WO2022021442A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2022021442A1
WO2022021442A1 PCT/CN2020/106447 CN2020106447W WO2022021442A1 WO 2022021442 A1 WO2022021442 A1 WO 2022021442A1 CN 2020106447 W CN2020106447 W CN 2020106447W WO 2022021442 A1 WO2022021442 A1 WO 2022021442A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
carriers
terminal device
physical
reference signal
Prior art date
Application number
PCT/CN2020/106447
Other languages
English (en)
French (fr)
Inventor
林志嵘
严朝译
沈思多
付宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080099535.2A priority Critical patent/CN115399039A/zh
Priority to PCT/CN2020/106447 priority patent/WO2022021442A1/zh
Publication of WO2022021442A1 publication Critical patent/WO2022021442A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and device.
  • the terminal device uses multiple transmit antennas to transmit data
  • multiple upstream data streams corresponding to the multiple antennas are transmitted in different upstream channels. Due to the difference in the quality of the uplink channel and the transmission performance of the transmitting antenna, the optimal modulation and coding scheme (MCS) corresponding to the data stream transmitted in each channel is different.
  • MCS modulation and coding scheme
  • the MCS supported by the network device does not match the MCS required for modulating data in different channels, thereby affecting the performance of the terminal device for transmitting uplink data.
  • the present application provides a communication method and apparatus for improving the performance of terminal equipment in transmitting uplink data.
  • a communication method including: a terminal device determines N carriers configured by a network device for the terminal device, the N carriers include M physical carriers and L virtual carriers; the terminal device supports multiple transmit antennas to transmit Uplink data; one physical carrier in the M physical carriers corresponds to one or more virtual carriers in the L virtual carriers; one physical carrier has the same frequency as the corresponding one or more virtual carriers; L, M, and N is a positive integer, and N is equal to the sum of L and M.
  • the terminal device transmits uplink data according to one or more carriers in the N carriers; wherein, the MCS of the first carrier in the N carriers is determined according to the transmission rate of the first carrier; the first carrier is any carrier in the N carriers .
  • the network device configures a plurality of virtual carriers for the terminal device according to the physical carrier configured for the terminal device.
  • the terminal device can simultaneously transmit multiple upstream data streams according to the physical carrier and multiple virtual carriers.
  • the network device receives the multiple upstream data streams on multiple carriers, and selects a corresponding MCS mode for each carrier to decode the upstream data sent by the terminal device.
  • the terminal device uses different MCS methods to modulate the data, and uses different carriers to send the corresponding data streams; the network device receives the corresponding data streams on different carriers, and the network device can Select the corresponding MCS mode to demodulate the data for the data stream on each carrier. Based on this, the terminal device can select the best MCS modulated data corresponding to the uplink channel, and the network device can select the best MCS demodulated data corresponding to the uplink channel, thereby improving the performance of the terminal device for transmitting uplink data.
  • the number of transmit antennas of the terminal device is S, and S is an integer greater than or equal to N.
  • the network device configures the terminal device with carriers less than or equal to the number of transmit antennas of the terminal device, so that each carrier corresponds to one or more transmit antennas.
  • one carrier in the N carriers corresponds to one or more transmit antennas; one carrier is sent on the transmit antenna corresponding to the one carrier.
  • the terminal device can bind a carrier to one or more transmit antennas, and in the subsequent transmission process, the terminal device uses the transmit antenna to send uplink data on the carrier bound to it.
  • the corresponding time-frequency resources are the same.
  • the virtual carrier configured by the network device and its corresponding physical carrier use the same time-frequency resources, so that the terminal device can use the bandwidth and time-frequency resources provided by a cell for the terminal device to complete multi-carrier transmission.
  • the terminal device uses multiple carriers to transmit uplink data.
  • the terminal equipment selects multiple carriers to transmit uplink data, which can improve the uplink transmission performance of the terminal equipment.
  • the amount of physical uplink shared channel (PUSCH) data carried by the second carrier is based on the signal-to-interference-plus-noise ratio (signal to interference plus noise) of the reference signal of the second carrier. to interference plus noise ratio, SINR) value is determined; the second carrier is any one of the multiple carriers.
  • SINR interference plus noise ratio
  • the terminal device can transmit more data on the carrier with better signal quality, thereby improving the uplink transmission performance of the terminal device.
  • the carrier whose SINR value of the reference signal satisfies the second preset condition among the multiple carriers is used to carry the PUSCH including uplink control information (uplink control information, UCI).
  • uplink control information uplink control information, UCI
  • the terminal device can transmit UCI on a carrier with good signal quality, which improves the quality of the UCI transmitted by the terminal device.
  • the uplink power control policy of the second carrier is determined according to the SINR value of the reference signal of the second carrier; the second carrier is any one of the multiple carriers.
  • the network device can independently control the uplink power of each carrier according to the signal quality of each carrier, which improves the accuracy with which the network device adjusts the uplink power of the carrier.
  • the uplink (uplink, UL) MCS of the second carrier is determined according to the SINR value of the reference signal of the second carrier; the second carrier is any one of multiple carriers carrier.
  • the network device and the terminal device can independently determine the UL MCS of each carrier according to the signal quality of each carrier, the terminal device can select the best MCS modulation data corresponding to the uplink channel, and the network device can select the corresponding uplink channel.
  • the best MCS demodulates data, thereby improving the performance of terminal equipment to transmit uplink data.
  • the terminal device adopts one of the M physical carriers.
  • the physical carrier transmits uplink data.
  • the terminal device selects a physical carrier to transmit uplink data, so as to improve the uplink transmission power on a single carrier.
  • the terminal device receives first indication information from the network device; the first indication information is used to indicate a carrier bearing a physical uplink control channel (physical uplink controlled channel, PUCCH).
  • the carrier carrying PUCCH is the carrier whose SINR value of the reference signal satisfies the third preset condition among the N carriers; in response to the first indication information, the terminal device transmits the PUCCH on the carrier carrying the PUCCH indicated by the first indication information.
  • the terminal device can send the PUCCH on a carrier with better signal quality, so as to improve the transmission quality of the PUCCH transmitted by the terminal device.
  • the terminal device transmits the PUCCH on the physical carrier.
  • the terminal device can directly transmit the PUCCH on the physical carrier.
  • the terminal device and the network device can determine the carrier for transmitting the PUCCH without performing signaling interaction, which reduces the signaling interaction between the terminal device and the network device.
  • the number of ports corresponding to the channel sounding reference signal (sounding reference signal, SRS) resource of the first carrier is R
  • the transmission period of the SRS resource is T
  • T is the SRS
  • the initial transmission cycle of , R is a positive integer.
  • the network device can configure SRSs with different port numbers and transmission periods for each carrier, which improves the applicable scenarios of the method.
  • the terminal device transmits a physical random access channel (physical random access channel, PRACH) on one physical carrier among the M physical carriers.
  • a physical random access channel physical random access channel, PRACH
  • the terminal device can directly transmit the PRACH on the physical carrier.
  • the terminal device and the network device can determine the carrier for transmitting the PRACH without performing signaling interaction, which reduces the signaling interaction between the terminal device and the network device.
  • the maximum power corresponding to the power headroom report (PHR) carried by the first carrier is the maximum transmission allocated by the terminal device for the transmit antenna corresponding to the first carrier power.
  • each carrier reports the power headroom corresponding to the carrier to the network device, so that the network device can individually perform power control on each carrier.
  • the reference signal includes: at least one of an SRS and a PUSCH demodulation reference signal (demodulation reference signal, DMRS).
  • the network device can determine the SINR of the reference signal of the carrier by measuring the SINR of the SRS on the carrier and the SINR of the PUSCH DMRS.
  • a communication method including: a network device configures N carriers for a terminal device, the N carriers include M physical carriers and L virtual carriers; the terminal device supports multiple transmit antennas to send uplink data; M One physical carrier in the physical carriers corresponds to one or more virtual carriers in the L virtual carriers; one physical carrier has the same frequency as the corresponding one or more virtual carriers; L, M, and N are all positive Integer, N equals the sum of L and M.
  • One or more of the N carriers are used to transmit uplink data of the terminal equipment; the MCS of the first carrier among the N carriers is determined according to the transmission rate of the first carrier; the first carrier is any one of the N carriers carrier.
  • the number of transmit antennas of the terminal device is S, and S is an integer greater than or equal to N.
  • one carrier in the N carriers corresponds to one or more transmit antennas; one carrier is sent on the transmit antenna corresponding to the one carrier.
  • the corresponding time-frequency resources are the same.
  • the multiple carriers are used to carry the uplink data sent by the terminal equipment. data.
  • the amount of PUSCH data carried by the second carrier is determined according to the SINR value of the reference signal of the second carrier; the second carrier is any one of the multiple carriers.
  • the carrier whose SINR value of the reference signal satisfies the second preset condition among the multiple carriers is used to carry the PUSCH including the UCI.
  • the uplink power control policy of the second carrier is determined according to the SINR value of the reference signal of the second carrier; the second carrier is any one of the multiple carriers.
  • the uplink UL MCS of the second carrier is determined according to the SINR value of the reference signal of the second carrier; the second carrier is any one of the multiple carriers.
  • one physical carrier in the M physical carriers is used as the SINR value. It is used to carry the uplink data sent by the terminal equipment.
  • the network device sends first indication information to the terminal device; the first indication information is used to indicate the carrier bearing the PUCCH; the carrier bearing the PUCCH is a reference signal in the N carriers.
  • the carrier whose SINR value satisfies the third preset condition.
  • the network device receives the PUCCH on the carrier that bears the PUCCH indicated by the first indication information.
  • the network device receives the PUCCH on the physical carrier.
  • the number of ports corresponding to the SRS resources of the first carrier is R
  • the transmission period of the SRS resources is T
  • T is the initial transmission period of the SRS
  • R is a positive integer
  • the network device receives the PRACH on one physical carrier among the M physical carriers.
  • the maximum power corresponding to the PHR carried by the first carrier is the maximum transmit power allocated by the terminal device to the transmit antenna corresponding to the first carrier.
  • the reference signal includes: at least one of SRS and PUSCH DMRS.
  • a communication apparatus comprising: a communication unit and a processing unit; the processing unit is configured to determine N carriers configured by a network device for a terminal device, where the N carriers include M physical carriers and L virtual carriers; The terminal equipment supports multiple transmit antennas to send uplink data; one physical carrier in the M physical carriers corresponds to one or more virtual carriers in the L virtual carriers; one physical carrier corresponds to the frequency of the corresponding one or more virtual carriers.
  • the points are the same; L, M, and N are all positive integers, and N is equal to the sum of L and M.
  • the processing unit is also used to instruct the communication unit to transmit uplink data according to one or more carriers in the N carriers; wherein, the MCS of the first carrier in the N carriers is determined according to the transmission rate of the first carrier; the first carrier is N any of the carriers.
  • the number of transmit antennas of the terminal device is S, and S is an integer greater than or equal to N.
  • one carrier in the N carriers corresponds to one or more transmit antennas; one carrier is sent on the transmit antenna corresponding to the one carrier.
  • the corresponding time-frequency resources are the same.
  • the processing unit is specifically configured to instruct the communication unit to use the multi-carrier signal.
  • Each carrier transmits uplink data.
  • the amount of PUSCH data carried by the second carrier is determined according to the SINR value of the reference signal of the second carrier; the second carrier is any one of multiple carriers.
  • the carrier whose SINR value of the reference signal satisfies the second preset condition among the multiple carriers is used to carry the PUSCH including the UCI.
  • the uplink power control policy of the second carrier is determined according to the SINR value of the reference signal of the second carrier; the second carrier is any one of the multiple carriers.
  • the uplink UL MCS of the second carrier is determined according to the SINR value of the reference signal of the second carrier; the second carrier is any one of the multiple carriers.
  • the processing unit is specifically configured to instruct the communication unit to adopt the One physical carrier among the M physical carriers transmits uplink data.
  • the communication unit is further configured to receive first indication information from the network device; the first indication information is used to indicate a carrier bearing the PUCCH; the number of carriers bearing the PUCCH is N The SINR value of the reference signal in the carrier satisfies the third preset condition; the processing unit is further configured to instruct the communication unit to transmit the PUCCH on the carrier bearing the PUCCH indicated by the first indication information.
  • the processing unit is further configured to instruct the communication unit to transmit the PUCCH on the physical carrier.
  • the number of ports corresponding to the SRS resources of the first carrier is R
  • the transmission period of the SRS resources is T
  • T is the initial transmission period of the SRS
  • R is a positive integer
  • the processing unit is further configured to instruct the communication unit to transmit the PRACH on one physical carrier of the M physical carriers.
  • the maximum power corresponding to the PHR carried by the first carrier is the maximum transmit power allocated by the terminal device to the transmit antenna corresponding to the first carrier.
  • the reference signal includes: at least one of SRS and PUSCH DMRS.
  • a communication device including a processing unit; the processing unit is configured to configure N carriers for a terminal device, the N carriers include M physical carriers and L virtual carriers; the terminal device supports multiple transmit antennas Send uplink data; one physical carrier in the M physical carriers corresponds to one or more virtual carriers in the L virtual carriers; one physical carrier has the same frequency as the corresponding one or more virtual carriers; L, M, and N are both positive integers, and N is equal to the sum of L and M;
  • One or more of the N carriers are used to transmit uplink data of the terminal equipment; the MCS of the first carrier among the N carriers is determined according to the transmission rate of the first carrier; the first carrier is any one of the N carriers carrier.
  • the number of transmit antennas of the terminal device is S, and S is an integer greater than or equal to N.
  • one carrier in the N carriers corresponds to one or more transmit antennas; one carrier is sent on the transmit antenna corresponding to the one carrier.
  • the corresponding time-frequency resources are the same.
  • the multiple carriers are used to carry the uplink data sent by the terminal equipment. data.
  • the amount of PUSCH data carried by the second carrier is determined according to the SINR value of the reference signal of the second carrier; the second carrier is one of the multiple carriers. of any carrier.
  • the carrier whose SINR value of the reference signal satisfies the second preset condition among the multiple carriers is used to carry the PUSCH including the UCI.
  • the uplink power control policy of the second carrier is determined according to the SINR value of the reference signal of the second carrier; the second carrier is any one of the multiple carriers.
  • the uplink UL MCS of the second carrier is determined according to the SINR value of the reference signal of the second carrier; the second carrier is any one of the multiple carriers.
  • one physical carrier in the M physical carriers is used as the SINR value. It is used to carry the uplink data sent by the terminal equipment.
  • the apparatus further includes: a communication unit; the communication unit is configured to send first indication information to the terminal device; the first indication information is used to indicate a carrier bearing the PUCCH;
  • the carrier is a carrier whose SINR value of the reference signal satisfies the third preset condition among the N carriers.
  • the processing unit is further configured to instruct the communication unit to receive the PUCCH on the carrier bearing the PUCCH indicated by the first indication information.
  • the processing unit is further configured to instruct the communication unit to receive the PUCCH on the physical carrier.
  • the number of ports corresponding to the SRS resources of the first carrier is R
  • the transmission period of the SRS resources is T
  • T is the initial transmission period of the SRS
  • R is a positive integer
  • the processing unit is further configured to instruct the communication unit to receive the PRACH on one physical carrier among the M physical carriers.
  • the maximum power corresponding to the PHR carried by the first carrier is the maximum transmit power allocated by the terminal device to the transmit antenna corresponding to the first carrier.
  • the reference signal includes: at least one of SRS and PUSCH DMRS.
  • the present application provides a communication device, including: a processor and a storage medium; the storage medium includes instructions, and the processor is configured to execute the instructions to implement any possible implementation manner of the first aspect and the first aspect
  • the communication method described in may be a terminal device or a chip in the terminal device.
  • the present application provides a communication device, comprising: a processor and a storage medium; the storage medium includes instructions, and the processor is configured to execute the instructions to implement any possible implementation manner of the second aspect and the second aspect
  • the communication method described in may be a terminal device or a chip in the terminal device.
  • the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instructions are run on a computer, the computer is made to execute any one of the first aspect and the first aspect Communication methods described in possible implementations.
  • the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instructions are run on a computer, the computer is made to execute any one of the second aspect and the second aspect. Communication methods described in possible implementations.
  • the present application provides a computer program product comprising instructions that, when the computer program product is run on a computer, cause the computer to perform as described in the first aspect and any possible implementation manner of the first aspect communication method.
  • the present application provides a computer program product comprising instructions that, when the computer program product is run on a computer, cause the computer to perform as described in the second aspect and any possible implementation of the second aspect communication method.
  • the present application provides a communication system, including a network device, and a terminal device, where the terminal device is configured to execute the communication method described in the first aspect and any possible implementation manner of the first aspect, the network The device is configured to perform the communication method as described in the second aspect and any possible implementation of the second aspect.
  • FIG. 1 is a system architecture diagram of a communication system provided by an embodiment of the present application
  • FIG. 2 is a system architecture diagram of a MIMO system according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a hardware structure of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a hardware structure of another communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a hardware structure of a terminal device according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a hardware structure of a network device according to an embodiment of the present application.
  • the communication method provided by the embodiment of the present application is applied to the communication system 100 shown in FIG. 1 .
  • the communication system 100 includes a network device 10 and a terminal device 20 .
  • the network device 10 and the terminal device 20 both have multiple transmit antennas and receive antennas.
  • the network device 10 and the terminal device 20 can simultaneously transmit multiple data streams through the multiple transmit and receive antennas.
  • the communication systems in the embodiments of the present application include but are not limited to long term evolution (long term evolution, LTE) systems, fifth generation (5th-generation, 5G) systems, new radio (new radio, NR) systems, wireless local area networks (wireless local area networks) area networks, WLAN) systems and future evolution systems or various communication fusion systems.
  • LTE long term evolution
  • 5G fifth generation
  • NR new radio
  • WLAN wireless local area networks
  • future evolution systems or various communication fusion systems or various communication fusion systems.
  • the methods provided in the embodiments of the present application may be specifically applied to an evolved global terrestrial radio access network (evolved-universal terrestrial radio access network, E-UTRAN) and a next generation-radio access network (next generation-radio access network). , NG-RAN) system.
  • E-UTRAN evolved-universal terrestrial radio access network
  • NG-RAN next generation-radio access network
  • the network device in this embodiment of the present application is an entity on the network side that is used for sending a signal, or receiving a signal, or sending a signal and receiving a signal.
  • the network device may be a device deployed in a radio access network (RAN) to provide wireless communication functions for terminal devices, for example, a TRP, a base station (for example, an evolved NodeB (eNB, eNB or eNodeB), a downlink Generation base station node (next generation node base station, gNB), next generation eNB (next generation eNB, ng-eNB, etc.), various forms of control nodes (for example, network controller, wireless controller (for example, cloud radio Access network (cloud radio access network, CRAN) scenario wireless controller)), road side unit (road side unit, RSU) and so on.
  • RAN radio access network
  • the network device may be various forms of macro base station, micro base station (also referred to as small cell), relay station, access point (access point, AP), etc., and may also be the antenna panel of the base station.
  • the control node can be connected to multiple base stations, and configure resources for multiple terminal devices covered by the multiple base stations.
  • RATs radio access technologies
  • the names of devices with base station functions may vary. For example, it may be called eNB or eNodeB in LTE system, and may be called gNB in 5G system or NR system, and the specific name of the base station is not limited in this application.
  • the network device may also be a network device in a future evolved public land mobile network (public land mobile network, PLMN).
  • PLMN public land mobile network
  • the terminal device in this embodiment of the present application is an entity on the user side that is used to receive a signal, or send a signal, or receive a signal and send a signal.
  • Terminal devices are used to provide one or more of voice services and data connectivity services to users.
  • Terminal equipment may also be referred to as user equipment (UE), terminal, access terminal, subscriber unit, subscriber station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent, or user device.
  • UE user equipment
  • the terminal device can be a vehicle to everything (V2X) device, for example, a smart car (smart car or intelligent car), a digital car (digital car), an unmanned car (unmanned car or driverless car or pilotless car or automobile), Self-driving car (self-driving car or autonomous car), pure electric vehicle (pure EV or Battery EV), hybrid electric vehicle (HEV), range extended EV (REEV), plug-in hybrid Power vehicle (plug-in HEV, PHEV), new energy vehicle (new energy vehicle), etc.
  • the terminal device may also be a device to device (device to device, D2D) device, such as an electricity meter, a water meter, and the like.
  • the terminal device can also be a mobile station (mobile station, MS), a subscriber unit (subscriber unit), an unmanned aerial vehicle, an internet of things (IoT) device, a station (station, ST) in a WLAN, a cellular phone (cellular phone) phone), smart phone (smart phone), cordless phone, wireless data card, tablet computer, session initiation protocol (SIP) phone, wireless local loop (WLL) station, personal digital processing ( personal digital assistant (PDA) device, laptop computer (laptop computer), machine type communication (MTC) terminal, handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, in-vehicle Devices, wearable devices (also known as wearable smart devices).
  • the terminal device may also be a terminal device in a next-generation communication system, for example, a terminal device in a 5G system or a terminal device in a future evolved PLMN, a terminal device in an NR system, and the like.
  • a network device and a terminal device may form a multi-input multi-output (Multi-Input Multi-Output, MIMO) system by configuring multiple transmit antennas and multiple receive antennas.
  • MIMO Multi-Input Multi-Output
  • FIG. 2 it is a system architecture diagram of a MIMO system with two transmit antennas and two receive antennas (ie, two receiving and two transmitting).
  • one transmit antenna can transmit data to two receive antennas, respectively.
  • One receive antenna can receive data from two transmit antennas respectively.
  • a terminal device when a terminal device sends a PUSCH to a network device, the terminal device can use multiple spatial channels to send multiple data streams, and the multiple data streams can correspond to the same RB resources. Multiple upstream data streams can improve the transmission rate of upstream data of terminal equipment.
  • the terminal device when a terminal device sends uplink data to a network device, the terminal device can support the transmission of multiple uplink data streams, but the network device only supports parsing one MCS type of uplink data stream on one carrier.
  • the terminal device transmits multiple upstream data streams
  • different upstream data streams are carried on the same carrier and sent by different transmit antennas, and the upstream data channels are different between different upstream data streams.
  • the transmission rate corresponding to each upstream data stream is also different.
  • the MCS required for the data flow is different.
  • the network device supports only one type of MCS, and when a terminal device with multiple transmit antennas sends multiple upstream data streams on one carrier, the MCS required for the upstream data streams transmitted in each upstream channel is different. . This will cause the MCS supported by the network device to not match the MCS required to modulate data in different channels, thereby reducing the performance of the terminal device for transmitting uplink data.
  • An embodiment of the present application provides a communication method, in which a network device configures a terminal device with multiple virtual carriers according to a physical carrier configured for the terminal device.
  • the terminal device can simultaneously transmit multiple upstream data streams according to the physical carrier and multiple virtual carriers.
  • the network equipment receives the multiple upstream data streams on multiple carriers, and selects the corresponding MCS mode for each carrier to decode the upstream data sent by the terminal equipment.
  • the terminal device uses different MCS methods to modulate the data, and uses different carriers to send the corresponding data streams; the network device receives the corresponding data streams on different carriers, and the network device can Select the corresponding MCS mode to demodulate the data for the data stream on each carrier. Based on this, the terminal device can select the best MCS modulated data corresponding to the uplink channel, and the network device can select the best MCS demodulated data corresponding to the uplink channel, thereby improving the performance of the terminal device for transmitting uplink data.
  • the communication method provided by the embodiment of the present application includes:
  • the network device configures N carriers for the terminal device.
  • the N carriers include M physical carriers and L virtual carriers; the terminal equipment supports multiple transmit antennas to send uplink data; one physical carrier in the M physical carriers is connected with one or more virtual carriers in the L virtual carriers Corresponding; one physical carrier has the same frequency as one or more corresponding virtual carriers; L, M, and N are all positive integers, and N is equal to the sum of L and M.
  • the carrier indices are different among the carriers.
  • the physical carrier is a carrier preconfigured between the network device and the terminal device for data transmission.
  • the virtual carrier is a virtual carrier based on the bandwidth, frequency point and time-frequency carrier resource of the physical carrier.
  • the virtual carrier does not have separate bandwidth, frequency, and time-frequency resources, but multiplexes the bandwidth, frequency, and time-frequency resources of the physical carrier.
  • the number of carriers configured by the network device for the terminal device is related to the number of antennas of the terminal device.
  • the number of carriers configured by the network device for the terminal device is less than or equal to the number of transmit antennas of the terminal device.
  • the number of carriers configured by the network device for the terminal device is N, where S is an integer greater than or equal to N.
  • the terminal device determines N carriers configured by the network device for the terminal device.
  • the terminal device determines the N carriers configured by the network device for the terminal device.
  • One carrier corresponds to one or more transmit antennas; one carrier is transmitted on the transmit antenna corresponding to the one carrier.
  • one carrier corresponds to one transmit antenna; when S is greater than N, the N carriers include carriers corresponding to multiple transmit antennas.
  • one carrier corresponds to one or more transmit antennas, and the carrier and transmit antennas can be bound for the terminal device.
  • the terminal After the carrier is bound to the transmit antenna, the terminal always uses the transmit antenna to transmit the carrier bound to the transmit antenna.
  • the terminal device transmits uplink data according to one or more carriers in the N carriers.
  • the network device receives uplink data on the one or more carriers.
  • the MCS of the first carrier among the N carriers is determined according to the transmission rate of the first carrier; the first carrier is any one of the N carriers.
  • the MCS of each carrier in the N carriers do not affect each other, and the network device can determine the MCS of the carrier according to the transmission rate of each carrier, and indicate the MCS of each carrier to the terminal device. Similarly, after receiving the uplink data transmitted by the carrier, the network device uses the MCS corresponding to the modulation and coding mode of the carrier to demodulate the uplink data.
  • the bandwidth and frequency of the physical carrier are still occupied, and the same time-frequency resources as the time-frequency resources of the physical carrier are used.
  • the terminal device when a terminal device sends multiple upstream data streams, the terminal device modulates data using different MCS methods, and uses different carriers to send corresponding data streams; the network device receives corresponding data streams on different carriers, and the network The device can select the corresponding MCS mode to demodulate the data for the data stream on each carrier. Based on this, the terminal device can select the best MCS modulated data corresponding to the uplink channel, and the network device can select the best MCS demodulated data corresponding to the uplink channel, thereby improving the performance of the terminal device for transmitting uplink data.
  • the terminal device may send fourth indication information to the network device, where the fourth indication information is used to instruct the terminal device to support multiple transmit antennas to send uplink data, and to indicate the transmit antenna of the terminal device. Quantity S.
  • the network device configures N carriers for the terminal device according to the number S of transmit antennas of the terminal device indicated by the fourth indication information.
  • the network device Before the M physical carriers are virtual carriers configured by the network device, the network device is the M physical carriers configured by the terminal device. Information such as frequency and bandwidth of the M physical carriers may be the same or different. After the network device determines the M physical carriers, one or more virtual carriers are configured according to each of the M physical carriers. The information such as the frequency bandwidth of the virtual carrier configured according to one physical carrier is the same as the information such as the frequency bandwidth of the physical carrier corresponding to the virtual carrier.
  • the network device configures a physical carrier for the terminal device as an example for description.
  • the implementation manner is similar to the implementation manner in which the network device configures one physical carrier for the terminal device. This application will not repeat this.
  • the network device may further configure at least one of PUCCH, PRACH, SRS, and PHR for the terminal device on the N carriers.
  • the terminal device can implement corresponding functions according to at least one of the configured PUCCH, PRACH, SRS, and PHR.
  • the terminal device transmits at least one of the following through the configured PUCCH: acknowledgment (ACK), negative-acknowledgment (NACK), channel quality indicator (CQI), precoding matrix Indication (precoding matrix indicator, PMI) and rank indicator (rank indication, RI).
  • ACK acknowledgment
  • NACK negative-acknowledgment
  • CQI channel quality indicator
  • PMI precoding matrix Indication
  • rank indicator rank indication, RI
  • the terminal device sends a radio resource control (radio resource control, RRC) Connection Request message through the PRACH channel to establish an RRC connection.
  • RRC radio resource control
  • the terminal device transmits the SRS in the carrier, so that the network device measures the SINR value of the reference signal of the carrier according to the SRS.
  • the terminal equipment reports the PHR in the carrier, so that the network equipment performs power control on each carrier of the terminal equipment according to the PHR reported by the terminal equipment.
  • the network device configures the PUCCH for the terminal device.
  • the network device may configure the PUCCH for the terminal device in any of the following manners 1 and 2. Mode 1 and Mode 2 will be described in detail below.
  • Manner 1 The network device configures the PUCCH for the terminal device on each of the N carriers.
  • the terminal device sends the PUCCH to the network device, usually only one carrier needs to carry the PUCCH.
  • the network device configures N carriers for the terminal device, the network device cannot determine which one of the N carriers will be activated and used to transmit data. The network device also cannot determine which carrier among the N carriers has the best SINR value of the reference signal.
  • the network device can configure the PUCCH for the terminal device on each of the N carriers according to the method 1.
  • the network device may select the carrier bearing the PUCCH for the terminal device according to the activated carrier in the N carriers or the SINR value of the reference signal of each carrier in the N carriers.
  • Manner 2 The network device configures the PUCCH only on the physical carriers of N carriers.
  • the network device and the terminal device determine that the physical carrier in the N carriers will always be activated and used to transmit data. At this time, the network device can only configure the PUCCH on the physical carrier of N carriers, so that when the terminal device needs to send the PUCCH, it directly transmits the PUCCH on the physical carrier, and the network device only attempts to receive the PUCCH on the physical carrier. With this method, the terminal device does not need to negotiate with the base station the carrier for transmitting the PUCCH before sending the PUCCH, which can save the signaling overhead between the terminal device and the network device.
  • the physical carrier described in Mode 2 may be any one of the M physical carriers.
  • Scenario B The network device configures PRACH for the terminal device.
  • PRACH is used for random access of terminal equipment.
  • the random access process of the terminal equipment is generally implemented by the terminal equipment through a physical carrier. Therefore, in this case, the network device only needs to configure the PRACH in the physical carrier.
  • the physical carrier is one or more physical carriers among the M physical carriers.
  • the terminal device sends the PRACH on the physical carrier by default, and the network device receives the PRACH on the physical carrier by default.
  • the terminal device and the network device may negotiate the carrier for sending the PRACH before sending the PRACH.
  • the terminal device sends the PRACH on the negotiated physical carrier, and the network device receives the PRACH on the negotiated physical carrier.
  • the network device configures the SRS for the terminal device.
  • the network device may configure the SRS for the terminal device in any of the following manners 3 and 4. Modes 3 and 4 will be described in detail below.
  • the number of ports (ports) corresponding to the SRS resources configured by the network device in each of the N carriers is R.
  • the transmission period of each SRS resource is T, where T is the transmission period of the SRS resources on the physical carrier before the virtual carrier is configured, and R is a positive integer.
  • each SRS resource corresponds to R ports. That is to say, the SRS resource corresponds to R transmit antennas.
  • the network device may configure the SRS in the R antenna ports according to the one SRS resource. Therefore, the signaling overhead of the network device can be reduced.
  • the number of ports (ports) corresponding to the SRS resources configured by the network device in each of the N carriers is 1.
  • the transmission period of each SRS resource is T. In this way, each transmit antenna will send the SRS to the network device once in each period T.
  • the network device configures the PHR reporting method for the terminal device.
  • the maximum power corresponding to the PHR carried by the first carrier is the maximum transmit power allocated by the terminal device to the transmit antenna corresponding to the first carrier.
  • the network device reports the PHR corresponding to the carrier. In this way, after receiving the PHR on the carrier, the network device determines that the carrier corresponding to the PHR is the carrier that bears the PHR.
  • the network device reports the PHR corresponding to each carrier on one carrier.
  • the PHR corresponding to each carrier carries the carrier index of the carrier. In this way, after receiving the PHR, the network device can determine the carrier corresponding to the PHR according to the carrier index carried in the PHR.
  • the maximum power corresponding to the PHR carried by the first carrier may be determined according to the following formula 1:
  • Pcmax' is the maximum power corresponding to the PHR carried by the first carrier
  • Pcmax is the maximum transmit power of the terminal device
  • the value of Y is determined according to the number of activated carriers.
  • the units of Pcmax', Pcmax, and Y are dB.
  • the network device may configure the PUCCH for the terminal device according to the solution described in the foregoing scenario A, the network device may configure the terminal device with PRACH according to the solution described in the foregoing scenario B, and the network device may configure the terminal device according to the foregoing scenario.
  • the solution described in C is to configure the SRS for the terminal device, and the network device may configure the PHR reporting method for the terminal device according to the solution described in the above scenario D.
  • the terminal device when the terminal device transmits uplink data according to one or more carriers in the N carriers, the terminal device may use multiple carriers in the N carriers to transmit the uplink data; or, the terminal device may Uplink data is transmitted using one of the N carriers.
  • whether the terminal device uses multiple carriers to transmit uplink data or uses a single carrier to transmit uplink data is related to the SINR value of the reference signal of each carrier in the N carriers.
  • the terminal device transmits the uplink data by using the multiple carriers.
  • the terminal device transmits uplink data by using multiple carriers.
  • S303a-S303d S303a-S303d.
  • S303a-S303f specifically:
  • the network device determines the SINR value of the reference signal of each carrier in the N carriers.
  • the reference signal described in this application includes: at least one of SRS and PUSCH DMRS.
  • the network device determines, according to the SINR value of the reference signal of each carrier, whether the SINR value of the reference signal of multiple carriers in the N carriers satisfies the first preset condition.
  • the first preset condition is: the SINR values of the multiple carriers are all greater than the first threshold.
  • the power allocated by the terminal equipment for each carrier (or the transmit antenna corresponding to the carrier) will be It will be less than the maximum transmit power of the terminal device, and the more carriers there are, the smaller the transmit power allocated by the terminal device to each carrier.
  • the network device and the terminal device may first measure the SINR value of the reference signal of each of the N carriers. According to the SINR value of the reference signal of each carrier, the network device and the terminal device determine on which carrier the network device and the terminal device transmit uplink data, so as to achieve the best transmission effect.
  • the network device instructs the terminal device to use the multiple carriers to transmit uplink data (referred to as case 1).
  • the network device instructs the terminal device to use the physical carrier to transmit uplink data when the SINR value of the reference signal of multiple carriers does not exist in the N carriers and satisfies the first preset condition (referred to as case 2).
  • Case 1 The network device instructs the terminal device to use multiple carriers to transmit uplink data.
  • the network device and the terminal device execute the following S303c and S303d, respectively.
  • the network device sends the second indication information to the terminal device.
  • the terminal device receives the second indication information from the network device.
  • the second indication information is used to instruct the terminal device to transmit uplink data on the multiple carriers.
  • the terminal device transmits uplink data on the multiple carriers.
  • Case 2 The network device instructs the terminal device to transmit uplink data by using a physical carrier.
  • the network device and the terminal device execute the following S303e and S303f, respectively.
  • S303e The network device sends third indication information to the terminal device.
  • the terminal device receives the third indication information from the network device.
  • the third indication information is used to instruct the terminal device to transmit uplink data on the physical carrier.
  • the terminal device transmits uplink data on the physical carrier.
  • the physical carrier may be any one of the M physical carriers; or, the physical carrier may be a designated physical carrier among the M physical carriers.
  • the network device and the terminal device can select one or more carriers from N carriers to transmit data with the best uplink transmission performance of the terminal device according to the SINR value of the reference signal of each carrier, thereby improving the performance of the terminal device. upstream transmission performance.
  • the network device and the terminal device can also determine one or more of the following according to the SINR value of the reference signal of each carrier: The amount of data carried by each carrier , UCI feedback path, uplink power control of carrier, UL MCS of carrier, carrier carrying PUCCH.
  • the following sub-scenarios are described:
  • the network device and the terminal device determine the amount of data carried by each carrier in the multiple carriers according to the SINR value of the reference signal of each carrier.
  • the amount of PUSCH data carried by the second carrier is determined according to the SINR value of the reference signal of the second carrier; the second carrier is any one of the multiple carriers.
  • the terminal equipment When the terminal equipment transmits uplink data on the multiple carriers, the terminal equipment transmits a part of the data on each carrier respectively. Ultimately, the amount of data transmitted by the terminal device through the multiple carriers is equal to the total amount of data that the terminal device needs to transmit.
  • the terminal device Before the terminal device sends uplink data, the terminal device needs to determine the amount of data sent on each carrier, so that the terminal can allocate corresponding transmission data to each carrier according to the amount of data sent on each carrier.
  • the terminal device can select a carrier with good signal quality to transmit a larger amount of data, and a carrier with poor signal quality to transmit a smaller amount of data. That is to say, the terminal device determines that a carrier with a larger SINR value of the reference signal carries a larger amount of data.
  • the terminal device determines the ratio of the data amount carried by one carrier to the total data amount, which is equal to the ratio of the SINR value of the reference signal of the carrier to the sum of the SINR values of the reference signals of the multiple carriers.
  • the amount of data carried by each carrier may be determined by the terminal device according to the SINR value of each carrier sent by the network device to the terminal device; or, the amount of data carried by each carrier may also be determined by the network device according to The SINR value of each carrier is determined and sent to the terminal device, which is not limited in this application.
  • network equipment and terminal equipment can also comprehensively consider other influencing factors (such as the transmission performance of the transmitting antenna, the power allocation of the transmitting antenna), and determine the data carried by each carrier. quantity.
  • the network equipment and the terminal equipment can also allocate a fixed proportion of transmission data to each carrier.
  • the amount of data carried by each carrier is directly determined according to the fixed ratio allocated to each carrier.
  • the terminal device determines that the amount of data transmitted by each carrier is equal. When the terminal device uses five carriers to transmit uplink data, each carrier transmits 20% of the total data volume.
  • the network device and the terminal device determine the feedback associated path of the UCI sent by the terminal device according to the SINR value of the reference signal of each carrier.
  • the feedback of the UCI refers to the carrier that bears the UCI among the multiple carriers.
  • the terminal device determines the carrier whose SINR value of the reference signal satisfies the second preset condition among the multiple carriers to carry the PUSCH including the UCI.
  • the second preset condition may be: the SINR value of the carrier is greater than the third threshold.
  • the UCI information may be carried on the PUSCH. Because the terminal device usually only needs to send one piece of UCI information to the network device within a period of time. Therefore, the UCI information can be carried in the PUSCH of any one of the multiple carriers.
  • the terminal device may select the carrier with the largest SINR value of the reference signal among the multiple carriers to carry the PUSCH including the UCI. That is to say, the terminal device transmits the PUSCH including the UCI on the carrier with the largest SINR value of the reference signal among the multiple carriers.
  • the terminal device selects a carrier whose SINR value of the reference signal is greater than the preset value among the multiple carriers as the feedback follower of the UCI.
  • the network device may send the SINR values of the reference signals of each of the N carriers to the terminal device.
  • the feedback path of the UCI is determined by the terminal device, and the network device may not be able to accurately know which carrier the terminal device sends the UCI on.
  • the network device cannot normally receive the UCI sent by the terminal device.
  • the network device determines the UCI associated path and informs the terminal device that the terminal device sends the UCI on the associated path, and the network device receives the UCI associated path on the associated path.
  • the terminal device determines that the UCI is on the road, and informs the network device that the UCI is on the road.
  • the terminal device sends UCI on the UIC path, and the network device receives the UCI on the UCI path.
  • the network device and the terminal device respectively perform corresponding uplink power control on each carrier according to the SINR value of the reference signal of each carrier.
  • the uplink power control policy of the second carrier is determined according to the SINR value of the reference signal of the second carrier.
  • the network device instructs the terminal device to increase the transmit power corresponding to the carrier when it is determined that the SINR value of the reference signal of the carrier is less than the second threshold.
  • the network device instructs the terminal device to reduce the transmit power corresponding to the carrier.
  • the terminal equipment may adopt an open-loop power control method, that is, the terminal equipment performs power control on each carrier according to the information measured by the terminal equipment.
  • the terminal device may also adopt a closed-loop power control manner, that is, the terminal device performs power control on the carrier according to the information fed back by the network device to the terminal device, which is not limited in this application.
  • the network equipment and the terminal equipment determine the UL MCS of each carrier according to the SINR value of the reference signal of each carrier.
  • the uplink UL MCS of the second carrier is determined according to the SINR value of the reference signal of the second carrier.
  • the network device determines the CQI corresponding to the carrier according to the measured SINR value of the reference signal of the carrier.
  • the network device determines the MCS corresponding to the transmission data of the carrier according to the CQI corresponding to the carrier.
  • the network device delivers the MCS corresponding to the carrier transmission data to the terminal, and the terminal determines the uplink modulation mode corresponding to the MCS according to the MCS look-up table, and modulates the uplink data that the terminal device needs to transmit on the carrier according to the uplink modulation mode.
  • the network device and the terminal device determine the carrier bearing the PUCCH according to the SINR value of the reference signal of each carrier.
  • the network device is configured with PUCCH on each of the N carriers, and when the terminal device sends the PUCCH, it usually only needs to use one carrier to send the PUCCH. Therefore, in mode 1, the terminal device needs to determine the carrier for transmitting the PUCCH before transmitting the PUCCH.
  • the method for the network device and the terminal device to determine the carrier carrying the PUCCH includes the following S501-S503.
  • the network device determines that among the N carriers, the carrier whose SINR value of the reference signal satisfies the third preset condition is the carrier that bears the PUCCH.
  • the third preset condition is: the carrier with the largest SINR value of the reference signal among the N carriers.
  • the network device sends first indication information to the terminal device.
  • the terminal device receives the first indication information from the network device.
  • the first indication information is used to indicate the carrier bearing the PUCCH.
  • the carrier that bears the PUCCH is the carrier that bears the PUCCH determined by the network device in S501.
  • the terminal device transmits the PUCCH on the carrier bearing the PUCCH indicated by the first indication information.
  • the network device attempts to receive the PUCCH on the carrier bearing the PUCCH indicated by the first indication information.
  • the network device after determining the SINR value of the reference signal of each carrier, the network device sends the SINR value of the reference signal of each carrier to the terminal.
  • the terminal device determines that among the N carriers, the carrier with the largest SINR value of the reference signal is the carrier on which the terminal device sends the PUCCH, and sends the PUCCH to the network device through the carrier.
  • the network device attempts to receive the PUCCH on all carriers.
  • the network device only configures the PUCCH on the physical carrier.
  • the terminal device and the network device can directly transmit the PUCCH on the physical carrier, and there is no need to calculate the SINR value of the reference signal according to each carrier. , and determine the carrier bearing the PUCCH.
  • the network device and the terminal device can determine the amount of data carried by each carrier in the N carriers; according to the above scenario II, the network device and the terminal device can determine the N carriers to be used as the feedback of the UCI.
  • the network equipment and the terminal equipment can determine the uplink power control of each carrier among the N carriers; according to the above scenario III, the network equipment and the terminal equipment can determine the uplink power control of each carrier among the N carriers.
  • the network device and the terminal device can determine the UL MCS of each carrier in the N carriers; according to the above scenario V, the network device and the terminal device can determine the N carriers, the carrier that carries the PUCCH.
  • the network equipment and the terminal equipment can determine: the amount of data carried by each carrier, the feedback path of the UCI, the uplink power control of the carrier, the UL MCS of the carrier, and the method of the carrier carrying the PUCCH.
  • the network equipment and terminal equipment determine: the amount of data carried by each carrier, the feedback path of the UCI, the uplink power control of the carrier, the UL MCS of the carrier, and the carrier carrying the PUCCH.
  • the methods are the same as those in the prior art, which will not be repeated in this application.
  • each network element for example, a network device and a terminal device, includes at least one of a hardware structure and a software module corresponding to executing each function.
  • a hardware structure for example, a network device and a terminal device
  • a software module corresponding to executing each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the network device and the terminal device may be divided into functional units according to the foregoing method examples.
  • each functional unit may be divided according to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and other division methods may be used in actual implementation.
  • FIG. 6 shows a possible schematic structural diagram of the communication device (referred to as the communication device 60 ) involved in the above embodiment, and the communication device 60 includes a processing unit 601 and a communication unit 602 , and may also include a storage unit 603 .
  • the schematic structural diagram shown in FIG. 6 may be used to illustrate the structures of the network equipment and the terminal equipment involved in the foregoing embodiments.
  • the processing unit 601 is used to control and manage the actions of the terminal equipment, for example, to control the terminal equipment to perform S301 and S301 in FIG. 3 and S302 and S303, S301, S302, S303c, 303d, 303e, and 303f in FIG. 4, S502 and S503 in FIG. 5, and/or actions performed by the terminal device in other processes described in the embodiments of the present application.
  • the processing unit 601 may communicate with other network entities through the communication unit 602, for example, with the network device shown in FIG. 1 .
  • the storage unit 603 is used to store program codes and data of the terminal device.
  • the communication apparatus 60 may be the terminal equipment, or may be a chip in the terminal equipment.
  • the processing unit 601 is configured to control and manage the actions of the network device, for example, control the network device to perform S301 and S301 in FIG. 3 and S303, S301, S303a-S303f in FIG. 4, S501, S502, and S503 in FIG. 5, and/or actions performed by the terminal device in other processes described in the embodiments of this application.
  • the processing unit 601 may communicate with other network entities through the communication unit 602, for example, with the network device shown in FIG. 1 .
  • the storage unit 603 is used to store program codes and data of the terminal device.
  • the communication apparatus 60 may be the network equipment, or may be a chip in the network equipment.
  • the processing unit 601 may be a processor or a controller, and the communication unit 602 may be a communication interface, a transceiver, a transceiver, a transceiver circuit, a transceiver, and the like.
  • the communication interface is a general term, which may include one or more interfaces.
  • the storage unit 603 may be a memory.
  • the processing unit 601 may be a processor or a controller, and the communication unit 602 may be an input interface and/or an output interface, pins or circuits, and the like.
  • the storage unit 603 may be a storage unit (for example, a register, a cache, etc.) in the chip, or a storage unit (for example, a read-only memory, ROM for short) located outside the chip in a terminal device or a network device. ), random access memory (random access memory, RAM for short), etc.).
  • a storage unit for example, a register, a cache, etc.
  • ROM read-only memory
  • RAM random access memory
  • the communication unit may also be referred to as a transceiver unit.
  • the antenna and control circuit with the transceiver function in the communication device 60 may be regarded as the communication unit 602 of the communication device 60
  • the processor with the processing function may be regarded as the processing unit 601 of the communication device 60 .
  • the device in the communication unit 602 for implementing the receiving function may be regarded as a receiving unit, the receiving unit is used to perform the receiving steps in the embodiments of the present application, and the receiving unit may be a receiver, a receiver, a receiving circuit, or the like.
  • the device in the communication unit 602 for implementing the sending function may be regarded as a sending unit, the sending unit is used to perform the sending steps in the embodiments of the present application, and the sending unit may be a transmitter, a transmitter, a sending circuit, and the like.
  • the integrated units in FIG. 6 may be stored in a computer-readable storage medium if implemented in the form of software functional modules and sold or used as independent products.
  • the medium includes several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • Storage media for storing computer software products include: U disk, removable hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • the units in FIG. 6 may also be referred to as modules, eg, a processing unit may be referred to as a processing module.
  • An embodiment of the present application also provides a schematic diagram of the hardware structure of a communication device (referred to as a communication device 70 ).
  • the communication device 70 includes a processor 701 , and optionally, also includes a connection with the processor 701 memory 702.
  • the communication device 70 further includes a transceiver 703 .
  • the processor 701, the memory 702 and the transceiver 703 are connected by a bus.
  • the transceiver 703 is used to communicate with other devices or communication networks.
  • the transceiver 703 may include a transmitter and a receiver.
  • the device in the transceiver 703 for implementing the receiving function may be regarded as a receiver, and the receiver is configured to perform the receiving steps in the embodiments of the present application.
  • a device in the transceiver 703 for implementing the sending function may be regarded as a transmitter, and the transmitter is used to perform the sending step in the embodiment of the present application.
  • FIG. 7 may be used to illustrate the structure of the network device or terminal device involved in the foregoing embodiment.
  • the processor 701 is used to control and manage the actions of the terminal equipment, for example, the processor 701 is used to support the terminal equipment to execute the diagram S301, S302 and S303 in 3, S301, S302, S303c, 303d, 303e, and 303f in FIG. 4, S502 and S503 in FIG. 5, and/or terminals in other processes described in the embodiments of this application
  • the action performed by the device may communicate with other network entities, eg, with the network devices shown in FIG. 1 , through the transceiver 703 .
  • the memory 702 is used to store program codes and data of the terminal device.
  • the processor 701 is used to control and manage the actions of the network device, for example, the processor 701 is used to support the network device to execute the diagram S301 and S303 in 3, S301, S303a-S303f in FIG. 4, S501, S502, and S503 in FIG. 5, and/or actions performed by the network device in other processes described in the embodiments of this application.
  • the processor 701 may communicate with other network entities through the transceiver 703, eg, with the terminal device shown in FIG. 1 .
  • the memory 702 is used to store program codes and data of the network device.
  • the processor 701 includes a logic circuit and at least one of an input interface and an output interface. Wherein, the output interface is used for executing the sending action in the corresponding method, and the input interface is used for executing the receiving action in the corresponding method.
  • FIG. 8 the schematic structural diagram shown in FIG. 8 may be used to illustrate the structure of the network device or terminal device involved in the foregoing embodiment.
  • the processor 701 is used to control and manage the actions of the terminal equipment, for example, the processor 701 is used to support the terminal equipment to control the terminal
  • the device performs S301, S302, and S303 in FIG. 3, S301, S302, S303c, 303d, 303e, and 303f in FIG. 4, S502 and S503 in FIG. 5, and/or other processes described in the embodiments of the present application
  • the processor 701 may communicate with other network entities, eg, with the network device shown in FIG. 1 , through at least one of an input interface and an output interface.
  • the memory 702 is used to store program codes and data of the terminal device.
  • the processor 701 is used to control and manage the actions of the network device, for example, the processor 701 is used to support the network device to execute the diagram S301 and S303 in 3, S301, S303a-S303f in FIG. 4, S501, S502, and S503 in FIG. 5, and/or actions performed by the network device in other processes described in the embodiments of this application.
  • the processor 701 may communicate with other network entities, for example, with the terminal device shown in FIG. 1 , through at least one of the input interface and the output interface.
  • the memory 702 is used to store program codes and data of the network device.
  • 7 and 8 may also illustrate a system chip in a network device.
  • the actions performed by the above network device may be implemented by the system chip, and the specific actions performed may refer to the above, which will not be repeated here.
  • 7 and 8 may also illustrate a system chip in a terminal device.
  • the actions performed by the above-mentioned terminal device may be implemented by the system chip, and the specific actions performed may refer to the above, which will not be repeated here.
  • terminal device 90 a terminal device
  • network device 100 a network device
  • FIG. 9 is a schematic diagram of the hardware structure of the terminal device 90 .
  • the terminal device 90 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, and to control the entire terminal device, execute software programs, and process data of the software programs, for example, to control the terminal device to execute S301, S302 and S303 in FIG. 3, Actions performed by the terminal device in S301, S302, S303c, 303d, 303e, and 303f in FIG. 4, S502 and S503 in FIG. 5, and/or other processes described in the embodiments of this application.
  • the memory is mainly used to store software programs and data.
  • the control circuit also referred to as a radio frequency circuit
  • the control circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the control circuit together with the antenna can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the memory, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the control circuit in the control circuit.
  • the control circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves. send.
  • the control circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 9 only shows one memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in this embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device, execute A software program that processes data from the software program.
  • the processor in FIG. 9 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, interconnected by technologies such as a bus.
  • a terminal device may include multiple baseband processors to adapt to different network standards, a terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built in the processor, or may be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • FIG. 10 is a schematic diagram of the hardware structure of the network device 100 .
  • the network device 100 may include one or more radio frequency units, such as a remote radio unit (remote radio unit, RRU for short) 1001 and one or more baseband units (baseband unit, BBU for short) (also referred to as a digital unit (digital unit, abbreviated as BBU)) DU)) 1002.
  • a remote radio unit remote radio unit
  • BBU baseband unit
  • BBU digital unit
  • DU digital unit
  • the RRU 1001 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1011 and a radio frequency unit 1012 .
  • the RRU1001 part is mainly used for the transceiver of radio frequency signals and the conversion of radio frequency signals and baseband signals.
  • the RRU 1001 and the BBU 1002 may be physically set together or physically separated, for example, distributed base stations.
  • the BBU1002 is the control center of the network equipment, which can also be called a processing unit, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spread spectrum.
  • the BBU 1002 may be composed of one or more single boards, and the multiple single boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or may separately support wireless access systems of different access standards. Access network (such as LTE network, 5G network or other network).
  • the BBU 1002 also includes a memory 1021 and a processor 1022, and the memory 1021 is used to store necessary instructions and data.
  • the processor 1022 is used to control the network device to perform necessary actions.
  • the memory 1021 and processor 1022 may serve one or more single boards. That is to say, the memory and processor can be provided separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • the network device 100 shown in FIG. 10 can perform S301 and S303 in FIG. 3, S301, S303a-S303f in FIG. 4, S501, S502, and S503 in FIG. 5, and/or in the embodiments of the present application Actions performed by network devices in other processes described.
  • the operations, functions, or, operations and functions of each module in the network device 100 are respectively set to implement the corresponding processes in the foregoing method embodiments.
  • each step in the method provided in this embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the processor in this application may include, but is not limited to, at least one of the following: a central processing unit (CPU), a microprocessor, a digital signal processor (DSP), a microcontroller (MCU), or Artificial intelligence processors and other types of computing devices that run software, each computing device may include one or more cores for executing software instructions to perform operations or processing.
  • the processor can be a separate semiconductor chip, or can be integrated with other circuits into a semiconductor chip. For example, it can form a SoC (on-chip) with other circuits (such as codec circuits, hardware acceleration circuits, or various bus and interface circuits).
  • the processor may further include necessary hardware accelerators, such as field programmable gate arrays (FPGA), PLDs (Programmable Logic Devices) , or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate arrays
  • PLD Programmable Logic Devices
  • the memory in this embodiment of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) , RAM) or other types of dynamic storage devices that can store information and instructions, and can also be electrically erasable programmable read-only memory (Electrically erasable programmable read-only memory, EEPROM).
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory may also be compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.) , a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, without limitation.
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.
  • magnetic disk storage medium or other magnetic storage device or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, without limitation.
  • Embodiments of the present application further provide a computer-readable storage medium, including instructions, which, when executed on a computer, cause the computer to execute any of the foregoing methods.
  • Embodiments of the present application also provide a computer program product containing instructions, which, when run on a computer, enables the computer to execute any of the above methods.
  • the embodiment of the present application also provides a communication system, including: the above-mentioned network device and terminal device.
  • An embodiment of the present application further provides a chip, the chip includes a processor and an interface circuit, the interface circuit is coupled to the processor, the processor is used to run a computer program or instructions to implement the above method, and the interface circuit is used to connect with the processor. communicate with other modules outside the chip.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center over a wire (e.g.
  • Coaxial cable, optical fiber, digital subscriber line (DSL) or wireless means to transmit to another website site, computer, server or data center.
  • Computer-readable storage media can be any available media that can be accessed by a computer or data storage devices including one or more servers, data centers, etc., that can be integrated with the media.
  • Useful media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, solid state disks (SSD)), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,涉及通信技术领域,用于提高终端设备的上行传输性能。该方法包括:网络设备根据为终端设备配置的物理载波,为终端设备配置多个虚拟载波。终端设备可以同时根据该物理载波和多个虚拟载波传输多个上行数据流。网络设备在多个载波上接收该多个上行数据流,并针对每个载波选择相应的MCS方式解码终端设备发送的上行数据。因此,本申请提供的通信方法可以提高网络设备支持的MCS与调制不同信道中的数据所需的MCS的匹配程度,从而提高终端设备传输上行数据的性能。

Description

通信方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
终端设备采用多个发射天线发送数据时,多个天线对应的多个上行数据流在不同的上行信道中传输。由于上行信道质量的不同,以及发射天线的发射性能的不同,各个信道中传输的数据流对应的最佳调制编码方式(modulation and coding scheme,MCS)不同。但是由于当前网络设备仅支持一种MCS,这将导致网络设备支持的MCS与调制不同信道中的数据所需的MCS不匹配,从而影响终端设备传输上行数据的性能。
发明内容
本申请提供一种通信方法及装置,用于提高终端设备传输上行数据的性能。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种通信方法,包括:终端设备确定网络设备为终端设备配置的N个载波,N个载波中包括M个物理载波,以及L个虚拟载波;终端设备支持多个发射天线发送上行数据;M个物理载波中的一个物理载波,与L个虚拟载波中的一个或多个虚拟载波对应;一个物理载波与对应的一个或多个虚拟载波的频点相同;L、M、和N均为正整数,N等于L与M之和。
终端设备根据N个载波中的一个或多个载波传输上行数据;其中,N个载波中第一载波的MCS,根据第一载波的传输速率确定;第一载波为N个载波中的任一个载波。
基于上述技术方案,网络设备根据为终端设备配置的物理载波,为终端设备配置多个虚拟载波。终端设备可以同时根据该物理载波和多个虚拟载波传输多个上行数据流。网络设备在多个载波上接收该多个上行数据流,并针对每个载波选择相应的MCS方式解码终端设备发送的上行数据。
这样,终端设备发送多个上行数据流时,终端设备采用不同的MCS方式调制数据,并采用不同的载波发送相应的数据流;网络设备在不同的载波上分别接收对应的数据流,网络设备可以为各个载波上的数据流选择相应的MCS方式解调数据。基于此,终端设备可以选择与上行信道对应的最佳MCS调制数据,网络设备可以选择与上行信道对应的最佳MCS解调数据,从而提高了终端设备传输上行数据的性能。
结合第一方面,在一种可能的实现方式中,终端设备的发射天线为S个,S为大于或等于N的整数。
基于此,网络设备为终端设备配置小于或等于终端设备发射天线数的载波,可以使每个载波均对应一个或多个发射天线。
结合第一方面,在一种可能的实现方式中,N个载波中的一个载波对应一个或多个发射天线;一个载波在该一个载波对应的发射天线上发送。
基于此,终端设备可以将一个载波绑定到一个或多个发射天线上,在后续的传输 过程中,终端设备使用发射天线在与其绑定的载波上发送上行数据。
结合第一方面,在一种可能的实现方式中,一个物理载波和一个或多个虚拟载波在传输上行数据时,所对应的时频资源相同。
基于此,网络设备配置的虚拟载波与其对应的物理载波使用相同的时频资源,可以使得终端设备使用一个小区为终端设备提供的带宽和时频资源,完成多载波传输。
结合第一方面,在一种可能的实现方式中,在N个载波中存在多个载波的参考信号的SINR值满足第一预设条件的情况下,终端设备采用多个载波传输上行数据。
基于此,终端设备在多个载波的信号质量较好的情况下,选择多个载波传输上行数据,可以提高终端设备的上行传输性能。
结合第一方面,在一种可能的实现方式中,第二载波承载的物理上行共享信道(physical uplink shared channel,PUSCH)数据量,根据第二载波的参考信号的信号与干扰加噪声比(signal to interference plus noise ratio,SINR)值确定;第二载波为多个载波中的任一个载波。
基于此,终端设备可以在信号质量较好的载波上传输更多的数据,从而提高终端设备的上行传输性能。
结合第一方面,在一种可能的实现方式中,多个载波中参考信号的SINR值满足第二预设条件的载波,用于承载包括上行控制信息(uplink control information,UCI)的PUSCH。
基于此,终端设备可以在信号质量好的载波上传输UCI,提高了终端设备传输UCI的质量。
结合第一方面,在一种可能的实现方式中,第二载波的上行功率控制策略根据第二载波的参考信号的SINR值确定;第二载波为多个载波中的任一个载波。
基于此,网络设备可以根据每个载波的信号质量,独立的控制各个载波的上行功率,提高了网络设备调节载波的上行功率的准确度。
结合第一方面,在一种可能的实现方式中,第二载波的上行链路(uplink,UL)MCS根据第二载波的参考信号的SINR值确定;第二载波为多个载波中的任一个载波。
基于此,网络设备和终端设备可以根据每个载波的信号质量,独立的确定各个载波的UL MCS,终端设备可以选择与上行信道对应的最佳MCS调制数据,网络设备可以选择与上行信道对应的最佳MCS解调数据,从而提高了终端设备传输上行数据的性能。结合第一方面,在一种可能的实现方式中,在N个载波中不存在多个载波的参考信号的SINR值满足第一预设条件的情况下,终端设备采用M个物理载波中的一个物理载波传输上行数据。
基于此,终端设备在多个载波的信号质量较差的情况下,选择物理载波传输上行数据,提高单个载波上的上行传输功率。
结合第一方面,在一种可能的实现方式中,终端设备接收来自网络设备的第一指示信息;第一指示信息用于指示承载物理上行链路控制信道(physical uplink controled channel,PUCCH)的载波;承载PUCCH的载波,为N个载波中参考信号的SINR值满足第三预设条件的载波;响应于第一指示信息,终端设备在第一指示信息指示的承载PUCCH的载波上,传输PUCCH。
基于此,终端设备可以在信号质量较好的载波上发送PUCCH,提高终端设备传输的PUCCH的传输质量。
结合第一方面,在一种可能的实现方式中,终端设备在物理载波上传输PUCCH。
基于此,终端设备可以直接在物理载波上传输PUCCH。终端设备和网络设备无需进行信令交互即可确定传输PUCCH的载波,降低了终端设备和网络设备之间的信令交互。
结合第一方面,在一种可能的实现方式中,第一载波的信道探测参考信号(sounding reference signal,SRS)资源对应的端口port的数量为R,SRS资源的发送周期为T,T为SRS的初始发送周期,R为正整数。
基于此,网络设备可以为各个载波配置不同的port数和发送周期的SRS,提高了该方法的适用场景。
结合第一方面,在一种可能的实现方式中,终端设备在M个物理载波中的一个物理载波上传输物理随机接入信道(physical random access channel,PRACH)。
基于此,终端设备可以直接在物理载波上传输PRACH。终端设备和网络设备无需进行信令交互即可确定传输PRACH的载波,降低了终端设备和网络设备之间的信令交互。
结合第一方面,在一种可能的实现方式中,第一载波承载的功率余量报告(power headroom report,PHR)对应的最大功率,为终端设备为第一载波对应的发射天线分配的最大发射功率。
基于此,每个载波向网络设备上报该载波对应的功率余量,使得网络设备可以单独对每个载波进行功率控制。
结合第一方面,在一种可能的实现方式中,参考信号包括:SRS和PUSCH解调参考信号(demodulation reference signal,DMRS)中的至少一项。
基于此网络设备可以通过测量载波上的SRS的SINR以及PUSCH DMRS的SINR,确定载波的参考信号的SINR。
第二方面,提供一种通信方法,包括:网络设备为终端设备配置N个载波,N个载波中包括M个物理载波,以及L个虚拟载波;终端设备支持多个发射天线发送上行数据;M个物理载波中的一个物理载波,与L个虚拟载波中的一个或多个虚拟载波对应;一个物理载波与对应的一个或多个虚拟载波的频点相同;L、M、和N均为正整数,N等于L与M之和。
N个载波中的一个或多个载波,用于传输终端设备的上行数据;N个载波中第一载波的MCS,根据第一载波的传输速率确定;第一载波为N个载波中的任一个载波。
结合第二方面,在一种可能的实现方式中,终端设备的发射天线为S个,S为大于或等于N的整数。
结合第二方面,在一种可能的实现方式中,N个载波中的一个载波对应一个或多个发射天线;一个载波在该一个载波对应的发射天线上发送。
结合第二方面,在一种可能的实现方式中,一个物理载波和一个或多个虚拟载波在传输上行数据时,所对应的时频资源相同。
结合第二方面,在一种可能的实现方式中,在N个载波中存在多个载波的参考信 号的SINR值满足第一预设条件的情况下,多个载波用于承载终端设备发送的上行数据。
结合第二方面,在一种可能的实现方式中,在上行数据为PUSCH时。
第二载波承载的PUSCH数据量,根据第二载波的参考信号的SINR值确定;第二载波为多个载波中的任一个载波。
结合第二方面,在一种可能的实现方式中,多个载波中参考信号的SINR值满足第二预设条件的载波,用于承载包括UCI的PUSCH。
结合第二方面,在一种可能的实现方式中,第二载波的上行功率控制策略根据第二载波的参考信号的SINR值确定;第二载波为多个载波中的任一个载波。
结合第二方面,在一种可能的实现方式中,第二载波的上行链路UL MCS根据第二载波的参考信号的SINR值确定;第二载波为多个载波中的任一个载波。
结合第二方面,在一种可能的实现方式中,在N个载波中不存在多个载波的参考信号的SINR值满足第一预设条件的情况下,M个物理载波中的一个物理载波用于承载终端设备发送的上行数据。
结合第二方面,在一种可能的实现方式中,网络设备向终端设备发送第一指示信息;第一指示信息用于指示承载PUCCH的载波;承载PUCCH的载波,为N个载波中参考信号的SINR值满足第三预设条件的载波。
结合第二方面,在一种可能的实现方式中,网络设备在第一指示信息指示的承载PUCCH的载波上,接收PUCCH。
结合第二方面,在一种可能的实现方式中,网络设备在物理载波上接收PUCCH。
结合第二方面,在一种可能的实现方式中,第一载波的SRS资源对应的端口port的数量为R,SRS资源的发送周期为T,T为SRS的初始发送周期,R为正整数。
结合第二方面,在一种可能的实现方式中,网络设备在M个物理载波中的一个物理载波上接收PRACH。
结合第二方面,在一种可能的实现方式中,第一载波承载的PHR对应的最大功率,为终端设备为第一载波对应的发射天线分配的最大发射功率。
结合第二方面,在一种可能的实现方式中,参考信号包括:SRS和PUSCH DMRS中的至少一项。
第三方面,提供一种通信装置包括:通信单元和处理单元;处理单元,用于确定网络设备为终端设备配置的N个载波,N个载波中包括M个物理载波,以及L个虚拟载波;终端设备支持多个发射天线发送上行数据;M个物理载波中的一个物理载波,与L个虚拟载波中的一个或多个虚拟载波对应;一个物理载波与对应的一个或多个虚拟载波的频点相同;L、M、和N均为正整数,N等于L与M之和。
处理单元,还用于指示通信单元根据N个载波中的一个或多个载波传输上行数据;其中,N个载波中第一载波的MCS,根据第一载波的传输速率确定;第一载波为N个载波中的任一个载波。
结合第三方面,在一种可能的实现方式中,终端设备的发射天线为S个,S为大于或等于N的整数。
结合第三方面,在一种可能的实现方式中,N个载波中的一个载波对应一个或多 个发射天线;一个载波在该一个载波对应的发射天线上发送。
结合第三方面,在一种可能的实现方式中,一个物理载波和一个或多个虚拟载波在传输上行数据时,所对应的时频资源相同。
结合第三方面,在一种可能的实现方式中,在N个载波中存在多个载波的参考信号的SINR值满足第一预设条件的情况下,处理单元,具体用于指示通信单元采用多个载波传输上行数据。
结合第三方面,在一种可能的实现方式中,第二载波承载的PUSCH数据量,根据第二载波的参考信号的SINR值确定;第二载波为多个载波中的任一个载波。
结合第三方面,在一种可能的实现方式中,多个载波中参考信号的SINR值满足第二预设条件的载波,用于承载包括UCI的PUSCH。
结合第三方面,在一种可能的实现方式中,第二载波的上行功率控制策略根据第二载波的参考信号的SINR值确定;第二载波为多个载波中的任一个载波。
结合第三方面,在一种可能的实现方式中,第二载波的上行链路UL MCS根据第二载波的参考信号的SINR值确定;第二载波为多个载波中的任一个载波。
结合第三方面,在一种可能的实现方式中,在N个载波中不存在多个载波的参考信号的SINR值满足第一预设条件的情况下,处理单元,具体用于指示通信单元采用M个物理载波中的一个物理载波传输上行数据。
结合第三方面,在一种可能的实现方式中,通信单元,还用于接收来自网络设备的第一指示信息;第一指示信息用于指示承载PUCCH的载波;承载PUCCH的载波,为N个载波中参考信号的SINR值满足第三预设条件的载波;处理单元,还用于指示通信单元在第一指示信息指示的承载PUCCH的载波上,传输PUCCH。
结合第三方面,在一种可能的实现方式中,处理单元,还用于指示通信单元在物理载波上传输PUCCH。
结合第三方面,在一种可能的实现方式中,第一载波的SRS资源对应的端口port的数量为R,SRS资源的发送周期为T,T为SRS的初始发送周期,R为正整数。
结合第三方面,在一种可能的实现方式中,处理单元,还用于指示通信单元在M个物理载波中的一个物理载波上传输PRACH。
结合第三方面,在一种可能的实现方式中,第一载波承载的PHR对应的最大功率,为终端设备为第一载波对应的发射天线分配的最大发射功率。
结合第三方面,在一种可能的实现方式中,参考信号包括:SRS和PUSCH DMRS中的至少一项。
第四方面,提供一种通信装置,包括处理单元;处理单元,用于为终端设备配置N个载波,N个载波中包括M个物理载波,以及L个虚拟载波;终端设备支持多个发射天线发送上行数据;M个物理载波中的一个物理载波,与L个虚拟载波中的一个或多个虚拟载波对应;一个物理载波与对应的一个或多个虚拟载波的频点相同;L、M、和N均为正整数,N等于L与M之和;
N个载波中的一个或多个载波,用于传输终端设备的上行数据;N个载波中第一载波的MCS,根据第一载波的传输速率确定;第一载波为N个载波中的任一个载波。
结合第四方面,在一种可能的实现方式中,终端设备的发射天线为S个,S为大 于或等于N的整数。
结合第四方面,在一种可能的实现方式中,N个载波中的一个载波对应一个或多个发射天线;一个载波在该一个载波对应的发射天线上发送。
结合第四方面,在一种可能的实现方式中,一个物理载波和一个或多个虚拟载波在传输上行数据时,所对应的时频资源相同。
结合第四方面,在一种可能的实现方式中,在N个载波中存在多个载波的参考信号的SINR值满足第一预设条件的情况下,多个载波用于承载终端设备发送的上行数据。
结合第四方面,在一种可能的实现方式中,在上行数据为PUSCH时,第二载波承载的PUSCH数据量,根据第二载波的参考信号的SINR值确定;第二载波为多个载波中的任一个载波。
结合第四方面,在一种可能的实现方式中,多个载波中参考信号的SINR值满足第二预设条件的载波,用于承载包括UCI的PUSCH。
结合第四方面,在一种可能的实现方式中,第二载波的上行功率控制策略根据第二载波的参考信号的SINR值确定;第二载波为多个载波中的任一个载波。
结合第四方面,在一种可能的实现方式中,第二载波的上行链路UL MCS根据第二载波的参考信号的SINR值确定;第二载波为多个载波中的任一个载波。
结合第四方面,在一种可能的实现方式中,在N个载波中不存在多个载波的参考信号的SINR值满足第一预设条件的情况下,M个物理载波中的一个物理载波用于承载终端设备发送的上行数据。
结合第四方面,在一种可能的实现方式中,装置还包括:通信单元;通信单元,用于向终端设备发送第一指示信息;第一指示信息用于指示承载PUCCH的载波;承载PUCCH的载波,为N个载波中参考信号的SINR值满足第三预设条件的载波。
结合第四方面,在一种可能的实现方式中,处理单元,还用于指示通信单元在第一指示信息指示的承载PUCCH的载波上,接收PUCCH。
结合第四方面,在一种可能的实现方式中,处理单元,还用于指示通信单元在物理载波上接收PUCCH。
结合第四方面,在一种可能的实现方式中,第一载波的SRS资源对应的端口port的数量为R,SRS资源的发送周期为T,T为SRS的初始发送周期,R为正整数。
结合第四方面,在一种可能的实现方式中,处理单元,还用于指示通信单元在M个物理载波中的一个物理载波上接收PRACH。
结合第四方面,在一种可能的实现方式中,第一载波承载的PHR对应的最大功率,为终端设备为第一载波对应的发射天线分配的最大发射功率。
结合第四方面,在一种可能的实现方式中,参考信号包括:SRS和PUSCH DMRS中的至少一项。
第五方面,本申请提供了一种通信装置,包括:处理器和存储介质;存储介质包括指令,处理器用于运行指令,以实现如第一方面和第一方面的任一种可能的实现方式中所描述的通信方法。通信装置可以是终端设备,也可以是终端设备中的芯片。
第六方面,本申请提供了一种通信装置,包括:处理器和存储介质;存储介质包 括指令,处理器用于运行指令,以实现如第二方面和第二方面的任一种可能的实现方式中所描述的通信方法。通信装置可以是终端设备,也可以是终端设备中的芯片。
第七方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行如第一方面和第一方面的任一种可能的实现方式中所描述的通信方法。
第八方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行如第二方面和第二方面的任一种可能的实现方式中所描述的通信方法。
第九方面,本申请提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如第一方面和第一方面的任一种可能的实现方式中所描述的通信方法。
第十方面,本申请提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如第二方面和第二方面的任一种可能的实现方式中所描述的通信方法。
第十一方面,本申请提供一种通信系统,包括网络设备,和终端设备,终端设备用于执行如第一方面和第一方面的任一种可能的实现方式中所描述的通信方法,网络设备用于执行如第二方面和第二方面的任一种可能的实现方式中所描述的通信方法。
应当理解的是,本申请中对技术特征、技术方案、有益效果或类似语言的描述并不是暗示在任意的单个实施例中可以实现所有的特点和优点。相反,可以理解的是对于特征或有益效果的描述意味着在至少一个实施例中包括特定的技术特征、技术方案或有益效果。因此,本说明书中对于技术特征、技术方案或有益效果的描述并不一定是指相同的实施例。进而,还可以任何适当的方式组合本实施例中所描述的技术特征、技术方案和有益效果。本领域技术人员将会理解,无需特定实施例的一个或多个特定的技术特征、技术方案或有益效果即可实现实施例。在其他实施例中,还可在没有体现所有实施例的特定实施例中识别出额外的技术特征和有益效果。
附图说明
图1为本申请实施例提供的一种通信系统的系统架构图;
图2为本申请实施例提供的一种MIMO系统的系统架构图;
图3为本申请实施例提供的一种通信方法的流程示意图;
图4为本申请实施例提供的另一种通信方法的流程示意图;
图5为本申请实施例提供的另一种通信方法的流程示意图;
图6为本申请实施例提供的一种通信装置的结构示意图;
图7为本申请实施例提供的一种通信装置的硬件结构示意图;
图8为本申请实施例提供的另一种通信装置的硬件结构示意图;
图9为本申请实施例提供的一种终端设备的硬件结构示意图;
图10为本申请实施例提供的一种网络设备的硬件结构示意图。
具体实施方式
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三 种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例提供的通信方法,应用于如图1所示的通信系统100中,如图1所示,该通信系统100包括网络设备10和终端设备20。
其中,网络设备和10和终端设备20均具有多个发射天线和接收天线。网络设备和10和终端设备20可以通过该多个发射天线和接收天线同时传输多个数据流。
本申请实施例中的通信系统包括但不限于长期演进(long term evolution,LTE)系统、第五代(5th-generation,5G)系统、新空口(new radio,NR)系统,无线局域网(wireless local area networks,WLAN)系统以及未来演进系统或者多种通信融合系统。示例性的,本申请实施例提供的方法具体可应用于演进的全球陆地无线接入网络(evolved-universal terrestrial radio access network,E-UTRAN)和下一代无线接入网(next generation-radio access network,NG-RAN)系统。
本申请实施例中的网络设备为网络侧的一种用于发送信号,或者,接收信号,或者,发送信号和接收信号的实体。网络设备可以为部署在无线接入网(radio access network,RAN)中为终端设备提供无线通信功能的装置,例如可以为TRP、基站(例如,演进型基站(evolved NodeB,eNB或eNodeB)、下一代基站节点(next generation node base station,gNB)、下一代eNB(next generation eNB,ng-eNB)等)、各种形式的控制节点(例如,网络控制器、无线控制器(例如,云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器))、路侧单元(road side unit,RSU)等。具体的,网络设备可以为各种形式的宏基站,微基站(也称为小站),中继站,接入点(access point,AP)等,也可以为基站的天线面板。所述控制节点可以连接多个基站,并为所述多个基站覆盖下的多个终端设备配置资源。在采用不同的无线接入技术(radio access technology,RAT)的系统中,具备基站功能的设备的名称可能会有所不同。例如,LTE系统中可以称为eNB或eNodeB,5G系统或NR系统中可以称为gNB,本申请对基站的具体名称不作限定。网络设备还可以是未来演进的公共陆地移动网络(public land mobile network,PLMN)中的网络设备等。
本申请实施例中的终端设备是用户侧的一种用于接收信号,或者,发送信号,或者,接收信号和发送信号的实体。终端设备用于向用户提供语音服务和数据连通性服务中的一种或多种。终端设备还可以称为用户设备(user equipment,UE)、终端、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端设备可以是车联网(vehicle to everything,V2X)设备,例如,智能汽车(smart car或intelligent car)、数字汽车(digital car)、无人汽车(unmanned car或driverless car或pilotless car或automobile)、自动汽车 (self-driving car或autonomous car)、纯电动汽车(pure EV或Battery EV)、混合动力汽车(hybrid electric vehicle,HEV)、增程式电动汽车(range extended EV,REEV)、插电式混合动力汽车(plug-in HEV,PHEV)、新能源汽车(new energy vehicle)等。终端设备也可以是设备到设备(device to device,D2D)设备,例如,电表、水表等。终端设备还可以是移动站(mobile station,MS)、用户单元(subscriber unit)、无人机、物联网(internet of things,IoT)设备、WLAN中的站点(station,ST)、蜂窝电话(cellular phone)、智能电话(smart phone)、无绳电话、无线数据卡、平板型电脑、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(也可以称为穿戴式智能设备)。终端设备还可以为下一代通信系统中的终端设备,例如,5G系统中的终端设备或者未来演进的PLMN中的终端设备,NR系统中的终端设备等。
在现有技术中,网络设备和终端设备可以通过配置多个发射天线以及多个接收天线,组成多进多出(Multi-Input Multi-Output,MIMO)系统。如图2所示,为一种具有两个发射天线和两个接收天线(即两收两发)的MIMO系统的系统架构图。在该MIMO系统中,一个发射天线可以分别向两个接收天线发送数据。一个接收天线能够分别接收来自两个发射天线的数据。
在MIMO系统中,终端设备向网络设备发送PUSCH时,终端设备可以使用多个空域信道发送多个数据流,该多个数据流可以对应相同的RB资源,终端设备通过在多个天线之间发送多个上行数据流,可以提高终端设备上行数据的传输速率。
在当前的5G网络中,终端设备向网络设备发送上行数据时,终端设备可以支持传输多个上行数据流,但是网络设备仅支持在一个载波上解析一种MCS类型的上行数据流。
而在终端设备传输多个上行数据流时,不同的上行数据流承载在同一个载波上,并采用不同的发射天线发送,不同的上行数据流之间的上行数据信道不同。在数据传输过程中,由于各个信道的信道质量不同,且终端设备的发射天线的性能也存在差异,因此,每个上行数据流对应的传输速率也不同,为此,各个上行信道中传输的上行数据流所需的MCS不同。
根据上述可知,在一个载波上,网络设备仅支持一种MCS,而多发射天线的终端设备在一个载波上发送多个上行数据流时,各个上行信道中传输的上行数据流所需的MCS不同。这将会导致网络设备支持的MCS与调制不同信道中的数据所需的MCS不匹配,进而降低终端设备传输上行数据的性能。
为了解决现有技术中,终端设备发送多个上行数据流时,网络设备支持的MCS与调制不同信道中的数据所需的MCS不匹配的问题。本申请实施例提供了一种通信方法,网络设备根据为终端设备配置的物理载波,为终端设备配置多个虚拟载波。终端设备可以同时根据该物理载波和多个虚拟载波传输多个上行数据流。网络设备在多个载波上接收该多个上行数据流,并针对每个载波选择相应的MCS方式解码终端设备发 送的上行数据。
这样,终端设备发送多个上行数据流时,终端设备采用不同的MCS方式调制数据,并采用不同的载波发送相应的数据流;网络设备在不同的载波上分别接收对应的数据流,网络设备可以为各个载波上的数据流选择相应的MCS方式解调数据。基于此,终端设备可以选择与上行信道对应的最佳MCS调制数据,网络设备可以选择与上行信道对应的最佳MCS解调数据,从而提高了终端设备传输上行数据的性能。
如图3所示,本申请实施例提供的通信方法包括:
S301、网络设备为终端设备配置N个载波。
N个载波中包括M个物理载波,以及L个虚拟载波;终端设备支持多个发射天线发送上行数据;M个物理载波中的一个物理载波,与L个虚拟载波中的一个或多个虚拟载波对应;一个物理载波与对应的一个或多个虚拟载波的频点相同;L、M、和N均为正整数,N等于L与M之和。上述一个物理载波和与该物理载波对应的一个或多个虚拟载波在传输上行数据时,所对应的时频资源相同。
N个载波中,各个载波之间的载波索引不同。
需要说明的是,物理载波为网络设备和终端设备之间预先配置好的用于传输数据的载波。
虚拟载波为根据物理载波的带宽、频点和时频资载波资源,虚拟出的载波。虚拟载波不具有单独的带宽,频点,以及时频资源,而是复用物理载波的带宽,频点和时频资源。
一种可能的实现方式中,网络设备为终端设备配置的载波的个数,与终端设备的天线数有关。
具体来说,网络设备为终端设备配置的载波个数,小于等于终端设备的发射天线数。例如,在终端设备具有S个发射天线的情况下,网络设备为终端设备配置的载波数为N个,其中,S为大于或等于N的整数。
S302、终端设备确定网络设备为终端设备配置的N个载波。
一种可能的实现方式中,终端设备确定网络设备为终端设备配置的N个载波之后,终端设备确定该N个载波与终端设备的S个发射天线之间的对应关系。
一个载波对应一个或多个发射天线;一个载波在该一个载波对应的发射天线上发送。
具体来说,在S等于N的情况下,一个载波对应一个发射天线;在S大于N的情况下,N个载波中包括对应多个发射天线的载波。
需要说明的是,一个载波对应一个或多个发射天线,可以为终端设备对载波和发射天线进行绑定。
在载波与发射天线绑定之后,终端总是采用发射天线发射与该发射天线绑定的载波。
S303、终端设备根据N个载波中的一个或多个载波传输上行数据。相应的,网络设备在该一个或多个载波上接收上行数据。
其中,N个载波中第一载波的MCS,根据第一载波的传输速率确定;第一载波为N个载波中的任一个载波。
也即是说,该N个载波中各个载波的MCS互不影响,网络设备可以根据每个载波的传输速率,确定该载波的MCS,并向终端设备指示每个载波的MCS。同样的,网络设备接收到该载波传输的上行数据之后,采用与该载波的调制编码方式对应的MCS,解调该上行数据。
需要指出的是,终端设备在虚拟载波上传输数据时,仍然是占用的物理载波的带宽和频率,并使用与物理载波的时频资源相同的时频资源。
基于上述技术方案终端设备发送多个上行数据流时,终端设备采用不同的MCS方式调制数据,并采用不同的载波发送相应的数据流;网络设备在不同的载波上分别接收对应的数据流,网络设备可以为各个载波上的数据流选择相应的MCS方式解调数据。基于此,终端设备可以选择与上行信道对应的最佳MCS调制数据,网络设备可以选择与上行信道对应的最佳MCS解调数据,从而提高了终端设备传输上行数据的性能。
一种可能的实现方式中,在S301之前,终端设备可以通过向网络设备发送第四指示信息,第四指示信息用于指示终端设备支持多个发射天线发送上行数据,以及指示终端设备的发射天线数量S。相应的,网络设备接收到来自终端设备的第四指示信息之后,根据第四指示信息指示的终端设备的发射天线的数量S,为终端设备配置N个载波。
需要说明的是,本申请实施例中,网络设备和终端设备之间存在M个物理载波。该M个物理载波为网络设备配置虚拟载波之前,网络设备为终端设备配置的M个物理载波。该M个物理载波的频点、带宽等信息可以相同也可以不同。在网络设备确定该M个物理载波之后,根据该M个物理载波中的每一个物理载波,配置一个或多个虚拟载波。其中,根据一个物理载波所配置的虚拟载波的频点带宽等信息,与该虚拟载波对应的物理载波的频点带宽等信息相同。
在本申请实施例中,为了便于说明,以网络设备为终端设备配置了一个物理载波为例进行说明。在实际过程中,网络设备为终端设备配置的物理载波可以为多个。当网络设备为终端设备配置的物理载波可以为多个时,其实现方式与网络设备为终端设备配置的物理载波为一个的实现方式类似。本申请对此不在赘述。
在S301的一种实现方式中,网络设备为终端设备配置N个载波之后,网络设备还可以在该N个载波上为终端设备配置PUCCH,PRACH,SRS,PHR中的至少一个。这样终端设备可以根据配置的PUCCH,PRACH,SRS,PHR中的至少一个,并实现相应的功能。
例如,对于上述PUCCH,终端设备通过配置的PUCCH传输以下至少一项:确认应答(acknowledgment,ACK),否认应答(negative-acknowledgment,NACK),信道质量指示(channel quality indicator,CQI),预编码矩阵指示(precoding matrix indicator,PMI)和秩指示(rank indication,RI)。
对于上述PRACH,终端设备通过PRACH信道发送无线资源控制协议(radio resource control,RRC)Connection Request消息,建立RRC连接。
对于上述SRS,终端设备在载波中发送SRS,以使得网络设备根据该SRS测量载波的参考信号SINR值。
对于上述PHR,终端设备在载波中上报PHR,使网络设备根据终端设备上报的 PHR对终端设备的各个载波进行功率控制。
以下,对网络设备为终端设备配置PUCCH,PRACH,SRS,PHR的过程,分场景进行说明:
场景A、网络设备为终端设备配置PUCCH。
在该场景下,网络设备可以通过如下方式1和方式2中的任一个方式,为终端设备配置PUCCH。以下对方式1和方式2进行详细说明。
方式1、网络设备在N个载波的每个载波上,均为终端设备配置PUCCH。
在终端设备向网络设备发送PUCCH时,通常只需要通过一个载波承载该PUCCH即可。但是在网络设备为终端设备配置N个载波时,网络设备无法确定N个载波中的哪一个载波会被激活并用来传输数据。网络设备也无法确定N个载波中的哪一个载波的参考信号的SINR值最好。
因此,网络设备可以根据该方式1,在该N个载波的每个载波上均为终端设备配置PUCCH。在终端设备需要传输PUCCH时,网络设备可以根据N个载波中被激活的载波,或者N个载波中各个载波的参考信号的SINR值,为终端设备选择承载PUCCH的载波。
方式2、网络设备仅在N个载波的物理载波上配置PUCCH。
在方式2中,网络设备和终端设确定,N个载波中的物理载波总是会被激活并用来传输数据。此时,网络设备可以仅在N个载波的物理载波上配置PUCCH,这样,在终端设备需要发送PUCCH时,直接在该物理载波上传输该PUCCH,网络设备仅在该物理载波上尝试接收PUCCH。通过该方法,终端设备在发送PUCCH之前无需与基站协商传输PUCCH的载波,可以节省终端设备和网络设备之间的信令开销。
方式2中所记载的物理载波可以为M个物理载波中的任一个物理载波。
场景B、网络设备为终端设备配置PRACH。
PRACH用于终端设备的随机接入。终端设备的随机接入过程一般由终端设备通过物理载波实现。因此,在该情况下网络设备进行物理载波中配置PRACH即可。
该物理载波为M个物理载波中的一个或多个物理载波。
当该物理载波为M个物理载波中的一个时,终端设备默认在该物理载波上发送PRACH,网络设备默认在该物理载波上接收PRACH。
当该物理载波为多个时,终端设备和网络设备可以在发送PRACH前,协商发送PRACH的载波。终端设备在协商的物理载波上发送PRACH,网络设备在协商的物理载波上接收PRACH。
场景C、网络设备为终端设备配置SRS。
在该场景下,网络设备可以通过如下方式3和方式4中的任一种方式,为终端设备配置SRS。以下对方式3和方式4进行详细说明。
方式3
网络设备在N个载波的每个载波中配置的SRS资源对应的端口(port)的数量均为R。每个SRS资源的发送周期为T,T为在配置虚拟载波之前的物理载波上的SRS资源发送周期,R为正整数。
其中,每个SRS资源对应R个port。也即是说,该SRS资源对应R个发射天线。 网络设备可以根据该一个SRS资源,在R个天线端口中配置SRS。从而可以降低网络设备的信令开销。
方式4
网络设备在N个载波的每个载波中配置的SRS资源对应的端口(port)的数量均为1。每个SRS资源的发送周期为T。这样,每个发射天线均会在每个周期T内向网络设备发送一次SRS。
场景D、网络设备为终端设备配置PHR上报方式。
第一载波承载的PHR对应的最大功率,为终端设备为第一载波对应的发射天线分配的最大发射功率。
一种可能的实现方式中,网络设备在每个载波上,上报该载波对应的PHR。这样,网络设备在载波上接收到PHR之后,确定该PHR对应的载波为承载该PHR的载波。
又一种可能的实现方式中,网络设备在一个载波上,上报每个载波对应的PHR。其中,每个载波对应的PHR中,携带有该载波的载波索引。这样,网络设备接收到PHR之后,可以根据该PHR中携带的载波索引,确定该PHR对应的载波。
一种具体的实现方式中,第一载波承载的PHR对应的最大功率,可以根据如下公式1确定:
Pcmax’=Pcmax-Y              公式1
其中,Pcmax’为第一载波承载的PHR对应的最大功率,Pcmax为终端设备的最大发射功率,Y的值根据被激活的载波的数量确定。Pcmax’,Pcmax,以及Y的单位均为dB。
基于上述技术方案,本申请实施例中网络设备可以根据上述场景A中记载的方案为终端设备配置PUCCH,网络设备可以根据上述场景B中记载的方案为终端设备配置PRACH,网络设备可以根据上述场景C中记载的方案为终端设备配置SRS,网络设备可以根据上述场景D中记载的方案为终端设备配置PHR上报方式。
在S303的一种可能的实现方式中,终端设备根据N个载波中的一个或多个载波传输上行数据时,终端设备可以采用N个载波中的多个载波传输上行数据;或者,终端设备可以采用N个载波中的一个载波传输上行数据。
其中,终端设备采用多个载波传输上行数据,还是采用单个载波传输上行数据,与该N个载波中各个载波的参考信号的SINR值有关。
具体来说,在该N个载波中存在多个载波的参考信号的SINR值满足第一预设条件的情况下,终端设备采用多个载波传输上行数据。
在该N个载波中不存在多个载波的参考信号的SINR值满足第一预设条件的情况下,终端设备采用多个载波传输上行数据。
此时,上述S303可以通过以下S303a-S303d实现。结合图3,如图4所示,S303a-S303f,具体为:
S303a、网络设备确定N个载波中各个载波的参考信号的SINR值。
一种可能的实现方式中,本申请所记载的参考信号包括:SRS和PUSCH DMRS中的至少一项。
S303b、网络设备根据各个载波的参考信号的SINR值,确定该N个载波中是否存 在多个载波的参考信号的SINR值满足第一预设条件。
一种可能的实现方式中,该第一预设条件为:该多个载波的SINR值均大于第一阈值。
需要指出的是,由于终端设备的最大发射功率是一定的,因此,在终端设备采用多个载波传输数据时,终端设备为每个载波(或者说,载波所对应的发射天线)分配的功率将会小于终端设备的最大发射功率,且载波数越多,终端设备为每个载波分配的发射功率将会越小。
因此,网络设备和终端设备在采用该N个载波传输数据时,可以先测量该N个载波中每个载波的参考信号的SINR值。网络设备和终端设备根据每个载波的参考信号的SINR值,确定网络设备和终端设备根据哪些载波传输上行数据,可以达到最好的传输效果。
因此,网络设备在N个载波中存在多个载波的参考信号的SINR值满足第一预设条件时,指示终端设备采用该多个载波传输上行数据(记为情况1)。
网络设备在N个载波中不存在多个载波的参考信号的SINR值满足第一预设条件时,指示终端设备采用物理载波传输上行数据(记为情况2)。
以下分别对情况1和情况2进行详细说明:
情况1、网络设备指示终端设备采用多个载波传输上行数据。
在该情况下,网络设备和终端设备分别执行以下S303c和S303d。
S303c、网络设备向终端设备发送第二指示信息。相应的,终端设备接收来自网络设备的第二指示信息。
第二指示信息用于指示终端设备在该多个载波上传输上行数据。
S303d、响应于第二指示信息,终端设备在该多个载波上传输上行数据。
情况2、网络设备指示终端设备采用物理载波传输上行数据。
在该情况下,网络设备和终端设备分别执行以下S303e和S303f。
S303e、网络设备向终端设备发送第三指示信息。相应的,终端设备接收来自网络设备的第三指示信息。
第三指示信息用于指示终端设备在物理载波上传输上行数据。
S303f、终端设备在物理载波上传输上行数据。
该物理载波可以为M个物理载波中的任一个物理载波;或者,该物理载波可以为M个物理载波中指定的物理载波。
基于上述技术方案,网络设备和终端设备可以根据各个载波的参考信号的SINR值,从N个载波中选择使终端设备的上行传输性能最好的一个或多个载波传输数据,从而提高了终端设备的上行传输性能。
结合上述情况1、若终端设备采用多个载波传输上行数据,则网络设备和终端设备还可以根据各个载波的参考信号的SINR值,确定以下内容的一项或多项:各个载波承载的数据量,UCI的反馈随路,载波的上行功率控制,载波的UL MCS,承载PUCCH的载波。以下分场景进行说明:
场景Ⅰ、网络设备和终端设备根据各个载波的参考信号的SINR值,确定该多个载波中各个载波承载的数据量。
也即是说,第二载波承载的PUSCH数据量,根据第二载波的参考信号的SINR值确定;第二载波为多个载波中的任一个载波。
在终端设备在该多个载波上传输上行数据时,终端设备分别在每个载波上发送全部数据中的一部分数据。最终,终端设备通过该多个载波传输的数据量,等于终端设备需要传输的数据的总数据量。
在终端设备发送上行数据之前,终端设备需要确定在每个载波上发送的数据量,以便于终端根据在每个载波上发送的数据量,为各个载波分配对应的传输数据。
此时,终端设备可以选择信号质量好的载波传输较多的数据量,信号质量差的载波传输较少的数据量。也即是说,终端设备确定参考信号的SINR值越大的载波承载的数据量越大。
举例来说,终端设备确定一个载波承载的数据量与总数据量的比值,等于该载波的参考信号的SINR值,与该多个载波的参考信号的SINR值之和的比值。
其中,每个载波所承载的数据量,可以是由终端设备根据网络设备向终端设备发送的各个载波的SINR值确定的;或者,每个载波所承载的数据量,也可以是有网络设备根据各个载波的SINR值确定之后发送给终端设备的,本申请对此不做限定。
需要指出的是,除各个载波的参考信号的SINR值之外,网络设备和终端设备还可以综合考虑其他影响因素(例如发射天线的发射性能,发射天线的功率分配),确定各个载波承载的数据量。
或者,网络设备和终端设备也可以为每个载波分配固定比例的传输数据。在终端设备需要进行上行数据传输时,直接根据为每个载波分配的固定比例,确定各个载波承载的数据量。
例如,终端设备确定各个载波传输的数据量相等。在终端设备采用五个载波传输上行数据时,每个载波传输总数据量的20%的数据量。
场景Ⅱ、网络设备和终端设备根据各个载波的参考信号的SINR值,确定终端设备发送的UCI的反馈随路。
其中,UCI的反馈随路指的是多个载波中,承载UCI的载波。
一种可能的实现方式中,终端设备确定多个载波中参考信号的SINR值满足第二预设条件的载波,用于承载包括UCI的PUSCH。
该第二预设条件可以为:载波的SINR值大于第三阈值。
在终端设备向网络设备发送UCI信息时,UCI信息可以承载在PUSCH上。由于终端设备通常在一段时间内只需要向网络设备发送一条UCI信息。因此该UCI信息可以承载在该多个载波中的任一个载波的PUSCH中。
在该情况下,为了保证UCI的传输质量,终端设备可以选择多个载波中参考信号的SINR值最大的载波,承载包括UCI的PUSCH。也即是说,终端设备在多个载波中参考信号的SINR值最大的载波上,发送包括UCI的PUSCH。
或者,终端设备选择多个载波中参考信号的SINR值大于预设值的载波作为UCI的反馈随路。
其中,在网络设备测量完成N个载波中各个载波的参考信号的SINR值之后,网络设备可以向终端设备发送该N个载波中各个载波的参考信号的SINR值。
需要指出的是,UCI的反馈随路是终端设备确定的,网络设备可能无法准确得知终端设备在哪个载波上发送UCI,此时网络设备需要在该N个载波中分别尝试接收UCI,以避免网络设备无法正常接收终端设备发送的UCI。
或者,网络设备确定UCI随路,并告知终端设备,终端设备在该随路上发送UCI,网络设备在该随路上接收UCI随路。
又或者,终端设备确定UCI随路,并告知网络设备该UCI随路。终端设备在该UIC随路上发送UCI,网络设备在该UCI随路上接收UCI。
场景Ⅲ、网络设备和终端设备根据各个载波的参考信号的SINR值,分别对各个载波进行相应的上行功率控制。
也即是说,第二载波的上行功率控制策略根据第二载波的参考信号的SINR值确定。
一种可能的实现方式中,网络设备在确定载波的参考信号的SINR值小于第二阈值时,指示终端设备提高该载波对应的发射功率。网络设备在载波的发射功率超过该载波对应的最大发射功率的情况下,指示终端设备降低该载波对应的发射功率。
网络设备和终端设备对各个载波进行功率控制时,终端设备可以采用开环功控的方式,即终端设备根据终端设备测量到的信息,对各个载波进行功率控制。或者,终端设备和也可以采用闭环功控的方式,即终端设备根据网络设备向终端设备反馈的信息对载波进行功率控制,本申请对此不做限定。
场景Ⅳ、网络设备和终端设备根据各个载波的参考信号的SINR值,确定各个载波的UL MCS。
第二载波的上行链路UL MCS根据第二载波的参考信号的SINR值确定。
一种可能的实现方式中,网络设备根据测量的载波的参考信号的SINR值,确定该载波对应的CQI。网络设备根据该载波对应的CQI,确定该载波传输数据对应的MCS。网络设备向终端下发该载波传输数据对应的MCS,终端根据该MCS查表确定该MCS对应的上行调制方式,并根据该上行调制方式,调制终端设备需要在该载波上传输的上行数据。
场景Ⅴ、网络设备和终端设备根据各个载波的参考信号的SINR值,确定承载PUCCH的载波。
基于上述场景A中的方式1可知,网络设备在N个载波的每个载波上都配置了PUCCH,而终端设备在发送PUCCH时,通常仅需使用一个载波发送该PUCCH。因此,在方式1中,终端设备需要在发送PUCCH之前,确定传输PUCCH的载波。
在该情况下,如图5所示,网络设备和终端设备确定承载PUCCH的载波的方法包括以下S501-S503。
S501、网络设备确定该N个载波中,参考信号的SINR值满足第三预设条件的载波为承载PUCCH的载波。
一种可能的实现方式中,第三预设条件为:N个载波中参考信号的SINR值最大的载波。
S502、网络设备向终端设备发送第一指示信息。相应的,终端设备接收来自网络设备的第一指示信息。
第一指示信息用于指示承载PUCCH的载波。承载PUCCH的载波,即为S501中网络设备所确定的承载PUCCH的载波。
S503、响应于第一指示信息,终端设备在第一指示信息指示的承载PUCCH的载波上,传输PUCCH。相应的,网络设备在在第一指示信息指示的承载PUCCH的载波上,尝试接收PUCCH。
或者,网络设备在确定各个载波的参考信号的SINR值之后,向终端发送各个载波的参考信号的SINR值。终端设备确定该N个载波中,参考信号的SINR值最大的载波为终端设备发送PUCCH的载波,并通过该载波向网络设备发送PUCCH。网络设备在网络设备在所有载波上均尝试接收PUCCH。
基于上述场景A中的方式2可知,网络设备仅在物理载波上配置了PUCCH,此时,终端设备和网络设备直接在物理载波上传输PUCCH即可,无需在根据各个载波的参考信号的SINR值,确定承载PUCCH的载波。
这样,根据上述场景Ⅰ,网络设备和终端设备可以确定N个载波中,各个载波承载的数据量;根据合上述场景Ⅱ,网络设备和终端设备可以确定N个载波中,作为UCI的反馈随路的载波;根据上述场景Ⅲ,网络设备和终端设备可以确定N个载波中,各个载波的上行功率控制;根据上述场景Ⅲ,网络设备和终端设备可以确定N个载波中,各个载波的上行功率控制;根据上述场景Ⅳ,网络设备和终端设备可以确定N个载波中,各个载波的UL MCS;根据上述场景Ⅴ,网络设备和终端设备可以确定N个载波中,承载PUCCH的载波。
以上,记载了结合在情况1网络设备和终端设备可以确定:各个载波承载的数据量,UCI的反馈随路,载波的上行功率控制,载波的UL MCS,承载PUCCH的载波的方法。
结合上述情况2、若终端设备采用物理载波传输上行数据,网络设备和终端设备确定:各个载波承载的数据量,UCI的反馈随路,载波的上行功率控制,载波的UL MCS,承载PUCCH的载波中的一项或多项的方式,与现有技术相同,本申请对此不在赘述。
本申请上述实施例中的各个方案在不矛盾的前提下,均可以进行结合。
上述主要从各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,各个网元,例如,网络设备和终端设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和软件模块中的至少一个。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络设备和终端设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图6示出了上述实施例中所涉及的通信装置(记为通信装置60)的一种可能的结构示意图,该通信装置60包括处理单元601和通信单元602,还可以包括存储单元603。图6所示的结构示意图可以用于示意上述实施例中所涉及的网络设备和终端设备的结构。
当图6所示的结构示意图用于示意上述实施例中所涉及的终端设备的结构时,处理单元601用于对终端设备的动作进行控制管理,例如,控制终端设备执行图3中的S301和S302以及S303,图4中的S301、S302、S303c、303d、303e、以及303f,图5中的S502和S503,和/或本申请实施例中所描述的其他过程中的终端设备执行的动作。处理单元601可以通过通信单元602与其他网络实体通信,例如,与图1中示出的网络设备通信。存储单元603用于存储终端设备的程序代码和数据。
当图6所示的结构示意图用于示意上述实施例中所涉及的终端设备的结构时,通信装置60可以是终端设备,也可以是终端设备内的芯片。
当图6所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,处理单元601用于对网络设备的动作进行控制管理,例如,控制网络设备执行图3中的S301和S303,图4中的S301、S303a-S303f、图5中的S501、S502、和S503,和/或本申请实施例中所描述的其他过程中的终端设备执行的动作。处理单元601可以通过通信单元602与其他网络实体通信,例如,与图1中示出的网络设备通信。存储单元603用于存储终端设备的程序代码和数据。
当图6所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,通信装置60可以是网络设备,也可以是网络设备内的芯片。
其中,当通信装置60为终端设备或网络设备时,处理单元601可以是处理器或控制器,通信单元602可以是通信接口、收发器、收发机、收发电路、收发装置等。其中,通信接口是统称,可以包括一个或多个接口。存储单元603可以是存储器。当通信装置60为终端设备或网络设备内的芯片时,处理单元601可以是处理器或控制器,通信单元602可以是输入接口和/或输出接口、管脚或电路等。存储单元603可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是终端设备或网络设备内的位于该芯片外部的存储单元(例如,只读存储器(read-onlymemory,简称ROM)、随机存取存储器(random access memory,简称RAM)等)。
其中,通信单元也可以称为收发单元。通信装置60中的具有收发功能的天线和控制电路可以视为通信装置60的通信单元602,具有处理功能的处理器可以视为通信装置60的处理单元601。可选的,通信单元602中用于实现接收功能的器件可以视为接收单元,接收单元用于执行本申请实施例中的接收的步骤,接收单元可以为接收机、接收器、接收电路等。通信单元602中用于实现发送功能的器件可以视为发送单元,发送单元用于执行本申请实施例中的发送的步骤,发送单元可以为发送机、发送器、发送电路等。
图6中的集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指 令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。存储计算机软件产品的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
图6中的单元也可以称为模块,例如,处理单元可以称为处理模块。
本申请实施例还提供了一种通信装置(记为通信装置70)的硬件结构示意图,参见图7或图8,该通信装置70包括处理器701,可选的,还包括与处理器701连接的存储器702。
在第一种可能的实现方式中,参见图7,通信装置70还包括收发器703。处理器701、存储器702和收发器703通过总线相连接。收发器703用于与其他设备或通信网络通信。可选的,收发器703可以包括发射机和接收机。收发器703中用于实现接收功能的器件可以视为接收机,接收机用于执行本申请实施例中的接收的步骤。收发器703中用于实现发送功能的器件可以视为发射机,发射机用于执行本申请实施例中的发送的步骤。
基于第一种可能的实现方式,图7所示的结构示意图可以用于示意上述实施例中所涉及的网络设备或终端设备的结构。
当图7所示的结构示意图用于示意上述实施例中所涉及的终端设备的结构时,处理器701用于对终端设备的动作进行控制管理,例如,处理器701用于支持终端设备执行图3中的S301和S302以及S303,图4中的S301、S302、S303c、303d、303e、以及303f,图5中的S502和S503,和/或本申请实施例中所描述的其他过程中的终端设备执行的动作。处理器701可以通过收发器703与其他网络实体通信,例如,与图1中示出的网络设备通信。存储器702用于存储终端设备的程序代码和数据。
当图7所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,处理器701用于对网络设备的动作进行控制管理,例如,处理器701用于支持网络设备执行图3中的S301和S303,图4中的S301、S303a-S303f、图5中的S501、S502、和S503,和/或本申请实施例中所描述的其他过程中的网络设备执行的动作。处理器701可以通过收发器703与其他网络实体通信,例如,与图1中示出的终端设备通信。存储器702用于存储网络设备的程序代码和数据。
在第二种可能的实现方式中,处理器701包括逻辑电路以及输入接口和输出接口中的至少一个。其中,输出接口用于执行相应方法中的发送的动作,输入接口用于执行相应方法中的接收的动作。
基于第二种可能的实现方式,参见图8,图8所示的结构示意图可以用于示意上述实施例中所涉及的网络设备或终端设备的结构。
当图8所示的结构示意图用于示意上述实施例中所涉及的终端设备的结构时,处理器701用于对终端设备的动作进行控制管理,例如,处理器701用于支持终端设备控制终端设备执行图3中的S301和S302以及S303,图4中的S301、S302、S303c、303d、303e、以及303f,图5中的S502和S503,和/或本申请实施例中所描述的其他过程中的终端设备执行的动作。处理器701可以通过输入接口和输出接口中的至少一个与其他网络实体通信,例如,与图1中示出的网络设备通信。存储器702用于存储 终端设备的程序代码和数据。
当图8所示的结构示意图用于示意上述实施例中所涉及的网络设备的结构时,处理器701用于对网络设备的动作进行控制管理,例如,处理器701用于支持网络设备执行图3中的S301和S303,图4中的S301、S303a-S303f、图5中的S501、S502、和S503,和/或本申请实施例中所描述的其他过程中的网络设备执行的动作。处理器701可以通过输入接口和输出接口中的至少一个与其他网络实体通信,例如,与图1中示出的终端设备通信。存储器702用于存储网络设备的程序代码和数据。
其中,图7和图8也可以示意网络设备中的系统芯片。该情况下,上述网络设备执行的动作可以由该系统芯片实现,具体所执行的动作可参见上文,在此不再赘述。图7和图8也可以示意终端设备中的系统芯片。该情况下,上述终端设备执行的动作可以由该系统芯片实现,具体所执行的动作可参见上文,在此不再赘述。
另外,本申请实施例还提供了一种终端设备(记为终端设备90)和网络设备(记为网络设备100)的硬件结构示意图,具体可分别参见图9和图10。
图9为终端设备90的硬件结构示意图。为了便于说明,图9仅示出了终端设备的主要部件。如图9所示,终端设备90包括处理器、存储器、控制电路、天线以及输入输出装置。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如,用于控制终端设备执行图3中的S301和S302以及S303,图4中的S301、S302、S303c、303d、303e、以及303f,图5中的S502和S503,和/或本申请实施例中所描述的其他过程中的终端设备执行的动作。存储器主要用于存储软件程序和数据。控制电路(也可以称为射频电路)主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储器中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过天线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至控制电路中的控制电路,控制电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,控制电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图9仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图9中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增 强其处理能力,终端设备的各个部件可以通过各种总线连接。该基带处理器也可以表述为基带处理电路或者基带处理芯片。该中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
图10为网络设备100的硬件结构示意图。网络设备100可包括一个或多个射频单元,如远端射频单元(remote radio unit,简称RRU)1001和一个或多个基带单元(basebandunit,简称BBU)(也可称为数字单元(digitalunit,简称DU))1002。
该RRU1001可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线1011和射频单元1012。该RRU1001部分主要用于射频信号的收发以及射频信号与基带信号的转换。该RRU1001与BBU1002可以是物理上设置在一起,也可以物理上分离设置的,例如,分布式基站。
该BBU1002为网络设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。
在一个实施例中,该BBU1002可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网络),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其它网)。该BBU1002还包括存储器1021和处理器1022,该存储器1021用于存储必要的指令和数据。该处理器1022用于控制网络设备进行必要的动作。该存储器1021和处理器1022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图10所示的网络设备100能够执行图3中的S301和S303,图4中的S301、S303a-S303f、图5中的S501、S502、和S503,和/或本申请实施例中所描述的其他过程中的网络设备执行的动作。网络设备100中的各个模块的操作,功能,或者,操作和功能,分别设置为实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
在实现过程中,本实施例提供的方法中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请中的处理器可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。该处理器可以是个单独的半导体芯片,也可以跟其他电路一起集成为一个半导体芯片,例如,可以跟其他电路(如编解码电路、硬件加速电路或各种总线和接口电路)构成一个SoC(片上系统),或者也可以作为一个ASIC的内置处理器集成在所述ASIC当中,该集成了处理器的ASIC可以单独封装或者也可以跟其他电路封装在一起。该处理器除了包括用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
本申请实施例中的存储器,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
本申请实施例还提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方法。
本申请实施例还提供了一种通信系统,包括:上述网络设备和终端设备。
本申请实施例还提供了一种芯片,该芯片包括处理器和接口电路,该接口电路和该处理器耦合,该处理器用于运行计算机程序或指令,以实现上述方法,该接口电路用于与该芯片之外的其它模块进行通信。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,简称SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意 和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (71)

  1. 一种通信方法,其特征在于,包括:
    终端设备确定网络设备为所述终端设备配置的N个载波,所述N个载波中包括M个物理载波,以及L个虚拟载波;所述终端设备支持多个发射天线发送上行数据;所述M个物理载波中的一个物理载波,与所述L个虚拟载波中的一个或多个虚拟载波对应;所述一个物理载波与对应的一个或多个虚拟载波的频点相同;L、M、和N均为正整数,N等于L与M之和;
    所述终端设备根据所述N个载波中的一个或多个载波传输上行数据;其中,所述N个载波中第一载波的调制与编码策略MCS,根据所述第一载波的传输速率确定;所述第一载波为所述N个载波中的任一个载波。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备的发射天线为S个,S为大于或等于N的整数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述N个载波中的一个载波对应一个或多个发射天线;所述一个载波在该一个载波对应的发射天线上发送。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述一个物理载波和所述一个或多个虚拟载波在传输上行数据时,所对应的时频资源相同。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,在所述N个载波中存在多个载波的参考信号的SINR值满足第一预设条件的情况下,所述终端设备采用所述多个载波传输所述上行数据。
  6. 根据权利要求5所述的方法,其特征在于,第二载波承载的PUSCH数据量,根据所述第二载波的参考信号的SINR值确定;所述第二载波为所述多个载波中的任一个载波。
  7. 根据权利要求5或6所述的方法,其特征在于,所述多个载波中参考信号的SINR值满足第二预设条件的载波,用于承载PUSCH中包括上行控制信息UCI。
  8. 根据权利要求5-7任一项所述的方法,其特征在于,第二载波的上行功率控制策略根据所述第二载波的参考信号的SINR值确定;所述第二载波为所述多个载波中的任一个载波。
  9. 根据权利要求5-8任一项所述的方法,其特征在于,第二载波的上行链路UL MCS根据所述第二载波的参考信号的SINR值确定;所述第二载波为所述多个载波中的任一个载波。
  10. 根据权利要求1-4任一项所述的方法,其特征在于,在所述N个载波中不存在多个载波的参考信号的SINR值满足第一预设条件的情况下,所述终端设备采用所述M个物理载波中的一个物理载波传输所述上行数据。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第一指示信息;所述第一指示信息用于指示承载物理上行链路控制信道PUCCH的载波;所述承载PUCCH的载波,为所述N个载波中参考信号的SINR值满足第三预设条件的载波;
    响应于所述第一指示信息,所述终端设备在所述第一指示信息指示的承载PUCCH的载波上,传输所述PUCCH。
  12. 根据权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述物理载波上传输所述PUCCH。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述第一载波的信道探测参考信号SRS资源对应的端口port的数量为R,SRS资源的发送周期为T,T为SRS的初始发送周期,R为正整数。
  14. 根据权利要求1-13任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述M个物理载波中的一个物理载波上传输PRACH。
  15. 根据权利要求3-14任一项所述的方法,其特征在于,所述第一载波承载的功率余量报告PHR对应的最大功率,为所述终端设备为所述第一载波对应的发射天线分配的最大发射功率。
  16. 根据权利要求4-10任一项所述的方法,其特征在于,所述参考信号包括:SRS和PUSCH解调参考信号DMRS中的至少一项。
  17. 一种通信方法,其特征在于,包括:
    网络设备为终端设备配置N个载波,所述N个载波中包括M个物理载波,以及L个虚拟载波;所述终端设备支持多个发射天线发送上行数据;所述M个物理载波中的一个物理载波,与所述L个虚拟载波中的一个或多个虚拟载波对应;所述一个物理载波与对应的一个或多个虚拟载波的频点相同;L、M、和N均为正整数,N等于L与M之和;
    所述N个载波中的一个或多个载波,用于传输所述终端设备的上行数据;所述N个载波中第一载波的调制与编码策略MCS,根据所述第一载波的传输速率确定;所述第一载波为所述N个载波中的任一个载波。
  18. 根据权利要求17所述的方法,其特征在于,所述终端设备的发射天线为S个,S为大于或等于N的整数。
  19. 根据权利要求17或18所述的方法,其特征在于,所述N个载波中的一个载波对应一个或多个发射天线;所述一个载波在该一个载波对应的发射天线上发送。
  20. 根据权利要求17-19任一项所述的方法,其特征在于,所述一个物理载波和所述一个或多个虚拟载波在传输上行数据时,所对应的时频资源相同。
  21. 根据权利要求17-20任一项所述的方法,其特征在于,在所述N个载波中存在多个载波的参考信号的SINR值满足第一预设条件的情况下,所述多个载波用于承载所述终端设备发送的上行数据。
  22. 根据权利要求21所述的方法,其特征在于,在所述上行数据为物理上行共享信道PUSCH时,
    第二载波承载的PUSCH数据量,根据所述第二载波的参考信号的SINR值确定;所述第二载波为所述多个载波中的任一个载波。
  23. 根据权利要求21或22所述的方法,其特征在于,所述多个载波中参考信号的SINR值满足第二预设条件的载波,用于承载PUSCH中包括上行控制信息UCI。
  24. 根据权利要求21-23任一项所述的方法,其特征在于,第二载波的上行功率控制策略根据所述第二载波的参考信号的SINR值确定;所述第二载波为所述多个载波中的任一个载波。
  25. 根据权利要求21-24任一项所述的方法,其特征在于,第二载波的上行链路UL MCS根据所述第二载波的参考信号的SINR值确定;所述第二载波为所述多个载波中的任一个载波。
  26. 根据权利要求17-20任一项所述的方法,其特征在于,在所述N个载波中不存在多个载波的参考信号的SINR值满足第一预设条件的情况下,所述M个物理载波中的一个物理载波用于承载所述终端设备发送的所述上行数据。
  27. 根据权利要求17-26任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一指示信息;所述第一指示信息用于指示承载物理上行链路控制信道PUCCH的载波;所述承载PUCCH的载波,为所述N个载波中参考信号的SINR值满足第三预设条件的载波。
  28. 根据权利要求27所述的方法,其特征在于,所述方法还包括:
    所述网络设备在所述第一指示信息指示的承载PUCCH的载波上,接收所述PUCCH。
  29. 根据权利要求17-27任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备在所述物理载波上接收所述PUCCH。
  30. 根据权利要求17-29任一项所述的方法,其特征在于,所述第一载波的信道探测参考信号SRS资源对应的端口port的数量为R,SRS资源的发送周期为T,T为SRS的初始发送周期,R为正整数。
  31. 根据权利要求17-30任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备在所述M个物理载波中的一个物理载波上接收PRACH。
  32. 根据权利要求19-31任一项所述的方法,其特征在于,所述第一载波承载的功率余量报告PHR对应的最大功率,为所述终端设备为所述第一载波对应的发射天线分配的最大发射功率。
  33. 根据权利要求20-26任一项所述的方法,其特征在于,所述参考信号包括:SRS和PUSCH解调参考信号DMRS中的至少一项。
  34. 一种通信装置,其特征在于,包括:通信单元和处理单元;
    所述处理单元,用于确定网络设备为终端设备配置的N个载波,所述N个载波中包括M个物理载波,以及L个虚拟载波;所述终端设备支持多个发射天线发送上行数据;所述M个物理载波中的一个物理载波,与所述L个虚拟载波中的一个或多个虚拟载波对应;所述一个物理载波与对应的一个或多个虚拟载波的频点相同;L、M、和N均为正整数,N等于L与M之和;
    所述处理单元,还用于指示所述通信单元根据所述N个载波中的一个或多个载波传输上行数据;其中,所述N个载波中第一载波的调制与编码策略MCS,根据所述第一载波的传输速率确定;所述第一载波为所述N个载波中的任一个载波。
  35. 根据权利要求34所述的装置,其特征在于,所述终端设备的发射天线为S个,S为大于或等于N的整数。
  36. 根据权利要求34或35所述的装置,其特征在于,所述N个载波中的一个载波对应一个或多个发射天线;所述一个载波在该一个载波对应的发射天线上发送。
  37. 根据权利要求34-36任一项所述的装置,其特征在于,所述一个物理载波和 所述一个或多个虚拟载波在传输上行数据时,所对应的时频资源相同。
  38. 根据权利要求34-37任一项所述的装置,其特征在于,在所述N个载波中存在多个载波的参考信号的SINR值满足第一预设条件的情况下,所述处理单元,具体用于指示所述通信单元采用所述多个载波传输所述上行数据。
  39. 根据权利要求38所述的装置,其特征在于,第二载波承载的PUSCH数据量,根据所述第二载波的参考信号的SINR值确定;所述第二载波为所述多个载波中的任一个载波。
  40. 根据权利要求38或39所述的装置,其特征在于,所述多个载波中参考信号的SINR值满足第二预设条件的载波,用于承载PUSCH中包括上行控制信息UCI。
  41. 根据权利要求38-40任一项所述的装置,其特征在于,第二载波的上行功率控制策略根据所述第二载波的参考信号的SINR值确定;所述第二载波为所述多个载波中的任一个载波。
  42. 根据权利要求38-41任一项所述的装置,其特征在于,第二载波的上行链路UL MCS根据所述第二载波的参考信号的SINR值确定;所述第二载波为所述多个载波中的任一个载波。
  43. [根据细则91更正 28.08.2020] 
    根据权利要求34-37任一项所述的装置,其特征在于,在所述N个载波中不存在多个载波的参考信号的SINR值满足第一预设条件的情况下,所述处理单元,具体用于指示所述通信单元采用所述M个物理载波中的一个物理载波传输所述上行数据。
  44. 根据权利要求34-43任一项所述的装置,其特征在于,所述通信单元,还用于接收来自所述网络设备的第一指示信息;所述第一指示信息用于指示承载物理上行链路控制信道PUCCH的载波;所述承载PUCCH的载波,为所述N个载波中参考信号的SINR值满足第三预设条件的载波;
    所述处理单元,还用于指示所述通信单元在所述第一指示信息指示的承载PUCCH的载波上,传输所述PUCCH。
  45. 根据权利要求34-43任一项所述的装置,其特征在于,所述处理单元,还用于指示所述通信单元在所述物理载波上传输所述PUCCH。
  46. 根据权利要求34-45任一项所述的装置,其特征在于,所述第一载波的信道探测参考信号SRS资源对应的端口port的数量为R,SRS资源的发送周期为T,T为SRS的初始发送周期,R为正整数。
  47. 根据权利要求34-46任一项所述的装置,其特征在于,所述处理单元,还用于指示所述通信单元在所述M个物理载波中的一个物理载波上传输PRACH。
  48. 根据权利要求36-47任一项所述的装置,其特征在于,所述第一载波承载的功率余量报告PHR对应的最大功率,为所述终端设备为所述第一载波对应的发射天线分配的最大发射功率。
  49. 根据权利要求37-43任一项所述的装置,其特征在于,所述参考信号包括:SRS和PUSCH解调参考信号DMRS中的至少一项。
  50. 一种通信装置,其特征在于,包括:处理单元;
    所述处理单元,用于为终端设备配置N个载波,所述N个载波中包括M个物理载波,以及L个虚拟载波;所述终端设备支持多个发射天线发送上行数据;所述M个 物理载波中的一个物理载波,与所述L个虚拟载波中的一个或多个虚拟载波对应;所述一个物理载波与对应的一个或多个虚拟载波的频点相同;L、M、和N均为正整数,N等于L与M之和;
    所述N个载波中的一个或多个载波,用于传输所述终端设备的上行数据;所述N个载波中第一载波的调制与编码策略MCS,根据所述第一载波的传输速率确定;所述第一载波为所述N个载波中的任一个载波。
  51. 根据权利要求50所述的装置,其特征在于,所述终端设备的发射天线为S个,S为大于或等于N的整数。
  52. 根据权利要求50或51所述的装置,其特征在于,所述N个载波中的一个载波对应一个或多个发射天线;所述一个载波在该一个载波对应的发射天线上发送。
  53. 根据权利要求50-52任一项所述的装置,其特征在于,所述一个物理载波和所述一个或多个虚拟载波在传输上行数据时,所对应的时频资源相同。
  54. 根据权利要求50-53任一项所述的装置,其特征在于,在所述N个载波中存在多个载波的参考信号的SINR值满足第一预设条件的情况下,所述多个载波用于承载所述终端设备发送的上行数据。
  55. 根据权利要求54所述的装置,其特征在于,在所述上行数据为物理上行共享信道PUSCH时,
    第二载波承载的PUSCH数据量,根据所述第二载波的参考信号的SINR值确定;所述第二载波为所述多个载波中的任一个载波。
  56. 根据权利要求54或55所述的装置,其特征在于,所述多个载波中参考信号的SINR值满足第二预设条件的载波,用于承载PUSCH中包括上行控制信息UCI。
  57. 根据权利要求54-56任一项所述的装置,其特征在于,第二载波的上行功率控制策略根据所述第二载波的参考信号的SINR值确定;所述第二载波为所述多个载波中的任一个载波。
  58. 根据权利要求54-57任一项所述的装置,其特征在于,第二载波的上行链路UL MCS根据所述第二载波的参考信号的SINR值确定;所述第二载波为所述多个载波中的任一个载波。
  59. 根据权利要求50-53任一项所述的装置,其特征在于,在所述N个载波中不存在多个载波的参考信号的SINR值满足第一预设条件的情况下,所述M个物理载波中的一个物理载波用于承载所述终端设备发送的所述上行数据。
  60. 根据权利要求50-59任一项所述的装置,其特征在于,所述装置还包括:通信单元;
    所述通信单元,用于向所述终端设备发送第一指示信息;所述第一指示信息用于指示承载物理上行链路控制信道PUCCH的载波;所述承载PUCCH的载波,为所述N个载波中参考信号的SINR值满足第三预设条件的载波。
  61. 根据权利要求60所述的装置,其特征在于,所述处理单元,还用于指示所述通信单元在所述第一指示信息指示的承载PUCCH的载波上,接收所述PUCCH。
  62. 根据权利要求50-60任一项所述的装置,其特征在于,所述处理单元,还用于指示所述通信单元在所述物理载波上接收所述PUCCH。
  63. 根据权利要求50-62任一项所述的装置,其特征在于,所述第一载波的信道探测参考信号SRS资源对应的端口port的数量为R,SRS资源的发送周期为T,T为SRS的初始发送周期,R为正整数。
  64. 根据权利要求50-63任一项所述的装置,其特征在于,所述处理单元,还用于指示所述通信单元在所述M个物理载波中的一个物理载波上接收PRACH。
  65. 根据权利要求52-64任一项所述的装置,其特征在于,所述第一载波承载的功率余量报告PHR对应的最大功率,为所述终端设备为所述第一载波对应的发射天线分配的最大发射功率。
  66. 根据权利要求53-59任一项所述的装置,其特征在于,所述参考信号包括:SRS和PUSCH解调参考信号DMRS中的至少一项。
  67. 一种通信装置,其特征在于,所述装置包括处理器和存储介质,所述存储介质包括指令,所述指令被所述处理器运行时,使得所述装置执行如权利要求1至16任一项所述的方法。
  68. 一种通信装置,其特征在于,所述装置包括处理器和存储介质,所述存储介质包括指令,所述指令被所述处理器运行时,使得所述装置执行如权利要求17至33任一项所述的方法。
  69. 一种通信系统,其特征在于,包括如权利要求67所述的通信装置,以及如权利要求68所述的通信装置。
  70. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,其特征在于,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1至33任一项所述的方法。
  71. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1至33中任一项所述的方法。
PCT/CN2020/106447 2020-07-31 2020-07-31 通信方法及装置 WO2022021442A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080099535.2A CN115399039A (zh) 2020-07-31 2020-07-31 通信方法及装置
PCT/CN2020/106447 WO2022021442A1 (zh) 2020-07-31 2020-07-31 通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106447 WO2022021442A1 (zh) 2020-07-31 2020-07-31 通信方法及装置

Publications (1)

Publication Number Publication Date
WO2022021442A1 true WO2022021442A1 (zh) 2022-02-03

Family

ID=80037419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106447 WO2022021442A1 (zh) 2020-07-31 2020-07-31 通信方法及装置

Country Status (2)

Country Link
CN (1) CN115399039A (zh)
WO (1) WO2022021442A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101233708A (zh) * 2005-07-29 2008-07-30 松下电器产业株式会社 多载波发送装置、多载波接收装置及其方法
US20090116589A1 (en) * 2007-11-01 2009-05-07 Renesas Technology Corporation Performance-based link adaptation techniques
CN101627589A (zh) * 2007-03-07 2010-01-13 摩托罗拉公司 用于在多载波通信系统中传输的方法和装置
CN101841913A (zh) * 2009-03-16 2010-09-22 大唐移动通信设备有限公司 确定ue监听的下行成员载波的方法和基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101233708A (zh) * 2005-07-29 2008-07-30 松下电器产业株式会社 多载波发送装置、多载波接收装置及其方法
CN101627589A (zh) * 2007-03-07 2010-01-13 摩托罗拉公司 用于在多载波通信系统中传输的方法和装置
US20090116589A1 (en) * 2007-11-01 2009-05-07 Renesas Technology Corporation Performance-based link adaptation techniques
CN101841913A (zh) * 2009-03-16 2010-09-22 大唐移动通信设备有限公司 确定ue监听的下行成员载波的方法和基站

Also Published As

Publication number Publication date
CN115399039A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
US11122523B2 (en) Information transmission method and apparatus
CN111510267B (zh) 波束指示的方法和通信装置
WO2020215981A1 (zh) 辅小区激活方法和装置
US9414427B2 (en) Link adaptation transmission and reception method in device-to-device communication based cellular mobile communication system
WO2018141272A1 (zh) 终端、网络设备和通信方法
US20210297994A1 (en) Transmission resource determining method and apparatus
WO2020192778A1 (zh) 一种混合自动重传请求harq反馈控制方法及相关设备
JP2020503710A (ja) 無線通信システムにおけるcsi報告を遂行するための方法及びそのための装置
WO2020134944A1 (zh) 干扰测量的方法和通信装置
WO2020244551A1 (zh) 用于激活辅小区的方法和装置
WO2021030980A1 (zh) 一种通信方法、通信装置和系统
CN117136504A (zh) 用于侧行链路参考波束的技术
JP2017532892A (ja) 基地局送受信機及び移動体送受信機を備える移動体通信システムのための装置、方法及びコンピュータプログラム
WO2018202168A1 (zh) 信息传输方法及装置
WO2022253150A1 (zh) 数据传输方法及装置
WO2022021442A1 (zh) 通信方法及装置
US11785471B2 (en) Method for transmitting information and receiving information and communication device
US20230103697A1 (en) Method and device for transmitting/receiving channel state information in wireless communication system
WO2023179412A1 (zh) 多面板通信方法及装置
WO2022206652A1 (zh) 信息指示的方法与装置
WO2023115301A1 (zh) 数据传输方法、装置、计算机设备及存储介质
WO2024022525A1 (zh) 信道状态信息报告传输方法与装置、终端设备和网络设备
WO2022027676A1 (zh) 通信方法及装置
US11909539B2 (en) Wireless communication method and apparatus for improving robustness of data transmission
WO2023160692A1 (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947293

Country of ref document: EP

Kind code of ref document: A1