WO2022022050A1 - 挡浪墙用材料 - Google Patents

挡浪墙用材料 Download PDF

Info

Publication number
WO2022022050A1
WO2022022050A1 PCT/CN2021/097428 CN2021097428W WO2022022050A1 WO 2022022050 A1 WO2022022050 A1 WO 2022022050A1 CN 2021097428 W CN2021097428 W CN 2021097428W WO 2022022050 A1 WO2022022050 A1 WO 2022022050A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
solution
aqueous solution
concrete
water
Prior art date
Application number
PCT/CN2021/097428
Other languages
English (en)
French (fr)
Inventor
杨佳岩
Original Assignee
中国港湾工程有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国港湾工程有限责任公司 filed Critical 中国港湾工程有限责任公司
Publication of WO2022022050A1 publication Critical patent/WO2022022050A1/zh
Priority to ZA2022/04480A priority Critical patent/ZA202204480B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/022Carbon
    • C04B14/026Carbon of particular shape, e.g. nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/10Carbohydrates or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength

Definitions

  • the invention relates to the field of coastal protection concrete. More specifically, the present invention relates to a material for wave retaining walls.
  • a wave retaining wall is usually set on the top of the slope embankment, which can improve the slope of the slope embankment.
  • the effective elevation can weaken the impact of sea breaking waves on the slope embankment.
  • the wave retaining wall is actually a concrete retaining wall that prevents waves from crossing the top of the embankment. Due to the harsh environment, the wave retaining wall will be damaged to a certain extent by wind waves, sea water impact and temperature changes. The frost resistance and wear resistance of hydraulic concrete have higher requirements to resist the damage of various environmental factors to the wave retaining wall.
  • the raw materials of concrete include cement mortar and orthopedics. Both cement mortar and aggregate are porous bodies with fine pores and have certain water absorption. The total amount of water needs to be greater than the hydration water of cement. During the mixing process of concrete, excess water will enter the capillary pores of cement mortar and aggregates, and stay in the capillary pores, and these retained water will lead to concrete.
  • the main internal cause of freezing damage cracking the water retained in the capillary pores freezes into a solid when cold, the volume increases, and an expansion force is generated, which in turn destroys the structure inside the rigid capillary pores, and finally causes the concrete to freeze and crack.
  • An object of the present invention is to solve at least the above-mentioned problems and to provide at least the advantages which will be explained later.
  • Another object of the present invention is to provide a material for wave retaining wall, which can improve the frost resistance and wear resistance of concrete by introducing nanocomposite temperature-sensitive hydrogel, and solves the problem of concrete frost resistance and wear resistance in the prior art.
  • Technical issues with poor performance improvement are due to:
  • a material for wave retaining walls which comprises the following raw materials in parts by weight: 15 parts of cement, 25 parts of basalt crushed stone, 30 parts of river sand, 0.5 parts of nanocomposite Warm hydrogel, 0.3 parts of polyvinyl alcohol fibers, 5 parts of water, 1.5 parts of slag powder, 0.2 parts of swelling agent;
  • the nanocomposite temperature-sensing hydrogel is a graphene-type nanohydrogel modified by cyclodextrin.
  • Step a In parts by weight, take 4 parts of cyclodextrin and dissolve it in deionized water to prepare an aqueous solution of cyclodextrin with a concentration of 0.01 g/mL; take 2.5 parts of glycidyl methacrylate and put it in nitrogen Add it to the cyclodextrin aqueous solution under the protection of atmosphere, and fully stir for 30min under the protection of nitrogen atmosphere to obtain the first solution;
  • Step b taking 50 parts of the graphene oxide aqueous solution with a concentration of 0.7 mg/mL, placing the graphene oxide aqueous solution under an ice-water bath, feeding nitrogen into the graphene oxide aqueous solution, under the protection of a nitrogen atmosphere, 1 part of N-isopropylacrylamide was added to the graphene oxide aqueous solution, and the graphene oxide aqueous solution was stirred under an ice-water bath for 30 min to obtain a second solution;
  • Step c place the second solution obtained in step b under an ice-water bath, and under the protection of nitrogen atmosphere, sequentially add 0.05 part of the initiator and the first solution obtained in step a to the second solution, wherein the initiator is added After completion, the first solution is added dropwise to the second solution after stirring for 10 minutes, and after the first solution is added, the stirring is continued for 20 minutes to obtain a reaction solution;
  • step d the reaction solution obtained in step c is placed in a water bath at 60 ° C, and placed in a sealed container, the air in the sealed container is replaced with nitrogen, and the reaction solution is stirred for 20 hours to obtain a product mixture, and the product mixture is Transfer to a centrifuge tube and centrifuge at 40°C for 5 min, then pour off the first supernatant in the centrifuge tube while it is still hot, and collect the first sediment in the centrifuge tube.
  • the first deposit has been purified, specifically: the first deposit obtained in step d is dissolved in deionized water at 5°C, and put into a dialysis bag for After dialysis treatment, transfer the solution in the dialysis bag to a centrifuge tube after 6 hours, and centrifuge at 40°C for 5 minutes, then pour off the second supernatant in the centrifuge tube while it is still hot, and collect the second sediment in the centrifuge tube.
  • the nano-composite temperature-sensing hydrogel wherein the molecular weight cut-off of the dialysis bag is 7000, and the outer dialysis fluid is deionized water.
  • the preparation method of graphene oxide aqueous solution is:
  • the oil bath was heated to 90°C, continued to stir until the solution in the reaction vessel turned yellow, stopped heating and cooled to room temperature, then added 500 parts of deionized water to the reaction vessel, stirred for 30 min, and added to the reaction vessel.
  • the cyclodextrin is hydroxypropyl- ⁇ -cyclodextrin.
  • the expansion agent is calcium sulfoaluminate CAS type concrete expansion agent.
  • the initiator is one of potassium persulfate, sodium persulfate or lauroyl peroxide.
  • nanocomposite temperature-sensitive hydrogel is introduced into concrete, which can not only quickly absorb excess water in concrete, but also prevent water from entering the capillary pores of raw materials such as mud, causing frostbite in concrete, causing concrete to crack, and improving wave blocking.
  • the freeze-thaw resistance of concrete for walls can also be used as a wear-resistant agent to improve the wear-resistant performance of concrete, which improves the economic effect of concrete materials; in addition, the nanocomposite temperature-sensitive hydrogel will not affect the performance of other concrete materials. any effect;
  • the first solution was prepared by dissolving glycidyl methacrylate in the aqueous solution of cyclodextrin
  • the second solution was prepared by dissolving N-isopropylacrylamide in the graphene oxide aqueous solution.
  • glycidyl methacrylate reacts with N-isopropylacrylamide
  • the hydrogel is modified with cyclodextrin and graphene oxide, which improves the temperature sensitivity and mechanical properties of the hydrogel. performance, so as to achieve the technical effect of improving the freeze-thaw resistance and wear resistance of concrete at the same time;
  • the epoxy group of glycidyl acrylate is ring-opened and cross-linked, and cyclodextrin remains on the polymer chain during the in-situ synthesis of hydrogel.
  • Cyclodextrin has excellent hydrophilicity, which can greatly improve the polymer chain.
  • the ratio of hydrophilic/hydrophobic groups on the chain, the number of hydrogen bonds formed by cyclodextrin and water increases, so the water absorption rate increases. Above the lower critical transition temperature, the hydrogen bonds are destroyed, and the water molecules are quickly released and swelled. The ratio decreases rapidly, which speeds up the response rate of the hydrogel to temperature.
  • the cyclodextrin has a larger cavity, which makes the hydrogel provide more water-accommodating sites and can more quickly remove excess water.
  • the introduction of cyclodextrin makes the hydrogel have better temperature sensitivity and can more quickly regulate the water balance in the concrete system; in addition, the cyclodextrin has good biocompatibility, which makes the hydrogel Better integration with other raw materials of concrete;
  • N-isopropylacrylamide is modified by graphene oxide, and graphene oxide is supported on N-isopropylacrylamide to provide active covalent cross-linking sites and physical cross-linking sites, which makes the final preparation
  • the composite hydrogel has both physical cross-linking and chemical cross-linking inside, with a uniform three-dimensional network structure and high cross-linking density, which improves the ductility and mechanical strength of the hydrogel, and further improves the hydrogel.
  • the temperature sensitivity of the hydrogel when the hydrogel undergoes water absorption expansion and water release shrinkage under temperature changes, it can dissipate energy through the breaking of covalent bonds and the breaking of hydrogen bonds, avoiding local stress concentration leading to hydrogel breakage and oxidation.
  • Graphene can also enhance the mechanical properties of the hydrogel, making the hydrogel act as an anti-wear agent.
  • the invention provides a material for a wave retaining wall, which comprises the following raw materials in parts by weight: 15 parts of cement, 25 parts of basalt crushed stone, 30 parts of river sand, 0.5 parts of nano-composite temperature-sensitive hydrogel, 0.3 parts of polyvinyl alcohol Fiber, 5 parts of water, 1.5 parts of slag powder, and 0.2 part of expansion agent; wherein, the nanocomposite temperature-sensing hydrogel is a graphene-type nanohydrogel modified by cyclodextrin.
  • the preparation method of nanocomposite thermosensitive hydrogel comprises the following steps:
  • Step a In parts by weight, take 4 parts of cyclodextrin and dissolve it in deionized water to prepare an aqueous solution of cyclodextrin with a concentration of 0.01 g/mL; take 2.5 parts of glycidyl methacrylate and put it in nitrogen Add it to the cyclodextrin aqueous solution under the protection of atmosphere, and fully stir for 30min under the protection of nitrogen atmosphere to obtain the first solution;
  • Step b taking 50 parts of the graphene oxide aqueous solution with a concentration of 0.7 mg/mL, placing the graphene oxide aqueous solution under an ice-water bath, feeding nitrogen into the graphene oxide aqueous solution, under the protection of a nitrogen atmosphere, 1 part of N-isopropylacrylamide was added to the graphene oxide aqueous solution, and the graphene oxide aqueous solution was stirred for 30 min under an ice-water bath to remove air bubbles in the structure to obtain a second solution;
  • the preparation method of the graphene oxide aqueous solution is: in parts by weight, get 70 parts of vitriol oil and place in the reaction vessel under the ice-water bath, add 3 parts of graphite powder to the vitriol oil while stirring, and the graphite powder adds After completion, continue stirring for 10 minutes, then add 1.5 parts of sodium nitrate and 9 parts of potassium permanganate to the concentrated sulfuric acid in sequence, and after continuing to stir for 20 minutes, transfer the reaction vessel to an oil bath at 40 ° C, continue to stir and react for 1 hour, and then add to the reaction vessel. 150 parts of deionized water were added dropwise in the reaction vessel, the oil bath was heated to 90° C.
  • Step c place the second solution obtained in step b under an ice-water bath, and under the protection of nitrogen atmosphere, sequentially add 0.05 part of potassium persulfate and the first solution obtained in step a to the second solution, wherein, in the persulfuric acid After the potassium addition is completed, the first solution is added to the second solution after stirring for 10 minutes. After the first solution is added, the stirring is continued for 20 minutes to obtain a reaction solution;
  • step d the reaction solution obtained in step c is placed in a water bath at 60 ° C, and placed in a sealed container, the air in the sealed container is replaced with nitrogen, and the reaction solution is stirred for 20 hours to obtain a product mixture, and the product mixture is Transfer to a centrifuge tube and centrifuge at 40°C for 5 min, then pour off the first supernatant in the centrifuge tube while it is still hot, and collect the first sediment in the centrifuge tube.
  • the above-mentioned cyclodextrin is hydroxypropyl- ⁇ -cyclodextrin; and the expansion agent is calcium sulfoaluminate CAS type concrete expansion agent.
  • the invention provides a material for a wave retaining wall, which comprises the following raw materials in parts by weight: 15 parts of cement, 25 parts of basalt crushed stone, 30 parts of river sand, 0.5 parts of nano-composite temperature-sensitive hydrogel, 0.3 parts of polyvinyl alcohol Fiber, 5 parts of water, 1.5 parts of slag powder, and 0.2 part of expansion agent; wherein, the nanocomposite temperature-sensing hydrogel is a graphene-type nanohydrogel modified by cyclodextrin.
  • the preparation method of nanocomposite thermosensitive hydrogel comprises the following steps:
  • Step a In parts by weight, take 4 parts of cyclodextrin and dissolve it in deionized water to prepare an aqueous solution of cyclodextrin with a concentration of 0.01 g/mL; take 2.5 parts of glycidyl methacrylate and put it in nitrogen Add it to the cyclodextrin aqueous solution under the protection of atmosphere, and fully stir for 30min under the protection of nitrogen atmosphere to obtain the first solution;
  • Step b taking 50 parts of the graphene oxide aqueous solution with a concentration of 0.7 mg/mL, placing the graphene oxide aqueous solution under an ice-water bath, feeding nitrogen into the graphene oxide aqueous solution, under the protection of a nitrogen atmosphere, 1 part of N-isopropylacrylamide was added to the graphene oxide aqueous solution, and the graphene oxide aqueous solution was stirred for 30 min under an ice-water bath to remove air bubbles in the structure to obtain a second solution;
  • the preparation method of the graphene oxide aqueous solution is: in parts by weight, get 70 parts of vitriol oil and place in the reaction vessel under the ice-water bath, add 3 parts of graphite powder to the vitriol oil while stirring, and the graphite powder adds After completion, continue stirring for 10 minutes, then add 1.5 parts of sodium nitrate and 9 parts of potassium permanganate to the concentrated sulfuric acid in sequence, and after continuing to stir for 20 minutes, transfer the reaction vessel to an oil bath at 40 ° C, continue to stir and react for 1 hour, and then add to the reaction vessel. 150 parts of deionized water were added dropwise in the reaction vessel, the oil bath was heated to 90° C.
  • Step c place the second solution obtained in step b under an ice-water bath, and under the protection of nitrogen atmosphere, add 0.05 part of lauroyl peroxide and the first solution obtained in step a to the second solution in turn, wherein, in the After the addition of lauroyl oxide is completed, the first solution is added dropwise to the second solution after stirring for 10 minutes, and after the first solution is added, the stirring is continued for 20 minutes to obtain a reaction solution;
  • step d the reaction solution obtained in step c is placed in a water bath at 60 ° C, and placed in a sealed container, the air in the sealed container is replaced with nitrogen, and the reaction solution is stirred for 20 hours to obtain a product mixture, and the product mixture is Transfer to a centrifuge tube and centrifuge at 40°C for 5 minutes, then pour off the first supernatant in the centrifuge tube while it is still hot, and collect the first sediment in the centrifuge tube;
  • step e the first sediment obtained in step d is dissolved with deionized water at 5°C, and put into a dialysis bag for dialysis treatment. After 6 hours, the solution in the dialysis bag is transferred to a centrifuge tube, and centrifuged at 40°C. 5min, then pour off the second supernatant in the centrifuge tube while still hot, and collect the second sediment in the centrifuge tube to obtain the nanocomposite temperature-sensing hydrogel; wherein the molecular weight cut-off of the dialysis bag is 7000, and the outer dialysate liquid is 7000. for deionized water.
  • the above-mentioned cyclodextrin is hydroxypropyl- ⁇ -cyclodextrin; and the expansion agent is calcium sulfoaluminate CAS type concrete expansion agent.
  • a material for a wave retaining wall comprising the following raw materials in parts by weight: 15 parts of cement, 25 parts of basalt crushed stone, 30 parts of river sand, 0.5 parts of water reducing agent, 0.3 parts of polyvinyl alcohol fibers, 5 parts of water, 1.5 parts of slag powder, 0.2 parts of expansion agent.
  • a material for a wave retaining wall comprising the following raw materials in parts by weight: 15 parts of cement, 25 parts of basalt crushed stone, 30 parts of river sand, 0.5 parts of nano-temperature-sensitive hydrogel, 0.3 parts of polyvinyl alcohol fibers, 5 parts of parts of water, 1.5 parts of slag powder, 0.2 parts of expansion agent;
  • the preparation method of nanometer temperature-sensing hydrogel is:
  • Step a in parts by weight, take 2.5 parts of methacrylic acid shrinkage and add it to the aqueous solution under the protection of nitrogen atmosphere, and fully stir for 30min under the protection of nitrogen atmosphere to obtain the first solution;
  • Step b under the protection of nitrogen atmosphere, add 1 part of N-isopropylacrylamide to the aqueous solution, and stir the aqueous solution under an ice-water bath for 30 min to obtain a second solution;
  • Step c place the second solution obtained in step b under an ice-water bath, and under the protection of nitrogen atmosphere, sequentially add 0.05 part of the initiator and the first solution obtained in step a to the second solution, wherein the initiator is added After completion, the first solution is added dropwise to the second solution after stirring for 10 minutes, and after the first solution is added, the stirring is continued for 20 minutes to obtain a reaction solution;
  • step d the reaction solution obtained in step c is placed in a water bath at 60 ° C, and placed in a sealed container, the air in the sealed container is replaced with nitrogen, and the reaction solution is stirred for 20 hours to obtain a product mixture, and the product mixture is Transfer to a centrifuge tube and centrifuge at 40°C for 5 minutes, then pour off the first supernatant in the centrifuge tube while it is still hot, and collect the first sediment in the centrifuge tube;
  • step e the first sediment obtained in step d is dissolved with deionized water at 5°C, and put into a dialysis bag for dialysis treatment. After 6 hours, the solution in the dialysis bag is transferred to a centrifuge tube, and centrifuged at 40°C. 5min, then pour off the second supernatant in the centrifuge tube while still hot, and collect the second sediment in the centrifuge tube to obtain the nanocomposite temperature-sensing hydrogel; wherein the molecular weight cut-off of the dialysis bag is 7000, and the outer dialysate liquid is 7000. for deionized water.
  • a material for a wave retaining wall comprising the following raw materials in parts by weight: 15 parts of cement, 25 parts of basalt crushed stone, 30 parts of river sand, 0.5 part of nanocomposite temperature-sensing hydrogel, 0.3 part of polyvinyl alcohol fiber, 5 parts of water, 1.5 parts of slag powder, 0.2 parts of expansion agent;
  • Step a In parts by weight, take 4 parts of cyclodextrin and dissolve it in deionized water to prepare an aqueous solution of cyclodextrin with a concentration of 0.01 g/mL; take 2.5 parts of glycidyl methacrylate and put it in nitrogen Add it to the cyclodextrin aqueous solution under the protection of atmosphere, and fully stir for 30min under the protection of nitrogen atmosphere to obtain the first solution;
  • Step b under the protection of nitrogen atmosphere, add 1 part of N-isopropylacrylamide to the aqueous solution, and stir the aqueous solution under an ice-water bath for 30 min to obtain a second solution;
  • Step c place the second solution obtained in step b under an ice-water bath, and under the protection of nitrogen atmosphere, sequentially add 0.05 part of the initiator and the first solution obtained in step a to the second solution, wherein the initiator is added After completion, the first solution is added dropwise to the second solution after stirring for 10 minutes, and after the first solution is added, the stirring is continued for 20 minutes to obtain a reaction solution;
  • step d the reaction solution obtained in step c is placed in a water bath at 60 ° C, and placed in a sealed container, the air in the sealed container is replaced with nitrogen, and the reaction solution is stirred for 20 hours to obtain a product mixture, and the product mixture is Transfer to a centrifuge tube and centrifuge at 40°C for 5 minutes, then pour off the first supernatant in the centrifuge tube while it is still hot, and collect the first sediment in the centrifuge tube;
  • step e the first sediment obtained in step d is dissolved with deionized water at 5°C, and put into a dialysis bag for dialysis treatment. After 6 hours, the solution in the dialysis bag is transferred to a centrifuge tube, and centrifuged at 40°C. 5min, then pour off the second supernatant in the centrifuge tube while still hot, and collect the second sediment in the centrifuge tube to obtain the nanocomposite temperature-sensing hydrogel; wherein the molecular weight cut-off of the dialysis bag is 7000, and the outer dialysate liquid is 7000. for deionized water.
  • a material for a wave retaining wall comprising the following raw materials in parts by weight: 15 parts of cement, 25 parts of basalt crushed stone, 30 parts of river sand, 0.5 part of nanocomposite temperature-sensing hydrogel, 0.3 part of polyvinyl alcohol fiber, 5 parts of water, 1.5 parts of slag powder, 0.2 parts of expansion agent;
  • Step a in parts by weight, take 2.5 parts of methacrylic acid shrinkage and add it to the aqueous solution under the protection of nitrogen atmosphere, and fully stir for 30min under the protection of nitrogen atmosphere to obtain the first solution;
  • Step b taking 50 parts of the graphene oxide aqueous solution with a concentration of 0.7 mg/mL, placing the graphene oxide aqueous solution under an ice-water bath, feeding nitrogen into the graphene oxide aqueous solution, under the protection of a nitrogen atmosphere, 1 part of N-isopropylacrylamide was added to the graphene oxide aqueous solution, and the graphene oxide aqueous solution was stirred for 30 min under an ice-water bath to remove air bubbles in the structure to obtain a second solution;
  • the preparation method of the graphene oxide aqueous solution is: in parts by weight, get 70 parts of vitriol oil and place in the reaction vessel under the ice-water bath, add 3 parts of graphite powder to the vitriol oil while stirring, and the graphite powder adds After completion, continue stirring for 10 minutes, then add 1.5 parts of sodium nitrate and 9 parts of potassium permanganate to the concentrated sulfuric acid in sequence, and after continuing to stir for 20 minutes, transfer the reaction vessel to an oil bath at 40 ° C, continue to stir and react for 1 hour, and then add to the reaction vessel. 150 parts of deionized water were added dropwise in the reaction vessel, the oil bath was heated to 90° C.
  • Step c place the second solution obtained in step b under an ice-water bath, and under the protection of nitrogen atmosphere, sequentially add 0.05 part of the initiator and the first solution obtained in step a to the second solution, wherein the initiator is added After completion, the first solution is added dropwise to the second solution after stirring for 10 minutes, and after the first solution is added, the stirring is continued for 20 minutes to obtain a reaction solution;
  • step d the reaction solution obtained in step c is placed in a water bath at 60 ° C, and placed in a sealed container, the air in the sealed container is replaced with nitrogen, and the reaction solution is stirred for 20 hours to obtain a product mixture, and the product mixture is Transfer to a centrifuge tube and centrifuge at 40°C for 5 minutes, then pour off the first supernatant in the centrifuge tube while it is still hot, and collect the first sediment in the centrifuge tube;
  • step e the first sediment obtained in step d is dissolved with deionized water at 5°C, and put into a dialysis bag for dialysis treatment. After 6 hours, the solution in the dialysis bag is transferred to a centrifuge tube, and centrifuged at 40°C. 5min, then pour off the second supernatant in the centrifuge tube while still hot, and collect the second sediment in the centrifuge tube to obtain the nanocomposite temperature-sensing hydrogel; wherein the molecular weight cut-off of the dialysis bag is 7000, and the outer dialysate liquid is 7000. for deionized water.
  • the concrete prepared by the concrete materials provided in Examples 1 to 2 of the present invention has better frost resistance, wear resistance and durability.
  • the ene-modified hydrogel can significantly improve the properties of concrete, reaching the C45 standard and the frost resistance level reaching F250, meeting the 50-year design requirements, and can be used in seawater splash areas with higher environmental levels.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Civil Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

提供一种挡浪墙用材料。该材料包括,以重量计:15份水泥、25份玄武岩碎石、30份河沙、0.5份纳米复合温感水凝胶、0.3份聚乙烯醇纤维、5份水、1.5份矿渣粉、0.2份的膨胀剂;其中,纳米复合温感水凝胶为环糊精改性的石墨烯型纳米水凝胶。该水凝胶不仅能够快速地混凝土中多余的水分吸收,避免水分进入泥浆等原料的毛细孔内,使得混凝土出现冻伤,导致混凝土开裂,提高挡浪墙用混凝土的抗冻融性能,还能够作为耐磨剂对混凝土的耐磨性能进行改善,提高了混凝土材料的经济效应。

Description

挡浪墙用材料 技术领域
本发明涉及海岸防护用混凝土领域。更具体地说,本发明涉及一种挡浪墙用材料。
背景技术
在海岸的两侧设置斜坡堤是沿海港口工程中重要的水工工程,为保证斜坡堤结构的安全和港内水域的稳定通常会在斜坡堤顶部设置挡浪墙,其可提高斜坡堤堤顶的有效高程,减弱海破浪对斜坡堤的冲击力度。挡浪墙实际为防止波浪翻越堤顶的混凝土挡水墙,由于所处环境较恶劣,风浪、海水冲击以及温度变化对挡浪墙均会产生一定程度的损坏,因此,对于制作挡浪墙的水工混凝土的抗冻、耐磨等性能具有更高的要求,以抵御各种环境因素对挡浪墙的侵害。
混凝土的原料包括有水泥砂浆和骨科,水泥砂浆和骨料都是微细毛孔的多孔体,均具有一定的吸水性,为保证混凝土各原料之间的和易性,通常需要加入一定量的水,水的总量需要大于水泥的水化水,在混凝土在搅拌制作过程中,多余的水会进入水泥砂浆、骨料的毛细孔内,并滞留在毛细孔内,而这些滞留的水是导致混凝土受到冻害开裂的主要内因:滞留于毛细孔内的水遇冷结冰变成固体,体积增大,产生膨胀力,进而使得刚性的毛细孔内部的结构受到破坏,最终导致混凝土受冻开裂。
现有技术中通过加入减水剂减少混凝土的用水量,减少进入毛细孔内部的多余水分,进而达到提高混凝土抗冻性能的目的;然而,减水剂的引入存在很多技术难题,如对水泥、掺和料的敏感性使得减水剂的加入量不好把控,减水剂会影响混凝土的坍落度,此外减水剂的加入会延长养护时间;另外,为了保证混凝土的耐磨性,还需额外加入耐磨添加剂,提高混凝土的耐磨性,耐磨添加剂的加入会增加混凝土的制备成本,降低混凝土的经济效益,同时耐磨添加剂与减水剂复配效果较差;最终使得现有技术的混凝土的抗冻性、耐磨性的改善效果不佳。
因此,亟需提供一种新型的能够显著改善混凝土的抗冻、耐磨性能的混凝土材料用于制作挡浪墙。
发明内容
本发明的一个目的是解决至少上述问题,并提供至少后面将说明的优点。
本发明还有一个目的是提供一种挡浪墙用材料,其通过引入纳米复合温感水凝胶能够提高混凝土抗冻及耐磨性能,解决了现有技术中混凝土抗冻性和耐磨性效果改善不佳的技术问题。
为了实现根据本发明的这些目的和其它优点,提供了一种挡浪墙用材料,其包括以下重量份数的原料:15份水泥、25份玄武岩碎石、30份河沙、0.5份纳米复合温感水凝胶、0.3份聚乙烯醇纤维、5份水、1.5份矿渣粉、0.2份的膨胀剂;
其中,纳米复合温感水凝胶为环糊精改性的石墨烯型纳米水凝胶。
优选的是,所述的挡浪墙用材料,纳米复合温感水凝胶的制备方法包括以下步骤:
步骤a、按重量份数计,取4份的环糊精溶于去离子水中,配制得到浓度为0.01g/mL的环糊精水溶液;取2.5份的甲基丙烯酸缩水甘油酯,并在氮气氛围保护下加入至环糊精水溶液中,在氮气氛围保护下充分搅拌30min,得第一溶液;
步骤b、取50份的浓度为0.7mg/mL的氧化石墨烯水溶液,将氧化石墨烯水溶液置于冰水浴下,向氧化石墨烯水溶液中通入氮气,在氮气氛围保护下,将1份的N-异丙基丙烯酰胺加入氧化石墨烯水溶液中,并在冰水浴下搅拌氧化石墨烯水溶液30min,得第二溶液;
步骤c、将步骤b得到的第二溶液置于冰水浴下,在氮气氛围保护下,依次向第二溶液中加入0.05份的引发剂和步骤a得到的第一溶液,其中,在引发剂加入完成后,搅拌10min后再向第二溶液中滴加第一溶液,第一溶液加入完成后,继续搅拌20min,得反应液;
步骤d、将步骤c得到的反应液置于60℃的水浴中,并放入密封容器内,将密封容器内的空气置换为氮气,搅拌反应液反应20h后得产物混合液,将产物混合液转移至离心管内,并在40℃下离心5min,然后趁热倒去离心管中的第一上层清液,收集离心管内的第一沉积物,即得。
优选的是,所述的挡浪墙用材料,第一沉积物进行了净化处理,具体为:将 步骤d得到的第一沉积物用5℃的去离子水溶解,并装入透析袋内进行透析处理,6h后将透析袋内的溶液转移至离心管内,并在40℃下离心5min,然后趁热倒去离心管中的第二上层清液,收集离心管内的第二沉积物,即得所述纳米复合温感水凝胶;其中透析袋的截留分子量为7000,透析外液为去离子水。
优选的是,所述的挡浪墙用材料,氧化石墨烯水溶液的制备方法为:
按重量份数计,取70份的浓硫酸置于冰水浴下的反应容器中,边搅拌边向浓硫酸中加入3份的石墨粉,石墨粉加入完成后继续搅拌10min,随后向浓硫酸中依次加入1.5份的硝酸钠、9份的高锰酸钾,继续搅拌20min后,将反应容器转移至40℃的油浴下,继续搅拌反应1h后向反应容器中逐滴加入150份的去离子水,去离子水加入完成后油浴升温至90℃,继续搅拌至反应容器内溶液呈黄色停止加热冷却至室温,然后向反应容器中加入500份的去离子水,搅拌30min后向反应容器中加入20份的质量分数为30%的双氧水,搅拌20min后,静置30h后,将反应容器中的第三上层清液倒掉,并依次用质量分数为5%的稀盐酸、蒸馏水洗涤下层混合物2次,然后经过离心处理,收集离心管内的第三沉积物,将第三沉积物分散于去离子水中,并调节第三沉积物的浓度为0.7mg/mL,即得氧化石墨烯水溶液。
优选的是,所述的挡浪墙用材料,环糊精为羟丙基-β-环糊精。
优选的是,所述的挡浪墙用材料,膨胀剂为硫铝酸钙CAS类混凝土膨胀剂。
优选的是,所述的挡浪墙用材料,引发剂为过硫酸钾、过硫酸钠或过氧化月桂酰中的其中一种。
本发明至少包括以下有益效果:
1、本发明在混凝土中引入纳米复合温感水凝胶,不仅能够快速地混凝土中多余的水分吸收,避免水分进入泥浆等原料的毛细孔内,使得混凝土出现冻伤,导致混凝土开裂,提高挡浪墙用混凝土的抗冻融性能,还能够作为耐磨剂对混凝土的耐磨性能进行改善,提高了混凝土材料的经济效应;此外,纳米复合温感水凝胶不会对混凝土其他原料的性能产生任何影响;
2、将甲基丙烯酸缩水甘油酯溶解于环糊精的水溶液中制得第一溶液,N-异丙基丙烯酰胺溶解于氧化石墨烯水溶液中制得第二溶液,当第一溶液加入至第二 溶液中时,甲基丙烯酸缩水甘油酯与N-异丙基丙烯酰胺发生反应,进而实现在水凝胶上加以环糊精和氧化石墨烯进行修饰,提高水凝胶的温度敏感性和机械性能,从而达到同时提高混凝土抗冻融性能和耐磨性能的技术效果;
丙烯酸缩水甘油酯环氧基团开环交联,环糊精在水凝胶原位合成的过程中留在了高分子链上,环糊精具有优异的亲水性,进而能够大大提高高分子链上的亲水/疏水基团比,环糊精与水形成的氢键数目增加,因此吸水率提高,在高于低临界转变温度时,氢键被破坏,水分子被迅速释放出来,溶胀比迅速降低,加快水凝胶对温度做出响应的速率,同时,环糊精具有较大的空腔,使得水凝胶提供更多的水容纳位点,且能够更加迅速的将多余的水分吸,环糊精的引入使得水凝胶具有更好的温度敏感性,能够更加迅速的调控混凝土体系内的水平衡;此外,环糊精具有较好的生物相容性,使得水凝胶能够更好与混凝土的其他原料融合;
同时N-异丙基丙烯酰胺通过了氧化石墨烯进行修饰,氧化石墨烯负载在N-异丙基丙烯酰胺上提供具有活性共价交联位点和物理交联位点,进而使得最终制得的复合水凝胶内部同时具有物理交联和化学交联,具有均匀的三维网络结构和较高的交联密度,使得水凝胶的延展性能和机械强度均得到提高,同时进一步提高水凝胶的温度敏感性;当水凝胶在温度变化下发生吸水膨胀和释水收缩时,能够通过共价键的断裂和氢键的断裂进行能量耗散,避免局部应力集中导致水凝胶破裂,氧化石墨烯还可增强水凝胶的机械性能,使得水凝胶起到耐磨剂的作用。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
具体实施方式
下面结合实施例对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不排除一个或多个其它元件或其组合的存在或添加。
需要说明的是,下述实施方案中所述实验方法,如无特殊说明,均为常规方法,所述试剂和材料,如无特殊说明,均可从商业途径获得。
<实施例1>
本发明提供一种挡浪墙用材料,其包括以下重量份数的原料:15份水泥、25份玄武岩碎石、30份河沙、0.5份纳米复合温感水凝胶、0.3份聚乙烯醇纤维、5份水、1.5份矿渣粉、0.2份的膨胀剂;其中,纳米复合温感水凝胶为环糊精改性的石墨烯型纳米水凝胶。
纳米复合温感水凝胶的制备方法包括以下步骤:
步骤a、按重量份数计,取4份的环糊精溶于去离子水中,配制得到浓度为0.01g/mL的环糊精水溶液;取2.5份的甲基丙烯酸缩水甘油酯,并在氮气氛围保护下加入至环糊精水溶液中,在氮气氛围保护下充分搅拌30min,得第一溶液;
步骤b、取50份的浓度为0.7mg/mL的氧化石墨烯水溶液,将氧化石墨烯水溶液置于冰水浴下,向氧化石墨烯水溶液中通入氮气,在氮气氛围保护下,将1份的N-异丙基丙烯酰胺加入氧化石墨烯水溶液中,并在冰水浴下搅拌氧化石墨烯水溶液30min以除去结构中的气泡,得第二溶液;
其中,氧化石墨烯水溶液的制备方法为:按重量份数计,取70份的浓硫酸置于冰水浴下的反应容器中,边搅拌边向浓硫酸中加入3份的石墨粉,石墨粉加入完成后继续搅拌10min,随后向浓硫酸中依次加入1.5份的硝酸钠、9份的高锰酸钾,继续搅拌20min后,将反应容器转移至40℃的油浴下,继续搅拌反应1h后向反应容器中逐滴加入150份的去离子水,去离子水加入完成后油浴升温至90℃,继续搅拌至反应容器内溶液呈黄色停止加热冷却至室温,然后向反应容器中加入500份的去离子水,搅拌30min后向反应容器中加入20份的质量分数为30%的双氧水,搅拌20min后,静置30h后,将反应容器中的第三上层清液倒掉,并依次用质量分数为5%的稀盐酸、蒸馏水洗涤下层混合物2次,然后经过离心处理,收集离心管内的第三沉积物,将第三沉积物分散于去离子水中,并调节第三沉积物的浓度为0.7mg/mL,即得氧化石墨烯水溶液;
步骤c、将步骤b得到的第二溶液置于冰水浴下,在氮气氛围保护下,依次向第二溶液中加入0.05份的过硫酸钾和步骤a得到的第一溶液,其中,在过硫酸钾加入完成后,搅拌10min后再向第二溶液中第一溶液,第一溶液加入完成后,继续搅拌20min,得反应液;
步骤d、将步骤c得到的反应液置于60℃的水浴中,并放入密封容器内,将密封容器内的空气置换为氮气,搅拌反应液反应20h后得产物混合液,将产物混合液转移至离心管内,并在40℃下离心5min,然后趁热倒去离心管中的第一上层清液,收集离心管内的第一沉积物即得。
其中,以上所述环糊精为羟丙基-β-环糊精;所述膨胀剂为硫铝酸钙CAS类混凝土膨胀剂。
<实施例2>
本发明提供一种挡浪墙用材料,其包括以下重量份数的原料:15份水泥、25份玄武岩碎石、30份河沙、0.5份纳米复合温感水凝胶、0.3份聚乙烯醇纤维、5份水、1.5份矿渣粉、0.2份的膨胀剂;其中,纳米复合温感水凝胶为环糊精改性的石墨烯型纳米水凝胶。
纳米复合温感水凝胶的制备方法包括以下步骤:
步骤a、按重量份数计,取4份的环糊精溶于去离子水中,配制得到浓度为0.01g/mL的环糊精水溶液;取2.5份的甲基丙烯酸缩水甘油酯,并在氮气氛围保护下加入至环糊精水溶液中,在氮气氛围保护下充分搅拌30min,得第一溶液;
步骤b、取50份的浓度为0.7mg/mL的氧化石墨烯水溶液,将氧化石墨烯水溶液置于冰水浴下,向氧化石墨烯水溶液中通入氮气,在氮气氛围保护下,将1份的N-异丙基丙烯酰胺加入氧化石墨烯水溶液中,并在冰水浴下搅拌氧化石墨烯水溶液30min以除去结构中的气泡,得第二溶液;
其中,氧化石墨烯水溶液的制备方法为:按重量份数计,取70份的浓硫酸置于冰水浴下的反应容器中,边搅拌边向浓硫酸中加入3份的石墨粉,石墨粉加入完成后继续搅拌10min,随后向浓硫酸中依次加入1.5份的硝酸钠、9份的高锰酸钾,继续搅拌20min后,将反应容器转移至40℃的油浴下,继续搅拌反应1h后向反应容器中逐滴加入150份的去离子水,去离子水加入完成后油浴升温至90℃,继续搅拌至反应容器内溶液呈黄色停止加热冷却至室温,然后向反应容器中加入500份的去离子水,搅拌30min后向反应容器中加入20份的质量分数为30%的双氧水,搅拌20min后,静置30h后,将反应容器中的第三上层清液倒掉,并依次用质量分数为5%的稀盐酸、蒸 馏水洗涤下层混合物2次,然后经过离心处理,收集离心管内的第三沉积物,将第三沉积物分散于去离子水中,并调节第三沉积物的浓度为0.7mg/mL,即得氧化石墨烯水溶液;
步骤c、将步骤b得到的第二溶液置于冰水浴下,在氮气氛围保护下,依次向第二溶液中加入0.05份的过氧化月桂酰和步骤a得到的第一溶液,其中,在过氧化月桂酰加入完成后,搅拌10min后再向第二溶液中滴加第一溶液,第一溶液加入完成后,继续搅拌20min,得反应液;
步骤d、将步骤c得到的反应液置于60℃的水浴中,并放入密封容器内,将密封容器内的空气置换为氮气,搅拌反应液反应20h后得产物混合液,将产物混合液转移至离心管内,并在40℃下离心5min,然后趁热倒去离心管中的第一上层清液,收集离心管内的第一沉积物;
步骤e、将步骤d得到的第一沉积物用5℃的去离子水溶解,并装入透析袋内进行透析处理,6h后将透析袋内的溶液转移至离心管内,并在40℃下离心5min,然后趁热倒去离心管中的第二上层清液,收集离心管内的第二沉积物,即得所述纳米复合温感水凝胶;其中透析袋的截留分子量为7000,透析外液为去离子水。
其中,以上所述环糊精为羟丙基-β-环糊精;所述膨胀剂为硫铝酸钙CAS类混凝土膨胀剂。
<对比例1>
一种挡浪墙用材料,其包括以下重量份数的原料:15份水泥、25份玄武岩碎石、30份河沙、0.5份的减水剂、0.3份聚乙烯醇纤维、5份水、1.5份矿渣粉、0.2份的膨胀剂。
<对比例2>
一种挡浪墙用材料,其包括以下重量份数的原料:15份水泥、25份玄武岩碎石、30份河沙、0.5份的纳米温感水凝胶、0.3份聚乙烯醇纤维、5份水、1.5份矿渣粉、0.2份的膨胀剂;
其中,纳米温感水凝胶的制备方法为:
步骤a、按重量份数计,取2.5份的甲基丙烯酸缩水在氮气氛围保护下加入至水溶液中,在氮气氛围保护下充分搅拌30min,得第一溶液;
步骤b、在氮气氛围保护下,将1份的N-异丙基丙烯酰胺加入水溶液中,并在冰水浴下搅拌水溶液30min,得第二溶液;
步骤c、将步骤b得到的第二溶液置于冰水浴下,在氮气氛围保护下,依次向第二溶液中加入0.05份的引发剂和步骤a得到的第一溶液,其中,在引发剂加入完成后,搅拌10min后再向第二溶液中滴加第一溶液,第一溶液加入完成后,继续搅拌20min,得反应液;
步骤d、将步骤c得到的反应液置于60℃的水浴中,并放入密封容器内,将密封容器内的空气置换为氮气,搅拌反应液反应20h后得产物混合液,将产物混合液转移至离心管内,并在40℃下离心5min,然后趁热倒去离心管中的第一上层清液,收集离心管内的第一沉积物;
步骤e、将步骤d得到的第一沉积物用5℃的去离子水溶解,并装入透析袋内进行透析处理,6h后将透析袋内的溶液转移至离心管内,并在40℃下离心5min,然后趁热倒去离心管中的第二上层清液,收集离心管内的第二沉积物,即得所述纳米复合温感水凝胶;其中透析袋的截留分子量为7000,透析外液为去离子水。
<对比例3>
一种挡浪墙用材料,其包括以下重量份数的原料:15份水泥、25份玄武岩碎石、30份河沙、0.5份的纳米复合温感水凝胶、0.3份聚乙烯醇纤维、5份水、1.5份矿渣粉、0.2份的膨胀剂;
其中纳米复合温感水凝胶的制备方法为:
步骤a、按重量份数计,取4份的环糊精溶于去离子水中,配制得到浓度为0.01g/mL的环糊精水溶液;取2.5份的甲基丙烯酸缩水甘油酯,并在氮气氛围保护下加入至环糊精水溶液中,在氮气氛围保护下充分搅拌30min,得第一溶液;
步骤b、在氮气氛围保护下,将1份的N-异丙基丙烯酰胺加入水溶液中,并在冰水浴下搅拌水溶液30min,得第二溶液;
步骤c、将步骤b得到的第二溶液置于冰水浴下,在氮气氛围保护下,依次向第二溶液中加入0.05份的引发剂和步骤a得到的第一溶液,其中,在引发剂加入完成后,搅拌10min后再向第二溶液中滴加第一溶液,第一溶液加入完成后,继续搅拌20min,得反应液;
步骤d、将步骤c得到的反应液置于60℃的水浴中,并放入密封容器内,将密封容器内的空气置换为氮气,搅拌反应液反应20h后得产物混合液,将产物混合液转移至离心管内,并在40℃下离心5min,然后趁热倒去离心管中的第一上层清液,收集离心管内的第一沉积物;
步骤e、将步骤d得到的第一沉积物用5℃的去离子水溶解,并装入透析袋内进行透析处理,6h后将透析袋内的溶液转移至离心管内,并在40℃下离心5min,然后趁热倒去离心管中的第二上层清液,收集离心管内的第二沉积物,即得所述纳米复合温感水凝胶;其中透析袋的截留分子量为7000,透析外液为去离子水。
<对比例4>
一种挡浪墙用材料,其包括以下重量份数的原料:15份水泥、25份玄武岩碎石、30份河沙、0.5份的纳米复合温感水凝胶、0.3份聚乙烯醇纤维、5份水、1.5份矿渣粉、0.2份的膨胀剂;
其中纳米复合温感水凝胶的制备方法为:
步骤a、按重量份数计,取2.5份的甲基丙烯酸缩水在氮气氛围保护下加入至水溶液中,在氮气氛围保护下充分搅拌30min,得第一溶液;
步骤b、取50份的浓度为0.7mg/mL的氧化石墨烯水溶液,将氧化石墨烯水溶液置于冰水浴下,向氧化石墨烯水溶液中通入氮气,在氮气氛围保护下,将1份的N-异丙基丙烯酰胺加入氧化石墨烯水溶液中,并在冰水浴下搅拌氧化石墨烯水溶液30min以除去结构中的气泡,得第二溶液;
其中,氧化石墨烯水溶液的制备方法为:按重量份数计,取70份的浓硫酸置于冰水浴下的反应容器中,边搅拌边向浓硫酸中加入3份的石墨粉,石墨粉加入完成后继续搅拌10min,随后向浓硫酸中依次加入1.5份的硝酸钠、9份的高锰酸钾,继续搅拌20min后,将反应容器转移至40℃的油浴下, 继续搅拌反应1h后向反应容器中逐滴加入150份的去离子水,去离子水加入完成后油浴升温至90℃,继续搅拌至反应容器内溶液呈黄色停止加热冷却至室温,然后向反应容器中加入500份的去离子水,搅拌30min后向反应容器中加入20份的质量分数为30%的双氧水,搅拌20min后,静置30h后,将反应容器中的第三上层清液倒掉,并依次用质量分数为5%的稀盐酸、蒸馏水洗涤下层混合物2次,然后经过离心处理,收集离心管内的第三沉积物,将第三沉积物分散于去离子水中,并调节第三沉积物的浓度为0.7mg/mL,即得氧化石墨烯水溶液;
步骤c、将步骤b得到的第二溶液置于冰水浴下,在氮气氛围保护下,依次向第二溶液中加入0.05份的引发剂和步骤a得到的第一溶液,其中,在引发剂加入完成后,搅拌10min后再向第二溶液中滴加第一溶液,第一溶液加入完成后,继续搅拌20min,得反应液;
步骤d、将步骤c得到的反应液置于60℃的水浴中,并放入密封容器内,将密封容器内的空气置换为氮气,搅拌反应液反应20h后得产物混合液,将产物混合液转移至离心管内,并在40℃下离心5min,然后趁热倒去离心管中的第一上层清液,收集离心管内的第一沉积物;
步骤e、将步骤d得到的第一沉积物用5℃的去离子水溶解,并装入透析袋内进行透析处理,6h后将透析袋内的溶液转移至离心管内,并在40℃下离心5min,然后趁热倒去离心管中的第二上层清液,收集离心管内的第二沉积物,即得所述纳米复合温感水凝胶;其中透析袋的截留分子量为7000,透析外液为去离子水。
<试验>
分别按照本发明实施例1~2、对比例1~4提供的配方准备材料,然后将各组材料混合,经过强制式搅拌机搅拌3min,出料,得到实施例1~2、对比例1~4对应的混凝土样品;
按照《混凝土结构设计规范》(GB/T50010)测试上述实施例1~2、对比例1~4对应的几种混凝土样品的抗压强度;如表1所示:
表1 混凝土抗压强度
Figure PCTCN2021097428-appb-000001
由表1可知本发明实施例1~2提供的混凝土材料制备的混凝土相较于对比例1~4具有更好的抗压性能,在混凝土材料中引入经过环糊精和氧化石墨烯修饰后的水凝胶,从混凝土制备过程开始调控混凝土体系内部水分,在保证混凝土各组分和易性的同时,调节多余水分,避免水分进入泥浆等原料的毛细孔内,进而达到提高混凝土产品的抗压性能的技术效果。
按照《水工混凝土实验规程》(DL/T5150-2001),测试上述实施例1~2、对比例1~4对应的几种混凝土样品的抗冲磨性能,结果如表2所示;测试过程中调整抗冲磨试验机的电磁继电调速器,将转速调至1200r/min(对应混凝土样品表面的水流速度为1.8m/s),采用67个直径为19mm的钢球;
按照《混凝土抗冻性试验设备》(JGT 243-2009)、《加气混凝土抗冻性试验方法》GBT 11973-1997,测试上述实施例1~2、对比例1~4对应的几种混凝土样品的抗冻性能,结果如2所示;
按照《水利工程混凝土耐久性技术规范》(DB32_T2333-2013)测试上述实施例1~2、对比例1~4对应的几种混凝土样品的耐久性,结果如2所示。
表2 混凝土性能测试结果
Figure PCTCN2021097428-appb-000002
由表2可知,相较于对比例1~4,本发明实施例1~2提供的混凝土材料制备得到的混凝土具有更好的抗冻、耐磨、耐久性能,引入经过环糊精、氧化石墨烯修饰的水凝胶,能够显著提高混凝土的各项性能,达到了C45标准,抗冻等级达到了F250,满足50年设计需求,可用于环境等级较高的海水浪溅区。
这里说明的设备数量和处理规模是用来简化本发明的说明的。对本发明的应用、修改和变化对本领域的技术人员来说是显而易见的。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节。

Claims (7)

  1. 挡浪墙用材料,其特征在于,其包括以下重量份数的原料:15份水泥、25份玄武岩碎石、30份河沙、0.5份纳米复合温感水凝胶、0.3份聚乙烯醇纤维、5份水、1.5份矿渣粉、0.2份的膨胀剂;
    其中,纳米复合温感水凝胶为环糊精改性的石墨烯型纳米水凝胶。
  2. 如权利要求1所述的挡浪墙用材料,其特征在于,纳米复合温感水凝胶的制备方法包括以下步骤:
    步骤a、按重量份数计,取4份的环糊精溶于去离子水中,配制得到浓度为0.01g/mL的环糊精水溶液;取2.5份的甲基丙烯酸缩水甘油酯,并在氮气氛围保护下加入至环糊精水溶液中,在氮气氛围保护下充分搅拌30min,得第一溶液;
    步骤b、取50份的浓度为0.7mg/mL的氧化石墨烯水溶液,将氧化石墨烯水溶液置于冰水浴下,向氧化石墨烯水溶液中通入氮气,在氮气氛围保护下,将1份的N-异丙基丙烯酰胺加入氧化石墨烯水溶液中,并在冰水浴下搅拌氧化石墨烯水溶液30min,得第二溶液;
    步骤c、将步骤b得到的第二溶液置于冰水浴下,在氮气氛围保护下,依次向第二溶液中加入0.05份的引发剂和步骤a得到的第一溶液,其中,在引发剂加入完成后,搅拌10min后再向第二溶液中滴加第一溶液,第一溶液加入完成后,继续搅拌20min,得反应液;
    步骤d、将步骤c得到的反应液置于60℃的水浴中,并放入密封容器内,将密封容器内的空气置换为氮气,搅拌反应液反应20h后得产物混合液,将产物混合液转移至离心管内,并在40℃下离心5min,然后趁热倒去离心管中的第一上层清液,收集离心管内的第一沉积物,即得。
  3. 如权利要求2所述的挡浪墙用材料,其特征在于,第一沉积物进行了净化处理,具体为:将步骤d得到的第一沉积物用5℃的去离子水溶解,并装入透析袋内进行透析处理,6h后将透析袋内的溶液转移至离心管内,并在40℃下离心5min,然后趁热倒去离心管中的第二上层清液,收集离心管内的第二沉积物,即得所述纳米复合温感水凝胶;其中透析袋的截留分子量为7000,透析外液为去离子水。
  4. 如权利要求2所述的挡浪墙用材料,其特征在于,氧化石墨烯水溶液的 制备方法为:
    按重量份数计,取70份的浓硫酸置于冰水浴下的反应容器中,边搅拌边向浓硫酸中加入3份的石墨粉,石墨粉加入完成后继续搅拌10min,随后向浓硫酸中依次加入1.5份的硝酸钠、9份的高锰酸钾,继续搅拌20min后,将反应容器转移至40℃的油浴下,继续搅拌反应1h后向反应容器中逐滴加入150份的去离子水,去离子水加入完成后油浴升温至90℃,继续搅拌至反应容器内溶液呈黄色停止加热冷却至室温,然后向反应容器中加入500份的去离子水,搅拌30min后向反应容器中加入20份的质量分数为30%的双氧水,搅拌20min后,静置30h后,将反应容器中的第三上层清液倒掉,并依次用质量分数为5%的稀盐酸、蒸馏水洗涤下层混合物2次,然后经过离心处理,收集离心管内的第三沉积物,将第三沉积物分散于去离子水中,并调节第三沉积物的浓度为0.7mg/mL,即得氧化石墨烯水溶液。
  5. 如权利要求4所述的挡浪墙用材料,其特征在于,环糊精为羟丙基-β-环糊精。
  6. 如权利要求1所述的挡浪墙用材料,其特征在于,膨胀剂为硫铝酸钙CAS类混凝土膨胀剂。
  7. 如权利要求1所述的挡浪墙用材料,其特征在于,引发剂为过硫酸钾、过硫酸钠或过氧化月桂酰中的其中一种。
PCT/CN2021/097428 2020-07-27 2021-05-31 挡浪墙用材料 WO2022022050A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2022/04480A ZA202204480B (en) 2020-07-27 2022-04-21 Material for wave wall

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010731679.7 2020-07-27
CN202010731679.7A CN112047674B (zh) 2020-07-27 2020-07-27 挡浪墙用材料

Publications (1)

Publication Number Publication Date
WO2022022050A1 true WO2022022050A1 (zh) 2022-02-03

Family

ID=73601547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097428 WO2022022050A1 (zh) 2020-07-27 2021-05-31 挡浪墙用材料

Country Status (3)

Country Link
CN (1) CN112047674B (zh)
WO (1) WO2022022050A1 (zh)
ZA (1) ZA202204480B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114933844A (zh) * 2022-03-30 2022-08-23 哈尔滨工程大学 一种环糊精改性氧化石墨烯复合涂层的制备方法
CN115259783A (zh) * 2022-06-28 2022-11-01 江苏苏博特新材料股份有限公司 一种用于水工大体积混凝土的高镁低热抗裂水泥及其制备方法
CN115340316A (zh) * 2022-09-05 2022-11-15 新特新材料集团(河南)股份有限公司 一种水工混凝土耐空蚀抗冲磨剂及其制备方法
CN115353700A (zh) * 2022-09-22 2022-11-18 浙江智峰科技有限公司 一种高强度的纳米气凝胶建筑材料及其制备方法
CN116120020A (zh) * 2022-07-18 2023-05-16 福建省春天生态科技股份有限公司 一种植物砂浆组合物夯土墙及其施工方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112047674B (zh) * 2020-07-27 2022-02-11 中国港湾工程有限责任公司 挡浪墙用材料

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101092471A (zh) * 2007-06-15 2007-12-26 北京化工大学 一种超分子结构温度敏感性水凝胶的制备方法
CN102010160A (zh) * 2010-10-29 2011-04-13 广西壮族自治区水利科学研究院 抗裂、抗冲磨水工混凝土及其制备方法
CN102675508A (zh) * 2012-01-04 2012-09-19 河南科技大学 一种氧化石墨烯纳米复合有机水凝胶及其制备方法
US20150183189A1 (en) * 2013-12-26 2015-07-02 Institute For Basic Science Graphene Hydrogel, Graphene Hydrogel Nanocomposite Materials, and Preparation Method Thereof
CN106082871A (zh) * 2016-06-22 2016-11-09 东南大学 一种混凝土挡浪块
CN106633105A (zh) * 2016-10-27 2017-05-10 山东科技大学 一种高弹性三元复合水凝胶的制备方法
CN106977158A (zh) * 2017-04-26 2017-07-25 中交天航港湾建设工程有限公司 一种预制双联块体混凝土施工配合比及其制作工艺
CN107022093A (zh) * 2017-03-18 2017-08-08 华南理工大学 一种环糊精氧化石墨烯双交联水凝胶及其制备方法
CN107857530A (zh) * 2017-10-13 2018-03-30 西南交通大学 一种桥梁墩台耐冲刷、耐蚀的混凝土材料及制备方法
CN108298533A (zh) * 2018-04-17 2018-07-20 程桂平 一种制备氧化石墨烯溶液的方法
CN110152631A (zh) * 2018-03-28 2019-08-23 山东联星能源集团有限公司 一种吸附性氧化石墨烯水凝胶的制备方法
CN110683809A (zh) * 2019-10-08 2020-01-14 湖北省公路工程咨询监理中心 一种氧化石墨烯抗冲磨超高韧性混凝土及其制备方法和应用
CN112047674A (zh) * 2020-07-27 2020-12-08 中国港湾工程有限责任公司 挡浪墙用材料

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997019031A1 (de) * 1995-11-17 1997-05-29 Alpha Brevet S.A. Dämmstoff zur schall- und/oder wärmedämmung
BR0313749A (pt) * 2002-08-23 2005-07-19 James Hardie Int Finance Bv Microesferas ocas sintéticas
CN106477996B (zh) * 2016-10-26 2018-11-16 东南大学 一种混凝土挡浪墙用材料
CN107337387A (zh) * 2017-06-13 2017-11-10 安徽智联管理咨询有限公司 防冻防开裂混凝土及其制备方法
WO2019091751A1 (en) * 2017-11-10 2019-05-16 Corinaldesi Valeria Composition of high tensile strength cement-based mixture with improved rheological properties
CN107986714B (zh) * 2017-12-19 2021-03-19 中冶建筑研究总院有限公司 一种海工挡浪墙及其施工方法
TR201801339A2 (tr) * 2018-01-31 2018-03-21 Anka Vizyon Sinema Yapi Anonim Sirketi Endüstriyel Atık Katkılı Düşük Yoğunluklu Prekast Harcı
CN109467358A (zh) * 2018-10-30 2019-03-15 福建建工建材科技开发有限公司 一种墙体芯材用防水抗裂型泡沫混凝土

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101092471A (zh) * 2007-06-15 2007-12-26 北京化工大学 一种超分子结构温度敏感性水凝胶的制备方法
CN102010160A (zh) * 2010-10-29 2011-04-13 广西壮族自治区水利科学研究院 抗裂、抗冲磨水工混凝土及其制备方法
CN102675508A (zh) * 2012-01-04 2012-09-19 河南科技大学 一种氧化石墨烯纳米复合有机水凝胶及其制备方法
US20150183189A1 (en) * 2013-12-26 2015-07-02 Institute For Basic Science Graphene Hydrogel, Graphene Hydrogel Nanocomposite Materials, and Preparation Method Thereof
CN106082871A (zh) * 2016-06-22 2016-11-09 东南大学 一种混凝土挡浪块
CN106633105A (zh) * 2016-10-27 2017-05-10 山东科技大学 一种高弹性三元复合水凝胶的制备方法
CN107022093A (zh) * 2017-03-18 2017-08-08 华南理工大学 一种环糊精氧化石墨烯双交联水凝胶及其制备方法
CN106977158A (zh) * 2017-04-26 2017-07-25 中交天航港湾建设工程有限公司 一种预制双联块体混凝土施工配合比及其制作工艺
CN107857530A (zh) * 2017-10-13 2018-03-30 西南交通大学 一种桥梁墩台耐冲刷、耐蚀的混凝土材料及制备方法
CN110152631A (zh) * 2018-03-28 2019-08-23 山东联星能源集团有限公司 一种吸附性氧化石墨烯水凝胶的制备方法
CN108298533A (zh) * 2018-04-17 2018-07-20 程桂平 一种制备氧化石墨烯溶液的方法
CN110683809A (zh) * 2019-10-08 2020-01-14 湖北省公路工程咨询监理中心 一种氧化石墨烯抗冲磨超高韧性混凝土及其制备方法和应用
CN112047674A (zh) * 2020-07-27 2020-12-08 中国港湾工程有限责任公司 挡浪墙用材料

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114933844A (zh) * 2022-03-30 2022-08-23 哈尔滨工程大学 一种环糊精改性氧化石墨烯复合涂层的制备方法
CN115259783A (zh) * 2022-06-28 2022-11-01 江苏苏博特新材料股份有限公司 一种用于水工大体积混凝土的高镁低热抗裂水泥及其制备方法
CN116120020A (zh) * 2022-07-18 2023-05-16 福建省春天生态科技股份有限公司 一种植物砂浆组合物夯土墙及其施工方法
CN115340316A (zh) * 2022-09-05 2022-11-15 新特新材料集团(河南)股份有限公司 一种水工混凝土耐空蚀抗冲磨剂及其制备方法
CN115353700A (zh) * 2022-09-22 2022-11-18 浙江智峰科技有限公司 一种高强度的纳米气凝胶建筑材料及其制备方法
CN115353700B (zh) * 2022-09-22 2023-08-01 浙江智峰科技有限公司 一种高强度的纳米气凝胶建筑材料及其制备方法

Also Published As

Publication number Publication date
ZA202204480B (en) 2022-07-27
CN112047674B (zh) 2022-02-11
CN112047674A (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2022022050A1 (zh) 挡浪墙用材料
Zhang et al. Influence of nano-SiO2 on properties of fresh and hardened high performance concrete: A state-of-the-art review
Zhang et al. Polymer-modified cement mortars: Their enhanced properties, applications, prospects, and challenges
Abhilash et al. Effect of nano-silica in concrete; a review
Lu et al. Freeze-thaw resistance of Ultra-High performance concrete: Dependence on concrete composition
Kong et al. Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials
Althoey et al. Impact of Nano-silica on the hydration, strength, durability, and microstructural properties of concrete: A state-of-the-art review
Nodehi et al. Ultra high performance concrete (UHPC): Reactive powder concrete, slurry infiltrated fiber concrete and superabsorbent polymer concrete
Wang et al. Compressive Strength, Chloride Permeability, and Freeze‐Thaw Resistance of MWNT Concretes under Different Chemical Treatments
Bai et al. Effect of the specific surface area of nano-silica particle on the properties of cement paste
Lu et al. The mechanical properties, microstructures and mechanism of carbon nanotube-reinforced oil well cement-based nanocomposites
Zhang et al. Influence of a novel hydrophobic agent on freeze–thaw resistance and microstructure of concrete
Ma et al. Effect of shrinkage reducing admixture on drying shrinkage and durability of alkali-activated coal gangue-slag material
WO2022007062A1 (zh) 一种滨海结构连接用防腐型混凝土灌浆料及其制备方法
Liu et al. Dynamic compressive mechanical properties of carbon fiber-reinforced polymer concrete with different polymer-cement ratios at high strain rates
Guo et al. Design of pH-responsive SAP polymer for pore solution chemistry regulation and crack sealing in cementitious materials
CN86100899A (zh) 耐水泡沫产品
Zheng et al. Influence of industrial by-product sulfur powder on properties of cement-based composites for sustainable infrastructures
Liu et al. Experimental analysis of Nano-SiO2 modified waterborne epoxy resin on the properties and microstructure of cement-based grouting materials
CN106977155A (zh) C60超高泵送混凝土
Wang et al. Biomass-derived nanocellulose-modified cementitious composites: a review
CN1911853A (zh) 一种高体积稳定性海工混凝土及其制备方法
Zhang et al. Self-healing concrete-based composites
Wang et al. Water-blocking nano-composite cement-based grouting materials
Xu et al. Study on the interfacial bonding performance of basalt ultra-high performance concrete repair and reinforcement materials under severe service environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21851042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21851042

Country of ref document: EP

Kind code of ref document: A1