WO2022021161A1 - 通信方法、装置、设备及存储介质 - Google Patents

通信方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022021161A1
WO2022021161A1 PCT/CN2020/105615 CN2020105615W WO2022021161A1 WO 2022021161 A1 WO2022021161 A1 WO 2022021161A1 CN 2020105615 W CN2020105615 W CN 2020105615W WO 2022021161 A1 WO2022021161 A1 WO 2022021161A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
time domain
communication group
resource
group
Prior art date
Application number
PCT/CN2020/105615
Other languages
English (en)
French (fr)
Inventor
赵振山
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to KR1020237005908A priority Critical patent/KR20230044447A/ko
Priority to CN202310480899.0A priority patent/CN116406009A/zh
Priority to JP2023503507A priority patent/JP2023539996A/ja
Priority to CN202080100784.9A priority patent/CN115606280A/zh
Priority to EP20947263.8A priority patent/EP4192151A4/en
Priority to PCT/CN2020/105615 priority patent/WO2022021161A1/zh
Publication of WO2022021161A1 publication Critical patent/WO2022021161A1/zh
Priority to US18/091,494 priority patent/US20230198727A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method, apparatus, device, and storage medium.
  • each communication group may exist simultaneously in a certain area, and each communication group includes multiple communication devices, such as terminals.
  • communication between communication devices in a communication group is mainly realized by wire, but it has problems of poor flexibility and high cost. Therefore, how to realize communication between communication devices by wireless is a communication requirement in a communication system.
  • multiple communication groups usually use the same wireless transmission method for intra-group communication. If multiple communication groups are in the same carrier, then the communication devices in a certain communication group communicate with each other. When it occurs, the communication between communication devices in other communication groups may be affected, and there is a problem of interference between communication groups.
  • Embodiments of the present application provide a communication method, apparatus, device, and storage medium, which are used to solve the problem of mutual interference between communication groups.
  • an embodiment of the present application provides a communication method, which is applied to a first communication device, and the method includes:
  • a communication group and the second communication group are any two of a plurality of communication groups coexisting in the target communication system;
  • an embodiment of the present application provides a communication device, including: a processing module and a transceiver module;
  • the processing module is configured to determine the first time domain resources used by the first communication group where the first communication device belongs, the first time domain resources used by the first communication group and the second time domain resources used by the second communication group The resources are different, and the first communication group and the second communication group are any two of the multiple communication groups coexisting in the target communication system;
  • the transceiver module is configured to use the first time domain resource to communicate with other communication devices in the first communication group.
  • an embodiment of the present application provides a communication apparatus, the apparatus includes a processor, and the processor is configured to call and run a computer program from a memory, so that a device in which the apparatus is installed executes the first aspect. method.
  • an embodiment of the present application provides a communication device, including: a processor, a memory, and computer instructions stored on the memory and executable on the processor, where the processor executes the computer instructions to implement the following: The method described in the first aspect above.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, is used to implement the above-mentioned first aspect Methods.
  • an embodiment of the present application provides a computer program product, including computer instructions, which are used to implement the method of the first aspect when the computer instructions are executed by a computer.
  • an embodiment of the present application provides a computer program, which is used to implement the method of the first aspect when the computer program is executed by a computer.
  • an embodiment of the present application provides a chip for running instructions, the chip includes a memory and a processor, where code and data are stored in the memory, the memory is coupled with the processor, and the processor runs the The code in the memory causes the chip to perform the method of the first aspect above.
  • an embodiment of the present application provides a communication system, including: at least one communication device, where the communication device includes the communication apparatus described in the second aspect.
  • the first communication device determines the first time domain resource used by the first communication group in which it belongs, and uses the first time domain resource to communicate with the first communication group in the first communication group. communicate with other communication devices. Because the first time domain resource used by the first communication group is different from the second time domain resource used by the second communication group, and the first communication group and the second communication group are among multiple communication groups coexisting in the target communication system Therefore, communication devices in multiple communication groups coexisting in the target communication system can use different time domain resources for communication, effectively avoiding interference between communication groups and improving communication between communication devices. performance.
  • Figure 1 is a schematic diagram of the architecture of V2X communication
  • FIG. 2 is a system architecture diagram of sideline communication within network coverage
  • Fig. 3 is the system architecture diagram of sideline communication covered by part of the network
  • Fig. 4 is a system architecture diagram of sideline communication outside the network coverage
  • Fig. 5 is another system architecture diagram of sideline communication outside the network coverage
  • FIG. 6 is a schematic diagram of a unicast transmission method between terminals
  • FIG. 7 is a schematic diagram of a multicast transmission mode between terminals
  • FIG. 8 is a schematic diagram of a broadcast transmission mode between terminals
  • Fig. 9 is the schematic diagram that the first communication group and the second communication group use FDM mode to carry out lateral communication;
  • FIG. 10 is a schematic flowchart of Embodiment 1 of a communication method provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a frame structure in an in-vehicle short-range communication system
  • FIG. 12 is a schematic diagram of the distribution of different superframes used between communication groups in a short-range wireless communication system
  • FIG. 13 is a schematic diagram of the distribution of different radio frames used between communication groups in a short-range wireless communication system
  • FIG. 14 is a schematic diagram of the distribution of different time-domain symbols used between communication groups in a short-range wireless communication system
  • 15 is a schematic diagram of the distribution of superframe resources used by the first communication group and the second communication group;
  • 16 is a schematic diagram of the distribution of radio frame resources used by the first communication group and the second communication group in each superframe in FIG. 15;
  • FIG. 17 is a schematic structural diagram of Embodiment 1 of a communication device provided by this application.
  • FIG. 18 is a schematic structural diagram of Embodiment 2 of a communication device provided by this application.
  • FIG. 19 is a structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • Device-to-device communication is a D2D-based sidelink transmission technology. It is different from the traditional LTE system (cellular system) in which communication data is received or sent through the base station.
  • LTE system cellular system
  • the Internet of Vehicles system uses terminal-to-terminal direct communication. , with higher spectral efficiency and lower transmission delay.
  • D2D is divided into different stages for research, as follows:
  • Proximity based services Mainly used to improve spectrum utilization and reduce base station load. Specifically, the terminal communicates directly through the spectrum resources allocated by the base station, thereby improving the utilization rate of wireless spectrum resources, and after the adjacent service between the terminals is successfully established, the device-to-device communication can be performed, and the load of the base station is reduced. Security business.
  • Vehicle-to-vehicle (V2X): The vehicle-to-vehicle system has been studied for the scenario of vehicle-to-vehicle communication, and it is mainly oriented to the business of relatively high-speed moving vehicle-to-vehicle and vehicle-to-person communication.
  • Wearable device It is mainly used in the scenario where the wearable device accesses the network through the mobile terminal, which is mainly oriented to the scenario of low moving speed and low power access.
  • the Internet of Vehicles terminal realizes the interaction of intelligent information between vehicles and X (vehicles, people, traffic roadside infrastructure and networks) through vehicle-to-everything (V2X) technology.
  • the interaction modes of V2X communication include: vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-pedestrian (V2P), vehicle-to-pedestrian (V2P) Communication with the vehicle to network (V2N).
  • the roadside infrastructure may be a roadside unit (RSU).
  • FIG. 1 is a schematic diagram of the architecture of V2X communication.
  • V2X communication includes V2V communication, V2P communication, V2I communication, and V2N communication.
  • V2X services are transmitted through sidelinks or Uu ports.
  • V2X realizes typical application scenarios such as information services, traffic safety, and traffic efficiency with the help of all-round connections and efficient information interaction with people, vehicles, roads, and cloud platforms.
  • the Internet of Vehicles terminal can obtain various information services through V2I and V2N communication, including traffic light information, vehicle information in the nearby area, vehicle navigation, emergency rescue, infotainment services, etc.
  • V2V and V2P communication information such as the speed, location, driving conditions and pedestrian activities of surrounding vehicles can be obtained in real time, and the collision warning function can be realized through intelligent algorithms to avoid traffic accidents.
  • functions such as vehicle speed guidance can be realized to improve traffic efficiency.
  • the lateral communication under different network coverage environments is different.
  • sideline communication according to the network coverage of the communicating terminal, it can be divided into network coverage inner sideline communication, partial network coverage sideline communication, and network coverage outer sideline communication.
  • FIG. 2 is a system architecture diagram of sideline communication within network coverage.
  • all terminals performing sideline communication for example, the first terminal device and the second terminal device in FIG. 2
  • these terminals can all receive the configuration instruction sent by the network device, and perform sideline communication based on the same sideline configuration information.
  • FIG. 3 is a system architecture diagram of sideline communication covered by a part of the network.
  • the network device base station
  • these terminals can receive the configuration signaling sent by the network device, And the sideline communication is performed according to the configuration instruction.
  • the terminal outside the network coverage cannot receive the configuration signaling of the base station.
  • the terminal outside the network coverage The information carried in the physical sidelink broadcast channel (PSBCH) received by the terminal inside determines the sidelink configuration information, and then performs sidelink communication based on the sidelink configuration information.
  • PSBCH physical sidelink broadcast channel
  • the first terminal device is located within the coverage of the network device, and the second terminal device is located outside the network coverage. Therefore, the first terminal device can be based on the configuration instruction received from the network device and The second terminal device performs sidelink communication, and the second terminal device determines the sidelink configuration information according to the pre-configuration information and the information carried in the PSBCH received from the first terminal device, and then communicates with the first terminal device based on the sidelink configuration information.
  • the terminal equipment performs sideline communication.
  • FIG. 4 is a system architecture diagram of sideline communication outside the network coverage.
  • all the terminals (the first terminal device and the second terminal device) performing the lateral communication are located outside the network coverage.
  • all the terminals (the first terminal device and the second terminal device) Both terminal devices) determine sideline configuration information according to the pre-configuration information, and then perform sideline communication based on the sideline configuration information.
  • FIG. 5 is another system architecture diagram of sideline communication outside the network coverage.
  • a central control node that is, multiple terminal devices form a communication group, and there is a central control node in the communication group, which can also be called a cluster header (CH)
  • the central control node has one of the following functions: responsible for establishing a communication group; joining and leaving group members; performing resource coordination, allocating lateral transmission resources for other terminals, and receiving lateral feedback information from other terminals; communicating with other communication groups Functions such as resource coordination.
  • the first terminal device, the second terminal device and the third terminal device form a communication group
  • the first terminal device is the group head terminal of the communication group, that is, the central control node.
  • the first terminal device may allocate resources to the second terminal device and the third terminal device, respectively, so that the second terminal device and the third terminal device can perform sideline communication.
  • the first terminal device and the second terminal device are terminal devices with V2X communication capabilities and are used to perform V2X communication.
  • the first terminal device and the second terminal device are.
  • V2X communication is performed between them through a wireless communication interface
  • communication between the first terminal device and the network device, or between the second terminal device and the network device is performed through a wireless communication interface.
  • the wireless communication interface between the first terminal device and the second terminal device is called the first air interface
  • the first air interface is, for example, a sidelink, between the first terminal device and the network device or between the second terminal device and the network.
  • the wireless communication interface between the devices is called a second air interface
  • the second air interface is, for example, a Uu interface.
  • the Internet of Vehicles system adopts a method of terminal-to-terminal direct communication.
  • 3GPP defines two transmission modes: a first mode and a second mode.
  • the first mode the transmission resources of the terminal equipment are allocated by the network equipment (base station), and the terminal equipment sends data on the sidelink according to the resources allocated by the network equipment; the network equipment can allocate resources for a single transmission to the terminal equipment. , semi-static transmission resources may also be allocated to the terminal device, which will not be repeated here.
  • the first terminal device and the second terminal device are both located within the network coverage, and the network device allocates transmission resources for sideline transmission to each terminal device.
  • the second mode the terminal device selects a resource in the resource pool for data transmission.
  • the first terminal device and the second terminal device can select transmission resources from the resource pool by means of listening, or select transmission resources from the resource pool by means of random selection.
  • the manner in which the terminal device and the second terminal device select the transmission resource can be determined according to the actual situation, and details are not described herein again.
  • the terminal device uses the above-mentioned second mode for transmission, and at this time, the resource pool is obtained in a pre-configured manner.
  • the specific transmission mode is the same as the above-mentioned second mode, which will not be repeated here.
  • V2X in the NR system is called NR-V2X.
  • NR-V2X new wireless (new radio, NR) communication system
  • it is necessary to support automatic driving. Therefore, higher requirements are put forward for data interaction between in-vehicle terminals, such as higher throughput, lower latency, higher reliability, greater Coverage, more flexible resource allocation, etc.
  • LTE-V2X supports broadcast transmission mode
  • NR-V2X can support both broadcast transmission mode and unicast and multicast transmission modes.
  • FIG. 6 is a schematic diagram of a unicast transmission mode between terminals.
  • each sender terminal corresponds to only one receiver terminal.
  • unicast transmission is performed between the first terminal device and the second terminal device.
  • FIG. 7 is a schematic diagram of a multicast transmission mode between terminals.
  • each sender terminal may correspond to all terminals in a communication group or all terminals within a certain transmission distance.
  • the first terminal device, the second terminal device, the third terminal device, and the fourth terminal device constitute a communication group.
  • other terminal devices the second terminal device, the third terminal device, and the fourth terminal device in the communication group are all receiver terminals.
  • FIG. 8 is a schematic diagram of a broadcast transmission mode between terminals.
  • the receiver terminal corresponding to each sender terminal may be any terminal around the sender terminal.
  • the first terminal device is the sender terminal
  • other terminals around the first terminal device can be used as receiver terminals.
  • Scenario 1 Internet of Vehicles System
  • the group head communication device allocates transmission resources to the communication devices in the group.
  • resource coordination among multiple communication groups needs to be considered.
  • Scenario 2 In-vehicle communication scenario
  • In-vehicle short-range communication system is mainly used for communication between in-vehicle communication equipment, such as: central controller, audio, microphone, speaker, camera, rearview mirror, driving recorder, 360-degree surround view, door lock , seats, air conditioning, lights, etc.
  • in-vehicle communication equipment such as: central controller, audio, microphone, speaker, camera, rearview mirror, driving recorder, 360-degree surround view, door lock , seats, air conditioning, lights, etc.
  • the communication between communication devices is usually carried out by wire, but considering factors such as cost reduction, body weight reduction, scalability, etc., it is hoped that the existing wired communication can be replaced by wireless communication. Realize communication between in-vehicle communication devices.
  • the communication devices in the vehicle can be divided into different communication groups or constitute different domains.
  • There is a central control node in each communication group and each central control node can control other communication devices in the communication group, for example, Allocate transmission resources to other communication devices, and perform data transmission with other communication devices in the group.
  • the telematics BOX (T-box) in the car can form a communication group with the microphone and audio in the car;
  • the body controller forms a communication group with the windows, doors, lights, seats, etc.;
  • the central controller in the car forms a communication group with microphones, speakers, rear-view mirrors, etc.;
  • the smart key intelligent entry and start system (Passive Entry Passive Start, PEPS) forms a communication group with door locks, keys, etc.
  • a communication device in a vehicle will form multiple communication groups, and wireless transmission resources are shared among the multiple communication groups.
  • multiple communication groups use the same carrier for data transmission. Therefore, multiple communication groups need to be considered. Resource coordination and interference avoidance between groups.
  • Scenario 3 Home or Indoor Scenario
  • the communication devices in the home or indoors have communication functions, and a communication group can be formed between the communication devices in the home.
  • the communication group usually has a central control node or group head communication devices, such as smart phones and smart TVs. , consumer premise equipment (CPE); communication devices in the same family form a communication group, different families are different communication groups, and the communication group in one family needs to consider the communication group with other families (such as Neighbors) resource coordination and interference avoidance.
  • CPE consumer premise equipment
  • wearable devices such as smart glasses, smart watches, etc.
  • wearable devices and other communication devices such as terminals located in the same area can form a communication group, and the communication group can have a central control node or a group head communication device, such as a mobile phone.
  • a communication group composed of one type of wearable device also needs to consider resource coordination and interference avoidance with communication groups composed of other types of wearable devices.
  • the embodiments of the present application do not limit the above application scenarios, and other scenarios may also be included according to actual requirements, which will not be repeated here.
  • the following mainly takes an in-vehicle short-range communication system corresponding to an in-vehicle communication scenario as an example to explain the technical solution of the present application.
  • multiple communication groups usually use the same wireless transmission method for intra-group communication. If multiple communication groups are in the same carrier, then the communication in a certain communication group is When devices communicate with each other, it may affect the communication between communication devices in other communication groups, and there is a problem of interference between communication groups. Therefore, how to coordinate transmission resources between multiple communication groups and avoid interference between communication groups is the main problem. Problems that need to be solved in the application embodiments.
  • the conception process of the technical solution of the present application is as follows:
  • TDM time-division multiplexing
  • FDM frequency division multiplexing
  • IBE in-band emission
  • Near-Far Effect near-far effect
  • FIG. 9 is a schematic diagram showing that the first communication group and the second communication group use FDM for sideline communication.
  • Tx1 and Rx1 belong to the first communication group
  • Tx2 and Rx2 belong to the second communication group.
  • Tx1 sends data to Rx1
  • Tx2 sends data to Rx2.
  • the FDM resource multiplexing method is used between the first communication group and the second communication group, that is, Tx1 and Tx2 use different frequency domain resources to send data at the same time, although the signal sent by Tx2 leaks in-band to The energy in the frequency domain of Tx1 is attenuated by more than ten decibels (dB), but since Tx2 is closer to Rx1 than Tx1, the path loss is smaller. Therefore, when Rx1 receives the signal of Tx1, it will be affected by the band of Tx2. Strong interference leaked inside, thereby reducing the receiving performance of Rx1.
  • dB decibels
  • TDM resource multiplexing is used between the first communication group and the second communication group, data is sent between Tx1 and Tx2 at different times. Therefore, when Rx1 or Rx2 receives data, there is no The interference between the communication groups does not have the problem of near-far effect, which can better overcome the interference between the communication groups.
  • an embodiment of the present application provides a communication method.
  • a target communication system with multiple communication groups when a first communication device needs to communicate with other communication devices, first determine the first communication device.
  • the first time domain resource used by the first communication group where the first time domain resource used by the first communication group is different from the second time domain resource used by the second communication group, and the first communication group communicates with the second communication group.
  • the group is any two of the multiple communication groups coexisting in the target communication system, and secondly, the first time domain resource is used to communicate with other communication devices in the first communication group.
  • the transmission resources between multiple communication groups coexisting in the target communication system adopt TDM multiplexing mode, and it is ensured that different communication groups use different time domain resources, which can effectively avoid interference and improve communication equipment. communication performance between them.
  • the communication method provided by the embodiments of the present application can be used in the 3rd generation mobile communication (3G), the long term evolution (long term evolution, LTE) system, the 4th generation mobile communication (the 4th generation mobile communication) mobile communication, 4G) systems, advanced long term evolution (LTE-A), cellular systems related to the 3rd generation partnership project (3GPP), the fifth generation mobile communication (the The 5th generation mobile communication, 5G) system and the subsequent evolution communication system can also be used in the Internet of Vehicles system or any other D2D system.
  • 3G 3rd generation mobile communication
  • LTE long term evolution
  • 4th generation mobile communication the 4th generation mobile communication
  • LTE-A advanced long term evolution
  • LTE-A advanced long term evolution
  • 3GPP 3rd generation partnership project
  • 5G The 5th generation mobile communication, 5G system and the subsequent evolution communication system
  • the embodiments of the present application do not limit the specific implementation form of the communication system.
  • the network equipment involved in the embodiments of this application may be a common base station (such as a NodeB or eNB or gNB), a new radio controller (NR controller), a centralized network element (centralized unit), a new radio base station, Remote radio module, micro base station, relay (relay), distributed network element (distributed unit), reception point (transmission reception point, TRP), transmission point (transmission point, TP) or any other equipment, but this application implements The example is not limited to this.
  • the communication device involved in the embodiments of the present application is a communication device with V2X communication capability, and is a device that provides voice and/or data connectivity to users, for example, Handheld devices, in-vehicle devices, roadside units, etc. with wireless connectivity.
  • Common communication devices include: mobile phones, tablet computers, laptop computers, PDAs, mobile internet devices (MIDs), wearable devices, such as smart watches, smart bracelets, and pedometers.
  • FIG. 10 is a schematic flowchart of Embodiment 1 of a communication method provided by an embodiment of the present application.
  • the method can be applied to any communication device in a certain communication group.
  • the first communication device it is referred to as the first communication device, and the target communication system where the communication group is located includes multiple coexisting communication groups .
  • the method may include the following steps:
  • S101 Determine a first time domain resource used by a first communication group where a first communication device is located, where the first time domain resource used by the first communication group is different from the second time domain resource used by a second communication group, and the first time domain resource used by the first communication group is different.
  • the group and the second communication group are any two of a plurality of communication groups that coexist within the target communication system.
  • the target communication system is a system based on D2D communication technology. Specifically, it may be a short-range communication system composed of various devices such as a car networking system, an in-vehicle short-range communication system, and an NG system in 5G communication technology. Any of the distance communication systems.
  • the embodiment of the present application does not limit the specific expression form of the target communication system, which can be determined according to the scenario, and details are not repeated here.
  • any two communication groups are Time division multiplexing can be used to allocate resources between the two. That is, different time domain resources are used between any two communication groups.
  • the communication group where the first communication device is located is referred to as the first communication group, and any one of the multiple communication groups coexisting in the target communication system except the communication group is referred to as the first communication group.
  • the communication group is called the second communication group.
  • the time domain resources used by the first communication group are called first time domain resources, and the time domain resources used by the second communication group are called second time domain resources. It can be understood that “first" and “second” in the embodiments of the present application are only used to distinguish different communication groups or different time domain resources, and are not limited to specific communication groups or specific time domain resources.
  • the first communication device may first determine the first communication group in which it belongs according to the identification of the communication group in which it belongs, and then determine the time domain resources used by the first communication group.
  • the time domain resources respectively used by the first communication group and the second communication group may be pre-configured, or may be determined by the first communication device according to configuration instructions sent by other devices, and this embodiment does not be limited.
  • the first communication device when it determines the first time domain resource used by the first communication group in which it belongs, it can communicate with other communication devices in the first communication group based on the first time domain resource. communication. Since different communication groups use different time domain resources, the communication devices in each communication group use the time domain resources corresponding to the communication group to which they belong to communicate with each other. Therefore, the communication devices in different communication groups communicate at different times. , effectively avoiding the problem of interference between communication groups.
  • the first communication device determines the first time domain resource used by the communication group to which it belongs, it can also determine the first frequency domain resource used by it to communicate with other communication devices, and then utilize the first time domain resource.
  • the domain resource communicates with the time-frequency resource corresponding to the first frequency domain resource.
  • the first communication device determines the first time domain resource used by the first communication group in which it belongs, and uses the first time domain resource to communicate with other communication devices in the first communication group. Because the first time domain resource used by the first communication group is different from the second time domain resource used by the second communication group, and the first communication group and the second communication group are among multiple communication groups coexisting in the target communication system Therefore, communication devices in multiple communication groups coexisting in the target communication system can use different time domain resources for communication, effectively avoiding interference between communication groups and improving communication between communication devices. performance.
  • the time domain resources used by each communication group include at least one of the following: a superframe, a radio frame, and a time domain symbol.
  • the first time domain resources used by the first communication group are different from the second time domain resources used by the second communication group, including:
  • the first communication group differs from at least one of superframes, radio frames, and time-domain symbols used by the second communication group.
  • the target communication system is a short-range wireless communication system, for example, an in-vehicle short-range communication system, a home or indoor short-range communication system.
  • the frame structure of the time domain resource may include superframe, radio frame, time domain symbol and other levels. The following takes the in-vehicle short-range communication system as an example to explain the time domain resources used by each communication group.
  • the subcarrier spacing is 480kHz
  • the duration of one radio frame is 20.833us, including 10 orthogonal frequency division multiplexing (OFDM) symbols, of which 2 OFDM symbols are The guard interval (Guard Period, GP) is not used for data transmission, and the remaining 8 OFDM symbols are valid symbols and can be used for data transmission.
  • the duration of 48 radio frames is 1ms, corresponding to one superframe. That is, in the in-vehicle short-range communication system, one superframe includes 48 radio frames, totaling 1 ms; each radio frame includes 10 OFDM symbols.
  • FIG. 11 is a schematic diagram of a frame structure in an in-vehicle short-range communication system.
  • each superframe includes 48 radio frames, and each radio frame includes 10 OFDM symbols. These 10 OFDM symbols can be divided into C-link symbols and T-link symbols. Road symbols and guard intervals.
  • the C link is the link for the central control node in the communication group or the group head communication device to send data to other communication devices in the group, and the C link symbol is used for the central control node in the communication group or the group head communication device to send data to the group.
  • the symbol for sending data by other communication devices in the group is the T link is the link for other communication devices in the group to send data to the central control node or the group head communication device, and the T link symbol is used for other communication devices in the group to send data to the central control node or the group head communication device.
  • the symbol of the data sent by the group head communication device is located at the beginning of the radio frame, the T link symbol is located at the end of the radio frame, the GP is located between the C link symbol and the T link symbol, and the last symbol of the radio frame, which is usually used for sending and receiving conversion (or send-receive conversion).
  • FIG. 11 shows one superframe (superframe 0), two radio frames (radio frame 0 and radio frame 1), and each radio frame includes 10 symbols. It can be seen from FIG. 11 that there may be different numbers of C-link symbols (or T-link symbols) in different radio frames, which are not limited in this embodiment of the present application.
  • the duration of the OFDM symbol corresponding to the GP is usually smaller than the duration of the OFDM symbols corresponding to the C link symbol and the T link symbol.
  • This embodiment of the present application does not limit the specific relationship between the duration of the OFDM symbol corresponding to the GP and the duration of the OFDM symbols corresponding to the C link symbol and the T link symbol, which will not be repeated here.
  • TDM resource multiplexing at the superframe level can be performed between multiple communication groups, that is, different communication Groups use transmission resources within different superframes.
  • FIG. 12 is a schematic diagram of the distribution of different superframes used between communication groups in a short-range wireless communication system.
  • different communication groups can use different superframes for data transmission.
  • the superframe resources used by the first communication group may include superframe 0, superframe 2, superframe 4, and superframe 6, and the superframe resources used by the second communication group include superframe 1, superframe 3, superframe frame 5 and super frame 7, thus realizing the TDM resource multiplexing at the super frame level between the communication groups.
  • the time domain resources used by the first communication group and the second communication group are different, the data transmission between the communication devices in the first communication group and the data transmission between the communication devices in the second communication group are different. interference will occur.
  • resource multiplexing can also be performed between multiple communication groups coexisting in the target communication system through the TDM method at the radio frame level.
  • the duration of one radio frame is 20.833us, and in the case of a normal cyclic prefix (CP), one radio frame includes 10 OFDM symbols (among them, 8 valid OFDM symbols and 2 guard interval symbols); When the CP is extended, one radio frame includes 9 OFDM symbols (including 7 valid OFDM symbols and 2 guard interval symbols). Therefore, if resource multiplexing is performed between multiple communication groups by means of TDM at the radio frame level, since one radio frame is only 20.833us, the transmission delay of each communication group can be effectively reduced.
  • CP normal cyclic prefix
  • FIG. 13 is a schematic diagram of the distribution of different radio frames used between communication groups in a short-range wireless communication system.
  • a super frame includes 48 radio frames
  • the target communication system includes 3 communication groups, namely the first communication group, the second communication group and the third communication group.
  • Different radio frames in frame 0 are multiplexed with TDM resources, as shown in Figure 13 for details.
  • resource multiplexing may also be performed between multiple communication groups coexisting in the target communication system through a time-domain symbol-level TDM manner.
  • one radio frame may include multiple time-domain symbols, and different communication groups may use different time-domain symbols to implement a TDM resource multiplexing mode between communication groups.
  • each noise reduction device needs to send data once in a radio frame.
  • the TDM multiplexing method at the superframe and radio frame levels cannot meet the requirements. Therefore, the introduction of Symbol-level TDM multiplexing.
  • FIG. 14 is a schematic diagram of the distribution of different time-domain symbols used between communication groups in a short-range wireless communication system.
  • 1 radio frame includes 10 symbols, among which 4 C link symbols, 4 T link symbols and a guard interval ( 2 symbols).
  • the first communication group uses 2 C link symbols and 2 T link symbols
  • the second communication group uses 2 C link symbols and 2 T link symbols;
  • the first communication group uses 2 C-link symbols and 2 T-link symbols
  • the second communication group uses 1 C-link symbol and 1 T-link symbol
  • the remaining 1 C-link symbol and 1 T link symbol can be used by other communication groups (such as the third communication group), as shown in FIG. 14 for details.
  • resource multiplexing at the superframe level, radio frame level, and symbol level may be specifically included when TDM is used for resource multiplexing among multiple communication groups.
  • the time domain resources used by each communication group include at least one of the following: a radio frame, a subframe, a time slot, and a time domain symbol.
  • the first time domain resources used by the first communication group are different from the second time domain resources used by the second communication group, including:
  • At least one of radio frames, subframes, time slots, and time domain symbols used by the first communication group and the second communication group is different.
  • the target communication system is a new air interface wireless communication system, that is, a 3GPP NR system.
  • the frame structure of the time domain resources may include levels such as radio frames, subframes, time slots, and time domain symbols. The following briefly introduces the composition of the frame structure in the 3GPP NR system.
  • one radio frame is 10ms, including 10 subframes, and the length of each subframe is 1ms.
  • Each radio frame includes 10*2 ⁇ time slots, where ⁇ represents a subcarrier spacing configuration parameter, which is used to determine the size of the subcarrier spacing.
  • the number of symbols contained in each subframe is equal to the number of time slots contained in each subframe multiplied by the number of symbols contained in each time slot.
  • the length of the subframe is fixed at 1 ms, and the number of symbols included in each subframe and the length of each symbol are variable. Since the subcarrier spacing is variable, the larger the subcarrier spacing, the shorter the length of each symbol, and the subframe length is fixed at 1ms. Therefore, the larger the subcarrier spacing, the more symbols contained in a subframe. many.
  • Table 1 is a correspondence table between subcarrier spacing configuration parameters and subcarrier spacing.
  • the subcarrier spacing is 15 kHz.
  • each radio frame includes 10 time slots, and the length of one time slot is 1 ms.
  • the subcarrier spacing is 30 kHz, and at this time, the length of one time slot is 0.5 ms, and so on. That is, in an NR system, the time slot length depends on the size of the subcarrier spacing, and the wider the subcarrier spacing, the shorter the time slot duration.
  • ⁇ ⁇ f 2 ⁇ ⁇ 15[kHz] 0 15 1 30 2 60 3 120 4 240
  • there are 5 optional subcarrier spacings, namely 15kHz, 30kHz, 60kHz, 120kHz, and 240kHz.
  • resource multiplexing at the radio frame level can be performed between multiple communication groups, that is, different communication groups Groups use transmission resources within different radio frames.
  • a multiplexing method of superframe-radio frame-time domain symbols can be used between multiple communication groups, and in the NR system, radio frames can also be used between multiple communication groups.
  • - Subframe-slot-time-domain symbol multiplexing Regarding the NR system, the specific implementation of the multiplexing method based on the radio frame-subframe-slot-time-domain symbol is similar to the multiplexing method using the superframe-radio-frame-time-domain symbol, and will not be repeated here.
  • the above describes the time-domain resource multiplexing mode between multiple communication groups, and the following describes the resource configuration mode of the time-domain resource multiplexing mode.
  • the above S101 (determining the first time domain resource used by the first communication group where the first communication device is located) may be implemented by the following steps:
  • the first time domain resource used by the first communication group where the first communication device is located is determined.
  • the pre-configuration information is, for example, a protocol specification, or is pre-stored in the first communication device.
  • the pre-configuration information includes: the mapping relationship between the communication group and the time domain resources.
  • the mapping relationship between the communication group and the time domain resources is determined based on at least one of the following information: the number of communication devices included in the communication group, and the data characteristics of the service to be transmitted in the communication group.
  • TDM resource multiplexing at the superframe level, radio frame level or symbol level may be implemented by means of system pre-configuration information.
  • the in-vehicle short-range communication system several communication groups in the vehicle can usually be known in advance. For example, when the vehicle leaves the factory, it can be determined whether the vehicle includes a wireless ignition system, a cockpit control system, and a noise reduction system. And so on, and can know the number of communication devices in various systems, as well as some characteristics of the service data transmitted in each communication group, such as data packet size, sending frequency, QoS attributes, etc.
  • the mapping relationship between each communication group and the time domain resources used is preconfigured, that is, through In a pre-configured manner, different superframe resources, radio frame resources or time domain symbol resources are allocated to each communication group, so that transmission resources are multiplexed between different communication groups at different times.
  • the first communication device when it has a communication requirement, it may first determine the first communication group to which it belongs, and then obtain pre-configuration information in the system, and then according to the communication group included in the pre-configuration information
  • the mapping relationship with the time domain resource determines the first time domain resource used by the first communication group.
  • the above S101 (determining the first time domain resource used by the first communication group where the first communication device is located) may be implemented by the following steps:
  • the first time domain resource used by the first communication group is acquired from a resource coordination node, which is a node with resource allocation capability in the target communication system.
  • a node with resource allocation capability may be pre-configured as a resource coordination node in the target communication system.
  • the first communication device may send a request to the resource coordination node.
  • a resource allocation request is sent, and the first time domain resource used by the first communication group is determined based on the time domain resource allocated by the resource coordination node.
  • the resource coordination node may be a node independent of multiple communication groups included in the target communication system, for example, the main controller of the vehicle, or may be a group head communication device or a central control node in a certain communication group.
  • the specific implementation of the resource coordination node is not limited.
  • a resource coordination can be determined in the target resource according to the actual scene needs A node for allocating transmission resources to each communication group.
  • the resource coordination node is a central control node in a target communication group that satisfies a preset condition in the target communication system.
  • a target communication group may be determined from a plurality of coexisting communication groups included in the target communication system based on the set preconditions, and then the resource coordination node may be determined in the target communication group.
  • the preset condition may include, but is not limited to, the continuous working state, the type of data to be transmitted (such as noise reduction service data), and the like, which will not be repeated here.
  • the noise reduction system can be used as a basic communication group or communication subsystem, which is called the target communication group, and then the target communication group can be used as the target communication group.
  • the group head communication device or the central control node is determined as a resource coordination node for allocating transmission resources to other communication groups.
  • the first time domain resource used by the first communication group obtained from the resource coordination node may be any one of superframe resources, radio frame resources, and symbol resources, which will not be repeated here.
  • the above-mentioned acquisition of the first time domain resource used by the first communication group from the resource coordination node may be implemented in the following manner:
  • the first time domain resource used by the first communication group is determined according to the resource configuration signaling sent by the resource coordination node.
  • the resource coordination node configures the time domain resource for each communication group, it will send it to each communication device in the communication group by means of resource configuration signaling under certain conditions, Therefore, the first communication device can determine the first time domain resource used by the first communication group according to the resource configuration signaling received from the resource coordination node.
  • time-division resource multiplexing can be achieved between different communication groups through pre-configuration or resource coordination node configuration, and different available time-domain resources are configured for each communication group, which effectively avoids the transmission between communication groups. interference.
  • the resource coordination node may use broadcast information, system information (for example, master information block (MIB), system information block (SIB)), radio resource control (radio resource control, RRC)
  • system information for example, master information block (MIB), system information block (SIB)
  • radio resource control radio resource control, RRC
  • the resource configuration instruction is sent to each communication group by any one of the methods such as information, so as to achieve the purpose of allocating transmission resources for multiple communication groups.
  • the resource configuration signaling includes at least one of the following: a bitmap, a start position of the first time domain resource, a length of the first time domain resource, and a first index.
  • the bitmap is used to indicate the first time domain resource used by the first communication group; the bit length in the bitmap is used to determine the repetition period of the first time domain resource of the first communication group.
  • the resource configuration signaling includes a bitmap, that is, the time domain resource information allocated for the first communication group is indicated by the bitmap, for example, superframe resource information, radio frame resource information and/or time domain symbols information, etc.
  • the superframe information allocated for the first communication group is indicated by a bitmap
  • the length of the bitmap is M bits, wherein each bit corresponds to one superframe, that is, the allocated resources are M bits.
  • the superframe is repeated periodically, and M is a positive integer.
  • the superframe resources used by the first communication group are superframe 0, superframe 2, superframe 4, and superframe 6.
  • the superframe resources used by the second communication group are superframe 1 , superframe 3 , superframe 5 , and superframe 7 .
  • the bitmap in the resource configuration signaling received by the first communication group is 10101010
  • the bitmap in the resource configuration signaling received by the second communication group is 01010101, that is In every eight superframes, superframe 0, superframe 2, superframe 4, and superframe 6 are allocated to the first communication group, and superframe 1, superframe 3, superframe 5, and superframe 7 are allocated to the second communication group .
  • the length of the bitmap is N bits, where each bit corresponds to one radio frame, that is, the allocated resources are N bits.
  • the number of radio frames is repeated periodically, and N is a positive integer.
  • the length of the bitmap is 8 bits
  • the radio frame resource used by the group is radio frame 1
  • the radio frame resource used by the second communication group is radio frame 0, radio frame 2, radio frame 4, and super frame 6,
  • the radio frame resource used by the third communication group is radio frame 3.
  • radio frame 5, radio frame 7. Therefore, the bitmap in the resource configuration signaling received by the first communication group is 01000000
  • the bitmap in the resource configuration signaling received by the second communication group is 10101010
  • the resource configuration signaling received by the third communication group is 10101010.
  • the radio frame resource information allocated for the first communication group may also be indicated by means of a two-level bitmap.
  • the first-level bitmap includes M bits, which are used to indicate the available superframe resources of the first communication group
  • the second-level bitmap includes N bits, which are used to indicate the available superframe resources of the first communication group in the first communication group. Radio frame information that can be used within the frame.
  • FIG. 15 is a schematic diagram of distribution of superframe resources used by the first communication group and the second communication group.
  • FIG. 16 is a schematic diagram illustrating the distribution of radio frame resources used by the first communication group and the second communication group in each superframe in FIG. 15 .
  • the superframe resources and radio frame resources respectively used by the first communication group and the second communication group shown in FIG. 15 and FIG. 16 can be represented in the form of a two-level bitmap, and the first-level bitmap is used to indicate the first The superframe resources used by the communication group and the second communication group respectively, and the second-level bitmap is used to indicate the available radio frame resources of each communication group within each superframe resource.
  • the length of the first-level bitmap is 8 bits.
  • the first communication group determines The first-level bitmap is 11101010, the first-level bitmap determined by the second communication group is 01010101, and the second bit of the two first-level bitmaps is both 1, that is, the first communication group and the Both the second communication group can use the transmission resources of superframe 1. Since the length of the first-level bitmap is 8 bits, that is, the superframe information usable by the first communication group or the second communication group is repeated in a period of 8 superframes.
  • (a) of FIG. 16 represents the radio frame resources occupied in superframe 0 or superframe 2 or superframe 4 or superframe 6,
  • the second-level bitmap determined by the first communication group is 01000000, that is, in superframe 0 or superframe 2 or superframe 4 or superframe 6, the time domain resource that can be used by the first communication group is every 8 radio frames in the second radio frame, and repeats with a cycle of 8 radio frames.
  • (b) of Figure 16 shows the occupied radio frame resources in superframe 1, that is, in superframe 1, the second-level bitmap determined by the first communication group is 01000000, and the second-level bitmap determined by the second communication group is 01000000.
  • the bitmap is 10101010, and it is repeated every 8 radio frames.
  • (c) of FIG. 16 shows the radio frame resources occupied in superframe 3 or superframe 5 or superframe 7, and the second-level bitmap determined by the second communication group is 10101010, that is, in superframe 3 or superframe 5 Or in superframe 7, the time domain resources that can be used by the second communication group are the 1st, 3rd, 5th, and 7th radio frames in every 8 radio frames (the corresponding radio frame indices are 0, 2, 4, and 6) , and repeats with a period of 8 radio frames.
  • the available superframe information for each communication group indicated by the first-level bitmap and the available superframe information for each communication group within each superframe indicated by the second-level bitmap can determine the available superframes for each communication group and the radio frame information in the corresponding superframes.
  • a bitmap may also be used to indicate the time domain symbol information available to the first communication group in one radio frame. It is assumed that the length of the bitmap is K bits, wherein each bit corresponds to a valid symbol, and K is a positive integer. Since the number of valid symbols in a radio frame is determined, for example, in the case of a normal CP in an in-vehicle short-range communication system, a radio frame includes 8 valid symbols. Therefore, optionally, the length K of the bitmap is related to the radio The number of valid symbols in the frame is the same.
  • the length of the bitmap is 8 bits, and 1 bit in the bitmap corresponds to a valid symbol in the radio frame (that is, does not include the guard interval symbol), then based on the different communication groups shown in FIG. 14 ,
  • the schematic diagram of the distribution of used symbol resources shows that for radio frame 0 in FIG. 14, the bitmap determined by the first communication group is 11001100, and the bitmap determined by the second communication group is 00110011; for radio frame 1 in FIG. 14 , the bitmap determined by the first communication group is 11001100, and the bitmap determined by the second communication group is 00010001.
  • the time domain resource information available to different communication groups may also be indicated by means of a three-level bitmap.
  • a three-level bitmap Exemplarily, with reference to the above-mentioned schemes of respectively indicating the available superframe resources and the available radio frame information in the superframe resources through the 2-level bitmap shown in FIG. 15 and FIG. 16 , further, a third Level bitmap, using the third level bitmap to indicate sign information in available radio frames.
  • the scheme of indicating the time domain resource information available to different communication groups by means of a three-level bitmap is similar to the above-mentioned scheme of indicating the time domain resource information available to different communication groups by means of a two-level bitmap, and will not be repeated here.
  • the first time domain resource used by the first communication group may also be indicated by specifying the starting position of the first time domain resource, or the starting point of the first time domain resource may be specified position and length to indicate the first time domain resource used by the first communication group.
  • the length of the first time domain resource may be determined in a pre-configured manner, and here No longer.
  • the starting position of the C link symbol of the first communication group is 0, the length is 2, T The starting position of the link symbol is 5 and the length is 2; the starting position of the C link symbol of the second communication group is 2 and the length is 2, and the starting position of the T link symbol is 7 and the length is 2.
  • the starting position of the C link symbol of the first communication group is 0, the length is 2, the starting position of the T link symbol is 5, and the length is 2; the second communication group The starting position of the C-link symbol of the group is 3 and the length is 1, and the starting position of the T-link symbol is 8 and the length is 1.
  • the radio frame information and the like used by each communication group may also be determined by specifying the starting position and length of the radio frame. This embodiment of the present application does not limit it, and details are not described herein again.
  • the time domain resources used by each communication group may also be indicated by specifying index information of the time domain resources and the index information and a pre-configured corresponding relationship.
  • the first time domain used by the first communication group is determined according to the resource configuration signaling sent by the resource coordination node.
  • Resources can be implemented through the following steps:
  • the first time domain resource used by the first communication group is determined according to the first index and the preconfigured correspondence.
  • the pre-configured correspondence includes any one of the following: a correspondence between an index and a time slot structure, and a correspondence between an index and a radio frame symbol configuration.
  • the first communication device is preconfigured with the correspondence between the time domain resources and the index, and when the received resource configuration instruction includes the first index, the first communication device can be based on the first index and the preconfigured The corresponding relationship of determines the first time domain resource used by the first communication group.
  • Table 2 is the matching information of C symbols and T symbols in the radio frame.
  • the first communication device determines the first time domain resource, that is, the symbol ratio in the radio frame, according to the received first index and the ratio information of C symbols and T symbols in the radio frame shown in Table 2.
  • the lookup table 2 can determine the occupied 4 symbols of the first time domain resource in the radio frame, and then according to the preconfigured starting position of the first time domain resource or the resource configuration instruction
  • the included start position of the first time domain resource can determine the position, length, and type of each symbol of the first time domain resource.
  • the lookup table 2 can determine the 8 symbols corresponding to the index, and then according to the starting position of the pre-configured first time domain resource or the first time included in the resource configuration instruction.
  • the symbol index is 2 (that is, 4 symbols starting from the 3rd symbol in the radio frame), and the direction of the 4 symbols is to intercept the 2nd to 5th symbols among the 8 symbols corresponding to the index, or, the direction of the 4 symbols To truncate the first 4 symbols of the 8 symbols corresponding to the index, or, the direction of the 4 symbols is to truncate the last 4 symbols of the 8 symbols corresponding to the index.
  • the radio frame information and the like used by each communication group may also be determined by specifying the corresponding relationship between the index and the radio frame symbol configuration.
  • This embodiment of the present application does not limit it, and details are not described herein again.
  • FIG. 17 is a schematic structural diagram of Embodiment 1 of a communication device provided by the present application.
  • the apparatus may be integrated in the first communication device, or may be implemented by the first communication device.
  • the communication apparatus may include: a processing module 1701 and a transceiver module 1702 .
  • the processing module 1701 is configured to determine the first time domain resource used by the first communication group where the first communication device belongs, the first time domain resource used by the first communication group and the second time domain resource used by the second communication group Domain resources are different, and the first communication group and the second communication group are any two of the multiple communication groups coexisting in the target communication system;
  • the transceiver module 1702 is configured to use the first time domain resource to communicate with other communication devices in the first communication group.
  • the time domain resources used by each communication group include at least one of the following: a superframe, a radio frame, and a time domain symbol;
  • the first time domain resources used by the first communication group are different from the second time domain resources used by the second communication group, including:
  • the first communication group is different from at least one of superframes, radio frames, and time-domain symbols used by the second communication group.
  • the time domain resources used by each communication group include at least one of the following: a radio frame, a subframe, a time slot, and a time domain symbol;
  • the first time domain resources used by the first communication group are different from the second time domain resources used by the second communication group, including:
  • At least one of radio frames, subframes, time slots, and time domain symbols used by the first communication group and the second communication group is different.
  • the processing module 1701 is specifically configured to determine, according to pre-configuration information, a first time domain resource used by the first communication group where the first communication device is located, and the pre-configuration information Including: the mapping relationship between communication groups and time domain resources.
  • the mapping relationship between the communication group and the time domain resources is determined based on at least one of the following information: the number of communication devices included in the communication group, the data characteristics of the service to be transmitted in the communication group .
  • the processing module 1701 is specifically configured to acquire the first time domain resource used by the first communication group from a resource coordination node, where the resource coordination node is the target communication system A node with resource allocation capability.
  • the resource coordination node is a central control node in a target communication group that satisfies a preset condition in the target communication system.
  • the processing module 1701 is configured to acquire the first time domain resource used by the first communication group from the resource coordination node, specifically:
  • the processing module 1701 is specifically configured to determine the first time domain resource used by the first communication group according to the resource configuration signaling sent by the resource coordination node.
  • the resource configuration signaling includes at least one of the following: a bitmap, a combination of a start position and a length of the first time domain resource;
  • the bitmap is used to indicate the first time domain resource used by the first communication group.
  • bit length in the bitmap is used to determine the repetition period of the first time domain resource of the first communication group.
  • the processing module when the resource configuration signaling includes a first index, is specifically configured to determine the The first time domain resource used by the first communication group.
  • the preconfigured correspondence includes any one of the following:
  • each module of the above apparatus is only a division of logical functions, and may be fully or partially integrated into a physical entity in actual implementation, or may be physically separated.
  • these modules can all be implemented in the form of software calling through processing elements; they can also all be implemented in hardware; some modules can also be implemented in the form of calling software through processing elements, and some modules can be implemented in hardware.
  • the processing module may be a separately established processing element, or it may be integrated into a certain chip of the above-mentioned apparatus to realize, in addition, it may also be stored in the memory of the above-mentioned apparatus in the form of program code, and a certain processing element of the above-mentioned apparatus may be used.
  • each step of the above-mentioned method or each of the above-mentioned modules can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.
  • an embodiment of the present application further provides a communication apparatus, the communication apparatus includes a processor, and the processor is configured to call and run a computer program from a memory, so that a device installed with the communication apparatus executes the above method embodiments. technical solution.
  • FIG. 18 is a schematic structural diagram of Embodiment 2 of a communication device provided by the present application.
  • the communication apparatus 180 includes a processor 1801, and the processor 1801 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 180 may further include a memory 1802 .
  • the processor 1801 may call and run a computer program from the memory 1802 to implement the methods in the embodiments of the present application.
  • the memory 1802 may be a separate device independent of the processor 1801, or may be integrated in the processor 1801.
  • the communication device 180 may further include an input interface 1803 .
  • the processor 1801 can control the input interface 1803 to communicate with other devices or devices, and specifically, can acquire information or data sent by other devices or devices.
  • the communication device 180 may further include an output interface 1804 .
  • the processor 1801 can control the output interface 1804 to communicate with other devices or devices, and specifically, can output information or data to other devices or devices.
  • the apparatus may be applied to the communication device in the embodiment of the present application, and the apparatus may implement the corresponding processes implemented by the communication device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the device mentioned in the embodiments of the present application may be a chip, and the chip may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-chip, or the like.
  • FIG. 19 is a structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 190 includes a processor 1901 and a memory 1902 .
  • the memory 1902 stores computer instructions that can be executed on the processor 1901, so that the processor 1901 can call and execute the computer program from the memory 1902 to implement the methods in the embodiments of the present application.
  • the communication device 190 may further include a transceiver 1903, and the processor 1901 may control the transceiver 1903 to communicate with other devices, specifically, may send information or data to other devices, or receive other devices Information or data sent by a device.
  • the transceiver 1903 may include a transmitter and a receiver.
  • the transceiver 1903 may further include antennas, and the number of the antennas may be one or more.
  • the communication device may further include a system bus 1904, through which the memory 1902 and the transceiver 1903 are connected to the processor 1901 and communicate with each other.
  • a system bus 1904 through which the memory 1902 and the transceiver 1903 are connected to the processor 1901 and communicate with each other.
  • the communication device 190 may specifically be the first communication device of the embodiment of the present application, which can implement the corresponding processes implemented by the first communication device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA), or other possible solutions.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Programming logic devices discrete gate or transistor logic devices, discrete hardware components.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • FIG. 20 is a schematic structural diagram of a communication system provided by an embodiment of the present application. As shown in FIG. 20 , the communication system 200 includes a first communication device 2001 and other communication devices 2002 .
  • the first communication device 2001 may be used to implement the corresponding functions implemented by the first communication device in the above method, and for brevity, details are not repeated here.
  • the communication system may be referred to as a car networking system or a D2D system.
  • the other communication device 2002 may be a terminal device or a network device.
  • other communication devices 2002 are network devices, they can provide services for the first communication device 2001 .
  • Embodiments of the present application further provide a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are executed by a processor, are used to implement the technical solutions of the foregoing method embodiments.
  • the embodiments of the present application further provide a program, which, when the program is executed by a processor, is used to execute the technical solutions of the foregoing method embodiments.
  • Embodiments of the present application further provide a computer program product, including program instructions, where the program instructions are used to implement the technical solutions of the foregoing method embodiments.
  • Embodiments of the present application further provide a chip, including: a processing module and a communication interface, where the processing module can execute the technical solutions of the foregoing method embodiments.
  • the chip also includes a storage module (eg, memory), the storage module is used for storing instructions, the processing module is used for executing the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the aforementioned method implementation.
  • a storage module eg, memory
  • the storage module is used for storing instructions
  • the processing module is used for executing the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the aforementioned method implementation.
  • the chip may include a memory and a processor, where code and data are stored in the memory, the memory is coupled to the processor, and the processor runs the code in the memory so that the chip is configured to execute the technical solutions of the above method embodiments.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • “at least one” means one or more, and “plurality” means two or more.
  • “And/or”, which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects before and after are an “or” relationship; in the formula, the character “/” indicates that the related objects are a “division” relationship.
  • “At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法、装置、设备及存储介质。第一通信设备确定其所在第一通信组使用的第一时域资源,并利用该第一时域资源与第一通信组中的其他通信设备进行通信。由于该第一通信组使用的第一时域资源与第二通信组使用的第二时域资源不同,且第一通信组和第二通信组是目标通信系统内共存的多个通信组中的任意两个,所以目标通信系统中共存的多个通信组内的通信设备之间使用不同的时域资源进行通信,有效的避免了通信组之间的干扰,提高通信设备之间的通信性能。

Description

通信方法、装置、设备及存储介质 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法、装置、设备及存储介质。
背景技术
现有技术中,在某个区域内可能同时存在多个通信组,每个通信组中包括多个通信设备,例如,终端。目前,通信组中通信设备之间的通信主要通过有线方式实现,但是其存在灵活性差、成本高的问题,因而,如何通过无线方式实现通信设备间的通信是通信系统中的一种通信需求。
然而,在多通信组的通信系统中,多个通信组通常采用相同的无线传输方式进行组内通信,若多个通信组处于相同的载波内,这时某个通信组中的通信设备相互通信时,可能会影响其他通信组内通信设备之间的通信,存在通信组间干扰的问题。
发明内容
本申请实施例提供一种通信方法、装置、设备及存储介质,用于解决通信组间相互干扰的问题。
第一方面,本申请实施例提供一种通信方法,应用于第一通信设备,所述方法包括:
确定所述第一通信设备所在第一通信组使用的第一时域资源,所述第一通信组使用的第一时域资源与第二通信组使用的第二时域资源不同,所述第一通信组和所述第二通信组是目标通信系统内共存的多个通信组中的任意两个;
利用所述第一时域资源与所述第一通信组中的其他通信设备进行通信。
第二方面,本申请实施例提供一种通信装置,包括:处理模块和收发模块;
所述处理模块,用于确定所属第一通信设备所在第一通信组使用的第一时域资源,所述第一通信组使用的第一时域资源与第二通信组使用的第二时域资源不同,所述第一通信组和所述第二通信组是目标通信系统内共存的多个通信组中的任意两个;
所述收发模块,用于利用所述第一时域资源与所述第一通信组中的其他通信设备进行通信。
第三方面,本申请实施例提供一种通信装置,所述装置包括处理器,所述处理器用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行第一方面所述的方法。
第四方面,本申请实施例提供一种通信设备,包括:处理器、存储器及存储在所述存储器上并可在处理器上运行的计算机指令,所述处理器执行所述计算机指令时实现如上述第一方面所述的方法。
第五方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序被处理器执行时用于实现如上述第一方面所述的方法。
第六方面,本申请实施例提供一种计算机程序产品,包括计算机指令,所述计算机指令被计算机执行时用于实现第一方面所述的方法。
第七方面,本申请实施例提供一种计算机程序,所述计算机程序被计算机执行时用于实现第一方面所述的方法。
第八方面,本申请实施例提供一种运行指令的芯片,所述芯片包括存储器、处理器,所述存储器中存储代码和数据,所述存储器与所述处理器耦合,所述处理器运行所述存储器中的代码使得所述芯片用于执行上述第一方面所述的方法。
第九方面,本申请实施例提供一种通信系统,包括:至少一个通信设备,所述通信设备包括上述第二方面所述的通信装置。
本申请实施例提供的通信方法、装置、设备及存储介质,第一通信设备通过确定其所在第一通信组使用的第一时域资源,并利用该第一时域资源与第一通信组中的其他通信设备进行通信。由于该第一通信组使用的第一时域资源与第二通信组使用的第二时域资源不同,且第一通信组和第二通信组是目标通信系统内共存的多个通信组中的任意两个,所以,目标通信系统中共存的多个通信组内的通信设备之间可以使用不同的时域资源进行通信,有效的避免了通信组之间的干扰,提高通信设备之间的通信性能。
附图说明
图1为V2X通信的架构示意图;
图2为网络覆盖内的侧行通信的系统架构图;
图3为部分网络覆盖的侧行通信的系统架构图;
图4为网络覆盖外的侧行通信的一种系统架构图;
图5为网络覆盖外的侧行通信的另一种系统架构图;
图6为终端之间进行单播传输方式的示意图;
图7为终端之间进行组播传输方式的示意图;
图8为终端之间进行广播传输方式的示意图;
图9为第一通信组和第二通信组采用FDM方式进行侧行通信的示意图;
图10为本申请实施例提供的通信方法实施例一的流程示意图;
图11为车内短距通信系统中帧结构的示意图;
图12为短距离无线通信系统中通信组之间使用不同超帧的分布示意图;
图13为短距离无线通信系统中通信组之间使用不同无线帧的分布示意图;
图14为短距离无线通信系统中通信组之间使用不同时域符号的分布示意图;
图15为第一通信组和第二通信组使用的超帧资源的分布示意图;
图16为图15中各个超帧中第一通信组和第二通信组使用的无线帧资源的分布示意图;
图17为本申请提供的通信装置实施例一的结构示意图;
图18为本申请提供的通信装置实施例二的结构示意图;
图19是本申请实施例提供的一种通信设备的结构图;
图20是本申请实施例提供的一种通信系统的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的说明书、权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
随着网络技术及智能车辆技术的发展,车联网越来越受到广泛关注。设备到设备通信是基于D2D的一种侧行链路传输技术,其与传统的LTE系统(蜂窝系统)中通信数据通过基站接收或者发送的方式不同,车联网系统采用终端到终端直接通信的方式,具有更高的频谱效率以及更低的传输时延。
在第三代合作伙伴计划(3rd generation partnership project,3GPP)中,D2D分成了不同的阶段进行研究,如下:
邻近服务(proximity based services,ProSe):主要用来提高频谱利用率和降低基站负荷。具体的,终端通过基站分配的频谱资源进行直接通信,从而提高无线频谱资源的利用率,而终端间邻近业务成功建立后,可以执行设备到设备的通信,基站的负荷得以降低,其主要针对公共安全类的业务。
车联网(V2X):车联网系统针对车车通信的场景进行了研究,其主要面向相对高速移动的车车、车人通信的业务。
可穿戴设备(FeD2D):主要用于可穿戴设备通过移动终端接入网络的场景,其主要面向是低移动速度以及低功率接入的场景。
下面简要介绍一下V2X通信的架构示意图。
目前,在车联网系统中,车联网终端通过车用无线通信技术(vehicle-to-everything,V2X)实现车与X(车、人、交通路侧基础设施和网络)智能信息的交互。V2X通信的交互模式包括:车辆与车辆(vehicle to vehicle,V2V)之间、车辆与路边基础设施(vehicle to infrastructure,V2I)之间、车辆与行人(vehicle to pedestrian,V2P)之间、车辆与网络(vehicle to network,V2N)之间的通信。示例性的,路边基础设施可以是路边单元(road side unit,RSU)。
图1为V2X通信的架构示意图。如图1所示,V2X通信包括V2V通信、V2P通信、V2I通信和V2N通信,V2X通信过程中,V2X业务通过侧行链路(sidelink)或者Uu口进行传输。
在实际应用中,V2X借助与人、车、路、云平台之间的全方位连接和高效信息交互,实现信息服务、交通安全、交通效率等典型应用场景。车联网终端通过V2I和V2N通信可以获取各种信息服务,包括交通信号灯信息,附近区域车辆信息,车辆导航,紧急救援,信息娱乐服务等。通过V2V和V2P 通信可以实时获取周围车辆的车速、位置、行车情况及行人活动等信息,并通过智能算法实现碰撞预警功能,避免交通事故。通过V2I通信可以实现车速引导等功能,提高交通效率。
可选的,不同网络覆盖环境下的侧行通信不同。具体的,在侧行通信中,根据进行通信的终端所处的网络覆盖情况,可以分为网络覆盖内侧行通信,部分网络覆盖侧行通信,及网络覆盖外侧行通信。
作为一种示例,图2为网络覆盖内的侧行通信的系统架构图。如图2所示,在网络覆盖内的侧行通信中,进行侧行通信的所有终端(例如,图2中的第一终端设备和第二终端设备)均处于同一网络设备(基站)的覆盖范围内,因而,这些终端均可以接收该网络设备发送的配置指令,并基于相同的侧行配置信息进行侧行通信。
作为另一种示例,图3为部分网络覆盖的侧行通信的系统架构图。如图3所示,在部分网络覆盖的侧行通信情况下,只有进行侧行通信的部分终端位于网络设备(基站)的覆盖范围内,这部分终端能够接收到网络设备发送的配置信令,而且根据该配置指令进行侧行通信。
可以理解的是,在该示例中,位于网络覆盖范围外的终端无法接收基站的配置信令,这时,网络覆盖范围外的终端将根据预配置(pre-configuration)信息及从位于网络覆盖范围内的终端接收到的物理侧行广播信道(physical sidelink broadcast channel,PSBCH)中携带的信息确定侧行配置信息,进而再基于该侧行配置信息进行侧行通信。
例如,在图3所示的系统中,第一终端设备位于网络设备的覆盖范围内,第二终端设备位于网络覆盖范围外,因而,第一终端设备可以基于从网络设备接收到的配置指令与第二终端设备进行侧行通信,而第二终端设备将根据预配置信息和从第一终端设备接收到的PSBCH中携带的信息确定侧行配置信息,进而再基于该侧行配置信息与第一终端设备进行侧行通信。
作为再一种示例,图4为网络覆盖外的侧行通信的一种系统架构图。如图4示,在网络覆盖外侧行通信中,进行侧行通信的所有终端(第一终端设备和第二终端设备)均位于网络覆盖范围外,这时,所有终端(第一终端设备和第二终端设备)均根据预配置信息确定侧行配置信息,进而再基于该侧行配置信息进行侧行通信。
作为又一种示例,图5为网络覆盖外的侧行通信的另一种系统架构图。如图5示,对于有中央控制节点的侧行通信,即多个终端设备构成了一个通信组,且在该通信组内具有中央控制节点,又可以称为组头终端(cluster header,CH),该中央控制节点具有以下功能之一:负责通信组的建立;组成员的加入、离开;进行资源协调,为其他终端分配侧行传输资源,接收其他终端的侧行反馈信息;与其他通信组进行资源协调等功能。
示例性的,在图5中,第一终端设备、第二终端设备和第三终端设备构成通信组,第一终端设备为该通信组的组头终端,也即,中央控制节点。该第一终端设备可以分别为第二终端设备和第三终端设备分配资源,以便第二终端设备和第三终端设备能够进行侧行通信。
可选的,在上述图2至图5所示的系统中,第一终端设备和第二终端设备是具备V2X通信能力的终端设备,用于执行V2X通信,第一终端设备与第二终端设备之间通过无线通信接口进行V2X通信,第一终端设备与网络设备,或者,第二终端设备与网络设备之间通过无线通信接口进行通信。为清楚起见,将第一终端设备和第二终端设备之间的无线通信接口称之为第一空口,该第一空口例如为sidelink,第一终端设备和网络设备之间或第二终端设备与网络设备之间的无线通信接口称之为第二空口,该第二空口例如为Uu口。
可选的,车联网系统采用终端到终端直接通信的方式。具体的,在有网络覆盖的场景中,3GPP中定义了两种传输模式:第一模式和第二模式。
第一模式:终端设备的传输资源是由网络设备(基站)分配的,终端设备根据网络设备分配的资源在侧行链路上进行数据的发送;网络设备可以为终端设备分配单次传输的资源,也可以为终端设备分配半静态传输的资源,此处不再赘述。在上述图2所示的系统中,第一终端设备和第二终端设备均位于网络覆盖范围内,网络设备为每个终端设备分配侧行传输使用的传输资源。
第二模式:终端设备在资源池中选取一个资源进行数据的传输。在上述图3所示的系统中,第一终端设备与第二终端设备可以通过侦听的方式在资源池中选取传输资源,或者通过随机选取的方式在资源池中选取传输资源,关于第一终端设备与第二终端设备选取传输资源的方式,其可以根据实际情况确定,此处不再赘述。
值得说明的是,在没有网络覆盖的场景中,终端设备采用上述的第二模式进行传输,这时,资源池是通过预配置的方式获取的。具体的传输方式同上述的第二模式,这里不再赘述。
随着技术的不断发展,目前引入新无线(new radio,NR)通信系统,NR系统中V2X称之为NR-V2X。在NR-V2X系统中,需要支持自动驾驶,因此,对车载终端之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。
可选的,LTE-V2X支持广播传输方式,NR-V2X既可以支持广播传输方式,也可以支持单播和组播的传输方式。
示例性的,图6为终端之间进行单播传输方式的示意图。对于单播传输方式,每个发送端终端只对应一个接收端终端。如图6中,第一终端设备和第二终端设备之间进行单播传输。
可选的,图7为终端之间进行组播传输方式的示意图。对于组播传输方式,每个发送端终端可以对应一个通信组的所有终端或者在一定传输距离内的所有终端。如图7所示,第一终端设备、第二终端设备、第三终端设备、第四终端设备构成了一个通信组。其中,第一终端设备作为发送端终端发送数据时,该通信组内的其他终端设备(第二终端设备、第三终端设备、第四终端设备)都是接收端终端。
可选的,图8为终端之间进行广播传输方式的示意图。对于广播传输方式,每个发送端终端对应的接收端终端可以是发送端终端周围的任意一个终端。如图8所示,若第一终端设备是发送端终端,则第一终端设备周围的其他终端(第二终端设备、第三终端设备、第四终端设备、第五终端设备、第六终端设备)都可以作为接收端终端。
可选的,在介绍本申请的具体实施例之前,首先对本申请适用的场景进行介绍。
场景一:车联网系统
多个车辆构成通信组;组头通信设备为组内通信设备分配传输资源,当系统内存在多个通信组距时,需要考虑多个通信组之间的资源协调。
场景二:车内通信场景
车内短距通信系统主要应用于车内通信设备之间的通信,车内通信设备如:中央控制器,音响,麦克,扬声器,摄像头,后视镜,行车记录仪,360度环视,门锁,座椅,空调,灯光等。目前,在车内,通信设备之间的通信通常是通过有线的方式进行的,但是考虑到降低成本、降低车身重量、可扩展性等因素,希望通过无线通信的方式替代现有的有线通信,实现车内通信设备之间的通信。
车内的通信设备之间可以分为不同的通信组或组成不同的域,在每个通信组内有一个中央控制节点,每个中央控制节点可以控制所在通信组内其他的通信设备,例如,为其他通信设备分配传输资源,与组内其他通信设备之间进行数据传输等。
多个通信组或多个通信域在车内可以共同存在,这些通信组之间通常采用相同的无线传输方式。例如,车内的远程信息处理器(Telematics BOX,T-box)可以和车内的麦克、音响等组成一个通信组;车身控制器与车窗、车门、灯光、座椅等组成一个通信组;车内中央控制器与麦克、音箱、后视镜等组成一个通信组;智能钥匙智能进入及启动系统(Passive Entry Passive Start,PEPS)与门锁、钥匙等组成一个通信组。
在实际应用中,一个车内的通信设备会构成多个通信组,多个通信组之间共享无线传输资源,例如,多个通信组使用相同的载波进行数据传输,因而,需要考虑多个通信组之间的资源协调和干扰避免。
场景三:家庭或室内场景
在智能家居场景中,家庭或室内的通信设备具有通信功能,家庭内的通信设备之间可以构成一个通信组,该通信组内通常具有中央控制节点或组头通信设备,如智能手机、智能电视、用户端设备(consumer premise equipment,CPE);同一个家庭内的通信设备构成一个通信组,不同家庭之间是不同的通信组,一个家庭内的通信组需要考虑和其他家庭的通信组(如邻居)之间的资源协调和干扰避免。
场景四:可穿戴场景
随着传感器和材料技术的快速发展,各类可穿戴设备层出不穷,例如,智能眼镜、智能手表等,可穿戴设备之间、可穿戴设备与手机等终端之间可以具有通信功能。通常情况下,位于同一区域内的可穿戴设备和终端等其他通信设备可以构成一个通信组,该通信组内可以具有中央控制节点或组头通信设备,例如,手机等。由于不同类型的可穿戴设备之间可以构成不同的通信组,一个类型的可穿戴设备组成的通信组也需要考虑和其他类型的可穿戴设备组成的通信组之间的资源协调和干扰避免。
可以理解的是,本申请实施例并不限定上述应用场景,其还可以根据实际需求包括其他的场景,此处不再赘述。可选的,下述主要以车内通信场景对应的车内短距通信系统为例对本申请的技术方案进行解释说明。
由上述分析可知,在具有多通信组的系统中,多个通信组通常采用相同的无线传输方式进行组内通信,若多个通信组处于相同的载波内,这时某个通信组中的通信设备相互通信时,可能会影响其他通信组内通信设备之间的通信,存在通信组间干扰的问题,因而,如何协调多个通信组之间的传输资源,避免通信组之间的干扰是本申请实施例需要解决的问题。
针对上述问题,本申请技术方案的构思过程如下:在实际应用中,由于通信组之间的资源复用通常包括时分复用(time-division multiplexing,TDM)方式和频分复用(frequency division multiplexing,FDM)方式。发明人在实际应用中发现:如果采用FDM方式,并且两个通信组之间没有调度协调,这时还会 由于带内泄漏(in-band emission,IBE)以及远近效应(Near-Far Effect)等问题,导致通信组间存在强干扰的现象。而采用TDM方式时,不会存在通信组之间的干扰。
示例性的,图9为第一通信组和第二通信组采用FDM方式进行侧行通信的示意图。如图9所示,Tx1和Rx1属于第一通信组,Tx2和Rx2属于第二通信组。在第一通信组中,Tx1向Rx1发送数据,在第二通信组中,Tx2向Rx2发送数据。
作为一种示例,若第一通信组和第二通信组之间采用FDM的资源复用方式,即Tx1和Tx2在相同时间采用不同的频域资源发送数据,虽然Tx2发送的信号带内泄露到Tx1的频域范围的能量有十几个分贝(dB)的衰减,但是由于Tx2相对于Tx1距离Rx1更近,路损也就更小,因此,在Rx1接收Tx1的信号时会受到Tx2的带内泄露的强干扰,从而降低了Rx1的接收性能。
作为另一种示例,若第一通信组和第二通信组之间采用TDM的资源复用方式,Tx1和Tx2之间在不同的时间发送数据,因此,Rx1或Rx2接收数据时,不会存在通信组之间的干扰,也不存在远近效应问题,能够较好的克服通信组之间的干扰。
相应的,基于上述技术构思,本申请实施例提供了一种通信方法,在具有多个通信组的目标通信系统内,第一通信设备需要与其他通信设备通信时,首先确定该第一通信设备所在第一通信组使用的第一时域资源,其中,该第一通信组使用的第一时域资源与第二通信组使用的第二时域资源不同,且第一通信组和第二通信组是目标通信系统内共存的多个通信组中的任意两个,其次利用该第一时域资源与第一通信组中的其他通信设备进行通信。该技术方案中,目标通信系统中共存的多个通信组之间的传输资源采用TDM复用方式,且保证不同的通信组使用不同的时域资源不同,这样可以有效的避免干扰,提高通信设备之间的通信性能。
可以理解的是,本申请实施例提供的通信方法可用于第三代移动通信(the 3rd generation mobile communication,3G)、长期演进(long term evolution,LTE)系统,第四代移动通信(the 4th generation mobile communication,4G)系统、先进的长期演进系统(advanced long term evolution,LTE-A)、第三代合作伙伴计划(the 3rd generation partnership project,3GPP)相关的蜂窝系统、第五代移动通信(the 5th generation mobile communication,5G)系统以及后续演进的通信系统,还可以用于车联网系统中或者其他任意的D2D系统中。本申请实施例并不限定通信系统的具体实现形式。
本申请实施例中涉及的网络设备,可以是普通的基站(如NodeB或eNB或者gNB)、新无线控制器(new radio controller,NR controller)、集中式网元(centralized unit)、新无线基站、射频拉远模块、微基站、中继(relay)、分布式网元(distributed unit)、接收点(transmission reception point,TRP)、传输点(transmission point,TP)或者任何其它设备,但本申请实施例不限于此。
本申请实施例中涉及的通信设备,如上述的第一终端设备或第二终端设备,是具备V2X通信能力的通信设备,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备、路边单元等。常见的通信设备包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。
下面,通过具体实施例对本申请的技术方案进行详细说明。需要说明的是,下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
图10为本申请实施例提供的通信方法实施例一的流程示意图。该方法可以应用于某个通信组中的任意一个通信设备,例如,在本申请的实施例中,将其称为第一通信设备,该通信组所在的目标通信系统包括多个共存的通信组。如图10所示,该方法可以包括如下步骤:
S101、确定第一通信设备所在第一通信组使用的第一时域资源,该第一通信组使用的第一时域资源与第二通信组使用的第二时域资源不同,该第一通信组和第二通信组是目标通信系统内共存的多个通信组中的任意两个。
在本申请的实施例中,目标通信系统是基于D2D通信技术的系统,具体的,其可以是车联网系统、车内短距通信系统、5G通信技术中的NG系统等各种设备组成的短距离通信系统中的任意一种。本申请实施例并不限定目标通信系统的具体表现形式,其可以根据场景确定,此处不再赘述。
在侧行通信中,若第一通信设备具有与其他通信设备进行通信的需求,且该第一通信设备所在的目标通信系统内包括共存的多个通信组,这时,任意两个通信组之间可以采用时分复用的方式进行资源分配。即,任意两个通信组之间使用不同的时域资源。
示例性的,在本申请的实施例中,将该第一通信设备所在的通信组称为第一通信组,将目标通信系统内共存的多个通信组中除该通信组之外的任意一个通信组称为第二通信组。该第一通信组使用的时域资源称为第一时域资源,将第二通信组使用的时域资源称为第二时域资源。可以理解的是,本申请实施例中的“第一”和“第二”仅用来区别不同的通信组或者不同的时域资源,并不限定是具体的通信组 或具体的时域资源。
可选的,在实际应用中,第一通信设备首先可以根据其所在的通信组标识,确定出其所在的第一通信组,然后再确定该第一通信组使用的时域资源。可选的,该第一通信组和第二通信组分别使用的时域资源可以是预先配置好的,也可以是第一通信设备根据其他设备发送的配置指令确定的,本实施例并不对其进行限定。
S102、利用第一时域资源与第一通信组中的其他通信设备进行通信。
在本申请的实施例中,第一通信设备确定出其所在第一通信组使用的第一时域资源时,便可以基于该第一时域资源与该第一通信组中的其他通信设备进行通信。由于不同的通信组使用不同的时域资源,每个通信组内的通信设备使用其所在通信组对应的时域资源之间进行通信,因而,不同通信组内的通信设备在不同的时间进行通信,有效避免了通信组之间的干扰问题。
可以理解的是,第一通信设备在确定出其所在通信组使用的第一时域资源时,还可以确定出其与其他通信设备进行通信使用的第一频域资源,进而利用该第一时域资源和第一频域资源对应的时频资源进行通信。本申请实施例并不限定第一频域资源的确定方式,其可以根据实际情况确定,此处不再赘述。
本申请实施例提供的通信方法,第一通信设备通过确定其所在第一通信组使用的第一时域资源,并利用该第一时域资源与第一通信组中的其他通信设备进行通信。由于该第一通信组使用的第一时域资源与第二通信组使用的第二时域资源不同,且第一通信组和第二通信组是目标通信系统内共存的多个通信组中的任意两个,所以,目标通信系统中共存的多个通信组内的通信设备之间可以使用不同的时域资源进行通信,有效的避免了通信组之间的干扰,提高通信设备之间的通信性能。
示例性的,在本申请的一种实施例中,每个通信组使用的时域资源包括以下至少一种:超帧,无线帧,时域符号。此时,第一通信组使用的第一时域资源与第二通信组使用的第二时域资源不同,包括:
第一通信组与第二通信组使用的超帧、无线帧、时域符号中的至少一种不同。
在本实施例中,目标通信系统为短距离无线通信系统,例如,车内短距通信系统,家庭或室内短距离通信系统。此时,时域资源的帧结构可以包括超帧、无线帧、时域符号等层级。下述以车内短距通信系统为例,对每个通信组使用的时域资源进行解释说明。
在车内短距通信系统中,子载波间隔是480kHz,一个无线帧的时长是20.833us,包括10个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,其中,2个OFDM符号为保护间隔(Guard Period,GP),不用于传输数据,其余8个OFDM符号为有效符号,可以用于数据传输。48个无线帧的时长为1ms,对应一个超帧。即,在车内短距通信系统中,1个超帧包括48个无线帧,共计1ms;每个无线帧包括10个OFDM符号。
可选的,图11为车内短距通信系统中帧结构的示意图。如图11所示,在车内短距通信系统中,每个超帧包括48个无线帧,每个无线帧包括10个OFDM符号,这10个OFDM符号可以分为C链路符号、T链路符号和保护间隔。其中,C链路是通信组内的中央控制节点或组头通信设备向组内其他通信设备发送数据的链路,C链路符号即用于通信组内中央控制节点或组头通信设备向组内其他通信设备发送数据的符号;T链路是组内其他通信设备向中央控制节点或组头通信设备发送数据的链路,T链路符号即用于组内其他通信设备向中央控制节点或组头通信设备发送数据的符号。C链路符号位于无线帧的起始位置,T链路符号位于无线帧的结束位置,GP位于C链路符号和T链路符号之间,以及位于无线帧的最后一个符号,通常用于收发转换(或发收转换)。
可选的,图11示出了1个超帧(超帧0)、2个无线帧(无线帧0和无线帧1),每个无线帧内包括10个符号。由图11可知,不同无线帧内可以具有不同数量的C链路符号(或T链路符号),本申请实施例并不对其进行限定。
在实际应用中,GP对应的OFDM符号的时长通常小于C链路符号、T链路符号对应的OFDM符号的时长。本申请实施例并不对GP对应的OFDM符号的时长和C链路符号、T链路符号对应的OFDM符号的时长的具体关系进行限定,此处不再赘述。
作为一种示例,在实际应用中,如果多个通信组传输的数据或业务对时延要求性不高,可以在多个通信组之间进行超帧级别的TDM资源复用,即不同的通信组使用不同超帧内的传输资源。
可选的,图12为短距离无线通信系统中通信组之间使用不同超帧的分布示意图。如图12所示,不同的通信组可以使用不同的超帧进行数据传输。示例性的,第一通信组使用的超帧资源可以包括超帧0、超帧2、超帧4、超帧6,第二通信组使用的超帧资源包括超帧1、超帧3、超帧5、超帧7,从而在通信组之间实现了超帧级别的TDM资源复用。
在该示例中,由于第一通信组和第二通信组使用的时域资源不同,因而,第一通信组中通信设备之间的数据传输和第二通信组中通信设备之间的数据传输不会产生干扰的情况。
作为另一种示例,在车内短距通信系统中,目标通信系统中共存的多个通信组之间还可以通过无线 帧级别的TDM方式进行资源复用。
具体的,1个无线帧时长为20.833us,在正常循环前缀(cyclic prefix,CP)时,1个无线帧包括10个OFDM符号(其中,8个有效OFDM符号和2个保护间隔符号);在扩展CP时,1个无线帧包括9个OFDM符号(其中,7个有效OFDM符号和2个保护间隔符号)。因而,若多个通信组之间通过无线帧级别的TDM方式进行资源复用,由于一个无线帧只有20.833us,可以有效的降低各个通信组的传输时延。
示例性的,图13为短距离无线通信系统中通信组之间使用不同无线帧的分布示意图。如图13所示,一个超帧包括48个无线帧,目标通信系统内包括3个通信组,分别是第一通信组、第二通信组和第三通信组,这3个通信组分别采用超帧0中的不同无线帧进行TDM资源复用,详见图13所示。
作为再一种示例,在车内短距通信系统中,目标通信系统中共存的多个通信组之间还可以通过时域符号级别的TDM方式进行资源复用。具体的,1个无线帧可以包括多个时域符号,不同的通信组可以使用不同的时域符号,以实现通信组之间的TDM资源复用方式。
在该示例中,例如,对于降噪系统,每个降噪设备都需要在一个无线帧内发送一次数据,此时上述超帧、无线帧级别的TDM复用方式不能满足要求,因此,引入了符号级别的TDM复用方式。
示例性的,图14为短距离无线通信系统中通信组之间使用不同时域符号的分布示意图。如图14所示,1个无线帧内包括10个符号,其中,4个C链路符号、4个T链路符号和分别设置在C链路符号和T链路符号之间的保护间隔(2个符号)。可选的,在无线帧0内,第一通信组使用2个C链路符号和2个T链路符号,第二通信组使用2个C链路符号和2个T链路符号;在无线帧1内,第一通信组使用2个C链路符号和2个T链路符号,第二通信组使用1个C链路符号和1个T链路符号,剩余的1个C链路符号和1个T链路符号可以给其他通信组(如第三通信组)使用,具体参见图14所示。
有上述分析可知,在短距离无线通信系统中,多个通信组之间采用TDM方式进行资源复用时,具体可以包括超帧级别、无线帧级别、符号级别的资源复用。通过不同维度的资源复用方式,均能够有效的避免通信组之间的干扰,提高了通信设备之间的传输性能。
示例性的,在本申请的另一种实施例中,每个通信组使用的时域资源包括以下至少一种:无线帧,子帧,时隙,时域符号。此时,第一通信组使用的第一时域资源与第二通信组使用的第二时域资源不同,包括:
第一通信组与第二通信组使用的无线帧、子帧、时隙、时域符号中的至少一种不同。
在本实施例中,目标通信系统为新空口无线通信系统,即,3GPP NR系统,此时,时域资源的帧结构可以包括无线帧、子帧、时隙、时域符号等层级。下述简单介绍一下3GPP NR系统中帧结构的组成。
在该3GPP NR系统中,1个无线帧为10ms,包括10个子帧,每个子帧的长度为1ms。每个无线帧包括10*2 μ个时隙,其中,μ表示子载波间隔配置参数,其用于确定子载波间隔的大小。每个子帧所包含的符号数等于每个子帧包含的时隙数乘以每个时隙包含的符号数量。
可理解,在NR系统中,子帧长度为1ms固定不变,每个子帧包含的符号数和每个符号的长度是可变的。由于子载波间隔是可变的,子载波间隔越大,则每个符号的长度越短,而子帧长度固定为1ms不变,所以,子载波间隔越大,一个子帧所包含的符号越多。
可选的,表1为子载波间隔配置参数与子载波间隔的对应关系表。如表1所示,μ等于0时,子载波间隔为15kHz,此时,每个无线帧包括10个时隙,一个时隙的长度是1ms。μ等于1时,子载波间隔为30kHz,此时,一个时隙长度是0.5ms,以此类推。也即,在NR系统中,时隙长度取决于子载波间隔的大小,子载波间隔越宽,时隙的持续时间就越短。
表1子载波间隔配置参数与子载波间隔的对应关系表
μ Δf=2 μ·15[kHz]
0 15
1 30
2 60
3 120
4 240
参照表1所示,在NR系统中,根据μ的取值,有5种可选的子载波间隔,分别是15kHz、30kHz、60kHz、120kHz、240kHz。
基于上述介绍的NR系统的帧结构,如果多个通信组传输的数据或业务对时延要求性不高,则可以在多个通信组之间进行无线帧级别的资源复用,即不同的通信组使用不同的无线帧内的传输资源。
同理,参照上述短距离无线通信系统中,多个通信组之间可以采用超帧-无线帧-时域符号的复用方式,在NR系统中,多个通信组之间也可以采用无线帧-子帧-时隙-时域符号的复用方式。关于NR系统 中,基于无线帧-子帧-时隙-时域符号的复用方式的具体实现与采用超帧-无线帧-时域符号的复用方式类似,此处不再赘述。
上述介绍了多通信组之间的时域资源复用方式,下述介绍一下时域资源复用方式的资源配置方式。
可选的,在本申请的一种实施例中,上述S101(确定第一通信设备所在第一通信组使用的第一时域资源)可以通过如下步骤实现:
根据预配置信息,确定第一通信设备所在第一通信组使用的第一时域资源。
可选地,该预配置信息例如是协议规定,或预先存储到第一通信设备中。
其中,该预配置信息包括:通信组与时域资源之间的映射关系。
可选的,通信组与时域资源之间的映射关系是基于以下信息中的至少一种确定的:通信组包括的通信设备数量,通信组内待传输业务的数据特征。
示例性的,针对短距离无线通信系统中,可以通过系统预配置信息的方式实现超帧级别、无线帧级别或符号级别的TDM资源复用。
具体的,对于车内短距通信系统,车辆内有几个通信组通常是可以预先获知的,例如,在车辆出厂的时候可以确定车内是否包括无线打火系统、座舱控制系统、降噪系统等,并且可以获知各种系统中的通信设备数量,以及每个通信组内传输的业务数据的一些特征,如数据包大小,发送频率,QoS属性等。因此,在车辆出厂之前,首先基于每个通信组包括的通信设备数量和/或通信组内待传输业务的数据特征等,预先配置每个通信组与所使用时域资源的映射关系,即通过预配置的方式为各个通信组分配不同的超帧资源或无线帧资源或时域符号资源,以使得不同通信组之间在不同的时间内对传输资源进行复用。
在本申请的实施例中,在第一通信设备有通信需求时,可以首先确定出其所在的第一通信组,进而再获取系统中的预配置信息,再根据该预配置信息包括的通信组与时域资源的映射关系,确定出该第一通信组使用的第一时域资源。
可选的,在本申请的另一种实施例中,上述S101(确定第一通信设备所在第一通信组使用的第一时域资源)可以通过如下步骤实现:
从资源协调节点获取第一通信组使用的第一时域资源,该资源协调节点为目标通信系统中具有资源分配能力的一个节点。
在实际应用中,目标通信系统中可以预先将具有资源分配能力的一个节点配置为资源协调节点,这样,在第一通信设备需要确定在第一通信组内进行通信时,可以向该资源协调节点发送资源分配请求,进而基于该资源协调节点分配的时域资源,确定出第一通信组使用的第一时域资源。
可理解,该资源协调节点可以是独立于目标通信系统包括的多个通信组的一个节点,例如,车辆的主控制器,也可以是某个通信组中的组头通信设备或中央控制节点。此处,不对资源协调节点的具体实现进行限定。
作为一种示例,若车内短距离通信系统中存在的多个通信组,且这些通信组之间可能是没有信息交互的,此时,可以在该目标资源中根据实际场景需要确定一个资源协调节点,用于为各个通信组分配传输资源。
作为另一种示例,该资源协调节点是目标通信系统中满足预设条件的目标通信组中的中央控制节点。
可选的,对于目标通信系统,可以基于设置的预先条件,从该目标通信系统包括的多个共存的通信组中确定出一个目标通信组,进而在该目标通信组中确定出该资源协调节点。可选的,该预设条件可以包括但不局限于包括持续在工作状态,传输数据的类型(如降噪业务数据)等,此处不再赘述。
对于车内短距离通信系统,车辆内虽然可能存在多个通信组,但并不是各个通信组一直都有数据传输,例如,无线打火系统、座舱控制系统等,其仅在特定的条件下才运行。而对于降噪系统,只要车辆是点火状态,就会一直处于运行状态,因此,可以将该降噪系统作为一个基础的通信组或通信子系统,称为目标通信组,进而将该目标通信组的组头通信设备或中央控制节点确定为资源协调节点,以用于为其他的通信组分配传输资源。
同理,在本实施例中,从资源协调节点获取的第一通信组使用的第一时域资源可以是超帧资源、无线帧资源、符号资源中的任意一种,此处不再赘述。
此外,在本申请的实施例中,上述从资源协调节点获取第一通信组使用的第一时域资源可以通过如下方式实现:
根据资源协调节点发送的资源配置信令,确定第一通信组使用的第一时域资源。
可选的,在本申请的实施例中,资源协调节点为每个通信组配置时域资源后,会在一定的条件下通过资源配置信令方式将其发送给通信组内的各个通信设备,从而使得该第一通信设备可以根据从资源 协调节点接收到的资源配置信令,确定第一通信组使用的第一时域资源。
由上述分析可知,不同通信组之间可以通过预配置或者资源协调节点配置的方式实现时分资源复用,分别为每个通信组配置不同的可用时域资源,有效避免了通信组之间的传输干扰。
示例性的,资源协调节点可以通过广播信息、系统信息(例如,主信息块(master information block,MIB)、系统信息块(system information block,SIB))、无线资源控制(radio resource control,RRC)信息等方式中的任意一种方式将资源配置指令发送给每个通信组,从而实现为多个通信组分配传输资源的目的。
示例性的,资源配置信令包括如下至少一种:比特位图、第一时域资源的起始位置、第一时域资源的长度、第一索引。
其中,比特位图用于指示第一通信组使用的第一时域资源;比特位图中的比特位长度用于确定第一通信组的第一时域资源的重复周期。
可选的,资源配置信令中包括比特位图,即通过比特位图来指示为第一通信组分配的时域资源信息,例如,超帧资源信息、无线帧资源信息和/或时域符号信息等。
作为一种示例,通过比特位图来指示为第一通信组分配的超帧信息时,假设比特位图的长度是M比特,其中,每个比特对应一个超帧,即分配的资源以M个超帧为周期进行重复,M为正整数。
示例性的,根据上述图12所示的不同通信组使用的超帧资源的分布示意图可知,第一通信组使用的超帧资源为超帧0、超帧2、超帧4、超帧6,第二通信组使用的超帧资源为超帧1、超帧3、超帧5、超帧7。若比特位图的长度是8比特,则第一通信组接收到的资源配置信令中的比特位图为10101010,第二通信组接收到的资源配置信令中的比特位图为01010101,即每8个超帧中的超帧0、超帧2、超帧4、超帧6分给第一通信组,超帧1、超帧3、超帧5、超帧7分给第二通信组。
作为另一种示例,通过比特位图来指示为第一通信组分配的无线帧信息时,假设比特位图的长度是N比特,其中,每个比特对应一个无线帧,即分配的资源以N个无线帧为周期进行重复,N为正整数。
示例性的,根据上述图13所示的无线帧在超帧中的分布示意图,若比特位图的长度是8比特,则在以无线帧0为起点的每个8比特资源中,第一通信组使用的无线帧资源为无线帧1,第二通信组使用的无线帧资源为无线帧0、无线帧2、无线帧4、超帧6,第三通信组使用的无线帧资源为无线帧3、无线帧5、无线帧7。因而,第一通信组接收到的资源配置信令中的比特位图为01000000,第二通信组接收到的资源配置信令中的比特位图为10101010,第三通信组接收到的资源配置信令中的比特位图为00010101,并且每个通信组可用的无线帧以8个无线帧为周期进行重复。
可以理解的是,在本申请的实施例中,还可以通过两级比特位图的方式来指示为第一通信组分配的无线帧资源信息。其中,第一级比特位图包括M个比特,用于指示第一通信组可使用的超帧资源,第二级比特位图包括N个比特,用于指示第一通信组在可使用的超帧内可以使用的无线帧信息。
示例性的,图15为第一通信组和第二通信组使用的超帧资源的分布示意图。图16为图15中各个超帧中第一通信组和第二通信组使用的无线帧资源的分布示意图。图15和图16所示的第一通信组和第二通信组分别使用的超帧资源以及无线帧资源可以通过两级比特位图的形式进行表示,第一级比特位图用于指示第一通信组和第二通信组分别使用的超帧资源,第二级比特位图用于指示在每个超帧资源内每个通信组可用的无线帧资源。
可选的,对于图15所示的各个超帧资源,第一级比特位图的长度是8比特,基于第一通信组和第二通信组分别使用的超帧资源,第一通信组确定的第一级比特位图为11101010,第二通信组确定的第一级比特位图为01010101,其中,两个第一级比特位图的第二个比特位都为1,即第一通信组和第二通信组都可以使用超帧1的传输资源。由于第一级比特位图的长度是8比特,即第一通信组或第二通信组可使用的超帧信息以8个超帧为周期进行重复。
可选的,参照图16所示的每个超帧包括的无线帧资源,图16的(a)表示超帧0或超帧2或超帧4或超帧6中被占用的无线帧资源,第一通信组确定的第二级比特位图为01000000,即在超帧0或超帧2或超帧4或超帧6中,第一通信组可以使用的时域资源是每8个无线帧中的第2个无线帧,并以8个无线帧为周期进行重复。
图16的(b)表示超帧1中被占用的无线帧资源,即在超帧1中,第一通信组确定的第二级比特位图为01000000,第二通信组确定的第二级比特位图为10101010,并分别以8个无线帧为周期进行重复。
图16的(c)表示超帧3或超帧5或超帧7中被占用的无线帧资源,第二通信组确定的第二级比特位图为10101010,即在超帧3或超帧5或超帧7中,第二通信组可以使用的时域资源是每8个无线帧中的第1、3、5、7个无线帧(对应的无线帧索引为0、2、4、6),并以8个无线帧为周期进行重复。
因而,如图15和图16所示,根据第一级比特位图指示的每个通信组可用的超帧信息以及第二级比特位图指示的在每个超帧内每个通信组可用的无线帧信息,即可确定各个通信组可用的超帧以及在相应的超帧内的无线帧信息。
作为再一种示例,本申请实施例中,还可以通过比特位图来指示在一个无线帧内第一通信组可用的时域符号信息。假设比特位图的长度是K比特,其中,每个比特对应一个有效符号,K为正整数。由于一个无线帧内有效符号的个数是确定的,如车内短距通信系统中正常CP的情况下一个无线帧包括8个有效符号,因此,可选地,比特位图的长度K与无线帧内有效符号的个数相同。
示例性的,假设比特位图的长度是8比特,比特位图中的1个比特位对应无线帧中的一个有效符号(即不包括保护间隔符号),则基于图14所示的不同通信组使用的符号资源的分布示意图可知,对于图14中的无线帧0,第一通信组确定的比特位图为11001100,第二通信组确定的比特位图为00110011;对于图14中的无线帧1,第一通信组确定的比特位图为11001100,第二通信组确定的比特位图为00010001。
可选的,在本申请的实施例中,还可以通过三级比特位图的方式指示不同通信组可用的时域资源信息。示例性的,参照上述图15和图16所示的通过2级比特位图分别指示可用的超帧资源以及在该超帧资源内可用的无线帧信息的方案,进一步的,还可以引入第三级比特位图,利用第三级比特位图指示在可用的无线帧中的符号信息。通过三级比特位图的方式指示不同通信组可用的时域资源信息的方案与上述通过二级比特位图的方式指示不同通信组可用的时域资源信息的方案类似,此处不再赘述。
在本申请的另一种实施例中,还可以通过指定第一时域资源的起始位置的方式来指示第一通信组使用的第一时域资源,或者指定第一时域资源的起始位置和长度的方式来指示第一通信组使用的第一时域资源。
可选的,在通过指定第一时域资源的起始位置的方式来指示第一通信组使用的第一时域资源时,第一时域资源的长度可以通过预先配置的方式确定,此处不再赘述。
示例性的,通过在一个无线帧中指定可用符号的起始位置与长度来指示。
例如,参照上述图14所示的不同通信组使用的符号资源的分布示意图,对于图14中的无线帧0,第一通信组的C链路符号的起始位置是0,长度是2,T链路符号的起始位置是5,长度是2;第二通信组的C链路符号的起始位置是2,长度是2,T链路符号的起始位置是7,长度是2。
相应的,对于图14中的无线帧1,第一通信组的C链路符号的起始位置是0,长度是2,T链路符号的起始位置是5,长度是2;第二通信组的C链路符号的起始位置是3,长度是1,T链路符号的起始位置是8,长度是1。
可以理解的是,本申请的实施例中的某些场景下,也可以通过指定无线帧的起始位置与长度的方式确定各个通信组使用的无线帧信息等。本申请实施例并不对其进行限定,此处不再赘述。
在本申请的再一种实施例中,还可以通过指定时域资源的索引信息以及索引信息和预先配置的对应关系来指示每个通信组使用的时域资源。
示例性的,在第一通信设备从资源协调节点接收到的资源配置信令中包括第一索引时,上述根据资源协调节点发送的资源配置信令,确定第一通信组使用的第一时域资源可以通过如下步骤实现:
根据该第一索引和预先配置的对应关系确定第一通信组使用的第一时域资源。
其中,预先配置的对应关系包括如下任意一种:索引和时隙结构的对应关系、索引和无线帧符号配置的对应关系。
可选的,第一通信设备中预先配置有时域资源与索引之间的对应关系,在接收到的资源配置指令中包括第一索引时,该第一通信设备可以根据该第一索引与预先配置的对应关系确定第一通信组使用的第一时域资源。
示例性的,表2为无线帧内C符号和T符号的配比信息。第一通信设备根据接收到的第一索引和表2示出的无线帧内C符号和T符号的配比信息,确定出第一时域资源,即无线帧内的符号配比。
例如,若第一索引为10,则查询表2可以确定出该第一时域资源在无线帧内的占用4个符号,再根据预先配置的第一时域资源的起始位置或资源配置指令包括的第一时域资源的起始位置,即可确定出第一时域资源的位置、长度、以及每个符号的类别。
再例如,若第一索引为1,则查询表2可以确定出该索引所对应的8个符号,再根据预先配置的第一时域资源的起始位置或资源配置指令包括的第一时域资源的起始位置和长度,例如,第一时域资源的起始位置=0、第一时域资源的长度=4,即可确定第一时域资源位于一个无线帧中起始位置开始的4个符号,并且该4个符号的方向为截取该索引对应的8个符号中的前4个。
再例如,若第一索引为2,则查询表2可以确定出该该索引所对应的8个符号,再根据预先配置的第一时域资源的起始位置或资源配置指令包括的第一时域资源的起始位置和长度,例如,第一时域资源的起始位置=4、第一时域资源的长度=4,即可确定第一时域资源位于一个无线帧中符号索引为4(即无线帧中第5个符号)开始的4个符号,并且该4个符号的方向为截取该索引对应的8个符号中的后4个。
再例如,若第一索引为2,则查询表2可以确定出该索引对应的8个符号,再根据预先配置的第一时域资源的起始位置或资源配置指令包括的第一时域资源的起始位置和长度,例如,第一时域资源的起始位置=2、第一时域资源的长度=4,即可确定第一时域资源位于一个无线帧中符号索引为2(即无线帧中第3个符号)开始的4个符号,并且该4个符号的方向为截取该索引对应的8个符号中的第2个符号至第5个符号,或者,该4个符号的方向为截取该索引对应的8个符号中的前4个符号,或者,该4个符号的方向为截取该索引对应的8个符号中的后4个符号。
表2:无线帧C符号和T符号的配比信息
Figure PCTCN2020105615-appb-000001
可以理解的是,本申请的实施例中的某些场景下,也可以通过指定索引和无线帧符号配置的对应关系确定各个通信组使用的无线帧信息等。本申请实施例并不对其进行限定,此处不再赘述。
上述各实施例以及附图均是基于短距离无线通信系统中的帧结构介绍的本申请的时分复用方案,本申请的技术方案对于新空口无线通信系统同样适用,此处不再赘述。
由上述分析可知,在本申请的实施例中,在多个通信组共存的目标通信系统中,通过限定不同的通信组使用不同的时域资源,有效避免了通信组之间的干扰问题,提高了通信设备之间的传输性能。
上述介绍了本申请实施例提到的通信方法的具体实现,下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
图17为本申请提供的通信装置实施例一的结构示意图。该装置可以集成在第一通信设备中,也可以通过第一通信设备实现。如图17所示,该通信装置可以包括:处理模块1701和收发模块1702。
其中,处理模块1701,用于确定所属第一通信设备所在第一通信组使用的第一时域资源,所述第一通信组使用的第一时域资源与第二通信组使用的第二时域资源不同,所述第一通信组和所述第二通信组是目标通信系统内共存的多个通信组中的任意两个;
收发模块1702,用于利用所述第一时域资源与所述第一通信组中的其他通信设备进行通信。
在本申请实施例的一种可能设计中,每个通信组使用的时域资源包括以下至少一种:超帧,无线帧,时域符号;
所述第一通信组使用的第一时域资源与第二通信组使用的第二时域资源不同,包括:
所述第一通信组与所述第二通信组使用的超帧、无线帧、时域符号中的至少一种不同。
在本申请实施例的另一种可能设计中,每个通信组使用的时域资源包括以下至少一种:无线帧,子帧,时隙,时域符号;
所述第一通信组使用的第一时域资源与第二通信组使用的第二时域资源不同,包括:
所述第一通信组与所述第二通信组使用的无线帧、子帧、时隙、时域符号中的至少一种不同。
在本申请实施例的再一种可能设计中,处理模块1701,具体用于根据预配置信息,确定所述第一通信设备所在第一通信组使用的第一时域资源,所述预配置信息包括:通信组与时域资源之间的映射关系。
可选的,所述通信组与时域资源之间的映射关系是基于以下信息中的至少一种确定的:所述通信组 包括的通信设备数量,所述通信组内待传输业务的数据特征。
在本申请实施例的又一种可能设计中,处理模块1701,具体用于从资源协调节点获取所述第一通信组使用的第一时域资源,所述资源协调节点为所述目标通信系统中具有资源分配能力的一个节点。
可选的,所述资源协调节点是所述目标通信系统中满足预设条件的目标通信组中的中央控制节点。
示例性的,处理模块1701,用于从资源协调节点获取所述第一通信组使用的第一时域资源,具体为:
处理模块1701,具体用于根据所述资源协调节点发送的资源配置信令,确定所述第一通信组使用的第一时域资源。
在本申请的实施例中,所述资源配置信令包括如下至少一种:比特位图、所述第一时域资源的起始位置与长度的组合;
所述比特位图用于指示所述第一通信组使用的第一时域资源。
可选的,所述比特位图中的比特位长度用于确定所述第一通信组的第一时域资源的重复周期。
在本申请实施例的又一种可能设计中,当所述资源配置信令包括第一索引时,所述处理模块,具体用于根据所述第一索引和预先配置的对应关系,确定所述第一通信组使用的第一时域资源。
可选的,所述预先配置的对应关系包括如下任意一种:
索引和时隙结构的对应关系、索引和无线帧符号配置的对应关系。
本实施例提供的装置,用于执行前述方法所示实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
需要说明的是,应理解以上装置的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
示例性的,本申请的实施例还提供一种通信装置,该通信装置包括处理器,该处理器用于从存储器中调用并运行计算机程序,使得安装有所述通信装置的设备执行上述方法实施例的技术方案。
图18为本申请提供的通信装置实施例二的结构示意图。图18所示,该通信装置180包括处理器1801,处理器1801可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图18所示,通信装置180还可以包括存储器1802。其中,处理器1801可以从存储器1802中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1802可以是独立于处理器1801的一个单独的器件,也可以集成在处理器1801中。
可选地,该通信装置180还可以包括输入接口1803。其中,处理器1801可以控制该输入接口1803与其他设备或装置进行通信,具体地,可以获取其他设备或装置发送的信息或数据。
可选地,该通信装置180还可以包括输出接口1804。其中,处理器1801可以控制该输出接口1804与其他设备或装置进行通信,具体地,可以向其他设备或装置输出信息或数据。
可选地,该装置可应用于本申请实施例中的通信设备,并且该装置可以实现本申请实施例的各个方法中由通信设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的装置可以为芯片,该芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图19是本申请实施例提供的一种通信设备的结构图。如图19所示,该通信设备190包括处理器1901和存储器1902。存储器1902上存储有可在处理器1901上运行的计算机指令,这样处理器1901可以从存储器1902中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图19所示,通信设备190还可以包括收发器1903,处理器1901可以控制该收发器1903与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1903可以包括发射机和接收机。收发器1903还可以进一步包括天线,天线的数量可以为一个或多个。
可选的,该通信设备还可以包括系统总线1904,上述存储器1902和收发器1903通过该系统总线1904与处理器1901连接并完成相互间的通信。
可理解,该通信设备190具体可为本申请实施例的第一通信设备,其可以实现本申请实施例的各个方法中由第一通信设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。
图20是本申请实施例提供的一种通信系统的结构示意图。如图20所示,该通信系统200包括第一通信设备2001和其他通信设备2002。
其中,该第一通信设备2001可以用于实现上述方法中由第一通信设备实现的相应的功能,为了简洁,在此不再赘述。
示例性的,该通信系统可以称为车联网系统或者D2D系统。
可选的,本申请的实施例中,其他通信设备2002可以是终端设备,也可以是网络设备。在其他通信设备2002为网络设备时,其可以为第一通信设备2001提供服务。
在本实施例中,关于第一通信设备2001的具体实现方式可参见上述实施例中的记载,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令被处理器执行时用于实现前述方法实施例的技术方案。
本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行前述方法实施例的技术方案。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述方法实施例的技术方案。
本申请实施例还提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行前述方法实施例的技术方案。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行前述方法实施例的技术方案。
示例性的,该芯片可以包括存储器、处理器,存储器中存储代码和数据,该存储器与处理器耦合,该处理器运行存储器中的代码使得该芯片用于执行上述方法实施例的技术方案。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或” 的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。

Claims (31)

  1. 一种通信方法,其特征在于,应用于第一通信设备,所述方法包括:
    确定所述第一通信设备所在第一通信组使用的第一时域资源,所述第一通信组使用的第一时域资源与第二通信组使用的第二时域资源不同,所述第一通信组和所述第二通信组是目标通信系统内共存的多个通信组中的任意两个;
    利用所述第一时域资源与所述第一通信组中的其他通信设备进行通信。
  2. 根据权利要求1所述的方法,其特征在于,每个通信组使用的时域资源包括以下至少一种:超帧,无线帧,时域符号;
    所述第一通信组使用的第一时域资源与第二通信组使用的第二时域资源不同,包括:
    所述第一通信组与所述第二通信组使用的超帧、无线帧、时域符号中的至少一种不同。
  3. 根据权利要求1所述的方法,其特征在于,每个通信组使用的时域资源包括以下至少一种:无线帧,子帧,时隙,时域符号;
    所述第一通信组使用的第一时域资源与第二通信组使用的第二时域资源不同,包括:
    所述第一通信组与所述第二通信组使用的无线帧、子帧、时隙、时域符号中的至少一种不同。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述确定所述第一通信设备所在第一通信组使用的第一时域资源,包括:
    根据预配置信息,确定所述第一通信设备所在第一通信组使用的第一时域资源,所述预配置信息包括:通信组与时域资源之间的映射关系。
  5. 根据权利要求4所述的方法,其特征在于,所述通信组与时域资源之间的映射关系是基于以下信息中的至少一种确定的:所述通信组包括的通信设备数量,所述通信组内待传输业务的数据特征。
  6. 根据权利要求1-3任一项所述的方法,其特征在于,所述确定所述第一通信设备所在第一通信组使用的第一时域资源,包括:
    从资源协调节点获取所述第一通信组使用的第一时域资源,所述资源协调节点为所述目标通信系统中具有资源分配能力的一个节点。
  7. 根据权利要求6所述的方法,其特征在于,所述资源协调节点是所述目标通信系统中满足预设条件的目标通信组中的中央控制节点。
  8. 根据权利要求6或7所述的方法,其特征在于,所述从资源协调节点获取所述第一通信组使用的第一时域资源,包括:
    根据所述资源协调节点发送的资源配置信令,确定所述第一通信组使用的第一时域资源。
  9. 根据权利要求8所述的方法,其特征在于,所述资源配置信令包括如下至少一种:比特位图、所述第一时域资源的起始位置、所述第一时域资源的长度、第一索引;
    所述比特位图用于指示所述第一通信组使用的第一时域资源。
  10. 根据权利要求9所述的方法,其特征在于,所述比特位图中的比特位长度用于确定所述第一通信组的第一时域资源的重复周期。
  11. 根据权利要求9所述的方法,其特征在于,当所述资源配置信令包括第一索引时,所述根据所述资源协调节点发送的资源配置信令,确定所述第一通信组使用的第一时域资源,包括:
    根据所述第一索引和预先配置的对应关系,确定所述第一通信组使用的第一时域资源。
  12. 根据权利要求11所述的方法,其特征在于,所述预先配置的对应关系包括如下任意一种:
    索引和时隙结构的对应关系、索引和无线帧符号配置的对应关系。
  13. 一种通信装置,其特征在于,包括:处理模块和收发模块;
    所述处理模块,用于确定所属第一通信设备所在第一通信组使用的第一时域资源,所述第一通信组使用的第一时域资源与第二通信组使用的第二时域资源不同,所述第一通信组和所述第二通信组是目标通信系统内共存的多个通信组中的任意两个;
    所述收发模块,用于利用所述第一时域资源与所述第一通信组中的其他通信设备进行通信。
  14. 根据权利要求13所述的装置,其特征在于,每个通信组使用的时域资源包括以下至少一种:超帧,无线帧,时域符号;
    所述第一通信组使用的第一时域资源与第二通信组使用的第二时域资源不同,包括:
    所述第一通信组与所述第二通信组使用的超帧、无线帧、时域符号中的至少一种不同。
  15. 根据权利要求13所述的装置,其特征在于,每个通信组使用的时域资源包括以下至少一种:无线帧,子帧,时隙,时域符号;
    所述第一通信组使用的第一时域资源与第二通信组使用的第二时域资源不同,包括:
    所述第一通信组与所述第二通信组使用的无线帧、子帧、时隙、时域符号中的至少一种不同。
  16. 根据权利要求13-15任一项所述的装置,其特征在于,所述处理模块,具体用于根据预配置信息,确定所述第一通信设备所在第一通信组使用的第一时域资源,所述预配置信息包括:通信组与时域资源之间的映射关系。
  17. 根据权利要求16所述的装置,其特征在于,所述通信组与时域资源之间的映射关系是基于以下信息中的至少一种确定的:所述通信组包括的通信设备数量,所述通信组内待传输业务的数据特征。
  18. 根据权利要求13-15任一项所述的装置,其特征在于,所述处理模块,具体用于从资源协调节点获取所述第一通信组使用的第一时域资源,所述资源协调节点为所述目标通信系统中具有资源分配能力的一个节点。
  19. 根据权利要求18所述的装置,其特征在于,所述资源协调节点是所述目标通信系统中满足预设条件的目标通信组中的中央控制节点。
  20. 根据权利要求18或19所述的装置,其特征在于,所述处理模块,用于从资源协调节点获取所述第一通信组使用的第一时域资源,具体为:
    所述处理模块,具体用于根据所述资源协调节点发送的资源配置信令,确定所述第一通信组使用的第一时域资源。
  21. 根据权利要求20所述的装置,其特征在于,所述资源配置信令包括如下至少一种:比特位图、所述第一时域资源的起始位置、所述第一时域资源的起始位置长度、第一索引;
    所述比特位图用于指示所述第一通信组使用的第一时域资源。
  22. 根据权利要求21所述的装置,其特征在于,所述比特位图中的比特位长度用于确定所述第一通信组的第一时域资源的重复周期。
  23. 根据权利要求21所述的装置,其特征在于,当所述资源配置信令包括第一索引时,所述处理模块,具体用于根据所述第一索引和预先配置的对应关系,确定所述第一通信组使用的第一时域资源。
  24. 根据权利要求23所述的装置,其特征在于,所述预先配置的对应关系包括如下任意一种:
    索引和时隙结构的对应关系、索引和无线帧符号配置的对应关系。
  25. 一种通信装置,其特征在于,所述装置包括处理器;
    所述处理器用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行上述权利要求1-12任一项所述的方法。
  26. 一种通信设备,其特征在于,包括:
    处理器、存储器、收发器,以及与其他设备进行通信的接口;
    所述存储器存储计算机指令;
    所述处理器执行所述存储器存储的计算机指令,使得所述处理器执行上述权利要求1-12任一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令被处理器执行时用于实现上述权利要求1-12任一项所述的方法。
  28. 一种计算机程序产品,其特征在于,包括计算机指令,所述计算机指令被计算机执行时用于实现上述权利要求1-12任一项所述的方法。
  29. 一种计算机程序,其特征在于,所述计算机程序被计算机执行时用于实现权利要求1-12任一项所述的方法。
  30. 一种运行指令的芯片,其特征在于,所述芯片包括存储器、处理器,所述存储器中存储代码和数据,所述存储器与所述处理器耦合,所述处理器运行所述存储器中的代码使得所述芯片用于执行上述权利要求1-12任一项所述的方法。
  31. 一种通信系统,其特征在于,包括:至少一个通信设备,所述通信设备包括上述权利要求13-24任一项所述的通信装置。
PCT/CN2020/105615 2020-07-29 2020-07-29 通信方法、装置、设备及存储介质 WO2022021161A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020237005908A KR20230044447A (ko) 2020-07-29 2020-07-29 통신 방법, 장치, 디바이스 및 저장 매체
CN202310480899.0A CN116406009A (zh) 2020-07-29 2020-07-29 通信方法、装置、设备及存储介质
JP2023503507A JP2023539996A (ja) 2020-07-29 2020-07-29 通信方法、装置、デバイス及び記憶媒体
CN202080100784.9A CN115606280A (zh) 2020-07-29 2020-07-29 通信方法、装置、设备及存储介质
EP20947263.8A EP4192151A4 (en) 2020-07-29 2020-07-29 COMMUNICATION METHOD, DEVICE AND DEVICE, AND STORAGE MEDIUM
PCT/CN2020/105615 WO2022021161A1 (zh) 2020-07-29 2020-07-29 通信方法、装置、设备及存储介质
US18/091,494 US20230198727A1 (en) 2020-07-29 2022-12-30 Communication method, apparatus and device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/105615 WO2022021161A1 (zh) 2020-07-29 2020-07-29 通信方法、装置、设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/091,494 Continuation US20230198727A1 (en) 2020-07-29 2022-12-30 Communication method, apparatus and device and storage medium

Publications (1)

Publication Number Publication Date
WO2022021161A1 true WO2022021161A1 (zh) 2022-02-03

Family

ID=80036995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105615 WO2022021161A1 (zh) 2020-07-29 2020-07-29 通信方法、装置、设备及存储介质

Country Status (6)

Country Link
US (1) US20230198727A1 (zh)
EP (1) EP4192151A4 (zh)
JP (1) JP2023539996A (zh)
KR (1) KR20230044447A (zh)
CN (2) CN116406009A (zh)
WO (1) WO2022021161A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017037047A1 (en) * 2015-09-04 2017-03-09 Sony Corporation Wireless telecommunications system
CN107690127A (zh) * 2016-08-04 2018-02-13 北京信威通信技术股份有限公司 一种通信资源的确定方法及装置
CN108029125A (zh) * 2015-09-11 2018-05-11 华为技术有限公司 一种通信设备以及用于v2x通信的方法
CN109257826A (zh) * 2012-12-05 2019-01-22 索尼公司 通信控制装置、通信控制方法和终端装置
CN110545524A (zh) * 2018-05-28 2019-12-06 华为技术有限公司 资源分配方法以及通信设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109257826A (zh) * 2012-12-05 2019-01-22 索尼公司 通信控制装置、通信控制方法和终端装置
WO2017037047A1 (en) * 2015-09-04 2017-03-09 Sony Corporation Wireless telecommunications system
CN108029125A (zh) * 2015-09-11 2018-05-11 华为技术有限公司 一种通信设备以及用于v2x通信的方法
CN107690127A (zh) * 2016-08-04 2018-02-13 北京信威通信技术股份有限公司 一种通信资源的确定方法及装置
CN110545524A (zh) * 2018-05-28 2019-12-06 华为技术有限公司 资源分配方法以及通信设备

Also Published As

Publication number Publication date
US20230198727A1 (en) 2023-06-22
KR20230044447A (ko) 2023-04-04
JP2023539996A (ja) 2023-09-21
EP4192151A1 (en) 2023-06-07
CN116406009A (zh) 2023-07-07
CN115606280A (zh) 2023-01-13
EP4192151A4 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
TWI805641B (zh) D2d通訊中資源配置的方法、終端設備和網路設備
CN108370565B (zh) 用于副链路数据传输的方法以及终端
CN111615192B (zh) 传输数据的方法和通信装置
JP2017520148A (ja) D2d通信における異なるcp長の共存設定
Karabulut et al. OEC-MAC: A novel OFDMA based efficient cooperative MAC protocol for VANETS
WO2020025042A1 (zh) 资源配置的方法和终端设备
US20220110075A1 (en) Information transmission method and apparatus, and storage medium
WO2020015494A1 (zh) 一种数据传输方法、网络设备、通信设备及存储介质
TW202013919A (zh) 一種資料傳輸方法、終端設備及網路設備
WO2020087226A1 (zh) 无线通信的方法、终端设备和网络设备
EP4185038A1 (en) Communication method and device
WO2021168826A1 (zh) 资源排除方法、装置、设备及存储介质
US20230189248A1 (en) Method and device for communication
WO2021114043A1 (zh) 设备到设备的通信方法和通信装置
US20230232382A1 (en) Procedures for coreset sharing
WO2022021161A1 (zh) 通信方法、装置、设备及存储介质
EP3706481B1 (en) Data transmission method in internet of vehicles and terminal
CN116472763A (zh) 资源确定方法、第一终端设备和第二终端设备
CN116746244A (zh) 信息确定方法、信息传输方法、装置、设备及存储介质
WO2023044677A1 (zh) 一种测量间隔增强的方法及装置、终端设备、网络设备
WO2022205481A1 (zh) 无线通信方法、第一设备和第二设备
WO2021163929A1 (zh) 业务传输的方法和通信装置
WO2022150990A1 (zh) 一种无线通信的方法及装置、通信设备
WO2023044716A1 (zh) 信道接入方法、设备及存储介质
CN112640495B (zh) 针对组播业务的配置管理方法及相关产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947263

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503507

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237005908

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020947263

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020947263

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE