WO2022021052A1 - 电容式压力传感器和电子设备 - Google Patents

电容式压力传感器和电子设备 Download PDF

Info

Publication number
WO2022021052A1
WO2022021052A1 PCT/CN2020/105125 CN2020105125W WO2022021052A1 WO 2022021052 A1 WO2022021052 A1 WO 2022021052A1 CN 2020105125 W CN2020105125 W CN 2020105125W WO 2022021052 A1 WO2022021052 A1 WO 2022021052A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
pressure sensor
support structure
capacitive pressure
substrate
Prior art date
Application number
PCT/CN2020/105125
Other languages
English (en)
French (fr)
Inventor
娄迅
沈健
王红超
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2020/105125 priority Critical patent/WO2022021052A1/zh
Priority to CN202080044822.3A priority patent/CN114072651A/zh
Publication of WO2022021052A1 publication Critical patent/WO2022021052A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means

Definitions

  • the present application relates to the technical field of pressure sensors, and in particular, to a capacitive pressure sensor and electronic equipment.
  • a pressure sensor is a device that converts pressure signals into electrical signals and is widely used in consumer, industrial, automotive, medical and other fields. According to the current application principle, pressure sensors are mainly divided into piezoresistive and capacitive pressure sensors. Compared with piezoresistive pressure sensors, capacitive pressure sensors have the advantages of higher temperature stability, low power consumption, and high sensitivity.
  • the purpose of some embodiments of the present application is to provide a capacitive pressure sensor and an electronic device, which are beneficial to improve the linearity of the capacitive pressure sensor without increasing the size of the capacitive pressure sensor.
  • An embodiment of the present application provides a capacitive pressure sensor, including: a substrate; a first electrode, wherein the first electrode is a ring-shaped electrode containing a hollow area, and the first electrode is fixed on the upper surface of the substrate ;
  • a first support structure the first support structure is an insulating hollow cylinder structure, the first support structure is fixed on the upper surface of the substrate, and surrounds the first electrode, the first support structure is There is a height difference between the upper surface of a support structure and the first electrode; and a second electrode, the second electrode is a solid electrode, and the peripheral portion of the second electrode is fixed to the first support structure and encloses a first cavity with the first electrode, the first support structure and the substrate.
  • An embodiment of the present application further provides an electronic device, including a capacitance detection circuit, a processor and the above-mentioned capacitive pressure sensor; the capacitance detection circuit is connected to the pressure sensor, and is used for detecting the first electrode of the pressure sensor and the capacitance value between the second electrode; the processor is connected to the capacitance detection circuit for converting the capacitance value into a pressure value.
  • the inventor of the present application found that the upper electrode and the lower electrode of the traditional capacitive pressure sensor are arranged in a completely facing and overlapping arrangement. They are all solid electrodes with equal areas and facing each other. The electric field lines formed between the upper electrode and the lower electrode perpendicular to the upper and lower electrodes. According to the calculation formula of capacitance It can be seen that the capacitance is inversely proportional to the effective distance between the plates. Corresponding to the capacitive pressure sensor, the change of the effective distance between the plates can correspond to the change of the external pressure. The smaller the distance, the larger the detected capacitance. That is, the deformation amount of the upper electrode is inversely proportional to the effective distance between the plates, so the linearity of the conventional capacitive pressure sensor is poor.
  • the first electrode is a ring-shaped electrode with a hollow area, and is fixed on the upper surface of the substrate;
  • the first support structure is an insulating hollow cylinder structure, the first support structure is fixed on the upper surface of the substrate and surrounds the first electrode, and there is a height difference between the upper surface of the first support structure and the first electrode;
  • the second electrode is a solid electrode, and the second electrode is a solid electrode.
  • the peripheral portion of the electrode is fixed on the upper surface of the first support structure, and encloses a first cavity with the first electrode, the first support structure and the substrate.
  • the effective facing area between the first electrode and the second electrode can be reduced, so that the direction of the field strength between the first electrode and the second electrode and the distance between the first electrode and the second electrode.
  • the non-vertical angle increases the effective distance between the first electrode and the second electrode along the field strength direction. That is, if subjected to the same external pressure, the effective distance between the first electrode and the second electrode along the field strength direction increases compared with the first electrode provided with the hollowed-out area compared with the first electrode provided with the hollowed-out area.
  • the detected capacitance is reduced.
  • the detected capacitance change range is reduced, which is beneficial to improve the linearity of the capacitive pressure sensor without increasing the size of the capacitive pressure sensor Spend.
  • the capacitive pressure sensor further includes: a sensing film; the sensing film is fixed to the surface of the second electrode.
  • the sensing film has a certain strength and modulus, and it is not easy to fail under repeated deformation, which is beneficial to increase the reliability of the capacitive pressure sensor.
  • the sensing film is fixed to the lower surface of the second electrode, and the dielectric constant of the sensing film is greater than that of air. That is, there is a sensing film with a dielectric constant greater than that of air between the first electrode and the second electrode. At this time, the dielectric constant of the sensing film will affect the detected capacitance value, and the dielectric constant of the sensing film is greater than that of air.
  • constant according to the formula for calculating capacitance That is, ⁇ is greater than the preset threshold, which is beneficial to increase the detected capacitance value and reduce the influence of stray capacitance, thereby facilitating better pressure detection and improving the accuracy of pressure detection.
  • the plane where the first electrode is located is parallel to the plane where the second electrode is located; the center points of the first electrode and the second electrode are located on the same vertical line perpendicular to the substrate. That is to say, the planes where the first electrode and the second electrode are located are parallel, and the first electrode and the second electrode are concentric in the vertical direction, so that the electric field formed between the first electrode and the second electrode is more uniform. Higher linearity in measurement.
  • the area of the hollowed-out region is between 0.2 times and 1.5 times the area of the first electrode, which is beneficial to take into account the sensitivity and linearity of the capacitive pressure sensor at the same time.
  • the first electrode at least partially faces the second electrode. That is to say, even if the first electrode has a hollow area, there is a solid area facing the first electrode and the second electrode, which is beneficial to improve the linearity without losing too much sensitivity.
  • the first support structure surrounds the first electrode and is in contact with the first electrode, which is conducive to fully and rationally utilizing the inner space of the first support structure belonging to the hollow cylinder structure, thereby facilitating the Reducing the size of the capacitive pressure sensor facilitates the miniature design of the capacitive pressure sensor, thereby making the capacitive pressure sensor suitable for use in miniature devices.
  • the capacitive pressure sensor further includes: a third electrode, a second support structure and a fourth electrode;
  • the third electrode is a ring-shaped electrode containing a hollow area, and the third electrode is fixed on the upper surface of the substrate
  • the second support structure is an insulating hollow cylinder structure, and the second support structure is fixed on the upper surface of the substrate and surrounds the third electrode.
  • the fourth electrode is a solid electrode, and the peripheral part of the fourth electrode is fixed to the second support structure and encloses a second cavity with the third electrode, the second support structure and the substrate;
  • the first electrode is connected with the third electrode, and the second electrode is connected with The fourth electrode is connected.
  • the outer contour shape of the upper surface and the lower surface of the first support structure is the same as the shape of the second electrode, so that the first support structure and the second electrode are more suitable, and it is convenient to use the first support structure reasonably Supporting the second electrode is also beneficial for saving space.
  • the outer contour of the first electrode is: circle or polygon; the shape of the hollow area is: circle or polygon; the shape of the second electrode is: circle or polygon, which is conducive to flexibility according to actual needs
  • the shapes of the first electrode, the second electrode and the hollow area are set to meet different design requirements.
  • the shape of the sensing film is: circle or polygon, which is conducive to flexibly setting the shape of the sensing film according to actual needs, so as to conveniently meet different design requirements.
  • FIG. 1 is a schematic cross-sectional view of a capacitive pressure sensor according to a first embodiment of the present application
  • FIG. 2 is a top view of the circular first electrode and the second electrode according to the first embodiment of the present application;
  • FIG. 3 is a top view of a first electrode and a second electrode having a rectangular shape according to the first embodiment of the present application;
  • FIG. 4 is a top view of the first electrode and the second electrode in the shape of a regular hexagon according to the first embodiment of the present application;
  • 5A, 5B, and 5C are comparative schematic diagrams showing that the area of the second electrode in the first embodiment of the present application is fixed and the area of the hollow region in the first electrode is gradually reduced;
  • 6A, 6B and 6C are comparative schematic diagrams showing that the areas of the first electrode and the hollow area are fixed and the area of the second electrode is gradually reduced according to the first embodiment of the present application;
  • FIG. 7 is a schematic cross-sectional view of a capacitive pressure sensor according to a second embodiment of the present application.
  • FIG. 8 is a schematic diagram of a simulation result of simulation performed according to the capacitive pressure sensor in the second embodiment of the present application.
  • FIG. 9 is a schematic cross-sectional view of a capacitive pressure sensor according to a third embodiment of the present application.
  • FIG. 10 is a schematic diagram of an electronic device according to a fourth embodiment of the present application.
  • the inventors of the present application found that, in the prior art, the upper electrode and the lower electrode of the traditional capacitive pressure sensor are arranged in a completely facing and overlapping arrangement, and they are all solid electrodes with the same area and facing each other. The electric field lines formed between them are perpendicular to the upper and lower electrodes. According to the calculation formula of capacitance It can be seen that the capacitance is inversely proportional to the effective distance d between the plates, which corresponds to the capacitive pressure sensor, that is, the change of the effective distance between the plates corresponds to the change of the external pressure. The smaller the effective distance, the larger the detected capacitance.
  • embodiments of the present application provide a capacitive pressure sensor to improve the linearity thereof.
  • the first embodiment of the present application relates to a capacitive pressure sensor.
  • the implementation details of the capacitive pressure sensor in this embodiment are described below in detail. The following contents are only provided for the convenience of understanding, and are not necessary to implement this solution.
  • the schematic cross-sectional view of the capacitive pressure sensor in this embodiment includes: a substrate 101 ; a first electrode 103 .
  • the upper surface of the substrate 101; the first support structure 104, the first support structure 104 is an insulating hollow cylinder structure, the first support structure 104 is fixed on the upper surface of the substrate 101, and surrounds the first electrode 103, the first support There is a height difference between the upper surface of the structure 104 and the first electrode; and the second electrode 105, the second electrode 105 is a solid electrode, the peripheral part of the second electrode 105 is fixed on the upper surface of the first supporting structure 104, and
  • the first cavity 106 is enclosed with the first electrode 103 , the first support structure 104 and the substrate.
  • the structure formed among the first electrode 103 , the second electrode 105 , the first support structure 104 , and the first cavity 106 may be called a module 102 .
  • the material of the substrate 101 can be selected from Si, glass, quartz and other materials with weak conductivity or insulating materials.
  • the first electrode 103 can be fixed on the upper surface of the substrate 101 by using a fixing member.
  • a metal film can be evaporated on the substrate 101, which is equivalent to fixing the first electrode 103 on the substrate 101.
  • the evaporated metal film can be understood as the first electrode 103, and there are It is beneficial to firmly fix the first electrode 103 on the substrate 101 .
  • the substrate 101 is a silicon substrate
  • the first electrode 103 can also be implemented by performing selective ion implantation on the silicon substrate to form a heavily doped region.
  • the position of the first electrode 103 is predetermined on the silicon substrate, and then ion implantation is performed at the position of the first electrode 103 to form a heavily impurity region.
  • the heavily doped region has high ion concentration, strong conductivity and low resistivity, so it can be regarded as the first electrode 103 .
  • the material of the first electrode 103 and the second electrode 105 may be a metal material, such as Au.
  • the first electrode 103 is an annular electrode with a hollow area, that is, the first electrode 103 is a hollow annular electrode, which can also be called a hollow annular electrode.
  • the second electrode 105 corresponding to the first electrode 103 is a solid electrode.
  • the first electrode 103 may also be referred to as a lower electrode, and the second electrode 105 may also be referred to as an upper electrode. That is, the lower electrode is a hollow annular electrode, and the upper electrode is a solid electrode.
  • the upper and lower electrodes can be distinguished by whether they are electrodes for sensing pressure, wherein the electrode for sensing pressure is the upper electrode, and the other electrode is the lower electrode.
  • the upper and lower electrodes can also be distinguished by whether they are electrodes fixed on the substrate, wherein the electrode fixed on the substrate is the lower electrode, and the other electrode is the upper electrode.
  • the plane where the first electrode 103 is located is parallel to the plane where the second electrode 105 is located, and the center points of the first electrode 103 and the second electrode 105 are located on the same vertical line perpendicular to the substrate.
  • FIG. 1 is a cross-sectional view of a capacitive pressure sensor
  • FIG. 2 is a top view of the first electrode 103 and the second electrode 105 in the capacitive pressure sensor.
  • the electrode 105 and the hollow area 1031 are concentric in the vertical direction, and the plane where the first electrode 103 and the second electrode 105 are located is parallel to the plane where the substrate 101 is located, so that the electric field formed between the first electrode 103 and the second electrode 105 is more uniform , the capacitive pressure sensor has higher linearity in measurement.
  • the plane where the substrate 101 is located may be understood as the upper surface of the substrate 101 .
  • the electrode belongs to a three-dimensional structure, including an upper surface and a lower surface.
  • the plane where the electrode is located can be understood as the plane where the upper surface of the electrode is located, or the plane where the lower surface of the electrode is located.
  • the electrode can also be approximately understood as a planar structure, that is, the first electrode and the second electrode in this embodiment are both thin film electrodes .
  • the lower surface of the first electrode 103 may be understood as the surface in contact with the substrate 101
  • the upper surface of the first electrode 103 may be understood as the surface opposite to the lower surface of the first electrode 103
  • the lower surface of the second electrode 105 may be understood as the surface opposite to the substrate 101
  • the upper surface of the second electrode 105 may be understood as the surface opposite to the lower surface of the second electrode 105 .
  • the outer contour of the first electrode 103 may be a circle or a polygon, and the shape of the hollow area may also be a circle or a polygon.
  • the shape of the second electrode 105 may be circular or polygonal.
  • the outer contour of the first electrode 103 , the shape of the hollow region 1031 and the shape of the second electrode 105 may be the same or different, and may be set according to actual needs, which are not specifically limited in this embodiment.
  • the first electrode 103 is a ring-shaped electrode with a central hollow area, and the shape of the hollow area 1031 may be the same as the outer contour of the first electrode 103 . That is to say, the ring width of the first electrode 103 at each position is the same.
  • the top view of the first electrode 103 and the second electrode 105 can be referred to FIG. 2 .
  • the first electrode 103 is a ring-shaped electrode with a central hollow area 1031 .
  • the outer contour of the first electrode 103 , the shape of the hollow region 1031 , and the shape of the second electrode 105 are all circular. That is, the shape of the first electrode 103 may be a circular shape, the first electrode 103 may be referred to as a circular electrode 103 , and the second electrode 105 may be referred to as a circular electrode 105 .
  • the circular electrode 103 and the circular electrode 105 may be concentric circles, that is, the center points of the circular electrode 103 and the circular electrode 105 are located on the same vertical line perpendicular to the substrate 101, that is, the circular ring
  • the electrode 103 and the circular electrode 105 are arranged concentrically; wherein, the concentric arrangement is beneficial to make the electric field formed between the circular electrode 103 and the circular electrode 105 more uniform, thereby further improving the linearity of the capacitive pressure sensor.
  • the circular electrode 103 and the circular electrode 105 may also be non-concentric circles, but this embodiment does not specifically limit this.
  • the top view of the first electrode 103 and the second electrode 105 can be referred to FIG. 3 .
  • the first electrode 103 is a ring-shaped electrode with a central hollow area 1031 .
  • the outer contour of the first electrode 103 , the shape of the hollow region 1031 , and the shape of the second electrode 105 are all rectangular. That is, the shape of the first electrode 103 can be understood as a hollow rectangle, the first electrode 103 can be referred to as a hollow rectangular electrode 103 , and the second electrode 105 can be referred to as a solid rectangular electrode 105 .
  • the hollow rectangular electrodes 103 and the solid rectangular electrodes 105 may be concentric rectangles; wherein, the concentric rectangles may be understood as: the center points of the hollow rectangular electrodes 103 and the solid rectangular electrodes 105 are located on the same vertical line perpendicular to the substrate 101 , that is, the hollow rectangular electrode 103 and the solid rectangular electrode 105 are arranged concentrically; wherein, the concentric arrangement is beneficial to make the electric field formed between the hollow rectangular electrode 103 and the solid rectangular electrode 105 more uniform, thereby further improving the linearity of the capacitive pressure sensor.
  • the hollow rectangular electrodes 103 and the solid rectangular electrodes 105 may also be non-concentric rectangles, which are not specifically limited in this embodiment.
  • the outer contour of the first electrode 103 is referred to as a first rectangle
  • the shape of the hollow region 1031 is referred to as a second rectangle
  • the shape of the second electrode 105 is referred to as a third rectangle
  • the first rectangle , the second rectangle, and the third rectangle may be mutually similar rectangles, but the specific implementation is not limited to this.
  • the top view of the first electrode 103 and the second electrode 105 can be referred to FIG. 4 .
  • the first electrode 103 is a ring-shaped electrode with a central hollow area 1031 .
  • the outer contour of the first electrode 103 , the shape of the hollow region 1031 , and the shape of the second electrode 105 are all regular hexagons.
  • the outer contour of the first electrode, the shape of the hollowed-out region, and the shape of the second electrode are the same as an example, which is not limited in the specific implementation.
  • the outer contour of the first electrode, the shape of the hollow area, and the shape of the second electrode are the same, the mass production of the first electrode and the second electrode is facilitated, thereby reducing the mass production cost.
  • the outer contour of the first electrode 103, the shape of the second electrode 105 and the shape of the hollow area 1031 are all circular, and the radius of the first electrode 103 may include an inner ring radius and an outer ring radius.
  • the first electrode 103 The radius of the inner ring can be understood as the radius of the hollow area 1031
  • the radius of the outer ring of the first electrode 103 can be understood as the radius of the outer contour of the first electrode 103 .
  • the radius of the outer ring of the first electrode 103 and the radius of the second electrode 105 can be the same, and the radius of the inner ring of the first electrode 103 can be set according to actual needs, that is, the area of the hollow region 1031 can be set according to actual needs.
  • FIGS. 5A , 5B and 5C are comparative schematic diagrams in which the area of the second electrode 105 is fixed and the area of the hollow area 1031 is gradually reduced. 5A, 5B, 5C, the outer ring radius of the first electrode 103 is the same as the radius of the second electrode 105, the inner ring radius of the first electrode 103 in FIG.
  • the inner ring radius of the first electrode 103 in FIG. 5B, FIG. 5C The radius of the inner ring of the first electrode 103 decreases gradually, that is, the area of the hollow area 1031 in FIG. 5A , the area of the hollow area 1031 in FIG. 5B , and the area of the hollow area 1031 in FIG. 5C gradually decrease.
  • the larger the area of the hollow region 1031 the larger the effective distance between the first electrode and the second electrode along the field strength direction, the higher the linearity, and the higher the loss sensitivity.
  • the capacitive structure has naturally high sensitivity, even if the capacitive pressure sensor in this embodiment loses part of the sensitivity, the sensitivity after the loss is usually higher than that of the piezoresistive pressure sensor.
  • the effective distance between the first electrode 103 and the second electrode 105 along the field strength direction may refer to the connection between the first electrode 103 and the second electrode 105 in FIG. 1 .
  • the field strength direction between the upper and lower electrodes is the vertical direction perpendicular to the upper and lower electrodes
  • the effective distance along the field strength direction is the upper and lower electrodes. vertical distance between.
  • the lower electrode, namely the first electrode is a hollow electrode, with reference to FIG. 1
  • the direction of the field strength between the first electrode 103 and the second electrode 105 is the non-perpendicular direction between the upper and lower electrodes.
  • the effective distance in the strong direction is the non-vertical distance between the upper and lower electrodes. Moreover, the larger the area of the hollow region in the first electrode 103 is, the greater the degree of deviation of the field strength direction between the first electrode 103 and the second electrode 105 from the vertical direction, and the greater the effective distance along the field strength direction.
  • the radius of the outer ring of the first electrode 103 and the radius of the second electrode 105 may be different.
  • the radius of the second electrode 105 can be set according to actual needs, that is, the area of the second electrode 105 can be set according to actual needs.
  • FIGS. 6A , 6B and 6C are comparative schematic diagrams in which the areas of the first electrode 103 and the hollow area 1031 are fixed and the area of the second electrode 105 is gradually reduced.
  • the radius of the outer ring of the first electrode 103 is larger than the radius of the second electrode 105.
  • the radius of the second electrode 105 in FIG. 6A gradually decreases, that is, the area of the second electrode 105 in FIG. 6A , the area of the second electrode 105 in FIG. 6B , and the area of the second electrode 105 in FIG. 6C gradually decrease.
  • the smaller the area of the second electrode 105 the larger the effective distance between the first electrode and the second electrode along the field strength direction, and the higher the linearity.
  • the area of the second electrode 105 can also be set to be smaller than the area of the hollow region 1031 .
  • the area of the hollowed-out region 1031 may be between 0.2 times and 1.5 times the area of the first electrode 103 , which is beneficial to take into account the sensitivity and linearity of the capacitive pressure sensor at the same time.
  • the first electrode 103 may at least partially face the second electrode 105 . That is to say, even if the first electrode has a hollow area, there is a solid area facing the first electrode and the second electrode, which is beneficial to improve the linearity without losing too much sensitivity.
  • the material of the first support structure 104 may be insulating materials such as Si, SiO 2 , etc., and the first support structure 104 may be used to support the second electrode 105 , so that the first electrode 103 , the second electrode 105 , the substrate 101
  • the first cavity 106 is enclosed between the first support structures 104 , and the first cavity 106 can provide a deformable space for the second electrode 105 .
  • the height of the first cavity 106 may be between 0.2 ⁇ m and 5 ⁇ m, and the height of the first cavity is the distance between the lower surface of the second electrode 105 and the upper surface of the substrate 101 .
  • the first electrode 103 may be fixed on the substrate 101 and located in the cavity 106 .
  • the first support structure 104 surrounds the first electrode 103 and is in contact with the first electrode 103, which is conducive to fully and rationally utilizing the inner space of the first support structure belonging to the hollow cylinder structure, thereby facilitating the Reducing the size of the capacitive pressure sensor facilitates the miniature design of the capacitive pressure sensor, thereby making the capacitive pressure sensor suitable for use in miniature devices.
  • the outer contour shape of the upper and lower surfaces of the first support structure 104 may be the same as the shape of the second electrode 105 , so that the first support structure 104 and the second electrode 105 are more suitable for use, which facilitates the use of the first support structure.
  • the structure 104 supports the second electrode 105, which is also conducive to saving space.
  • the shape of the second electrode 105 is a circle
  • the first support structure 104 may be a hollow cylindrical structure
  • the inner ring radius of the upper and lower surfaces of the hollow cylindrical structure is smaller than the radius of the second electrode 105 .
  • the first support structure 104 may be a hollow pentagonal prism structure, that is, the outer contours of the upper and lower surfaces of the first support structure 104 are pentagons.
  • the second electrode 105 can be a metal thin film
  • the thickness of the metal thin film can be between 0.1 ⁇ m and 0.3 ⁇ m
  • the metal thin film can be deformed after being subjected to external pressure, so that the gap between the metal thin film and the first electrode 103 capacitance changes.
  • the first electrode 103 can be understood as the upper electrode plate of the parallel plate capacitor
  • the second electrode 105 can be understood as the lower electrode plate of the parallel plate capacitor.
  • the first electrode 103 may be provided with an upper electrode terminal
  • the second electrode 105 may be provided with a lower electrode terminal
  • the upper electrode terminal and the lower electrode terminal are connected to a capacitance detection circuit, and the capacitance detection circuit can detect the first electrode.
  • the capacitance detection circuit may be connected to a processor, and the processor converts the capacitance value into the pressure value.
  • the capacitive pressure sensor in this embodiment can be applied to automobile tire pressure monitoring, liquid pressure detection, gas pressure detection, etc. in the industrial field.
  • the capacitive pressure sensor in this embodiment improves the problem of poor linearity of the traditional capacitive structure, and at the same time, compared with the piezoresistive type, it has higher sensitivity and can more effectively detect tire pressure conditions, such as Tire leaks slowly, etc.
  • the capacitive pressure sensor in this embodiment also has good temperature stability and low power consumption. For example, when the external pressure acts on the capacitive pressure sensor, there will be a pressure difference with the cavity in the capacitive pressure sensor.
  • the pressure difference will deform the upper electrode, but the lower electrode will not be deformed because it is fixed on the substrate, so that the upper and lower electrodes are not deformed.
  • the size of the external pressure can be further determined according to the change in capacitance.
  • the hollow design of the first electrode can reduce the effective facing area between the first electrode and the second electrode, so that the field between the first electrode and the second electrode can be reduced.
  • the detected capacitance is smaller.
  • the detected capacitance change range is reduced, which is beneficial to improve the linearity of the capacitive pressure sensor without increasing the size of the capacitive pressure sensor.
  • the second embodiment of the present application relates to a capacitive pressure sensor.
  • the capacitive pressure sensor of this embodiment further includes a sensing film in the pressure detection module.
  • the implementation details of the capacitive pressure sensor in this embodiment will be specifically described below. The following content is only provided for the convenience of understanding, and is not necessary for implementing this solution.
  • the schematic cross-sectional view of the capacitive pressure sensor in this embodiment includes: a first electrode 103 , the first electrode 103 is a ring-shaped electrode containing a hollow area, and the first electrode 103 is fixed on the upper surface of the substrate 103 ;
  • the first support structure 104, the first support structure 104 is an insulating hollow cylinder structure, the first support structure 104 is fixed on the upper surface of the substrate 101, and surrounds the first electrode 103, the upper part of the first support structure 104 There is a height difference between the surface and the first electrode;
  • the second electrode 105, the second electrode 105 is a solid electrode, the peripheral part of the second electrode 105 is fixed on the upper surface of the first support structure 104, and is connected with the first electrode 103 , the first support structure 104 and the substrate 101 enclose the first cavity 106 ;
  • the peripheral part of the second electrode 105 is fixed to the upper surface of the first support structure 104 through the sensing film 702, the first support structure 104 is used
  • the sensing film 702 is fixed to the surface of the second electrode 105 .
  • the sensing film has a certain strength and modulus, and is not easy to fail under repeated deformation, which is beneficial to increase the reliability of the capacitive pressure sensor and further improve the linearity and sensitivity of the capacitive pressure sensor.
  • the sensing film 702 can be fixed with the lower surface of the second electrode 105, and the dielectric constant of the sensing film 702 is greater than that of air.
  • a metal layer may be deposited on the sensing film 702 , or a metal layer may be formed on the sensing film 702 through a coating process, and the metal layer is the second electrode 105 .
  • the sensing film 702 is subjected to external pressure, the sensing film 702 is deformed so that the capacitance between the second electrode 105 and the first electrode 103 changes.
  • the sensing film 702 can be made of a material with relatively high dielectric constant, such as Si 3 N 4 , Poly Si, and the like.
  • the thickness of the sensing film 702 may be between 0.5 micrometers and 10 micrometers, and the thickness of the second electrode 105 may be between 0.1 micrometers and 0.3 micrometers.
  • the shape of the sensing membrane 702 may be circular or polygonal.
  • the shape of the sensing film 702 , the shape of the first electrode 103 and the shape of the second electrode 105 may be completely the same, partially the same, or completely different.
  • the selection of the shape can be determined according to actual needs and process requirements, which is not specifically limited in this embodiment.
  • the structure in FIG. 7 can be simulated in advance using comsol simulation software.
  • the parameters used in the simulation may include: the material of the sensing film 702 is Si 3 N 4 , the thickness is set to 0.8 ⁇ m, the diameter is 50 ⁇ m, the height of the cavity 106 is set to 0.2 ⁇ m, the first electrode 103 , the hollow area 1031 and the The shapes of the second electrodes 105 are all circular.
  • the simulation result curve can be referred to as shown in Figure 8, the abscissa is the external pressure, and the ordinate is the induced capacitance.
  • the area size of the hollow region 1031 in the first electrode 103 may be determined with reference to the above-mentioned simulation results and the requirements for linearity and sensitivity in practical applications.
  • is greater than the preset threshold, which is beneficial to increase the detected capacitance value and reduce the influence of stray capacitance, thereby facilitating better pressure detection and improving the accuracy of pressure detection.
  • the third embodiment of the present application relates to a capacitive pressure sensor.
  • This embodiment is a further improvement on the first or second embodiment.
  • the capacitive pressure sensor in this embodiment further includes: a third electrode, a second support structure and a fourth electrode; the third electrode is a ring containing a hollow area
  • the third electrode is fixed on the upper surface of the substrate and is separated from the first electrode;
  • the second supporting structure is an insulating hollow cylinder structure, and the second supporting structure is fixed on the upper surface of the substrate and surrounds the first electrode.
  • the fourth electrode is a solid electrode, and the peripheral part of the fourth electrode is fixed on the upper surface of the second support structure, and is connected with the third electrode.
  • the three electrodes, the second support structure and the substrate enclose a second cavity; the first electrode is connected with the third electrode, and the second electrode is connected with the fourth electrode.
  • the implementation details of the capacitive pressure sensor in this embodiment will be specifically described below. The following content is only provided for the convenience of understanding, and is not necessary for implementing this solution.
  • the capacitive pressure sensor includes: a substrate 101 ; ;
  • the first support structure 104, the first support structure 104 is an insulating hollow cylinder structure, the first support structure 104 is fixed on the upper surface of the substrate 101, and surrounds the first electrode 103, the first support structure 104 There is a height difference between the upper surface and the first electrode; and the second electrode 105, the second electrode 105 is a solid electrode, and the peripheral portion of the second electrode 105 is fixed on the upper surface of the first supporting structure 104, and is connected with the first electrode 105.
  • the electrode 103 , the first support structure 104 and the substrate enclose the first cavity 106 .
  • the sensing film 702 is fixed on the lower surface of the second electrode 105 ;
  • the third electrode 903 is a ring-shaped electrode with a hollow area, the third electrode is fixed on the upper surface of the substrate 101 and is separated from the first electrode 103 Setting;
  • the second support structure 904, the second support structure 904 is an insulating hollow cylinder structure, the second support structure 904 is fixed on the upper surface of the substrate 101, and surrounds the third electrode 903, the second support structure 904
  • the fourth electrode 905 is a solid electrode, and the peripheral part of the fourth electrode 905 is fixed on the upper surface of the second support structure 904, and is connected with the third electrode 903, the first
  • the two supporting structures 904 and the substrate 101 enclose a second cavity 906;
  • the first electrode 103 is connected to the third electrode 903 (not shown in the figure), and the second electrode 105 is connected to the fourth electrode 905 (not shown in
  • the first electrode 103 and the third electrode 903 can be connected by a wire, and the lower electrode parallel terminal can be drawn out after the connection.
  • the second electrode 105 and the fourth electrode 905 can be connected by a wire, and the upper electrode parallel terminal can be drawn out after the connection.
  • the parallel terminal of the lower electrode can be connected to the ground and the parallel terminal of the upper electrode can be connected to the voltage input terminal, or the parallel terminal of the lower electrode can be connected to the voltage input terminal and the parallel terminal of the upper electrode can be connected to the ground.
  • the second electrode 105 and the fourth electrode 905 can jointly sense the external pressure and thus deform, which is beneficial to improve the sensitivity of the capacitive pressure sensor.
  • the structure formed between the first electrode 103, the second electrode 105, the first support structure 104, the sensing film 702, and the first cavity 106 may be called a module 701; the third electrode 903, the first
  • the structure formed among the four electrodes 805 , the second support structure 904 , the sensing film 902 , and the second cavity 906 may be referred to as a module 901 .
  • the specific structures of the module 901 and the module 701 are similar, and are respectively disposed at different positions on the substrate 101 . That is, in FIG. 9 , two modules are provided on the substrate 101 . In a specific implementation, the number of modules may also exceed two, and a plurality of modules may be arranged in an array on the substrate.
  • At least two groups of annular electrodes, solid electrodes and support structures are arranged on the substrate, that is, at least two of the above modules are arranged, which is beneficial to improve the sensitivity of the capacitive pressure sensor.
  • the number of pressure detection modules is multiple, and the multiple pressure detection modules are arranged in an array on the substrate, which is beneficial to improve the sensitivity of the capacitive pressure sensor.
  • the fourth embodiment of the present application relates to an electronic device, as shown in FIG. 10 .
  • the electronic device includes the capacitive pressure sensor 1001 , the capacitance detection circuit 1002 , and the processor 1003 mentioned in any one of the first to third embodiments.
  • the capacitance detection circuit 1002 is connected to the pressure sensor 1001 for detecting the capacitance value between the first electrode and the second electrode of the capacitive pressure sensor; the processor 1003 is connected to the capacitance detection circuit 1002 for converting the capacitance value into a pressure value .
  • this embodiment does not introduce devices that are not very closely related to solving the technical problems raised in this application, but this does not mean that the electronic device in this embodiment is No other devices exist.
  • the electronic device in this embodiment includes the capacitive pressure sensor mentioned in any one of the first to third embodiments, the related technical details mentioned in the first to third embodiments are in this embodiment It is still valid, and the technical effects that can be achieved in the first to third embodiments can also be achieved in this embodiment. In order to reduce repetition, details are not repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

本申请部分实施例提供了一种电容式压力传感器和电子设备。电容式压力传感器包括:衬底(101);第一电极(103),第一电极为含有镂空区域的环状电极,第一电极固定于衬底的上表面;第一支撑结构(104),第一支撑结构为绝缘的空心柱体结构,第一支撑结构固定于衬底的上表面,并环绕于第一电极的周围,第一支撑结构的上表面与所述第一电极之间具有一高度差;以及第二电极(105),所述第二电极为实心电极,所述第二电极的外围部分固接于所述第一支撑结构的上表面,并与所述第一电极、所述第一支撑结构以及所述衬底围合出第一空腔(106)。采用本申请的实施例,有利于在不增加电容式压力传感器的尺寸的同时,提高电容式压力传感器的线性度。

Description

电容式压力传感器和电子设备 技术领域
本申请涉及压力传感器技术领域,特别涉及一种电容式压力传感器和电子设备。
背景技术
压力传感器是一种将压力信号转化为电信号的器件,广泛应用于消费、工业、汽车、医疗等领域。根据目前的应用原理,压力传感器主要分为压阻式和电容式,与压阻式压力传感器相比,电容式压力传感器具有更高的温度稳定性,低功耗,高灵敏度等优势。
发明人发现现有技术至少存在以下问题:现有的电容式压力传感器的线性度较差。
发明内容
本申请部分实施例的目的在于提供一种电容式压力传感器和电子设备,有利于在不增加电容式压力传感器的尺寸的同时,提高电容式压力传感器的线性度。
本申请实施例提供了一种电容式压力传感器,包括:衬底;第一电极,所述第一电极为含有镂空区域的环状电极,所述第一电极固定于所述衬底的上 表面;第一支撑结构,所述第一支撑结构为绝缘的空心柱体结构,所述第一支撑结构固定于所述衬底的上表面,并环绕于所述第一电极的周围,所述第一支撑结构的上表面与所述第一电极之间具有一高度差;以及第二电极,所述第二电极为实心电极,所述第二电极的外围部分固接于所述第一支撑结构的上表面,并与所述第一电极、所述第一支撑结构以及所述衬底围合出第一空腔。
本申请实施例还提供了一种电子设备,包括电容检测电路、处理器和上述的电容式压力传感器;所述电容检测电路与所述压力传感器连接,用于检测所述压力传感器的第一电极和第二电极之间的电容值;所述处理器与所述电容检测电路连接,用于将所述电容值转换为压力值。
本申请的发明人发现,传统的电容式压力传感器的上电极和下电极完全正对重叠排布,都是实心电极,且面积相等,相互正对,上电极和下电极之间形成的电场线与上电极和下电极垂直。根据电容的计算公式
Figure PCTCN2020105125-appb-000001
可以看出,电容大小与板间有效距离成反比,对应于电容式压力传感器,板间有效距离的变化可以对应于外界压力的变化,外界压力越大时,上电极形变越大,板间有效距离越小,检测到的电容越大。即,上电极的形变量与板间有效距离成反比,因此,传统的电容式压力传感器的线性度较差。
本申请实施例相对于现有技术而言,电容式压力传感器中,第一电极为含有镂空区域的环状电极,且固定于衬底的上表面;第一支撑结构,为绝缘的空心柱体结构,第一支撑结构固定于衬底的上表面,并环绕于第一电极的周围,第一支撑结构的上表面与第一电极之间具有一高度差;第二电极为实心电极,第二电极的外围部分固接于第一支撑结构的上表面,并与第一电极、第一支撑结构以及衬底围合出第一空腔。通过对第一电极的镂空设计,可以减小第一电 极与第二电极之间的有效正对面积,使得第一电极与第二电极之间的场强方向与第一、第二电极之间呈非垂直角度,增大了沿场强方向的第一电极与第二电极之间的有效距离。即,如果受到同样的外界压力,设置有镂空区域的第一电极相比于未设置有镂空区域的第一电极,沿场强方向的第一电极与第二电极之间的有效距离增大,使得检测到的电容减小。而且,第一电极设置有镂空区域时,针对相同的外界压力变化量,检测到的电容的变化幅度降低,从而有利于在不增加电容式压力传感器的尺寸的同时,提高电容式压力传感器的线性度。
例如,电容式压力传感器,还包括:感应薄膜;所述感应薄膜与所述第二电极的表面固定。感应薄膜有一定的强度和模量,受到反复形变不容易失效,有利于增加电容式压力传感器的可靠性。
例如,感应薄膜与所述第二电极的下表面固定,所述感应薄膜的介电常数大于空气的介电常数。即第一电极和第二电极之间存在介电常数大于空气的介电常数的感应薄膜,此时感应薄膜的介电常数会影响检测的电容值,感应薄膜的介电常数大于空气的介电常数,根据电容的计算公式
Figure PCTCN2020105125-appb-000002
即ε大于预设阈值,有利于增大检测到的电容值,减少杂散电容的影响,从而有利于更好的进行压力检测,提高压力检测的准确度。
例如,第一电极所在的平面与所述第二电极所在的平面平行;所述第一电极与所述第二电极的中心点,位于与所述衬底垂直的同一垂线上。也就是说,第一电极和第二电极所在平面平行,且第一电极、第二电极在垂直方向上共心,使得第一电极和第二电极之间形成的电场更加均匀,电容式压力传感器在测量时的线性度更高。
例如,所述镂空区域的面积处于所述第一电极的面积的0.2倍至1.5倍之 间,有利于同时兼顾电容式压力传感器的灵敏度和线性度。
例如,所述第一电极至少部分正对所述第二电极。也就是是说,即使第一电极存在镂空区域,第一电极和第二电极之间也存在正对的实心区域,有利于在提高线性度的同时不至于损失太多灵敏度。
例如,所述第一支撑结构环绕于所述第一电极的周围,且与所述第一电极接触,有利于充分、合理利用属于空心柱体结构的第一支撑结构的内部空间,从而有利于减小电容式压力传感器的尺寸,方便了电容式压力传感器的微型设计,从而有利于使得电容式压力传感器能够适用于微型器件中。
例如,电容式压力传感器还包括:第三电极、第二支撑结构和第四电极;所述第三电极为含有镂空区域的环状电极,所述第三电极固定于所述衬底的上表面并与所述第一电极相互分隔设置;所述第二支撑结构为绝缘的空心柱体结构,所述第二支撑结构固定于所述衬底的上表面,并环绕于所述第三电极的周围,所述第二支撑结构的上表面与所述第三电极之间具有一高度差;所述第四电极为实心电极,所述第四电极的外围部分固接于所述第二支撑结构的上表面,并与所述第三电极、所述第二支撑结构以及所述衬底围合出第二空腔;所述第一电极与所述第三电极连接,所述第二电极与所述第四电极连接。通过在衬底上设置至少两组环状电极、实心电极以及支撑结构,有利于提高电容式压力传感器的灵敏度。
例如,所述第一支撑结构的上表面和下表面的外轮廓形状与所述第二电极的形状相同,使得第一支撑结构和第二电极更加适配,方便了合理的利用第一支撑结构对第二电极进行支撑,还有利于节省空间。
例如,所述第一电极的外轮廓为:圆形或多边形;所述镂空区域的形状 为:圆形或多边形;所述第二电极的形状为:圆形或多边形,有利于根据实际需要灵活设置第一电极、第二电极和镂空区域的形状,以方便满足不同的设计需求。
例如,所述感应薄膜的形状为:圆形或多边形,有利于根据实际需要灵活设置感应薄膜的形状,以方便满足不同的设计需求。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是根据本申请第一实施例中的电容式压力传感器的截面示意图;
图2是根据本申请第一实施例中的形状为圆形的第一电极和第二电极的俯视图;
图3是根据本申请第一实施例中的形状为矩形的第一电极和第二电极的俯视图;
图4是根据本申请第一实施例中的形状为正六边形的第一电极和第二电极的俯视图;
图5A、5B、5C是根据本申请第一实施例中的第二电极的面积固定,第一电极中镂空区域的面积逐渐减小的对比示意图;
图6A、6B、6C是根据本申请第一实施例中的第一电极和镂空区域的面积固定,第二电极的面积逐渐减小的对比示意图;
图7是根据本申请第二实施例中的电容式压力传感器的截面示意图;
图8是根据本申请第二实施例中的电容式压力传感器进行仿真的仿真结果示意图;
图9是根据本申请第三实施例中的电容式压力传感器的截面示意图;
图10是根据本申请第四实施例中的电子设备的示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请部分实施例进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
本申请的发明人发现,现有技术中,传统的电容式压力传感器的上电极和下电极完全正对重叠排布,都是实心电极,且面积相等,相互正对,上电极和下电极之间形成的电场线与上电极和下电极垂直。根据电容的计算公式
Figure PCTCN2020105125-appb-000003
可以看出,电容大小与板间有效距离d成反比,对应于电容式压力传感器,即板间有效距离的变化对应于外界压力的变化,外界压力越大时,上电极形变越大,板间有效距离越小,检测到的电容越大。即,上电极的形变量与板间有效距离成反比,因此,传统的电容式压力传感器的线性度较差。为了解决传统的电容式压力传感器的线性度较差的技术问题,本申请实施例提供一种电容式压力传感器,以提高其线性度。
本申请第一实施例涉及一种电容式压力传感器,下面对本实施例的电容式压力传感器的实现细节进行具体的说明,以下内容仅为方便理解提供的实现 细节,并非实施本方案的必须。
本实施例中的电容式压力传感器的截面示意图可以参考图1,包括:衬底101;第一电极103,第一电极103为含有镂空区域的环状电极,第一电极103固定于衬底103的上表面;第一支撑结构104,第一支撑结构104为绝缘的空心柱体结构,第一支撑结构104固定于衬底101的上表面,并环绕于第一电极103的周围,第一支撑结构104的上表面与第一电极之间具有一高度差;以及第二电极105,第二电极105为实心电极,第二电极105的外围部分固接于第一支撑结构104的上表面,并与第一电极103、第一支撑结构104以及衬底围合出第一空腔106。其中,第一电极103、第二电极105、第一支撑结构104、第一空腔106之间组成的结构可以称为模组102。
其中,衬底101的材料可以选择Si、玻璃、石英等导电性很弱的材料或绝缘材料。
在一个例子中,可以利用固定件,将第一电极103固定在衬底101的上表面上。在具体实现中,可以在衬底101上蒸镀一层金属薄膜,就相当于将第一电极103固定在衬底101上,其中,蒸镀的金属薄膜即可以理解为第一电极103,有利于将第一电极103稳固的固定在衬底101上。
在另一个例子中,衬底101为硅衬底,第一电极103也可以通过在硅衬底进行选择离子注入,形成重参杂区域来实现。比如,在硅衬底预先确定第一电极103的位置,然后选择在第一电极103的位置上进行离子注入,形成重参杂区域。该重参杂区域的离子浓度高,导电性强,电阻率较低,从而可以视为第一电极103。
在具体实现中,第一电极103和第二电极105的材料可以为金属材料, 比如Au。第一电极103为含有镂空区域的环状电极,也就是说,第一电极103为镂空环状电极,也可以称为空心环状电极。与第一电极103对应的第二电极105为实心电极。其中,第一电极103也可以称为下电极,第二电极105也可以称为上电极。也就是说,下电极为空心环状电极,上电极为实心电极。
在一个例子中,上、下两个电极可以通过是否为感应压力作用的电极来区分,其中,用于感应压力作用的电极为上电极,另一个电极即为下电极。在另一个例子中,上、下两个电极也可以通过是否为固定在衬底上的电极来区分,其中,固定在衬底上的电极为下电极,另一个电极即为上电极。
在一个例子中,第一电极103所在的平面与第二电极105所在的平面平行,第一电极103与第二电极105的中心点位于与衬底垂直的同一垂线上。比如,图1为电容式压力传感器的截面图,图2为电容式压力传感器中的第一电极103和第二电极105的俯视图,通过图1和图2可以看出第一电极103、第二电极105、镂空区域1031在垂直方向上共心,且第一电极103和第二电极105所在平面与衬底101所在平面平行,使得第一电极103和第二电极105之间形成的电场更加均匀,电容式压力传感器在测量时的线性度更高。其中,衬底101所在平面可以理解为衬底101的上表面。
可以理解的是,理论上电极属于立体结构,包括上表面和下表面,电极所在的平面可以理解为:电极的上表面所在的平面,也可以理解为电极的下表面所在的平面。考虑到电极的厚度较薄,即电极的上表面和下表面之间的距离十分接近,因此,电极也可以近似理解为平面结构,即本实施方式中第一电极和第二电极均为薄膜电极。
参考图1,第一电极103的下表面可以理解为与衬底101接触的表面, 第一电极103的上表面可以理解为:与第一电极103的下表面相对的表面。第二电极105的下表面可以理解为与衬底101相对的表面,第二电极105的上表面可以理解为:与第二电极105的下表面相对的表面。
在一个例子中,第一电极103的外轮廓可以为圆形或多边形,镂空区域的形状也可以为圆形或多边形。第二电极105的形状可以为圆形或多边形。在具体实现中,第一电极103的外轮廓、镂空区域1031的形状以及第二电极105的形状可以相同也可以不同,可以根据实际需要进行设置,本实施方式对此不做具体限定。
在一个例子中,第一电极103为含有中心镂空区域的环状电极,镂空区域1031的形状可以和第一电极103的外轮廓相同。也就是说,第一电极103在各个位置的环宽均相同。
在一个例子中,第一电极103和第二电极105的俯视图可以参考图2,图2中,第一电极103为含有中心镂空区域1031的环状电极。图2中,第一电极103的外轮廓、镂空区域1031的形状、以及第二电极105的形状均为圆形。也就是说,第一电极103的形状可以为圆环形,第一电极103可以称为圆环形电极103,第二电极105可以称为圆形电极105。在具体实现中,圆环形电极103和圆形电极105可以为同心圆,即圆环形电极103和圆形电极105的中心点位于与衬底101垂直的同一垂线上,即圆环形电极103和圆形电极105同心设置;其中,同心设置有利于使圆环形电极103和圆形电极105之间形成的电场更加均匀,从而进一步提高电容式压力传感器的线性度。可选的,圆环形电极103和圆形电极105也可以为非同心圆,然而本实施方式对此不做具体限定。
在一个例子中,第一电极103和第二电极105的俯视图可以参考图3, 图3中,第一电极103为含有中心镂空区域1031的环状电极。图3中,第一电极103的外轮廓、镂空区域1031的形状、以及第二电极105的形状均为矩形。也就是说,第一电极103的形状可以理解为空心矩形,第一电极103可以称为空心矩形电极103,第二电极105可以称为实心矩形电极105。在具体实现中,空心矩形电极103和实心矩形电极105可以为同心矩形;其中,同心矩形可以理解为:空心矩形电极103和实心矩形电极105的中心点位于与衬底101垂直的同一垂线上,即空心矩形电极103和实心矩形电极105同心设置;其中,同心设置有利于使空心矩形电极103和实心矩形电极105之间形成的电场更加均匀,从而进一步提高电容式压力传感器的线性度。可选的,空心矩形电极103和实心矩形电极105也可以为非同心矩形,然而本实施方式对此不做具体限定。
另外,图3中,假设将第一电极103的外轮廓称为第一矩形、将镂空区域1031的形状称为第二矩形、将第二电极105的形状称为第三矩形,则第一矩形、第二矩形和第三矩形之间可以互为相似矩形,然而在具体实现中并不以此为限。
在一个例子中,第一电极103和第二电极105的俯视图可以参考图4,图4中,第一电极103为含有中心镂空区域1031的环状电极。图4中,第一电极103的外轮廓、镂空区域1031的形状、以及第二电极105的形状均为正六边形。
需要说明的是,上述示例中只是以第一电极的外轮廓、镂空区域的形状、以及第二电极的形状相同为例,在具体实现中并不以此为限。第一电极的外轮廓、镂空区域的形状、以及第二电极的形状相同时,方便了第一电极以及第二电极的批量生产制造,从而可以降低量产成本,。
在一个例子中,第一电极103的外轮廓、第二电极105的形状和镂空区域1031的形状均为圆形,第一电极103的半径可以包括内环半径和外环半径,第一电极103的内环半径可以理解为镂空区域1031的半径,第一电极103的外环半径可以理解为第一电极103的外轮廓的半径。
可选的,第一电极103的外环半径和第二电极105的半径可以相同,第一电极103的内环半径可以根据实际需要进行设置,即镂空区域1031的面积可以根据实际需要进行设置。比如可以参考图5A、5B、5C,图5A、5B、5C为第二电极105的面积固定,镂空区域1031的面积逐渐减小的对比示意图。图5A、5B、5C中第一电极103的外环半径和第二电极105的半径相同,图5A中第一电极103的内环半径、图5B中第一电极103的内环半径、图5C中第一电极103的内环半径逐渐减小,也就是说,图5A中的镂空区域1031的面积、图5B中的镂空区域1031的面积、图5C中的镂空区域1031的面积逐渐减小。其中,镂空区域1031的面积越大,沿场强方向的第一电极与第二电极之间的有效距离越大,线性度越高,损失的灵敏度越高。但由于电容式结构具有天然的高灵敏度,因此本实施方式中的电容式压力传感器,即使会损失部分灵敏度,损失后的灵敏度通常也高于压阻式压力传感器的灵敏度。
其中,沿场强方向的第一电极103与第二电极105之间的有效距离,可以参考图1中第一电极103与第二电极105之间的连线。可以理解的是,现有技术中,由于上下电极均为实心电极,因此,上下电极之间的场强方向即为与上下电极垂直的垂线方向,沿场强方向的有效距离即为上下电极之间的垂直距离。本实施方式中,由于下电极即第一电极为镂空电极,因此,参考图1,第一电极103与第二电极105之间的场强方向为上下电极之间的非垂线方向,沿 场强方向的有效距离为上下电极之间的非垂直距离。而且,第一电极103中的镂空区域的面积越大,第一电极103与第二电极105之间的场强方向偏离垂直方向的程度越大,沿场强方向的有效距离也就越大。
可选的,第一电极103的外环半径和第二电极105的半径可以不相同。第二电极105的半径可以根据实际需要进行设置,即第二电极105的面积可以根据实际需要进行设置。比如可以参考图6A、6B、6C,图6A、6B、6C为第一电极103和镂空区域1031的面积固定,第二电极105的面积逐渐减小的对比示意图。图6A、6B、6C中,第一电极103的外环半径均大于第二电极105的半径,图6A中第二电极105的半径、图6B中第二电极105的半径、图6C中第二电极105的半径逐渐减小,也就是说,图6A中第二电极105的面积、图6B中第二电极105的面积、图6C中第二电极105的面积逐渐减小。其中,第二电极105的面积越小,沿场强方向的第一电极与第二电极之间的有效距离越大,线性度越高。在具体实现中,如果需要极高的线性度还可以设置为第二电极105的面积小于镂空区域1031的面积。
可选的,镂空区域1031的面积可以处于第一电极103的面积的0.2倍至1.5倍之间,有利于同时兼顾电容式压力传感器的灵敏度和线性度。
在一个例子中,第一电极103可以至少部分正对第二电极105。也就是说,即使第一电极存在镂空区域,第一电极和第二电极之间也存在正对的实心区域,有利于在提高线性度的同时不至于损失太多灵敏度。
在一个例子中,第一支撑结构104的材料可以为Si、SiO 2等绝缘材料,第一支撑结构104可以用于支撑第二电极105,使得第一电极103、第二电极105、衬底101、第一支撑结构104之间围合成第一空腔106,该第一空腔106 可以为第二电极105提供可形变的空间。第一空腔106的高度可以在0.2微米至5微米之间,第一空腔的高度为第二电极105的下表面与衬底101的上表面之间的距离。在具体实现中,第一电极103可以固定在衬底101上,且位于空腔106内。
在一个例子中,第一支撑结构104环绕于第一电极103的周围,且与第一电极103接触,有利于充分、合理利用属于空心柱体结构的第一支撑结构的内部空间,从而有利于减小电容式压力传感器的尺寸,方便了电容式压力传感器的微型设计,从而有利于使得电容式压力传感器能够适用于微型器件中。
在一个例子中,第一支撑结构104的上、下表面的外轮廓形状可以和第二电极105的形状相同,使得第一支撑结构104和第二电极105更加适配,方便了利用第一支撑结构104对第二电极105进行支撑,还有利于节省空间。比如第二电极105的形状为圆形,则第一支撑结构104可以为空心圆柱体结构,且空心圆柱体结构的上下表面的内环半径小于第二电极105的半径。再比如,第二电极105的形状为五边形,则第一支撑结构104可以为空心五棱柱体结构,即第一支撑结构104的上、下表面的外轮廓为五边形。
可选的,第二电极105可以为金属薄膜,该金属薄膜的厚度可以在0.1微米至0.3微米之间,该金属薄膜在受到外界压力后可以发生形变,使得金属薄膜与第一电极103之间的电容发生变化。
在具体实现中,第一电极103可以理解为平行板电容器的上极板,第二电极105可以理解为平行板电容器的下极板。当第一电极103受到外界压力发生形变时,第一电极103和第二电极105之间的有效距离发生变化,从而引起平行板电容器的电容值会发生变化。可选的,第一电极103上可以设置有上电 极端子,第二电极105上可以设置有下电极端子,上电极端子和下电极端子接入一个电容检测电路,该电容检测电路可以检测出第一电极103和第二电极105构成的平行板电容器的电容值。进一步的,电容检测电路可以和一处理器连接,处理器将电容值转换为压力值。
在具体实现中,本实施方式中的电容式压力传感器可以应用在汽车胎压监测、工业领域的液体压力检测、气体压力检测等。例如在胎压监测中,本实施方式中的电容式压力传感器改善了传统电容结构线性度差的问题,同时与压阻式相比,具有更高的灵敏度可以更加有效的检测轮胎压力状况,如轮胎缓慢漏气等问题。与压阻式压力传感器相比,本实施方式中的电容式压力传感器还具有良好的温度稳定性和低功耗。比如,外界压力作用在电容式压力传感器时,会与电容式压力传感器中的空腔存在压力差,压力差使上电极发生形变,下电极由于固定在衬底上不会发生形变,从而上下电极之间电容发生变化,根据电容的变化可以进一步确定外界压力的大小。
需要说明的是,本实施方式中的上述各示例均为为方便理解进行的举例说明,并不对本发明的技术方案构成限定。
本实施例相对于现有技术而言,通过对第一电极的镂空设计,可以减小第一电极与第二电极之间的有效正对面积,使得第一电极与第二电极之间的场强方向与第一、第二电极之间呈非垂直角度,增大了沿场强方向的第一电极与第二电极之间的有效距离。即,如果受到同样的外界压力,设置有镂空区域的第一电极相比于未设置有镂空区域的第一电极,沿场强方向的第一电极与第二电极之间的有效距离更大,检测到的电容更小。第一电极设置有镂空区域时,针对相同的外界压力变化量,检测到的电容的变化幅度降低,从而有利于在不 增加电容式压力传感器的尺寸的同时,提高电容式压力传感器的线性度。
本申请第二实施例涉及一种电容式压力传感器,本实施例的电容式压力传感器与第一实施例相比,本实施例中的压力检测模组还包括感应薄膜。下面对本实施例的电容式压力传感器的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。
本实施例中的电容式压力传感器的截面示意图可以参考图7,包括:第一电极103,第一电极103为含有镂空区域的环状电极,第一电极103固定于衬底103的上表面;第一支撑结构104,第一支撑结构104为绝缘的空心柱体结构,第一支撑结构104固定于衬底101的上表面,并环绕于第一电极103的周围,第一支撑结构104的上表面与第一电极之间具有一高度差;第二电极105,第二电极105为实心电极,第二电极105的外围部分固接于第一支撑结构104的上表面,并与第一电极103、第一支撑结构104以及衬底101围合出第一空腔106;以及,感应薄膜702,感应薄膜702与第二电极105的表面固定。可以理解为,第二电极105的外围部分通过感应薄膜702固接于第一支撑结构104的上表面,第一支撑结构104用于支撑感应薄膜702,感应薄膜702上固定有第二电极105,第一空腔106由第一电极103、第一支撑结构104、衬底101以及固定有感应薄膜702的第二电极围合形成。其中,第一电极103、第二电极105、第一支撑结构104、感应薄膜702,第一空腔106之间组成的结构可以称为模组701。
具体的说,感应薄膜702与第二电极105的表面固定。感应薄膜有一定的强度和模量,受到反复形变不容易失效,有利于增加电容式压力传感器的可靠性,有利于进一步提高电容式压力传感器的线性度和灵敏度。
在一个例子中,感应薄膜702可以与第二电极105的下表面固定,感应薄膜702的介电常数大于空气的介电常数。在具体实现中,可以在感应薄膜702上沉积一层金属层,或者通过镀膜工艺在感应薄膜702上形成一层金属层,该金属层即为第二电极105。当感应薄膜702受到外界压力时,感应薄膜702发生形变使得第二电极105和第一电极103之间的电容发生变化。
在一个例子中,感应薄膜702可以采用介电常数相对较高的材料,比如:Si 3N 4,Poly Si等。感应薄膜702的厚度可以在0.5微米到10微米之间,第二电极105的厚度可以在0.1微米到0.3微米之间。
在一个例子中,感应薄膜702的形状可以为圆形或多边形。在具体实现中,感应薄膜702的形状、第一电极103的形状以及第二电极105的形状可以完全相同、也可以部分相同、还可以完全不同。形状的选取可以根据实际需要和工艺要求确定,本实施方式对此不做具体限定。
在一个例子中,可以预先采用comsol仿真软件对图7中的结构进行仿真。比如,仿真采用的参数可以包括:感应薄膜702的材料采用Si 3N 4,厚度设置为0.8微米,直径为50微米,空腔106的高度设置为0.2微米,第一电极103、镂空区域1031和第二电极105的形状均为圆形。仿真结果曲线可以参考如图8所示,横坐标为外界施加压力,纵坐标为感应电容。图8中的4条曲线分别为第一电极103中间的镂空区域1031的半径依次为0微米、5微米、10微米、15微米时,感应电容与外界施加压力的曲线图。仿真结果可以如表1所示:
表1
半径(微米) 0 5 10 15
灵敏度(fF/kpa) 0.056 0.047 0.027 0.010
非线性度(%) 4.18 3.71 2.47 1.16
通过表1和图8可以看出,在压力范围为100-500kpa时,随着中间镂空区域的半径的增加,即随着镂空区域的面积的增加非线性度和灵敏度下降,即随着镂空区域的面积的增加,电容式传感器的线性度增加,灵敏度下降。
在具体实现中,可以参考上述的仿真结果,以及实际应用中对于线性度和灵敏度的要求,确定第一电极103中镂空区域1031的面积大小。
本实施例相对于现有技术而言,第一电极和第二电极之间存在介电常数大于空气的介电常数的感应薄膜,此时感应薄膜的介电常数会影响检测的电容值,感应薄膜的介电常数大于空气的介电常数,根据电容的计算公式
Figure PCTCN2020105125-appb-000004
即ε大于预设阈值,有利于增大检测到的电容值,减小杂散电容的影响,从而有利于更好的进行压力检测,提高压力检测的准确度。
本申请第三实施例涉及一种电容式压力传感器。本实施例为第一或第二实施例上的进一步改进,本实施例中的电容式压力传感器还包括:第三电极、第二支撑结构和第四电极;第三电极为含有镂空区域的环状电极,第三电极固定于衬底的上表面并与第一电极相互分隔设置;第二支撑结构为绝缘的空心柱体结构,第二支撑结构固定于衬底的上表面,并环绕于第三电极的周围,第二支撑结构的上表面与第三电极之间具有一高度差;第四电极为实心电极,第四电极的外围部分固接于第二支撑结构的上表面,并与第三电极、第二支撑结构以及衬底围合出第二空腔;第一电极与第三电极连接,第二电极与第四电极连接。下面对本实施例的电容式压力传感器的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。
在一个例子中,可以参考图9,电容式压力传感器包括:衬底101;第一电极103,第一电极103为含有镂空区域的环状电极,第一电极103固定于衬底103的上表面;第一支撑结构104,第一支撑结构104为绝缘的空心柱体结构,第一支撑结构104固定于衬底101的上表面,并环绕于第一电极103的周围,第一支撑结构104的上表面与第一电极之间具有一高度差;以及第二电极105,第二电极105为实心电极,第二电极105的外围部分固接于第一支撑结构104的上表面,并与第一电极103、第一支撑结构104以及衬底围合出第一空腔106。第二电极105的下表面固定有感应薄膜702;第三电极903,第三电极903为含有镂空区域的环状电极,第三电极固定于衬底101的上表面并与第一电极103相互分隔设置;第二支撑结构904,第二支撑结构904为绝缘的空心柱体结构,第二支撑结构904固定于衬底101的上表面,并环绕于第三电极903的周围,第二支撑结构904的上表面与第三电极903之间具有一高度差;第四电极905为实心电极,第四电极905的外围部分固接于第二支撑结构904的上表面,并与第三电极903、第二支撑结构904以及衬底101围合出第二空腔906;第一电极103与第三电极903连接(图中未示出),第二电极105与第四电极905连接(图中未示出)。第二支撑结构904的上表面与第三电极903之间的高度差,与第一支撑结构104的上表面与第一电极之间的高度差相同。
其中,第一电极103与第三电极903可以通过导线连接,连接后可以引出下电极并联端子。第二电极105与第四电极905可以通过导线连接,连接后可以引出上电极并联端子。在具体实现中,可以使下电极并联端子接地,上电极并联端子连接电压输入端,或者使下电极并联端子连接电压输入端,上电极 并联端子接地。第二电极105与第四电极905可以共同感应外界压力,从而发生形变,有利于提高电容式压力传感器的灵敏度。
在一个例子中,可以将第一电极103、第二电极105、第一支撑结构104、感应薄膜702,第一空腔106之间组成的结构可以称为模组701;第三电极903、第四电极805、第二支撑结构904、感应薄膜902,第二空腔906之间组成的结构可以称为模组901。可以理解的是,模组901和模组701的具体构成类似,分别设置在衬底101上的不同位置。也就是说,图9中衬底101上设置有两个模组。在具体实现中,模组的数量也可以超过两个,多个模组在衬底上可以呈阵列排布。
本实施例相对于现有技术而言,通过在衬底上设置至少两组环状电极、实心电极以及支撑结构,即设置至少两个上述的模组,有利于提高电容式压力传感器的灵敏度。
压力检测模组的数量为多个,多个压力检测模组在衬底上呈阵列排布,有利于提高电容式压力传感器的灵敏度。
本申请第四实施例涉及一种电子设备,如图10所示。该电子设备包括第一至第三实施例中任意一个实施例提到的电容式压力传感器1001、电容检测电路1002、处理器1003。电容检测电路1002与压力传感器1001连接,用于检测电容式压力传感器的第一电极和第二电极之间的电容值;处理器1003与电容检测电路1002连接,用于将电容值转换为压力值。
需要说明的是,为了突出本申请的创新部分,本实施例中并没有将与解决本申请所提出的技术问题关系不太密切的器件引入,但这并不表明本实施例中的电子设备中不存在其它的器件。
由于本实施例中的电子设备包括第一至第三实施例中任意一个实施例提到的电容式压力传感器,因此,第一至第三实施例中提到的相关技术细节在本实施例中依然有效,在第一至第三实施例中所能达到的技术效果在本实施例中也同样可以实现,为了减少重复,这里不再赘述。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (14)

  1. 一种电容式压力传感器,其特征在于,包括:
    衬底;
    第一电极,所述第一电极为含有镂空区域的环状电极,所述第一电极固定于所述衬底的上表面;
    第一支撑结构,所述第一支撑结构为绝缘的空心柱体结构,所述第一支撑结构固定于所述衬底的上表面,并环绕于所述第一电极的周围,所述第一支撑结构的上表面与所述第一电极之间具有一高度差;以及
    第二电极,所述第二电极为实心电极,所述第二电极的外围部分固接于所述第一支撑结构的上表面,并与所述第一电极、所述第一支撑结构以及所述衬底围合出第一空腔。
  2. 如权利要求1所述的电容式压力传感器,其特征在于,还包括:感应薄膜;
    所述感应薄膜与所述第二电极的表面固定。
  3. 如权利要求2所述的电容式压力传感器,其特征在于,所述感应薄膜与所述第二电极的下表面固定,所述感应薄膜的介电常数大于空气的介电常数。
  4. 如权利要求1至3任一项所述的电容式压力传感器,其特征在于,所述第一电极所在的平面与所述第二电极所在的平面平行;
    所述第一电极与所述第二电极的中心点,位于与所述衬底垂直的同一垂线上。
  5. 如权利要求4所述的电容式压力传感器,其特征在于,所述镂空区域的面积处于所述第一电极的面积的0.2倍至1.5倍之间。
  6. 如权利要求1所述的电容式压力传感器,其特征在于,所述第一电极至少部分正对所述第二电极。
  7. 如权利要求1至6任一项所述的电容式压力传感器,其特征在于,所述第一电极为含有中心镂空区域的环状电极。
  8. 如权利要求1至7任一项所述的电容式压力传感器,其特征在于,所述第一支撑结构环绕于所述第一电极的周围,且与所述第一电极接触。
  9. 如权利要求1至8任一项所述的电容式压力传感器,其特征在于,所述第一空腔的高度处于0.2微米至5微米之间,所述第一空腔的高度为所述第二电极的下表面与所述衬底的上表面之间的距离。
  10. 如权利要求1至9任一项所述的电容式压力传感器,其特征在于,所述第一支撑结构的上表面和下表面的外轮廓形状与所述第二电极的形状相同。
  11. 如权利要求1所述的电容式压力传感器,其特征在于,还包括第三电极、第二支撑结构和第四电极;
    所述第三电极为含有镂空区域的环状电极,所述第三电极固定于所述衬底的上表面并与所述第一电极相互分隔设置;
    所述第二支撑结构为绝缘的空心柱体结构,所述第二支撑结构固定于所述衬底的上表面,并环绕于所述第三电极的周围,所述第二支撑结构的上表面与所述第三电极之间具有一高度差;
    所述第四电极为实心电极,所述第四电极的外围部分固接于所述第二支撑结构的上表面,并与所述第三电极、所述第二支撑结构以及所述衬底围合出第二空腔;
    所述第一电极与所述第三电极连接,所述第二电极与所述第四电极连接。
  12. 如权利要求1所述的电容式压力传感器,其特征在于,所述第一电极的外轮廓为:圆形或多边形;所述镂空区域的形状为:圆形或多边形;所述第二电极的形状为:圆形或多边形。
  13. 如权利要求2所述的电容式压力传感器,其特征在于,所述感应薄膜的形状为:圆形或多边形。
  14. 一种电子设备,其特征在于,包括:电容检测电路、处理器和如权利要求1至13任一项所述的电容式压力传感器;
    所述电容检测电路与所述压力传感器连接,用于检测所述电容式压力传感器的第一电极和第二电极之间的电容值;
    所述处理器与所述电容检测电路连接,用于将所述电容值转换为压力值。
PCT/CN2020/105125 2020-07-28 2020-07-28 电容式压力传感器和电子设备 WO2022021052A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/105125 WO2022021052A1 (zh) 2020-07-28 2020-07-28 电容式压力传感器和电子设备
CN202080044822.3A CN114072651A (zh) 2020-07-28 2020-07-28 电容式压力传感器和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/105125 WO2022021052A1 (zh) 2020-07-28 2020-07-28 电容式压力传感器和电子设备

Publications (1)

Publication Number Publication Date
WO2022021052A1 true WO2022021052A1 (zh) 2022-02-03

Family

ID=80038031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105125 WO2022021052A1 (zh) 2020-07-28 2020-07-28 电容式压力传感器和电子设备

Country Status (2)

Country Link
CN (1) CN114072651A (zh)
WO (1) WO2022021052A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116659711B (zh) * 2023-07-28 2023-09-29 苏州敏芯微电子技术股份有限公司 Mems压力传感器及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352874B1 (en) * 1999-05-24 2002-03-05 Motorola Inc. Method of manufacturing a sensor
US20050183508A1 (en) * 2004-02-23 2005-08-25 Alps Electric Co., Ltd. Pressure sensor for detecting pressure by using capacitance variation according to deflection of diaphragm
JP2006200980A (ja) * 2005-01-19 2006-08-03 Alps Electric Co Ltd 静電容量型圧力センサおよび静電容量型アクチュエータ
CN101415137A (zh) * 2008-11-14 2009-04-22 瑞声声学科技(深圳)有限公司 电容式麦克风
CN101846562A (zh) * 2009-03-27 2010-09-29 罗伯特.博世有限公司 压力传感器
CN103413681A (zh) * 2013-07-30 2013-11-27 清华大学 一种对称杠杆结构的mems线性可变电容器
CN208818383U (zh) * 2018-09-20 2019-05-03 百医医材科技股份有限公司 压力感测结构
CN110114650A (zh) * 2016-12-20 2019-08-09 株式会社村田制作所 压力传感器元件和具备该压力传感器元件的压力传感器模块

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4296731B2 (ja) * 2001-07-18 2009-07-15 株式会社デンソー 静電容量型圧力センサの製造方法
CN104422549B (zh) * 2013-08-28 2016-12-28 中芯国际集成电路制造(上海)有限公司 电容式压力传感器及其形成方法
CN207300455U (zh) * 2017-08-29 2018-05-01 南京工业大学 一种电容式压力传感器
CN108362408B (zh) * 2018-03-08 2021-07-02 苏州敏芯微电子技术股份有限公司 压力传感器及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352874B1 (en) * 1999-05-24 2002-03-05 Motorola Inc. Method of manufacturing a sensor
US20050183508A1 (en) * 2004-02-23 2005-08-25 Alps Electric Co., Ltd. Pressure sensor for detecting pressure by using capacitance variation according to deflection of diaphragm
JP2006200980A (ja) * 2005-01-19 2006-08-03 Alps Electric Co Ltd 静電容量型圧力センサおよび静電容量型アクチュエータ
CN101415137A (zh) * 2008-11-14 2009-04-22 瑞声声学科技(深圳)有限公司 电容式麦克风
CN101846562A (zh) * 2009-03-27 2010-09-29 罗伯特.博世有限公司 压力传感器
CN103413681A (zh) * 2013-07-30 2013-11-27 清华大学 一种对称杠杆结构的mems线性可变电容器
CN110114650A (zh) * 2016-12-20 2019-08-09 株式会社村田制作所 压力传感器元件和具备该压力传感器元件的压力传感器模块
CN208818383U (zh) * 2018-09-20 2019-05-03 百医医材科技股份有限公司 压力感测结构

Also Published As

Publication number Publication date
CN114072651A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
JP3114570B2 (ja) 静電容量型圧力センサ
WO2015051729A1 (zh) 电容式mems压力传感器
US5177579A (en) Semiconductor transducer or actuator utilizing corrugated supports
KR0137965B1 (ko) 최소의 유전 표류를 가지는 용량성 감지기
TWI408351B (zh) 電容式壓力感測器
JPH02264839A (ja) 差動容量型圧力センサ及びその対過圧力保護方法
CN103983395B (zh) 一种微压力传感器及其制备与检测方法
CN111982383B (zh) 一种差压接触式mems电容薄膜真空规
CN113551812B (zh) 一种十字梁膜应力集中微压传感器芯片及其制备方法
JPS60128673A (ja) 半導体感圧装置
CN112362199A (zh) 一种介质插入型电容式压力传感器及其制备方法
WO2022021052A1 (zh) 电容式压力传感器和电子设备
WO2014136337A1 (ja) 静電容量型圧力センサ及び入力装置
CN112284607B (zh) 一种十字岛耐高温耐腐蚀压力传感器芯片及制备方法
WO2022188521A1 (zh) 气压传感器芯片及其制备方法
CN111498795B (zh) 一种隔离槽阵列结构的压力传感器芯片及其制备方法
CN113218544A (zh) 具有应力集中结构的微压传感器芯片及其制备方法
JPS5952727A (ja) 半導体圧力センサ
CN105300573B (zh) 一种梁膜结构压电传感器及其制作方法
CN112284605A (zh) 一种十字岛梁膜高温微压传感器芯片及制备方法
CN213364087U (zh) 一种应用于电子终端产品的电容式mems压力传感器
CN217819120U (zh) 一种变面积电容式压力传感器
KR101910712B1 (ko) 압력센서 및 압력센서의 제작 방법
CN207133219U (zh) 气体传感器
WO2022196131A1 (ja) 圧力センサ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946937

Country of ref document: EP

Kind code of ref document: A1