the liquid crystal layer;
  • At least part of the orthographic projection of the second portion on the layer where the liquid crystal display panel is located is located within the orthographic projection of the black matrix.
  • the width d BM of the black matrix satisfies the following relationship:
  • d cell is the cell thickness of the liquid crystal display panel
  • d alignment is the alignment accuracy of the liquid crystal display panel.
  • an embodiment of the present disclosure further provides a liquid crystal display device including the above liquid crystal display panel.
  • FIGS. 1 and 2 are schematic diagrams of electric field distribution in the related art, respectively;
  • FIG. 3 is a schematic top-view structural diagram of an array substrate provided by an embodiment of the present disclosure.
  • Fig. 4 is a cross-sectional structure schematic diagram along line I-II in Fig. 3;
  • FIG. 5 is a schematic structural diagram of a slit electrode provided by an embodiment of the present disclosure.
  • Fig. 6 is the enlarged structure schematic diagram of A area in Fig. 5;
  • FIG. 7 is a schematic diagram of electric field distribution provided by an embodiment of the present disclosure.
  • FIG. 8 is a transmittance curve corresponding to the second part in the slit electrode provided by the embodiment of the present disclosure.
  • FIG. 9 is another schematic structural diagram of a slit electrode provided by an embodiment of the present disclosure.
  • Fig. 10 is the enlarged structural schematic diagram of B region in Fig. 9;
  • FIG. 11 is another schematic structural diagram of a slit electrode provided by an embodiment of the present disclosure.
  • Fig. 12 is the enlarged structural schematic diagram of C region in Fig. 11;
  • FIG. 13 is another schematic structural diagram of a slit electrode provided by an embodiment of the present disclosure.
  • Fig. 14 is the enlarged structural schematic diagram of D area in Fig. 13;
  • FIG. 15 is another schematic structural diagram of a slit electrode provided by an embodiment of the present disclosure.
  • FIG. 16 is another schematic structural diagram of a slit electrode provided by an embodiment of the present disclosure.
  • FIG. 17 is another schematic structural diagram of a slit electrode provided by an embodiment of the present disclosure.
  • FIG. 18 is another schematic structural diagram of a slit electrode provided by an embodiment of the present disclosure.
  • FIG. 19 is a schematic diagram of the relative size of the planar electrode and the slit electrode according to an embodiment of the present disclosure.
  • FIG. 20 is a transmittance curve diagram corresponding to the second part under different size relationships between the planar electrode and the slit electrode provided by the embodiment of the present disclosure
  • FIG. 21 is a schematic structural diagram of a liquid crystal display panel according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic structural diagram of a liquid crystal display device according to an embodiment of the present disclosure.
  • the VA mode has a high front viewing angle contrast, but the contrast is uneven at different viewing angles; while ADS has better wide viewing angle characteristics (that is, the brightness transmitted by the backlight does not change with the viewing angle), in order to combine the advantages of the two , a liquid crystal mode that utilizes fringing electric fields to drive vertical alignment is proposed.
  • the electrode structure is the same as that of ADS, that is, the pixel electrode and the common electrode are located on the upper and lower layers of the same substrate.
  • One layer of electrodes is designed as a strip, and the other layer of electrodes is designed as a plane.
  • the liquid crystal and its initial orientation are the same as in the VA mode, that is, a vertically oriented negative liquid crystal or a positive liquid crystal is used.
  • this mode has the same L0 level as VA, and when the liquid crystal is driven, it can have both the wide viewing angle and color advantages of ADS, and the pixel structure is simpler than VA .
  • the liquid crystal When the electric field is non-zero, the liquid crystal is driven, and the effective electric field between the strip electrodes includes a vertical component Ez and a component Ey perpendicular to the extending direction of the strip electrodes, as shown in FIG. 1 .
  • the vertical component Ez deflects the liquid crystal from the vertical direction to the horizontal direction (xy plane), and the vertical component Ey of the extending direction of the strip electrodes rotates the liquid crystal to the direction parallel to the strip electrodes in the xy plane to complete the rotation of the liquid crystal molecules.
  • connecting electrodes are generally arranged around the multiple strip electrodes.
  • the electric field between the connecting electrode and the planar electrode is increased, and this electric field has a component Ex along the x-direction, as shown in FIG. 2 . It can be seen that, due to the different directions of the electrodes, the electric field distribution in the edge region is relatively complicated, which makes it difficult for the liquid crystal molecules to deflect and black disclination lines appear.
  • an embodiment of the present disclosure provides an array substrate, as shown in FIG. 3 to FIG. 6 , including:
  • a plurality of gate lines 02 extending along the first direction are located on the base substrate 01;
  • a plurality of pixel units located in an area defined by a plurality of gate lines 02 and a plurality of data lines 03; the pixel units have first and second sides extending in the second direction and opposite in the first direction;
  • the pixel unit includes a first electrode 04, wherein:
  • the first electrode 04 includes a plurality of strip electrodes 401. At least part of the strip electrodes 401 have a first part P1 and a second part P2 with different extending directions. The first part P1 is connected to each other at the first side, and the second part P2 is at The second sides are disconnected from each other, and the lengths of the first part P1 and the second part P2 are different.
  • the second parts P2 of the strip electrodes 401 are provided to be disconnected from each other on the second side, so that the second parts P2 adjacent to the second side (equivalent to the strip electrodes 401
  • the Ex electric field component between the edge part) and the planar electrode is reduced, and the electric field distribution is optimized, as shown in Fig. 7. Therefore, the electric field between the strip electrode 401 and the planar electrode as a whole can be regarded as including only two effective components Ez and Ey.
  • the first electrode 04 can control the rotation of the liquid crystal molecules corresponding to the middle and edge regions. The degree is similar, thus effectively avoiding the appearance of black phase lines and improving the display effect.
  • the test results show that, compared with the related art in which the strip electrodes 401 are not disconnected, in the present disclosure, by setting the second portion P2 to be disconnected from each other on the second side, the black area where the misaligned line is located can be moved to the outside of the effective display area (AA). Move 4.9 ⁇ m, as shown in Figure 8, which effectively improves the display quality.
  • the gray-scale response time of the related art is 29.9ms
  • the gray-scale response time of the present disclosure is 23.2ms. It can be seen that disconnecting the second P2 can speed up the response speed, because the disclination line is avoided after disconnection. emergence, movement and stabilization process.
  • the line width of the strip electrodes 401 may be greater than or equal to 1.9 ⁇ m and less than or equal to 3.3 ⁇ m, and the line width between the strip electrodes 401 may be greater than or equal to 1.9 ⁇ m and less than or equal to 3.3 ⁇ m.
  • the distance can be greater than or equal to 2.3 ⁇ m and less than or equal to 4.8 ⁇ m, and the angle between the extending direction of the strip electrodes 401 and the optical axis of the polarizer can be greater than or equal to 35° and less than or equal to 55°, such as 45°.
  • the extending direction of the strip-shaped electrode 401 specifically refers to the extending direction of the part with the larger length.
  • the length of the first part P1 is greater than the length of the second part P2
  • the extending direction of the strip electrode 401 is the extending direction of the first part P1
  • the extending direction of the strip electrode 401 is the extending direction of the first part P1 hereinafter.
  • an included angle between the extending direction of the first part P1 and the extending direction of the second part P2 may be set. Greater than 0° and less than or equal to 45°.
  • the included angle between the extending direction of the first portion P1 and the extending direction of the second portion P2 is greater than or equal to 10° and less than or equal to 15°. Specifically, it can be 10°, 11°, 12°, 13°, 14°, 15°, etc.
  • the length of the second part P2 is smaller than the length of the first part P1, and the length of the second part P2 can be specifically designed and adjusted according to the pixel edge area.
  • the length L of the second portion P2 in the extending direction thereof can be designed to be greater than or equal to 1 ⁇ m and less than or equal to 3 ⁇ m, specifically 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, etc. .
  • the extension direction of the second part P2 is a straight line; when the second part P2 is a broken line, the extension direction of the second part P2 is a broken line; the second part P2 is a curve In the case of the type, the extension direction of the second part P2 is an arc.
  • the first part P1 and the second part P2 may be linear, zigzag, curved, etc. structures.
  • the first part P1 is a straight line
  • the second portion P2 is a curved shape that is curved away from the extending direction of the first portion P1.
  • the first part P1 is the part whose extension direction is the same as the overall extension direction of the strip electrode 401
  • the second part P2 is the part whose extension direction is different from the overall extension direction of the strip electrode 401 . .
  • a transition region is generated between the liquid crystal stationary region in the edge region and the liquid crystal rotation region in the middle region. Under different voltages, the balance between liquid crystal rotation and non-rotation is different, resulting in black disclination lines. position is not fixed.
  • the second portion P2 By setting the second portion P2 to be bent away from the extending direction of the first portion P1, the Ey electric field component is further increased, and the harmful electric field component Ex is reduced, so that the dislocation line can be fixed or even eliminated.
  • some or all of the radians of the second portions P2 are the same, so as to facilitate process fabrication.
  • the line width of the first part P1 and the line width of the second part P2 can be set to be the same, for example, greater than or equal to 1.9 ⁇ m and less than or equal to 3.3 ⁇ m ⁇ m. It should be noted that, in the specific manufacturing process, under the influence of factors such as etching, the line width of the second portion P2 will be slightly reduced as the distance between the second portion P2 and the first portion P1 increases.
  • the end of the second part P2 away from the first part P1 may be a right angle, an acute angle, an obtuse angle, or a rounded corner, which is generally affected by process factors such as etching.
  • the farthest end of the second part P2 relative to the first part P1 is rounded angle, as shown in Figure 6.
  • the first electrode 04 may have a single-domain structure, a double-domain structure, a four-domain structure, or the like.
  • the first electrode 04 is of a monodomain structure, specifically, the plurality of strip electrodes 401 included in the first electrode 04 extend along the third direction, and extend along the third direction.
  • the fourth direction is arranged in a direction crossing; specifically, the range of the included angle between the third direction and the optical axis of the polarizer is greater than or equal to 35° and less than or equal to 55°, preferably 45°;
  • the first electrode 04 further includes a connection electrode 402, and the connection electrode 402 includes: a first connection electrode 4021 and a second connection electrode 4022 extending in the first direction and arranged in the second direction, and a first connection electrode 4021 and a second connection electrode 4022 on the first side and connected to the second connection electrode. a third connection electrode 4023 connected to the connection electrode 4021 and the second connection electrode 4022;
  • the first part P1 is connected to the first connection electrode 4021 or the third connection electrode 4023, and the orthographic projection length in the first direction is smaller than the distance between the first side and the second side and does not overlap with the second side.
  • the shape electrode 401 is connected between the second connection electrode 4022 and the third connection electrode 4023 .
  • the first electrode 04 has a dual-domain structure
  • the plurality of strip electrodes 401 include: a plurality of first strip electrodes 4011 and a plurality of second strip electrodes 4012;
  • the extending direction of the strip electrodes 4011 is different from the extending direction of the plurality of second strip electrodes 4012 .
  • the plurality of first strip electrodes 4011 and the plurality of second strip electrodes 4012 are symmetrical with respect to the first direction.
  • the included angle between the plurality of first strip electrodes and the plurality of second strip electrodes is greater than or equal to 80° and less than or equal to 100°, preferably 90°; in FIGS.
  • the included angle between the plurality of first strip electrodes and the plurality of second strip electrodes is greater than 0° and less than or equal to 10°. Specifically, it can be determined according to the direction of the light transmission axis of the upper and lower polarizers.
  • the second strip-shaped electrode 4011 in the first strip-shaped electrode 4011 is arranged symmetrically.
  • the shape of P2 is also symmetrical with the shape of the second portion P2 in the second strip electrode 4012 .
  • the shape of the second part P2 in the first strip electrode 4011 that is symmetrical with the shape of the second part P2 in the second strip electrode 4012 shown in FIG. 12 can be seen in FIG.
  • the shape of the second portion P2 in the first strip electrode 4011 in which the second portion P2 is symmetrical in shape can be seen in FIG. 10 .
  • the arrangement of the second portion P2 included in the first strip electrode 4011 and the second strip electrode 4012 that are symmetrical with each other is substantially the same as that in FIG. 11
  • the arrangement of the second portion P2 included in the first strip-shaped electrode 4011 and the second strip-shaped electrode 4012 is substantially the same as that in FIG. 13 .
  • the second portion P2 is both bent to a side away from the symmetry axis of the plurality of first strip electrodes 4011 and the plurality of second strip electrodes 4012 .
  • the second portion P2 is both bent to a side close to the symmetry axis of the plurality of first strip electrodes 4011 and the plurality of second strip electrodes 4012 . Wherein, it is more effective to bend the second portions P2 to a side away from the symmetry axis of the plurality of first strip electrodes 4011 and the plurality of second strip electrodes 4012 than to bend them towards the symmetry axis.
  • the distance between two adjacent strip electrodes 401 is shortened (ie, The distance between a second portion P2 and the adjacent first portion P1); and compared with bending toward the symmetry axis of the plurality of first strip electrodes 4011 and the plurality of second strip electrodes 4012, when the second When the portion P2 is bent away from the symmetry axis of the plurality of first strip electrodes 4011 and the plurality of second strip electrodes 4012, the distance between adjacent strip electrodes 401 will not increase, and the effect of the effective electric field can be increased more.
  • the test results show that the gray-scale response time of the second part P2 bending toward the symmetry axis of the plurality of first strip electrodes 4011 and the plurality of second strip electrodes 4012 is 19ms, and the second part P2 is far away from the plurality of first strip electrodes 4012.
  • the grayscale response time of the bending of the symmetry axes of the strip electrodes 4011 and the plurality of second strip electrodes 4012 is 17 ms.
  • the distance between the strip electrode 401 and the symmetry axis gradually decreases from the end close to the first side to the end close to the second side, so that the first strip electrode 4011 and the second strip electrode 4011 are separated from each other.
  • a structure similar to ">" is formed between the electrodes 4012.
  • the first electrode 04 further includes a connection electrode 402
  • the connection electrode 402 includes: extending in the first direction and extending in the second direction Arranged first connection electrodes 4021 and second connection electrodes 4022, and third connection electrodes 4023 connected to the first connection electrodes 4021 and second connection electrodes 4022 on the first side;
  • the third connection One end of the first strip electrode 4011 symmetrical to the vertical line of the electrode 402 is connected to one end of the second strip electrode 4012, and the other end is connected to the third connection electrode 4022;
  • the first part P1 included in the first strip electrode 4011 is connected to the first connection electrode 4021 or the third connection electrode 4023, and the first part P1 included in the second strip electrode 4012 is connected to the second connection electrode 4022 or the third connection Electrode 4023 is connected.
  • the first electrode 04 further includes a connection electrode 402, and the connection electrode includes: extending in the first direction and arranged in the second direction The first connection electrode 4021, the fourth connection electrode 4024 and the second connection electrode 4022, and the third connection electrode 4023 connected to the first connection electrode 4021, the fourth connection electrode 4024 and the second connection electrode 4022 on the first side; in,
  • the first strip electrode 4011 and the second strip electrode 4012 whose orthographic projection length in the first direction is smaller than the distance between the first side and the second side and does not overlap with the second side, the first strip electrode The electrode 4011 is connected between the first connection electrode 4021 and the third connection electrode 4023, and the second strip electrode 4012 is connected between the second connection electrode 4022 and the third connection electrode 4023;
  • the first part P1 included in the first strip electrode 4011 is connected to the third connection electrode 4023 or the fourth connection electrode 4024; the first part P1 included in the second strip electrode 4012 is connected to the third connection electrode 4023 or the fourth connection Electrode 4024 is connected.
  • the second electrode 05 located between the first electrode 04 and the base substrate 01 , the second electrode 05 is a planar electrode, and an insulating layer 06 between the first electrode 04 and the second electrode 05 .
  • the second electrode 05 may also be located on the side of the first electrode 04 away from the base substrate 01 .
  • the first electrode 04 may be a pixel electrode (Pix), and the second electrode 05 may be a common electrode (Com); or the first electrode 04 may be a common electrode, and the second electrode 05 may be a pixel electrode, which is not limited herein.
  • the first electrode 04 is used as a pixel electrode
  • the second electrode 05 is used as a common electrode as an example for description.
  • the first electrode 04 is a pixel electrode
  • the second electrode 05 is a common electrode.
  • the size of the common electrode eg, the second electrode 05 ) is optimized here.
  • the distance between the common electrode (such as the second electrode 05) and the pixel electrode (such as the first electrode 04) relative to the data line 03 is equal (that is, the distance from the boundary of the common electrode to the data line 03 is the same as the distance from the pixel electrode to the data line 03).
  • the orthographic projection is within the orthographic projection of the common electrode (eg, the second electrode 05). Specifically, the distance between the orthographic boundary of the common electrode (eg, the second electrode 05 ) on the base substrate 01 and the orthographic projection of the adjacent data line 03 is smaller than that of the pixel electrode (eg, the first electrode 04 ) on the base substrate The distance between the orthographic boundary on 01 and the orthographic projection of the adjacent data line 03.
  • the difference ⁇ d between the distance from the boundary of the common electrode to the data line 03 and the distance from the pixel electrode to the data line 03 may be greater than or equal to 0.5 ⁇ m and less than or equal to 2.5 ⁇ m, such as 0.5 ⁇ m, 1 ⁇ m, 1.5 ⁇ m ⁇ m, 2 ⁇ m, 2.5 ⁇ m, etc.
  • the above-mentioned array substrate provided in the embodiment of the present disclosure further includes: a first alignment layer 07 located on the side of the layer where the plurality of pixel units are located away from the base substrate 01 , the first alignment layer
  • the orientation direction of 07 is directed from the first side to the second side, that is, in the present disclosure, the rubbing direction of the first orientation layer 07 is approximately 0° (from left to right), and there is no break from the strip electrode 401.
  • the open side points to the disconnected side, so that the pre-tilt angle of the liquid crystal is about 90° ⁇ 5°.
  • the pre-tilt angle of the liquid crystal is about 90°
  • the azimuth angle of the liquid crystal is about 0° ⁇ 45°.
  • the azimuth angle of the liquid crystal is about 0°.
  • the black phase line at the end position of the rubbing ie, the second side
  • removing the part of the connection electrode 402 on this side in the related art can effectively improve the black phase line.
  • the above-mentioned array substrate provided in the embodiment of the present disclosure, as shown in FIG. 3 , it may further include: a transistor 08 connected to the pixel electrode (eg, the first electrode 04 ); At the gap, for example, the transistor 08 is arranged at the pixel cell gap on the first side.
  • a transistor 08 connected to the pixel electrode (eg, the first electrode 04 ); At the gap, for example, the transistor 08 is arranged at the pixel cell gap on the first side.
  • an embodiment of the present disclosure provides a liquid crystal display panel. Since the principle of solving the problem of the liquid crystal display panel is similar to the principle of solving the problem of the above-mentioned array substrate, the implementation of the liquid crystal display panel provided by the embodiment of the present disclosure provided by the embodiment of the present disclosure Reference may be made to the implementation of the above-mentioned array substrate provided in the embodiments of the present disclosure, and repeated details will not be repeated.
  • an embodiment of the present disclosure also provides a liquid crystal display panel, as shown in FIG. 21 , including:
  • the array substrate and the color filter substrate are oppositely disposed, and the array substrate is the above-mentioned array substrate;
  • the liquid crystal layer 09 is located between the array substrate and the color filter substrate; the liquid crystal layer 09 can be either positive liquid crystal or negative liquid crystal.
  • the color filter substrate includes a black matrix 10 , or the array substrate includes a pixel electrode (eg, the first electrode 04 ) facing the liquid crystal layer 09 . side black matrix 10;
  • At least part of the orthographic projection of the second portion P2 on the layer where the liquid crystal display panel is located is located within the orthographic projection of the black matrix 10 .
  • the disconnected second part P2 is located below the black matrix 10, which can effectively reduce the occurrence of black areas in the effective display area, and further improve the display effect.
  • the center line of the black matrix 10 is located at the center of the data line 03 line position is the same. Considering the shielding effect of the staggered lines on the second side, the width of the black matrix 10 can be appropriately increased.
  • the rounded corner end of ) extends inward by 1 ⁇ m to 3 ⁇ m (that is, it can extend to completely cover the second part P2 ).
  • the array substrate further includes: a lower polarizer 11 ; the color filter substrate further includes a second alignment layer 12 and a glass substrate 13 and the upper polarizer 14.
  • the pixel electrodes may also be disposed on the array substrate, and the common electrodes may be disposed on the color filter substrate, which is not limited herein.
  • Other essential components of the liquid crystal display panel should be understood by those of ordinary skill in the art, and will not be repeated here, nor should it be regarded as a limitation of the present disclosure.
  • an embodiment of the present disclosure further provides a liquid crystal display device, as shown in FIG. 22 , including the above-mentioned liquid crystal display panel provided by the embodiment of the present disclosure, and a backlight module 15 located on the light incident side of the liquid crystal display panel.
  • the backlight module 15 may be a direct type backlight module or an edge type backlight module.
  • the liquid crystal display device can be any product or component with a display function, such as a mobile phone, a tablet computer, a TV, a monitor, a notebook computer, a digital photo frame, a navigator, a smart watch, a fitness wristband, a personal digital assistant, etc.
  • liquid crystal display device should be understood by those of ordinary skill in the art, and will not be repeated here, nor should it be regarded as a limitation of the present disclosure.
  • the implementation of the liquid crystal display device can refer to the above-mentioned embodiments of the liquid crystal display panel, and the repetition will not be repeated.
  • the above-mentioned array substrate, liquid crystal display panel, and liquid crystal display device include: a base substrate; a plurality of gate lines extending along a first direction, located on the base substrate; a plurality of data lines, extending along the first direction
  • a plurality of pixel units located in an area defined by a plurality of gate lines and a plurality of data lines, extend in a second direction intersecting in one direction; the pixel units have first sides extending in the second direction and opposite in the first direction and the second side;
  • the pixel unit includes a first electrode, wherein: the first electrode includes a plurality of strip electrodes, and at least some of the strip electrodes have a first part and a second part with different extension directions, and the first part is on the first side Connected to each other, the second parts are disconnected from each other at the second side, and the lengths of the first and second parts are different.
  • the Ex electric field component between the second portion adjacent to the second side (equivalent to the edge portion of the strip electrodes) and the common electrode is reduced, Therefore, the electric field between the strip electrode and the common electrode as a whole can be regarded as including only two components Ez and Ey.
  • the first electrode can control the liquid crystal molecules located in the middle region and the edge region to rotate to a similar degree, so that It effectively avoids the appearance of black staggered lines and improves the display effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种阵列基板、液晶显示面板及液晶显示装置,包括:衬底基板(01);沿第一方向延伸的多条栅线(02),位于衬底基板(01)之上;多条数据线(03),沿与第一方向交叉的第二方向延伸;多个像素单元,位于由多条栅线(02)和多条数据线(03)限定出的区域;像素单元具有在第二方向上延伸且在第一方向上相对的第一侧和第二侧;像素单元包括第一电极(04),其中:第一电极(04)包括多个条状电极(401),至少部分条状电极(401)的具有延伸方向不同的第一部(P1)和第二部(P2),第一部(P1)在第一侧相互连接,第二部(P2)在第二侧相互断开,且第一部(P1)和第二部(P2)的长度不同。

Description

阵列基板、液晶显示面板及液晶显示装置
相关申请的交叉引用
本申请要求在2020年07月29日提交中国专利局、申请号为202010741256.3、申请名称为“阵列基板、液晶显示面板及液晶显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种阵列基板、液晶显示面板及液晶显示装置。
背景技术
液晶显示装置(Liquid Crystal Display,LCD)由于其具有重量轻、耗电少、辐射低和携带方便等优点而被广泛应用在现代化信息设备,如显示器、电视、移动电话和数字产品等。液晶显示装置的主体结构由阵列基板、彩膜基板和填充在两基板之间的液晶层组成。
发明内容
一方面,本公开实施例提供了一种阵列基板,包括:
衬底基板;
沿第一方向延伸的多条栅线,位于所述衬底基板之上;
多条数据线,沿与所述第一方向交叉的第二方向延伸;
多个像素单元,位于由所述多条栅线和所述多条数据线限定出的区域;所述像素单元具有在所述第二方向上延伸且在所述第一方向上相对的第一侧和第二侧;
所述像素单元包括第一电极,其中:
所述第一电极包括多个条状电极,至少部分所述条状电极具有延伸方向不同的第一部和第二部,所述第一部在所述第一侧相互连接,所述第二部在所述第二侧相互断开,且所述第一部和所述第二部的长度不同。
可选地,在本公开实施例提供的上述阵列基板中,所述第一部的延伸方向与所述第二部的延伸方向之间的夹角大于0°且小于或等于45°。
可选地,在本公开实施例提供的上述阵列基板中,所述第一部的延伸方向与所述第二部的延伸方向之间的夹角大于或等于10°且小于或等于15°。
可选地,在本公开实施例提供的上述阵列基板中,所述第二部的长度大于或等于1μm且小于或等于3μm。
可选地,在本公开实施例提供的上述阵列基板中,所述第一部为直线型,所述第二部为偏离所述第一部的延伸方向弯曲的曲线型。
可选地,在本公开实施例提供的上述阵列基板中,至少部分所述第二部的弧度相同。
可选地,在本公开实施例提供的上述阵列基板中,所述第一部的线宽与所述第二部的线宽相同。
可选地,在本公开实施例提供的上述阵列基板中,所述第二部相对于所述第一部的最远端为圆角。
可选地,在本公开实施例提供的上述阵列基板中,所述多个条状电极沿第三方向延伸,并沿与所述第三方向交叉的第四方向排列;
所述第一电极还包括连接电极,所述连接电极包括:在所述第一方向上延伸,并沿所述第二方向排列的第一连接电极和第二连接电极,以及在所述第一侧且与所述第一连接电极和所述第二连接电极连接的第三连接电极;
所述第一部与所述第一连接电极或所述第三连接电极连接;在所述第一方向上的正投影长度小于所述第一侧与所述第二侧之间的距离且与所述第二侧互不交叠的所述条状电极,连接于所述第二连接电极和所述第三连接电极之间。
可选地,在本公开实施例提供的上述阵列基板中,所述多个条状电极包 括:多个第一条状电极和多个第二条状电极;其中所述多个第一条状电极的延伸方向与所述多个第二条状电极的延伸方向不同。
可选地,在本公开实施例提供的上述阵列基板中,所述多个第一条状电极与所述多个第二条状电极关于所述第一方向对称。
可选地,在本公开实施例提供的上述阵列基板中,所述多个第一条状电极与所述多个第二条状电极之间的夹角大于或等于80°且小于或等于100°,或者,所述多个第一条状电极与所述多个第二条状电极之间的夹角大于0°且小于或等于10°。
可选地,在本公开实施例提供的上述阵列基板中,所述第二部均向远离所述多个第一条状电极与所述多个第二条状电极的对称轴的一侧弯折。
可选地,在本公开实施例提供的上述阵列基板中,所述第二部均向靠近所述多个第一条状电极与所述多个第二条状电极的对称轴的一侧弯折。
可选地,在本公开实施例提供的上述阵列基板中,所述条状电极自靠近所述第一侧的一端至靠近所述第二侧的一端与所述对称轴的距离逐渐减小。
可选地,在本公开实施例提供的上述阵列基板中,所述第一电极还包括连接电极,所述连接电极包括:在所述第一方向上延伸且在所述第二方向上排列的第一连接电极和第二连接电极,以及在所述第一侧与所述第一连接电极和所述第二连接电极连接的第三连接电极。
可选地,在本公开实施例提供的上述阵列基板中,在所述第一方向上的正投影长度小于所述第一侧与所述第二侧之间的距离且与所述第二侧互不交叠的所述第一条状电极和所述第二条状电极中,关于所述第三连接电极的中垂线对称的所述第一条状电极的一端与所述第二条状电极的一端连接,另一端与所述第三连接电极连接;
所述第一条状电极所含的所述第一部与所述第一连接电极或所述第三连接电极连接,所述第二条状电极所含的所述第一部与所述第二连接电极或所述第三连接电极连接。
可选地,在本公开实施例提供的上述阵列基板中,所述条状电极自靠近 所述第一侧的一端至靠近所述第二侧的一端与所述对称轴的距离逐渐增大。
可选地,在本公开实施例提供的上述阵列基板中,所述第一电极还包括连接电极,所述连接电极包括:在所述第一方向上延伸且在所述第二方向上排列的第一连接电极、第四连接电极和第二连接电极,以及在所述第一侧与所述第一连接电极、所述第四连接电极和所述第二连接电极连接的第三连接电极。
可选地,在本公开实施例提供的上述阵列基板中,在所述第一方向上的正投影长度小于所述第一侧与所述第二侧之间的距离且与所述第二侧互不交叠的所述第一条状电极和所述第二条状电极中,所述第一条状电极连接于所述第一连接电极与所述第三连接电极之间,所述第二条状电极连接于所述第二连接电极与所述第三连接电极之间;
所述第一条状电极所含的所述第一部与所述第三连接电极或所述第四连接电极连接;所述第二条状电极所含的所述第一部与所述第三连接电极或所述第四连接电极连接。
可选地,在本公开实施例提供的上述阵列基板中,还包括:位于所述第一电极与所述衬底基板之间或者位于所述第一电极背离所述衬底基板一侧的第二电极,所述第二电极为面状电极。
可选地,在本公开实施例提供的上述阵列基板中,所述第一电极在所述衬底基板上的正投影位于所述第二电极的正投影内。
可选地,在本公开实施例提供的上述阵列基板中,所述第二电极在所述衬底基板上的正投影边界与相邻所述数据线的正投影之间的距离,小于所述第一电极在所述衬底基板上的正投影边界与相邻所述数据线的正投影之间的距离。
可选地,在本公开实施例提供的上述阵列基板中,还包括:位于所述多个像素单元所在层背离所述衬底基板一侧的第一取向层,所述第一取向层的取向方向由所述第一侧指向所述第二侧。
另一方面,本公开实施例还提供了一种液晶显示面板,包括:
相对而置的阵列基板和彩膜基板,所述阵列基板为上述阵列基板;
液晶层,位于所述阵列基板与所述彩膜基板之间。
可选地,在本公开实施例提供的上述液晶显示面板中,所述彩膜基板包括黑矩阵,或者所述阵列基板包括位于像素电极面向所述液晶层一侧的黑矩阵;
第二部在所述液晶显示面板所在层上的至少部分正投影位于所述黑矩阵的正投影内。
可选地,在本公开实施例提供的上述液晶显示面板中,所述黑矩阵的宽度d BM满足以下关系式:
d BM=d cell+2*d 对位
其中,d cell为所述液晶显示面板的盒厚,d 对位为所述液晶显示面板的对位精度。
另一方面,本公开实施例还提供了一种液晶显示装置,包括上述液晶显示面板。
附图说明
图1和图2分别为相关技术中电场分布示意图;
图3为本公开实施例提供的阵列基板的俯视结构示意图;
图4为沿图3中I-II线的剖面结构示意图;
图5为本公开实施例提供的狭缝电极的一种结构示意图;
图6为图5中A区域的放大结构示意图;
图7为本公开实施例提供的电场分布示意图;
图8为本公开实施例提供的狭缝电极中第二部对应的透过率曲线图;
图9为本公开实施例提供的狭缝电极的又一种结构示意图;
图10为图9中B区域的放大结构示意图;
图11为本公开实施例提供的狭缝电极的又一种结构示意图;
图12为图11中C区域的放大结构示意图;
图13为本公开实施例提供的狭缝电极的又一种结构示意图;
图14为图13中D区域的放大结构示意图;
图15为本公开实施例提供的狭缝电极的又一种结构示意图;
图16为本公开实施例提供的狭缝电极的又一种结构示意图;
图17为本公开实施例提供的狭缝电极的又一种结构示意图;
图18为本公开实施例提供的狭缝电极的又一种结构示意图;
图19为本公开实施例提供的面状电极与狭缝电极的相对大小示意图;
图20为本公开实施例提供的面状电极与狭缝电极不同大小关系下第二部对应的透过率曲线图;
图21为本公开实施例提供的液晶显示面板的结构示意图;
图22为本公开实施例提供的液晶显示装置的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“内”、“外”、“上”、“下”等仅用于表 示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
随着显示技术的发展,高端显示产品对显示器的各项性能均提出了更高的要求。VA模式具有高的正视角对比度,但在不同视角下的对比度不均匀;而ADS具有更优秀的宽视角特性(即背光透过的亮度不随视角的变化而发生变化),为结合二者的优势,一种利用边缘电场驱动垂直取向的液晶模式被提出来。在该模式下,电极结构与ADS相同,即像素电极和公共电极位于同一基板的上下两层,其中,一层电极设计为条状,另一层电极设计为面状。液晶及其初始取向与VA模式相同,即采用垂直取向的负性液晶或正性液晶。当液晶不被驱动(暗态L0)时,该模式具有与VA同等的L0水平,而当液晶被驱动时,又能兼具ADS的宽视角及色彩优势,而且在像素结构上要比VA简单。
当电场非零时,液晶被驱动,此时条状电极之间的有效电场包括垂直分量Ez和垂直条状电极延伸方向的分量Ey,如图1所示。其中垂直分量Ez使液晶由垂直方向向水平方向(xy平面)偏转,垂直条状电极延伸方向的分量Ey使液晶旋转至xy平面内平行于条状电极的方向,以完成液晶分子的旋转。然而为实现多个条状电极的连接,一般在多个条状电极的周围设置连接电极,在此情况下,条状电极的边缘区域除了条状电极与面状电极之间的有效电场外,增加了连接电极和面状电极之间的电场,而且该电场具有沿x方向的分量Ex,如图2所示。可见,由于电极的方向不同,使得边缘区域的电场分布比较复杂,导致液晶分子难以偏转而出现黑色向错线。
针对相关技术中存在的上述技术问题,本公开实施例提供了一种阵列基板,如图3至图6所示,包括:
衬底基板01;
沿第一方向延伸的多条栅线02,位于衬底基板01之上;
多条数据线03,沿与第一方向交叉的第二方向延伸;
多个像素单元,位于由多条栅线02和多条数据线03限定出的区域;像素单元具有在第二方向上延伸且在第一方向上相对的第一侧和第二侧;
像素单元包括第一电极04,其中:
第一电极04包括多个条状电极401,至少部分条状电极401的具有延伸方向不同的第一部P1和第二部P2,第一部P1在第一侧相互连接,第二部P2在第二侧相互断开,且第一部P1和第二部P2的长度不同。
在本公开实施例提供的上述阵列基板中,通过设置至少部分条状电极401的第二部P2在第二侧相互断开,使得临近第二侧的第二部P2(相当于条状电极401的边缘部)与面状电极之间的Ex电场分量减小,优化了电场分布,如图7所示。因此,条状电极401整体上与面状电极之间的电场可视为仅包括Ez和Ey两个有效分量,基于此,第一电极04可控制位于其中间区域和边缘区域对应的液晶分子旋转程度相近,从而有效避免了黑色相错线的出现,提高了显示效果。
测试结果表明,相较于条状电极401未断开的相关技术,本公开通过设置第二部P2在第二侧相互断开,可以使相错线所在黑区向有效显示区(AA)外移动4.9μm,如图8所示,从而有效改善了显示质量。另一方面,相关技术的灰阶响应时间为29.9ms,本公开的灰阶响应时间为23.2ms,可见,断开第二部P2可以加快响应速度,这是因为断开后避免了向错线的出现、移动及稳定过程。
可选地,在本公开实施例提供的上述阵列基板中,为保证光线透过率,条状电极401的线宽可以大于或等于1.9μm且小于或等于3.3μm,条状电极401之间的距离可以大于或等于2.3μm且小于或等于4.8μm,条状电极401的延伸方向与偏光片光轴之间的夹角可以大于或等于35°且小于或等于55°,例如45°。需要说明的是,在条状电极401包括延伸方向不同的第一部P1和第二部P2时,条状电极401的延伸方向具体是指长度较大的那部分的延伸方向。例如第一部P1的长度大于第二部P2的长度,则条状电极401的延伸方向即是第一部P1的延伸方向,以下以条状电极401的延伸方向是第一部P1的延伸方向为例进行说明。
可选地,在本公开实施例提供的上述阵列基板中,为有效增加Ey电场分 量,减少Ex电场分量,可以设置第一部P1的延伸方向与第二部P2的延伸方向之间的夹角大于0°且小于或等于45°。较佳地,第一部P1的延伸方向与第二部P2的延伸方向之间的夹角大于或等于10°且小于或等于15°。具体可以为10°、11°、12°、13°、14°、15°等。
可选地,在本公开实施例提供的上述阵列基板中,第二部P2的长度小于第一部P1的长度,其中第二部P2的长度具体可根据像素边缘区域进行设计调整。示例性地,如图6所示,第二部P2在其延伸方向上的长度L可以设计为大于或等于1μm且小于或等于3μm,具体可以为1μm、1.5μm、2μm、2.5μm、3μm等。可选地,第二部P2为直线型时,第二部P2的延伸方向为直线走向;第二部P2为折线型时,第二部P2的延伸方向为折线走向;第二部P2为曲线型时,第二部P2的延伸方向为弧线走向。
可选地,在本公开实施例提供的上述阵列基板中,第一部P1和第二部P2可以为直线型、折线型、曲线型等结构,例如图5和图6所示,第一部P1为直线型,第二部P2为偏离第一部P1的延伸方向弯曲的曲线型。并且由图5和图6可见,第一部P1具体为延伸方向与条状电极401的整体延伸方向相同的部分,第二部P2具体为延伸方向与条状电极401的整体延伸方向不同的部分。
相关技术中,在边缘区域的液晶不动区域和中间区域的液晶旋转区域之间会产生过渡区,在不同的电压下,液晶旋转与不旋转之间的平衡情况不同,从而导致黑色向错线的位置不固定。通过设置第二部P2偏离第一部P1的延伸方向弯曲,进一步增加了Ey电场分量,减少了有害电场分量Ex,从而可固定甚至消除相错线。
可选地,在本公开实施例提供的上述阵列基板中,如图5所示,部分或全部第二部P2的弧度相同,以便于工艺制作。
可选地,在本公开实施例提供的上述阵列基板中,为利于制作,可设置第一部P1的线宽与第二部P2的线宽相同,例如大于或等于1.9μm且小于或等于3.3μm。需要说明的是,在具体制作过程中,受刻蚀等因素的影响,第二 部P2的线宽会随其与第一部P1之间距离的增加而略有缩减。另外,第二部P2远离第一部P1的一端可能是直角、锐角、钝角、圆角,一般受刻蚀等工艺因素的影响,第二部P2相对于第一部P1的最远端为圆角,如图6所示。
可选地,在本公开实施例提供的上述阵列基板中,第一电极04可以为单畴结构、双畴结构、四畴结构等。
例如图5、图6、图9和图10所示,第一电极04为单畴结构,具体地第一电极04所包括的多个条状电极401沿第三方向延伸,并沿与第三方向交叉的第四方向排列;具体地,第三方向与偏光片光轴之间夹角的范围大于或等于35°且小于或等于55°,优选45°;
第一电极04还包括连接电极402,该连接电极402包括:在第一方向上延伸,并沿第二方向排列的第一连接电极4021和第二连接电极4022,以及在第一侧且与第一连接电极4021和第二连接电极4022连接的第三连接电极4023;
第一部P1与第一连接电极4021或第三连接电极4023连接,在第一方向上的正投影长度小于第一侧与第二侧之间的距离且与第二侧互不交叠的条状电极401,连接于第二连接电极4022和第三连接电极4023之间。
再如图11至图18所示,第一电极04为双畴结构,多个条状电极401包括:多个第一条状电极4011和多个第二条状电极4012;其中多个第一条状电极4011的延伸方向与多个第二条状电极4012的延伸方向不同,可选的,多个第一条状电极4011与多个第二条状电极4012关于第一方向对称。在图11至图16中,多个第一条状电极与多个第二条状电极之间的夹角大于或等于80°且小于或等于100°,优选90°;在图17和图18中,多个第一条状电极与多个第二条状电极之间的夹角大于0°且小于或等于10°。具体可根据上下偏光片的透光轴方向决定。
需要说明的是,由于具有第二部P2的第一条状电极4011与具有第二部P2的第二条状电极4012是对称设置的,可选的,第一条状电极4011中第二部P2形状与第二条状电极4012中第二部P2形状也是对称的。具体的,与图 12所示第二条状电极4012中第二部P2形状对称的第一条状电极4011中第二部P2形状可参见图6;与图14所示第二条状电极4012中第二部P2形状对称的第一条状电极4011中第二部P2形状可参见图10。另外,在图15和图17中,相互对称的第一条状电极4011与第二条状电极4012所含第二部P2设置方式与图11大致相同,在图16和图18中,相互对称的第一条状电极4011与第二条状电极4012所含第二部P2设置方式与图13大致相同。
具体地,在图11和图15中,第二部P2均向远离多个第一条状电极4011与多个第二条状电极4012的对称轴的一侧弯折。在图13和图16中,第二部P2均向靠近多个第一条状电极4011与多个第二条状电极4012的对称轴的一侧弯折。其中,第二部P2均向远离多个第一条状电极4011与多个第二条状电极4012的对称轴的一侧弯折比均向靠近该对称轴弯折更有效。具体而言,由于第二部P2向靠近多个第一条状电极4011与多个第二条状电极4012的对称轴弯折,导致相邻两个条状电极401之间的距离缩短(即一个第二部P2与相邻第一部P1之间的距离);而与向靠近多个第一条状电极4011与多个第二条状电极4012的对称轴弯折相比,当第二部P2向远离多个第一条状电极4011与多个第二条状电极4012的对称轴弯折时不会引起相邻条状电极401之间的距离增加,可以更多地增加有效电场的Ey分量,从而可以避免不必要的有害电场的影响,更利于边缘区域对应的液晶保持与中间区域对应液晶具有一致的偏转方向。测试结果表明,第二部P2向靠近多个第一条状电极4011与多个第二条状电极4012的对称轴弯折的灰阶响应时间为19ms,第二部P2向远离多个第一条状电极4011与多个第二条状电极4012的对称轴弯折的灰阶响应时间为17ms。
另外,在如图11和图13中,条状电极401自靠近第一侧的一端至靠近第二侧的一端与对称轴的距离逐渐减小,使得第一条状电极4011与第二条状电极4012之间形成类似“>”的结构。此时,为实现各条状电极401的连接,如图11和图13所示,第一电极04还包括连接电极402,该连接电极402包括:在第一方向上延伸且在第二方向上排列的第一连接电极4021和第二连接 电极4022,以及在第一侧与第一连接电极4021和第二连接电极4022连接的第三连接电极4023;其中,
在第一方向上的正投影长度小于第一侧与第二侧之间的距离且与第二侧互不交叠的第一条状电极4011和第二条状电极4012中,关于第三连接电极402的中垂线对称的第一条状电极4011的一端与第二条状电极4012的一端连接,另一端与第三连接电极4022连接;
第一条状电极4011所含的第一部P1与第一连接电极4021或第三连接电极4023连接,第二条状电极4012所含的第一部P1与第二连接电极4022或第三连接电极4023连接。
在图15和图16中,条状电极401自靠近第一侧的一端至靠近第二侧的一端与对称轴的距离逐渐增大,使得第一条状电极4011与第二条状电极4012之间形成类似“<”的结构。此时,为了实现各条状电极401的连接,如图15和图16所示,第一电极04还包括连接电极402,该连接电极包括:在第一方向上延伸且在第二方向上排列的第一连接电极4021、第四连接电极4024和第二连接电极4022,以及在第一侧与第一连接电极4021、第四连接电极4024和第二连接电极4022连接的第三连接电极4023;其中,
在第一方向上的正投影长度小于第一侧与第二侧之间的距离且与第二侧互不交叠的第一条状电极4011和第二条状电极4012中,第一条状电极4011连接于第一连接电极4021与第三连接电极4023之间,第二条状电极4012连接于第二连接电极4022与第三连接电极4023之间;
第一条状电极4011所含的第一部P1与第三连接电极4023或第四连接电极4024连接;第二条状电极4012所含的第一部P1与第三连接电极4023或第四连接电极4024连接。
在图17和图18中,由于条状电极401的倾斜角度较小,故全部条状电极401的第一端在第一侧均可通过第三连接电极4023连接。
可选地,在本公开实施例提供的上述阵列基板中,如图3和图4所示,一般还包括:位于第一电极04与衬底基板01之间的第二电极05,第二电极 05为面状电极,以及位于第一电极04与第二电极05之间的绝缘层06。在另一些实施例中,第二电极05还可以位于第一电极04背离衬底基板01的一侧。具体地,第一电极04可以为像素电极(Pix),第二电极05为公共电极(Com);或者第一电极04可以为公共电极,第二电极05为像素电极,在此不做限定。在本公开中以第一电极04为像素电极,第二电极05为公共电极为例进行说明。
可选地,在本公开实施例提供的上述阵列基板中,如图3所示,第一电极04为像素电极,第二电极05为公共电极,由于电场对液晶的排列有很大影响,因此,此处对公共电极(例如第二电极05)的大小进行优化。设定像素电极(例如第一电极04)的边界与左右两侧数据线03的距离d1相等,公共电极(例如第二电极05)的边界与左右两侧数据线03的距离d2相等,如图19所示,以公共电极(例如第二电极05)和像素电极(例如第一电极04)相对于数据线03距离相等(即公共电极的边界至数据线03的距离与像素电极至数据线03的距离之差△d=0)为基准,当公共电极(例如第二电极05)向数据线03方向扩大0.5μm(即△d=0.5)、缩小0.5μm(即△d=-0.5)以及缩小1.0μm(即△d=-1)三种情况下,相错线所在黑区位置分别为:远离有效显示区0.22μm、缩进有效显示区0.4μm、缩进有效显示区1.0μm,如图20所示。因此,为防止黑区进入有效显示区影响显示效果,在本公开实施例提供的上述阵列基板中,如图1所示,可以设置像素电极(例如第一电极04)在衬底基板01上的正投影位于公共电极(例如第二电极05)的正投影内。具体地,公共电极(例如第二电极05)在衬底基板01上的正投影边界与相邻数据线03的正投影之间的距离,小于像素电极(例如第一电极04)在衬底基板01上的正投影边界与相邻数据线03的正投影之间的距离。在一些实施例中,即公共电极的边界至数据线03的距离与像素电极至数据线03的距离之差△d可以大于或等于0.5μm且小于或等于2.5μm,例如0.5μm、1μm、1.5μm、2μm、2.5μm等。
可选地,在本公开实施例提供的上述阵列基板中,如图21所示,还包括: 位于多个像素单元所在层背离衬底基板01一侧的第一取向层07,第一取向层07的取向方向由第一侧指向第二侧,也就是说,在本公开中第一取向层07的取向(rubbing)方向近似为0°(从左向右),从条状电极401没有断开的一侧指向断开的一侧,这样可以使得液晶的预倾角约为90°±5°,可选的,液晶的预倾角约为90°,液晶的方位角约为0°±45°,可选的,液晶的方位角约为0°。另外由于rubbing末端位置(即第二侧)的黑色相错线更严重,因此去掉相关技术中连接电极402在该侧的部分,可有效改善黑色相错线。
一般地,在本公开实施例提供的上述阵列基板中,如图3所示,还可以包括:与像素电极(例如第一电极04)连接的晶体管08;具体地,晶体管08设置在像素单元的间隙处,示例性地,晶体管08设置在第一侧的像素单元间隙处。
基于同一发明构思,本公开实施例提供了一种液晶显示面板,由于该液晶显示面板解决问题的原理与上述阵列基板解决问题的原理相似,因此,本公开实施例提供的该液晶显示面板的实施可以参见本公开实施例提供的上述阵列基板的实施,重复之处不再赘述。
具体地,本公开实施例还提供了一种液晶显示面板,如图21所示,包括:
相对而置的阵列基板和彩膜基板,阵列基板为上述阵列基板;
液晶层09,位于阵列基板与彩膜基板之间;其中液晶层09可以为正性液晶,也可以为负性液晶。
可选地,在本公开实施例提供的上述液晶显示面板中,如图21所示,彩膜基板包括黑矩阵10,或者阵列基板包括位于像素电极(例如第一电极04)面向液晶层09一侧的黑矩阵10;
第二部P2在液晶显示面板所在层上的至少部分正投影位于黑矩阵10的正投影内。
断开的第二部P2位于黑矩阵10下方,可以有效减少黑区在有效显示区域的出现,进一步提高了显示效果。
具体地,黑矩阵10的宽度设计可以根据需要选择。考虑金属材质的数据 线03遮蔽以及串扰等影响,在本公开实施例提供的上述液晶显示面板中,黑矩阵10的设计最小值可以采用宽度为d BM=d cell+2*d 对位,其中,d cell为液晶显示面板的盒厚,d 对位为液晶显示面板的对位精度。例如,3.5μm的盒厚设计,工艺中的设备对位精度为3μm,则黑矩阵10的宽度可以采用3.5μm+2*3μm=9.5μm,黑矩阵10的中心线位置与数据线03的中心线位置一致。而考虑对第二侧的相错线的遮蔽效果,可以适当增加黑矩阵10的宽度,例如,将第二侧的黑矩阵10覆盖至从第二部P2的最远端(即第二部P2的圆角端)向内延伸1μm~3μm(即可以延伸至完全覆盖第二部P2)。
需要说明的是,在本公开实施例提供的上述液晶显示面板中,如图21所示,一般地阵列基板还包括:下偏光片11;彩膜基板还包括第二取向层12、玻璃基底13和上偏光片14。在一些实施例中,还可将像素电极设置在阵列基板上,公共电极设置在彩膜基板上,在此不做限定。对于液晶显示面板的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。
另一方面,本公开实施例还提供了一种液晶显示装置,如图22所示,包括本公开实施例提供的上述液晶显示面板,以及位于液晶显示面板入光侧的背光模组15。具体地,该背光模组15可以为直下式背光模组,也可以为侧入式背光模组。该液晶显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、智能手表、健身腕带、个人数字助理等任何具有显示功能的产品或部件。对于液晶显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。另外,由于该液晶显示装置解决问题的原理与上述液晶显示面板解决问题的原理相似,因此,该液晶显示装置的实施可以参见上述液晶显示面板的实施例,重复之处不再赘述。
本公开实施例提供的上述阵列基板、液晶显示面板及液晶显示装置,包括:衬底基板;沿第一方向延伸的多条栅线,位于衬底基板之上;多条数据线,沿与第一方向交叉的第二方向延伸;多个像素单元,位于由多条栅线和 多条数据线限定出的区域;像素单元具有在第二方向上延伸且在第一方向上相对的第一侧和第二侧;像素单元包括第一电极,其中:第一电极包括多个条状电极,至少部分条状电极的具有延伸方向不同的第一部和第二部,第一部在第一侧相互连接,第二部在第二侧相互断开,且第一部和第二部的长度不同。通过设置至少部分条状电极的第二部在第二侧相互断开,使得临近第二侧的第二部(相当于条状电极的边缘部)与公共电极之间的Ex电场分量减小,因此,条状电极整体上与公共电极之间的电场可视为仅包括Ez和Ey两个分量,基于此,第一电极可控制位于其中间区域和边缘区域对应的液晶分子旋转程度相近,从而有效避免了黑色相错线的出现,提高了显示效果。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (28)

  1. 一种阵列基板,其中,包括:
    衬底基板;
    沿第一方向延伸的多个栅线,位于所述衬底基板之上;
    多个数据线,沿与所述第一方向交叉的第二方向延伸;
    多个像素单元,位于由所述多个栅线和所述多个数据线限定出的区域;所述像素单元具有在所述第二方向上延伸且在所述第一方向上相对的第一侧和第二侧;
    所述像素单元包括第一电极,其中:
    所述第一电极包括多个条状电极,至少部分所述条状电极具有延伸方向不同的第一部和第二部,所述第一部在所述第一侧相互连接,所述第二部在所述第二侧相互断开,且所述第一部和所述第二部的长度不同。
  2. 如权利要求1所述的阵列基板,其中,所述第一部的延伸方向与所述第二部的延伸方向之间的夹角大于0°且小于或等于45°。
  3. 如权利要求2所述的阵列基板,其中,所述第一部的延伸方向与所述第二部的延伸方向之间的夹角大于或等于10°且小于或等于15°。
  4. 如权利要求1所述的阵列基板,其中,所述第二部的长度大于或等于1μm且小于或等于3μm。
  5. 如权利要求1所述的阵列基板,其中,所述第一部为直线型,所述第二部为偏离所述第一部的延伸方向弯曲的曲线型。
  6. 如权利要求5所述的阵列基板,其中,至少部分所述第二部的弧度相同。
  7. 如权利要求1所述的阵列基板,其中,所述第一部的线宽与所述第二部的线宽相同。
  8. 如权利要求1所述的阵列基板,其中,所述第二部相对于所述第一部的最远端为圆角。
  9. 如权利要求1所述的阵列基板,其中,所述多个条状电极沿第三方向延伸,并沿与所述第三方向交叉的第四方向排列;
    所述第一电极还包括连接电极,所述连接电极包括:在所述第一方向上延伸,并沿所述第二方向排列的第一连接电极和第二连接电极,以及在所述第一侧且与所述第一连接电极和所述第二连接电极连接的第三连接电极;
    所述第一部与所述第一连接电极或所述第三连接电极连接;在所述第一方向上的正投影长度小于所述第一侧与所述第二侧之间的距离且与所述第二侧互不交叠的所述条状电极,连接于所述第二连接电极和所述第三连接电极之间。
  10. 如权利要求1-8任一项所述的阵列基板,其中,所述多个条状电极包括:多个第一条状电极和多个第二条状电极;其中所述多个第一条状电极的延伸方向与所述多个第二条状电极的延伸方向不同。
  11. 如权利要求10所述的阵列基板,其中,所述多个第一条状电极与所述多个第二条状电极关于所述第一方向对称。
  12. 如权利要求11所述的阵列基板,其中,所述多个第一条状电极与所述多个第二条状电极之间的夹角大于或等于80°且小于或等于100°,或者,所述多个第一条状电极与所述多个第二条状电极之间的夹角大于0°且小于或等于10°。
  13. 如权利要求11所述的阵列基板,其中,所述第二部均向远离所述多个第一条状电极与所述多个第二条状电极的对称轴的一侧弯折。
  14. 如权利要求11所述的阵列基板,其中,所述第二部均向靠近所述多个第一条状电极与所述多个第二条状电极的对称轴的一侧弯折。
  15. 如权利要求13或14所述的阵列基板,其中,所述条状电极自靠近所述第一侧的一端至靠近所述第二侧的一端与所述对称轴的距离逐渐减小。
  16. 如权利要求15所述的阵列基板,其中,所述第一电极还包括连接电极,所述连接电极包括:在所述第一方向上延伸且在所述第二方向上排列的第一连接电极和第二连接电极,以及在所述第一侧与所述第一连接电极和所 述第二连接电极连接的第三连接电极。
  17. 如权利要求16所述的阵列基板,其中,在所述第一方向上的正投影长度小于所述第一侧与所述第二侧之间的距离且与所述第二侧互不交叠的所述第一条状电极和所述第二条状电极中,关于所述第三连接电极的中垂线对称的所述第一条状电极的一端与所述第二条状电极的一端连接,另一端与所述第三连接电极连接;
    所述第一条状电极所含的所述第一部与所述第一连接电极或所述第三连接电极连接,所述第二条状电极所含的所述第一部与所述第二连接电极或所述第三连接电极连接。
  18. 如权利要求13或14所述的阵列基板,其中,所述条状电极自靠近所述第一侧的一端至靠近所述第二侧的一端与所述对称轴的距离逐渐增大。
  19. 如权利要求18所述的阵列基板,其中,所述第一电极还包括连接电极,所述连接电极包括:在所述第一方向上延伸且在所述第二方向上排列的第一连接电极、第四连接电极和第二连接电极,以及在所述第一侧与所述第一连接电极、所述第四连接电极和所述第二连接电极连接的第三连接电极。
  20. 如权利要求19所述的阵列基板,其中,在所述第一方向上的正投影长度小于所述第一侧与所述第二侧之间的距离且与所述第二侧互不交叠的所述第一条状电极和所述第二条状电极中,所述第一条状电极连接于所述第一连接电极与所述第三连接电极之间,所述第二条状电极连接于所述第二连接电极与所述第三连接电极之间;
    所述第一条状电极所含的所述第一部与所述第三连接电极或所述第四连接电极连接;所述第二条状电极所含的所述第一部与所述第三连接电极或所述第四连接电极连接。
  21. 如权利要求1所述的阵列基板,其中,所述像素单元还包括:位于所述第一电极与所述衬底基板之间或者位于所述第一电极背离所述衬底基板一侧的第二电极,所述第二电极为面状电极。
  22. 如权利要求21所述的阵列基板,其中,所述第一电极在所述衬底基 板上的正投影位于所述第二电极的正投影内。
  23. 如权利要求22所述的阵列基板,其中,所述第二电极在所述衬底基板上的正投影边界与相邻所述数据线的正投影之间的距离,小于所述第一电极在所述衬底基板上的正投影边界与相邻所述数据线的正投影之间的距离。
  24. 如权利要求1所述的阵列基板,其中,还包括:位于所述多个像素单元所在层背离所述衬底基板一侧的第一取向层,所述第一取向层的取向方向被配置为由所述第一侧指向所述第二侧。
  25. 一种液晶显示面板,其中,包括:
    相对而置的阵列基板和彩膜基板,所述阵列基板为如权利要求1-24任一项所述的阵列基板;
    液晶层,位于所述阵列基板与所述彩膜基板之间。
  26. 如权利要求25所述的液晶显示面板,其中,所述彩膜基板包括黑矩阵,或者所述阵列基板包括位于像素电极面向所述液晶层一侧的黑矩阵;
    所述第二部在所述液晶显示面板所在层上的至少部分正投影位于所述黑矩阵的正投影内。
  27. 如权利要求26所述的液晶显示面板,其中,所述黑矩阵的宽度d BM满足以下关系式:
    d BM=d cell+2*d 对位
    其中,d cell为所述液晶显示面板的盒厚,d 对位为所述液晶显示面板的对位精度。
  28. 一种液晶显示装置,其中,包括如权利要求25-27任一项所述的液晶显示面板。
PCT/CN2021/098816 2020-07-29 2021-06-08 阵列基板、液晶显示面板及液晶显示装置 WO2022022071A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/922,533 US20230168553A1 (en) 2020-07-29 2021-06-08 Array substrate, liquid crystal display panel and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010741256.3A CN114063353B (zh) 2020-07-29 2020-07-29 阵列基板、液晶显示面板及液晶显示装置
CN202010741256.3 2020-07-29

Publications (1)

Publication Number Publication Date
WO2022022071A1 true WO2022022071A1 (zh) 2022-02-03

Family

ID=80037464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098816 WO2022022071A1 (zh) 2020-07-29 2021-06-08 阵列基板、液晶显示面板及液晶显示装置

Country Status (3)

Country Link
US (1) US20230168553A1 (zh)
CN (1) CN114063353B (zh)
WO (1) WO2022022071A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512565B1 (en) * 1998-05-29 2003-01-28 Hyundai Display Technology Inc. Homeotropic alignment liquid crystal display having multi-domain
CN101403836A (zh) * 2007-10-05 2009-04-08 乐金显示有限公司 液晶显示器件
CN103488002A (zh) * 2013-09-18 2014-01-01 京东方科技集团股份有限公司 像素电极、阵列基板和显示装置
CN104375341A (zh) * 2014-11-18 2015-02-25 深圳市华星光电技术有限公司 一种阵列基板及液晶显示面板
CN104536218A (zh) * 2015-01-13 2015-04-22 深圳市华星光电技术有限公司 阵列基板及液晶显示器
CN104656309A (zh) * 2013-11-19 2015-05-27 群创光电股份有限公司 显示面板及包含该显示面板的显示装置
CN104820322A (zh) * 2015-03-31 2015-08-05 友达光电股份有限公司 像素结构以及包括此像素结构的液晶显示器
CN104932162A (zh) * 2015-06-30 2015-09-23 厦门天马微电子有限公司 阵列基板和液晶显示面板
CN105974688A (zh) * 2016-07-22 2016-09-28 京东方科技集团股份有限公司 阵列基板、显示面板和显示装置
CN106054471A (zh) * 2016-08-12 2016-10-26 京东方科技集团股份有限公司 一种平面场阵列基板及显示装置
CN107092143A (zh) * 2016-02-18 2017-08-25 群创光电股份有限公司 显示设备
CN111273494A (zh) * 2020-03-27 2020-06-12 武汉华星光电技术有限公司 阵列基板及显示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5165169B2 (ja) * 2001-03-07 2013-03-21 株式会社ジャパンディスプレイイースト 液晶表示装置
KR100652218B1 (ko) * 2004-06-29 2006-12-01 엘지.필립스 엘시디 주식회사 수평전계방식 액정표시소자 및 그 제조방법
JP4201051B2 (ja) * 2006-09-15 2008-12-24 エプソンイメージングデバイス株式会社 液晶表示パネル
JP5075718B2 (ja) * 2008-04-08 2012-11-21 株式会社ジャパンディスプレイイースト 液晶表示装置
KR20120090371A (ko) * 2011-02-07 2012-08-17 삼성전자주식회사 액정 표시 장치
TWI512377B (zh) * 2013-06-04 2015-12-11 Au Optronics Corp 畫素結構
JP2016038433A (ja) * 2014-08-06 2016-03-22 株式会社ジャパンディスプレイ 液晶表示装置
CN104267550A (zh) * 2014-10-14 2015-01-07 京东方科技集团股份有限公司 一种阵列基板、显示面板、显示装置
KR102365290B1 (ko) * 2015-06-18 2022-02-21 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
CN105158995B (zh) * 2015-10-27 2018-03-02 深圳市华星光电技术有限公司 像素电极及阵列基板
CN106094369B (zh) * 2016-08-26 2019-12-24 深圳市华星光电技术有限公司 像素电极及曲面液晶显示面板
CN111103734A (zh) * 2018-10-25 2020-05-05 京东方科技集团股份有限公司 阵列基板、显示面板和显示装置
CN209373316U (zh) * 2019-03-15 2019-09-10 北京京东方显示技术有限公司 一种阵列基板及液晶显示面板
CN110928066B (zh) * 2019-11-22 2022-07-01 厦门天马微电子有限公司 显示面板和显示装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512565B1 (en) * 1998-05-29 2003-01-28 Hyundai Display Technology Inc. Homeotropic alignment liquid crystal display having multi-domain
CN101403836A (zh) * 2007-10-05 2009-04-08 乐金显示有限公司 液晶显示器件
CN103488002A (zh) * 2013-09-18 2014-01-01 京东方科技集团股份有限公司 像素电极、阵列基板和显示装置
CN104656309A (zh) * 2013-11-19 2015-05-27 群创光电股份有限公司 显示面板及包含该显示面板的显示装置
CN104375341A (zh) * 2014-11-18 2015-02-25 深圳市华星光电技术有限公司 一种阵列基板及液晶显示面板
CN104536218A (zh) * 2015-01-13 2015-04-22 深圳市华星光电技术有限公司 阵列基板及液晶显示器
CN104820322A (zh) * 2015-03-31 2015-08-05 友达光电股份有限公司 像素结构以及包括此像素结构的液晶显示器
CN104932162A (zh) * 2015-06-30 2015-09-23 厦门天马微电子有限公司 阵列基板和液晶显示面板
CN107092143A (zh) * 2016-02-18 2017-08-25 群创光电股份有限公司 显示设备
CN105974688A (zh) * 2016-07-22 2016-09-28 京东方科技集团股份有限公司 阵列基板、显示面板和显示装置
CN106054471A (zh) * 2016-08-12 2016-10-26 京东方科技集团股份有限公司 一种平面场阵列基板及显示装置
CN111273494A (zh) * 2020-03-27 2020-06-12 武汉华星光电技术有限公司 阵列基板及显示装置

Also Published As

Publication number Publication date
CN114063353A (zh) 2022-02-18
US20230168553A1 (en) 2023-06-01
CN114063353B (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
KR100482468B1 (ko) 프린지 필드 구동 액정 표시 장치
US6721028B2 (en) Apparatus for fringe field switching liquid crystal display
CN100380187C (zh) 液晶显示装置和电子设备
US7978298B2 (en) Liquid crystal display device
KR100763172B1 (ko) 수직배향모드 액정표시소자
KR20140042716A (ko) 표시 장치 및 전자 기기
JP2007327997A (ja) 液晶装置、及び電子機器
JP5496322B2 (ja) 液晶表示パネル及び液晶表示装置
US11036075B2 (en) Color filter substrate and liquid crystal display panel
WO2020087583A1 (zh) Coa型液晶显示器
JP4447484B2 (ja) 液晶表示装置
US20240142815A1 (en) Display panel, method for manufacturing the same, and display device
JPH11109404A (ja) 液晶表示装置
JP2021128232A (ja) 液晶表示装置
WO2022022071A1 (zh) 阵列基板、液晶显示面板及液晶显示装置
WO2020082463A1 (zh) 一种显示面板、显示面板的制作方法和显示装置
WO2011104956A1 (ja) 液晶表示パネルおよび液晶表示装置
CN112162438B (zh) 显示装置
CN105739191B (zh) 显示面板与显示装置
US20090207358A1 (en) Horizontal-switching flexible liquid crystal displays and fabrication methods thereof
KR20050111699A (ko) 횡전계방식 액정표시소자
JP2005140983A (ja) 液晶表示装置および電子機器
CN100485473C (zh) 液晶显示装置和电子设备
US20040174481A1 (en) Liquid crystal display and manufacturing method thereof
JP4483851B2 (ja) 液晶表示装置及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21851147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21851147

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09.08.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21851147

Country of ref document: EP

Kind code of ref document: A1