TWI408351B - 電容式壓力感測器 - Google Patents

電容式壓力感測器 Download PDF

Info

Publication number
TWI408351B
TWI408351B TW100104125A TW100104125A TWI408351B TW I408351 B TWI408351 B TW I408351B TW 100104125 A TW100104125 A TW 100104125A TW 100104125 A TW100104125 A TW 100104125A TW I408351 B TWI408351 B TW I408351B
Authority
TW
Taiwan
Prior art keywords
electrode
spacer
ring
pressure
pressure gauge
Prior art date
Application number
TW100104125A
Other languages
English (en)
Other versions
TW201144783A (en
Inventor
Steven D Blankenship
Original Assignee
Mks Instr Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mks Instr Inc filed Critical Mks Instr Inc
Publication of TW201144783A publication Critical patent/TW201144783A/zh
Application granted granted Critical
Publication of TWI408351B publication Critical patent/TWI408351B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/10Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in inductance, i.e. electric circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)

Description

電容式壓力感測器
本發明通常有關一種電容式壓力感測器,且更特別地係,關於提供非常精確及正確測量壓力之一改善感測器,特別是在非常低的(真空)壓力。
壓力轉換器已用在無數的應用。一此轉換器是電容式壓力計,其可提供非常精確與正確測量氣體、蒸汽或其他流體的壓力。一些應用包括精密控制真空為主的處理與半導體製程控制。一些範例包括半導體蝕刻製程與物理氣相沉積。
電容式壓力計典型使用(a)一彈性隔板形成、或包括一電極結構;及(b)一固定電極結構,其與隔板隔開,以便在其間建立電容。在與隔板的相對端壓力有關的隔板一端的壓力變化會導致隔板彎曲,所以在隔板的電極結構與固定電極之間的電容會以此差異壓力的關係性質變化。通常,在隔板一端的氣體或蒸汽是在待測壓力(Px),而在隔板相對端的氣體或蒸汽是在已知的參考壓力(Pr),後者是在大氣或一些固定高或低的(真空)壓力,所以在隔板測量端的壓力能夠以電容測量的關係性質決定。
許多應用需要非常低的壓力(高真空)且持續發展以致需要電容式壓力計能夠測量此低的壓力。不過,增加電容式壓力計的靈敏度以在低壓力上提供非常精確與正確壓力測量會造成一些設計上的挑戰。為了要測量非常低的壓力(高真空),電容式壓力計在彈性隔板與固定電極結構之間需要非常窄的間隙,以便偵測到微小的壓力變化。
使用非常窄間隙的缺點在於亦發現在與隔板差異壓力測量無關的電極間隙形狀的微小變化。這些對電極間隙形狀的有害變化之一為電極間隙間隔的變化。雖然在工業的普遍實施藉由使用雙電極設計方式減少電極間隙間隔變化的影響,但是對電極間隙間隔的良好控制提供進一步提高感測器輸出的穩定性。當測量由窄電極間隙使用導致非常低的壓力(非常小隔板偏離)時,這是特別重要。
電容測量係基於平行板電容C的熟知方程式:
C=er e0 A/s,
其中C是介於兩平行板間的電容
e0 是真空介電係數。
er 是介於板間材料的相對介電係數(對真空而言,er =1),
A是介於板間的公用區,及
s是介於板間的間隔。
根據此方程式,可取得電容微少變化等於負的每個測量電極的電極間隙間隔之微小變化(ΔC/C=-ΔS/S)。
然後可輕易發覺,維持電極間隙間隔的良好控制是很重要,為了要提供每個測量電極電容的穩定控制。在簡單的雙電極設計中,這些效果會平衡平坦隔板的零差異壓力的第一階及特定電氣測量技術(諸如使用任何許多普遍使用的橋式設計及其他電測量法)的電極結構(每個具有不同於真平面的平坦及傾斜偏離的實際值)。因為,感測器組態上係測量非常低的壓力(非常小的隔板偏離),所以僅平衡無需產生一穩定電極間隙的電極不足以將壓力測量的不確定性減少至適當的低位準,以達成最小壓力的穩定偵測。
存在對於在低壓力測量以改善電極間隙穩定性控制的電容式壓力計的必要性,以改善壓力計在低壓力時的測量能力。
參考美國專利案號7757563、7706995、7624643、7451654、7389697、7316163、7284439、7201057、7155803、7137301、7000479、6993973、6909975、6735845、6672171、6568274、6105436、6029525、5965821、5942692、5932332、5911162、5808206、5625152、4785669、與4499773、及美國專利案號20090255342、20070023140、20060070447、20060000289、20050262946、20040211262、20040099061。全都轉讓給當前受讓人。
根據改善電容式壓力計之一態樣,該壓力計包括:一隔板,其包括(a)包括:一共同電極;及(b)一電極結構,其包括一中央電極與環形電極,其中該隔板可於下列之間移動:(i)一零位置,當該隔板的每端壓力相同時;及(ii)一最大差異位置,當最大差異壓力施加至該隔板時;及一支撐結構,其配置係支撐該隔板,因此該隔板受到該電極結構的限制,且該共同電極係隔開且徑向對準與該壓力計之一對準軸有關的中央與環形電極;其中該電極結構的固定係與在對準軸附近以角度隔開的至少三個夾緊位置上的隔板有關;而且其中在含該隔板限制點與相對於零位置的隔板平面的每個夾緊位置點之每個正確平面中定義的角度係介於60°與90°之間,如此減少電極盤支撐高度的變化,使該隔板與該電極結構之間能有較小的間隙與改善穩定性。
根據改善壓力計的另一態樣,該壓力計包括:一隔板,其包括:(a)一共同電極;與(b)一電極結構,其包括一中央電極與環形電極,其中該隔板可於下列之間移動:(i)一零位置,當該隔板的每端壓力相同時;及(ii)一最大差異位置,當最大可測量差異壓力施加至該隔板時;一支撐結構,其配置成支撐該隔板,因此該共同電極係與壓力計的對準軸有關的中央與環形電極隔開及軸向排列;一間隔環,其包括複數個凸舌;及一夾器,其配置係夾緊電極結構在該等凸舌之每一者的位置上的間隔環,為了要定義在對準軸附近的複數個等角隔開的夾緊位置。
這些以及其他組件的步驟、特徵、目的、效益與優點可從下列示例性明具體實施例連同附圖、及申請專利範圍的詳細描述而變得更清楚。
現將討論示例性具體實施例。其他具體實施例可額外或取代使用。為了節省空間或更有效說明,省略已明白或不必要的細節。相反地,一些具體實施例已實施,不必揭示所有細節。
圖1顯示的電容式壓力計(10)包括一外罩(12),供支撐固定電極結構(14)與彈性隔板(16)。外罩(12)可包括處理外罩單元(18)與參考外罩單元(20),兩外罩單元係由彈性隔板(16)隔開。處理外罩單元(18)包括Px覆罩(22)。參考外罩單元(20)包括一環件(24)與Pr覆罩(26)。在示例性具體實施例中,參考外罩單元(20)的環件(24)包括一中空腔(28),供以預定關係承受及支撐固定電極結構(14)與彈性隔板(16),以維持在由一預定尺寸間隙(30)分開的穩定隔開關係。如圖所示,固定電極結構(14)包括一基材(32),其由一電絕緣材料製成,諸如陶瓷材料,且形成一堅硬、非彈性結構。一凹嘴(34)係提供在該基材(32)的周邊,供齧接在外罩(12)提供的一間隔環(36)的凸肩,且利用鎖環(38)與一波形彈簧(40)固定在位置上。一或多個薄隔片(41)可用來方便將電極間隙間隔設定成預定值。此外,一或多個薄隔片(43)可用來方便將波形彈簧腔高度設定成一預定值,以將夾緊力設定成一預定值,符合必要的超壓能力與磨擦接合力的設計目定,以與共同電極隔板(16)、外罩環件(24)與徑向順從間隔環(36)形成穩定幾何關係,夾緊該電極盤結構。在一具體實施例中,基材(32)的大小與形狀可在位於間隔環(36)與鎖定環(38)之間時,基材將可精確置放在外罩(12)中,以便固定電極結構(14)的中心係置中在中心軸(42),在基材(32)與外罩環件(24)和間隔環(36)之間具適當的徑向間隔。此有效減少在電極與金屬罩(24)間的雜散電容、以及因電極盤的徑向位置微小變化引起的雜散電容變化。波形彈簧(40)設計上係透過在至少三處的徑向彈性鎖環(38)與薄隔片(43),以接觸及運用一軸力在固定電極結構(14)的凹嘴(34),其在軸(42)的附近係以120°等角隔開。同樣地,波形彈簧(40)設計上係接觸及運用一反作用力在軸(42)附近120°分置的至少三處上的Pr覆罩(26),且當壓力計(10)整個組裝時,與固定電極結構(14)的凹嘴(34)的接觸位置成60°。固定電極結構(14)亦包括一中央電極(44),其係與中心軸(42)有關同中心置放,且一外部電極(46)最好係與中央電極(44)與中心軸(42)形成同中心環。
彈性隔板(16)可為使用一適當傳導材料層或塗佈加以製成或提供,以形成一共同電極。隔板(16)係固定至外罩,以在隔板的一端產生處理壓力(Px)室(50)、與在隔板的另一端產生含間隙(30)的參考壓力(Pr)室。應注意,路徑可在彈性隔板與參考外罩單元(20)之間提供(例如,透過蝕刻隔片的減少厚度部份),其使間隙(30)與外罩Pr部分的其他部分之間的壓力相等。隔板係固定至外罩,以便從參考壓力室的間隙(30)閉封該處理壓力室(50),因此兩室維持在不同壓力。待測量的氣體或蒸汽可透過一進氣口(52)進入處理壓力室(50),其係定義在Px覆罩(22)的部份。正常操作下,功能如同絕對壓力感測器的電容式壓力計(10)與參考腔(28)(與電極間隙(30))在真空下係被密封;且在一具體實施例中,參考外罩單元(20)具有一非蒸發式吸氣真空泵(54),以在參考腔(28)與電極間隙(30)提供非常低的壓力(低於儀器的最小解析度)。相較於處理壓力,此係絕對真空參考。在此模式,跨隔板的差異壓力是一絕對壓力測量。另一可能結構方法係使用第二進氣口取代在參考外罩單元(20)的吸氣真空泵(54),供在參考壓力、或在周圍大氣的環境壓力上,使一氣體從來源進入參考室。因此,含間隙(30)的參考室包括預先定義參考壓力的一氣體或蒸汽。應注意,兩室可顛倒,因此參考壓力室功能如同處理壓力室,且處理壓力室功能如同參考壓力室,其中例如該處理氣體係惰性,其係與電極及在含間隙(30)的壓力室中提供的其他材料有關。
中央和外部電極(44、46)最好在基材(32)表面上配置的平坦電極,以便電極最好為一致性厚度,且全部位在相同平面。適當的電氣引線(未在圖顯示)分別提供作為中央和環形電極(44、46)。在一具體實施例中,共同電極隔板(16)係與參考外罩單元(20)整個電連接形成。另一可能結構為使用一電氣引線(未在圖顯示),提供作為隔板(16)的共同電極。在較佳具體實施例中,基材(32)上的電氣保護(45)係提供給測量電極,以控制電極邊緣電容、減少外罩(20)的雜散電容,且在零差異壓力具雙電極電容平衡的條件。該等引線適合連接至一電容測量裝置(未在圖顯示)。
隔板(16)最好固定在外罩中,以便當在隔板兩端的壓力相同(即是存在零差異壓力)時,共同電極定義的平面實質平行中央和外部電極(44、46)與電氣保護(45)的平面。當透過入口(52)進入處理壓力室(50)的氣體或蒸汽的壓力不同於參考室的參考壓力時,隔板將會彎曲,且在隔板(16)的共同電極與中央電極(44)之間的電容將定義為不同於隔板(16)的共同電極與外部電極(46)之間的電容。藉由阻斷此區域的游離路徑,電氣保護(45)可減少電極與金屬外罩之間的寄生雜散電容。應瞭解,利用在基材(32)的主要直徑與外罩環件(24)之間的大且一致性間隙(如圖1所示);及藉由將一電氣保護(45)置放在電極盤的周邊(如圖1所示),由於電極盤的潛在側向位移的這些游離路徑的任何變化係感測器容量變量的極小的小數,如此能更精確測量差異壓力,不會在感測器輸出產生與壓力測量無關的變化。處理壓力室(50)的壓力如此是在隔板(16)的共同電極與中央電極(44)之間的測量電容、及在隔板(16)的共同電極與外部電極(46)之間的測量電容的關係性質。
同樣地,預先定義的電容是在隔板的共同電極結構與中央和外部電極(44、46)之每一者間建立,以致於當隔板的差異壓力為零時,結構定義一可測量的「基礎」電容。實際上,基礎電容是在電極間隙與外罩的雜散電容的主動電容總和。此外,當隔板暴露在最大可測量差異壓力時,隔板的共同電極結構的偏斜係與電極(44、46)有關,為了要定義感測器的「變量」。感測器變量之一測量為「電容」變量,其係等於隔板(16)共同電極的中央電極(44)電容減去在零差異壓力與最大差異壓力之間的隔板(16)共同電極的外部電極(46)電容之間的差。在從零差異壓力至最大值的隔板偏離最大變化是隔板的長度。
定義感測器範圍的主要參數之一為電極間隙間隔,其等於隔板(16)的共同電極結構的平面(當在隨意的零位置)與中央和外部電極(44、46)的平面之間的距離,如間隙(30)所示,在低於處理室(50)的儀器解析度的壓力,具在外罩部分(20)(包括間隙(30))的參考室中的非常低壓力(真空參考壓力)。對於一特定的感測器結構而言,「基礎」電容是由電極間隙間隔建立。針對測量非常低壓力(高度真空)的電容式壓力計設計必須對非常小壓力變化非常敏感且能夠測量。因此,在隔板(16)的共同電極的平面與中央和外部電極(44、46)的平面之間的間隔必須非常小,以便隔板偏離的小變化可隨差異壓力的微小變化而發現。
使間隙(30)更小以使壓力計(10)更靈敏測量較小差異壓力會增加對電極間隙形狀變化的靈敏度,而此變化係與跨隔板的差異壓力測量無關。對電極間隙形狀的這些有害變化之一係電極間隙間隔的變化。
雖然此普遍實施在業界以雙電極設計方式減少電極間隙間隔變化的影響,但是良好的電極間隙間隔控制將可進一步提供感測器輸出的高度穩定性。當測量利用窄電極間隙導致的非常低壓力時,此特別重要。
隨著現階段需要測量越來越小的壓力,目前電容式壓力感測器沒有可供穩定測量非常低壓力的必要固有電極間隙穩定性。
本發明描述一電容式壓力計,其中裝置的結構在隔板與電極之間提供較大的穩定性,允許甚至較小間隙與下面差異壓力測量。提供此一結構,改善了感測器電極間隙的空間穩定性,尤其在正常操作情況下有關隔板的電極盤調整記,及尤其防止外部影響,諸如溫度、大氣壓力、超壓、機械衝擊與震動。隨著此新結構說明的主要感測器參數包括電極間隙間隔、電極傾斜與電極扭曲。這些改善提供增強能力,使轉換器(即是,感測器與信號調節電子器件能夠提供高位準直流輸出-未在圖顯示)不需要電氣增益且不會呈現電氣雜訊(因此沒有電氣增益),且相較於供測量相容最大壓力範圍的先前技術感測器,具有較佳的零穩定性能。且如前述,感測器可提供沒有電氣雜訊與較佳零穩定性能的較低壓力範圍儀器,包括(但是未限於)減少大氣壓力靈敏度(在零與在壓力)、減少溫度係數與減少零漂移。
先前致力於達成電極與隔板間的穩定、減少間隙,包括使Pr環形外罩壁略微較薄,嘗試使電極盤凹嘴接觸Pr環件止推軸承更接近隔板支撐。但使Pr外罩壁較薄使該止推軸承更接近隔板支撐將削弱感測器外罩(Pr環件壁),在製程過程會更扭曲,且更削弱Pr環件止推軸承抵抗由熱差脹所造成的力、及由大氣壓力與任何外部機械負載驅動的感測器表面負載變化所產生的扭曲。
在圖2中,顯示先前技術壓力計與新改善壓力計的比較細節。在先前技術中,隔板(74)係固定在點位置周邊附近的環件(60),其之一係標示(62)。在類似方法中,固定電極結構(64)可藉由施加至電極結構(64)的周邊邊緣之一環形盤(鎖盤)(未在圖顯示)、及藉由在至少三點(其之一係標示(70))的波形彈簧(未在圖2顯示)所提供的軸力量(68)而保持在固定位置。如圖所示,該結構係定義在隔板附接至環件(60)的位置點(62)與徑向力(68)施加維持電極結構在固定位置的位置點(70)之間形成的立體角。此角度顯示為45°。與附接隔板(諸如點(62))的位置點感測器軸的徑向距離係相同,繞軸360°。
本方式的效益係藉由在壓力計中建構及固定隔板與電極結構達成,如此在施加夾緊負載下更直接置放隔板邊界(與支撐)(72),此相較於懸臂式(間接)支撐,產生更直接的支撐。結果的改善幾何亦能藉由定義從隔板邊界支撐(72)至亦在Pr外罩與隔片(66)之間介面(70)的電極盤的Pr外罩支撐交點之與隔板(74)平面有關的畫線角度α(參見圖2與3),而從分析的觀點描述。此幾何有雙倍的效益。第一且最重要地係,當大氣壓力或其他外部施加負載至Px覆罩表面的變化發生時,在此負載下的戶罩彎曲度與在隔板邊界的覆罩外徑會依外表面的正壓力擴大(尺寸增加)。此擴大會使Pr外罩扭曲,且本質上引起Pr外罩下面部分,約以在(82)的角度α(參見圖2)的變化微小旋轉。如上述,在至少一先前技術壓力計的角度係在約45°。經改善後的壓力計設計,此角度增加至約60°至90°範圍值。如圖3所示,對於諸如先前技術範例(約45°)的小解度而言,為了改變此角度,支撐高度存在相當大變化ΔY1 。對於如支撐角度相同變化的本設計(約75°)之一具體實施例的一結構中的大角度而言,在固定電極結構的支撐高度方面,存在相當小的變化ΔY2 。減少與隔板有關的電極盤支撐高度的變化可轉變為改善電極間隙間隔穩定性。其次,新幾何的效益提供一較堅硬支撐,以便在電極盤頂端上的任何施加徑向負載變化造成支撐高度與隨後改善電極間隙穩定性的較小變化。
諸如圖2在(68)顯示的(圖1)波形彈簧(40)提供的波形彈簧力會由於溫度變化、由機械沖擊與震動所引起的波形彈簧安裝與固定在感測器腔變化、以及由於大氣壓力變化而從Pr覆罩(26)(圖1的顯示)偏離造成的波形彈簧腔高度變化而改變。在此揭示的改善結構提供電極盤支撐(圖1的外罩環(24)與間隔環(36))的改善空間穩定性與較大軸向勁度,及減少由於波形彈簧(40)施力的變化引起的電極間隙間隔的改變。
在改善的感測器中,隔板係依此構成及固定,因此在施加夾緊負載(68)下更直接置放隔板邊界(圖2的(72)),此相較於懸臂式(間接)支撐,更能直接支撐。此具有將在兩組點位置間的角度從45°增加至角範圍內的角度,明顯減少隔板與電極盤支撐間的軸運動量效果(圖1的外罩環(24)與間隔環(36))。提供最佳結果的多種角度是在約60°至90°之間。此範圍的實際選擇是在最大化電極間隙穩定性與容易製造、高品質伸展隔板之間達成設計妥協。一妥協是在(82)的角度α(圖2與3)約75。。
供增加角度的一製造技術是在兩部件中製造環件,一(Pr環件(24))具有接近隔板的減少直徑,且另一者(間隔環(36))如圖1所示。兩部件可藉由焊接或其他適當方法固定在一起。此對本發明提供必要的幾何且允許容易組裝與感測器外罩(Pr環件(24)與Px覆罩(22))有關的隔板(16)。
進一步改善係有關一徑向順從隔片。圖5顯示先前技術,其中內部感測器部件係放下到固定位置,且隆起襯墊(其中施加夾緊負載)(116)只環繞四周排列,與中心軸(100)沒有徑向關係。一壓力計可在如圖5所示的情況下組裝,其中隔片(102)僅在位置點(108)碰觸Pr環件(106)的內壁(104),其中(3)夾緊負載(在隆起襯墊)之一者係從波形彈簧(未在圖顯示)傳輸。如圖所示,在位置點(108)的電極結構部分係與壁(104)隔開,而180°相對於位置點(108)的電極結構正碰觸Pr在壁(110)的Pr環件(106)的內壁(104)。
隨著在先前技術感測器中的此欠對準,當溫度下降且Pr環件(106)比電極結構(112)快速且進一步收縮時,由於Pr環件的熱脹係數大於電極盤的熱脹係數,所以在感測器會導致機械應力。差動收縮會在夾緊負載(107)的位置上產生大的徑向剪力(在圖5右邊顯示),且超過在電極結構(112)與隔片(102)間的磨擦力夾緊力,導致電極盤滑到新位置。在此新的組裝位置中,返回先前溫度,電極盤(112)會在相對方向的夾緊負載(107)上經歷大的徑向力。此力耦合使感測器施真,包括電極間隙且引起隔片張方的變化。這些變化對於壓力計的精確性會有不良影響。
上述改善的感測器係利用一徑向順從間隔環(118),如圖6與7所示),設計上只有徑向定位凸舌(120)可碰觸Pr環孔,且隆起襯墊(其中施加夾緊負載)122始終對Pr環孔具有徑向間隙。如此,當溫度降低時,如果徑向定位凸舌(120)碰觸Pr環件的壁面,那麼Pr環件會徑向向內驅動隔片的定位凸舌,其係從隆起襯墊移動60°,隆起襯墊係支撐如圖7截面圖右手邊顯示的電極盤。薄順從隔片的60°片段係彈性且相對容易變形,以便只有小側面力施加至夾緊接合(在圖6右邊的140所示)。此除去感測器偶然力耦合變形及隨後壓力計精確度變化的任何可能性。
如圖6所示,徑向順從隔片(118)包括設置的徑向凸舌(120),以便當配置在壓力計時,置中隔片。如顯示三個凸舌,以角度120°隔開。凸舌(120)置放在位置122(在範例為3)之間(在範例為60°),其中夾緊負載施加制電極結構。
如圖7所示,徑向順從隔片(118)安裝在Pr環件(130),以便在Pr環件(130)的壁(132)與施加夾緊力的襯墊之間始終存在一空間。隔片仍然有時會碰觸在徑向定位凸舌(從圖7顯示的截面圖移動60°)的Pr環件。不過,由於在由薄隔片材料製成的定位凸舌任一邊存在彈性60°片段,其未夾緊可自由移動,所以施加在安裝襯墊的電極盤的剪力明顯減少。
應很明顯,描述的具體實施例可做各種不同變更不致悖離文後申請專利範疇。例如,雖然描述的具體實施例利用具保護的雙電極,但是可使用其他電極組態,包括單一電極結構、與具兩便極以上的多電極結構。顯示的具體實施例係示例性且許多導體與導體模式可用在電極盤。此外,電氣保護與額外導體維持信號地,或在一些其他固定電位。此外,保護可主動驅動。如果主動驅動,最好是保護電壓與相位能夠符合實際相鄰電極的瞬間電壓與相位。
已討論的組件、步驟、特徵、目的、效益與優點只是說明,而不是要以任何方式限制保護範疇。許多其他具體實施例亦應考慮。這些包括具較少、增加、及/或不同組件、步驟、特徵、目的、效益與優點的具體實施例。這些亦包括不同配置及/或排序組件及/或步驟的具體實施例。
除非特別聲明,否則在本說明書發表的所有測量、值、額定值、位置、此寸、尺寸及其他規格(包括在申請專利範圍)只是大約值,非準確值,其意欲給予符合相關及所屬技術慣用功能的合理範圍。
在本發明引用的所有文獻、專利、專利申請案、與其他申請案在此是以引用方式併入本文供參考。
文後申請專利範圍引用的術語「構件」係意欲且應解釋為包含對應結構與已描述的物件及其同等物。同樣地,文後申請專利範圍引用的術語「步驟」係意欲且應解釋為包含已描述的對應行為及其同等物。文後申請專利範圍未出現這類術語表示申請專利範圍不意欲且不應解釋受限於對應結構、物件或行為或其同等物之任一者。
陳述或示例係意欲或應認為公開任何組件、步驟、特徵、目的、效益、優點或同等物,不管是否在文後申請專利範圍引用。
保護範疇只侷限於文後申請專利範圍。鑒於遵從及包括所有結構與功能同等物的本說明書與申請歷史,該範疇係意欲且應廣博解釋為與申請專利範圍的說明意義相一致。
10...電容式壓力計
12...外罩
14...電極結構
16...隔板
18...處理外罩單元
20...參考外罩單元
22...Px覆罩
24...環件
26...Pr覆罩
28...中空腔
30...間隙
32...基材
34...凹嘴
36...間隔環
38...鎖環
40...波形彈簧
41...隔片
42...中心軸
43...隔片
44...中央電極
45...電氣保護
46...外部電極
50...處理壓力室
52...入口
54...非蒸發式吸氣真空泵
60...環件
62...位置點
64...電極結構
66...隔片
68...軸力量
70...介面
72...支撐
74...隔板
82...角度α
100...中心軸
102...隔片
104...壁
106...Pr環件
107...負載
108...位置點
110...壁
112...電極結構
116...隆起襯墊
118...間隔環
120...凸舌
122...隆起襯墊
其中:
圖1為一感測器具體實施例的截面圖,其沿著一感測器的軸,同時結合在此描述的改善;
圖2為圖1具體實施例的一部分更詳細截面圖,其顯示改善的幾何細節;
圖3為示例說明圖1具體實施例的一些幾何特徵的幾何圖;
圖4為用於感測器的一隔板上視圖;
圖5為透過感測器一部分的更詳細軸截面圖;
圖6為用於圖7詳細改善的隔板上視圖;及
圖7為圖1具體實施例一部分的更詳細截面圖,其顯示額外改善的細節。
圖式揭示示例性具體實施例,其未發表全部具體實施例。其他具體實施例可另外或取代使用。為了節省空間或更有效說明,省略很顯然或不必要的細節。相反地,一些具體實施例已實施,不必揭示所有細節。不同圖式的相同數字代表相同或相似的組件或步驟。
10...電容式壓力計
12...外罩
14...電極結構
16...隔板
18...處理外罩單元
20...參考外罩單元
22...Px覆罩
24...環件
26...Pr覆罩
28...中空腔
30...間隙
32...基材
34...凹嘴
36...間隔環
38...鎖環
40...波形彈簧
41...隔片
42...中心軸
43...隔片
44...中央電極
45...電氣保護
46...外部電極
50...處理壓力室
52...入口
54...非蒸發式吸氣真空泵

Claims (6)

  1. 一種電容式壓力計,包括:一隔板,其包括(a)一共同電極及(b)一電極結構,其包括一中央電極與環形電極,其中該隔板可於下列之間移動:(i)一零位置,當該隔板的每端壓力相同時及(ii)一最大差異位置,當最大差異壓力施加至該隔板時,及一支撐結構,其配置係支撐該隔板,因此該隔板受到該電極結構的限制,且該共同電極係隔開且徑向對準與該壓力計之一對準軸有關的該中央與該環形電極;其中該電極結構的固定係與在對準軸附近以角度隔開的至少三夾緊位置上的隔板有關;而且其中在含該隔板限制點與相對於零位置的隔板平面的每個夾緊位置點之每個正確平面中定義的角度係介於60°與90°之間,如此減少電極盤支撐高度的變化,使該隔板與該電極結構之間能有較小的間隙與改善穩定性。
  2. 如申請專利範圍第1項所述之電容式壓力計,其中該支撐結構包括一基材,其配置來支撐該電極結構。
  3. 如申請專利範圍第2項所述之電容式壓力計,其中該支撐結構包括一彈簧,其配置來固定基材相對於在至少三個位置的隔板。
  4. 如申請專利範圍第3項所述之電容式壓力計,其中該彈簧為一波形彈簧,其配置來施加力在基材以一與在零位置的隔板平面成直角之角度。
  5. 一種電容式壓力計包括:一隔板,其包括:(a)一共同電極及(b)一電極結構,其包括一中央電極與環形電極,其中該隔板可於下列之間移動:(i)一零位置,當該隔板的每端壓力相同時及(ii)一最大差異壓力,當最大可測量差異壓力施加至該隔板時;一支撐結構,其配置係支撐該隔板,因此該共同電極係隔開且徑向對準與該壓力計之一對準軸有關的該中央與該環形電極;一間隔環,其包括複數個凸舌;及一夾器,其配置係夾緊該電極結構至該等凸舌之每一者的位置上的間隔環,以定義在對準軸附近的複數個等角隔開的夾緊位置。
  6. 如申請專利範圍第5項所述之電容式壓力計,其中該電極結構係夾緊至彼此以120°隔開的三個位置上的間隔環,且該間隔環包括彼此以120°等角隔開的三個凸舌,且與相鄰夾緊位置以60°置放。
TW100104125A 2010-02-02 2011-02-08 電容式壓力感測器 TWI408351B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US30062010P 2010-02-02 2010-02-02

Publications (2)

Publication Number Publication Date
TW201144783A TW201144783A (en) 2011-12-16
TWI408351B true TWI408351B (zh) 2013-09-11

Family

ID=43708829

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100104125A TWI408351B (zh) 2010-02-02 2011-02-08 電容式壓力感測器

Country Status (9)

Country Link
US (1) US8333118B2 (zh)
JP (1) JP5680677B2 (zh)
KR (1) KR101423063B1 (zh)
CN (1) CN102812342B (zh)
DE (1) DE112011100416T5 (zh)
GB (1) GB2491503B (zh)
SG (1) SG182731A1 (zh)
TW (1) TWI408351B (zh)
WO (1) WO2011097249A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2948997B1 (fr) * 2009-08-07 2012-04-20 Nanotec Solution Capteur de pression capacitif integrant une mesure de temperature compatible avec les milieux chauds.
US8561471B2 (en) * 2010-02-02 2013-10-22 Mks Instruments, Inc. Capacitive pressure sensor with improved electrode structure
DE102011077868A1 (de) * 2011-06-21 2012-12-27 Robert Bosch Gmbh Drucksensoranordnung zur Erfassung eines Drucks eines fluiden Mediums in einem Messraum
JP2013156066A (ja) * 2012-01-27 2013-08-15 Wacom Co Ltd 静電容量方式圧力センシング半導体デバイス
JP6119518B2 (ja) * 2013-02-12 2017-04-26 ソニー株式会社 センサ装置、入力装置及び電子機器
DE102014012918B4 (de) * 2014-09-05 2019-01-03 Heinz Plöchinger Dual-Kapazitäts-Manometer mit kleinem Messvolumen
US10996124B2 (en) 2016-12-28 2021-05-04 Tubitak High accuracy pressure transducer with improved temperature stability
CN107907263B (zh) * 2017-12-13 2023-06-16 沈阳市传感技术研究所 电极单端悬浮的电容压力传感器
US11054328B2 (en) * 2019-03-06 2021-07-06 Psemi Corporation Parasitic insensitive sampling in sensors
WO2021094139A1 (en) 2019-11-12 2021-05-20 Fresenius Medical Care Deutschland Gmbh Blood treatment systems
WO2021096706A1 (en) 2019-11-12 2021-05-20 Fresenius Medical Care Deutschland Gmbh Blood treatment systems
CA3160853A1 (en) 2019-11-12 2021-05-20 Fresenius Medical Care Deutschland Gmbh Blood treatment systems
CN114728114A (zh) 2019-11-12 2022-07-08 费森尤斯医疗护理德国有限责任公司 血液治疗系统
CN110987281B (zh) * 2019-11-29 2022-06-07 中国科学院微电子研究所 环形支撑结构及应用其的陶瓷电容式压力传感器
DE102022102437A1 (de) 2022-02-02 2023-08-03 Heinz Plöchinger Korrekturverfahren für Dual-Kapazitäts-Manometer
US11467051B1 (en) 2022-04-11 2022-10-11 Heinz Plöchinger Method for correcting a dual capacitance pressure sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200401887A (en) * 2002-06-13 2004-02-01 Mykrolis Corp An improved electronic interface for use with dual electrode capacitance diaphragm gauges
WO2004013593A1 (de) * 2002-07-31 2004-02-12 Endress + Hauser Gmbh + Co. Kg Kapazitiver drucksensor
US20050081639A1 (en) * 2003-10-20 2005-04-21 Gourlay Robert D. Inhalation detector
US20050229711A1 (en) * 2004-04-16 2005-10-20 Torsten Ohms Capacitive pressure sensor and method of manufacture
US20070245829A1 (en) * 2006-04-25 2007-10-25 Rosemount, Inc. Pressure sensor using near net shape sintered ceramics
TW200842363A (en) * 2007-04-26 2008-11-01 Ind Tech Res Inst Inertial sensor and producing method thereof

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4380932A (en) * 1981-03-02 1983-04-26 Honeywell Inc. Capacitance manometer differential pressure sensor
US4466289A (en) * 1982-03-17 1984-08-21 Lam Calvin K Capacitance manometer with digital output
US4499773A (en) 1983-04-28 1985-02-19 Dresser Industries, Inc. Variable capacitance pressure transducer
JPS62284232A (ja) * 1986-06-02 1987-12-10 Takeda Medical:Kk 静電溶量式圧力センサ
US4785669A (en) * 1987-05-18 1988-11-22 Mks Instruments, Inc. Absolute capacitance manometers
DE3942159A1 (de) * 1989-12-20 1991-06-27 Endress Hauser Gmbh Co Anordnung zur verarbeitung von sensorsignalen
DE4142101A1 (de) * 1991-11-28 1993-06-03 Lueder Ernst Prof Dr Ing Druckmessanordnung mit hoher linearitaet
JPH06334198A (ja) * 1993-05-20 1994-12-02 Nagano Keiki Seisakusho Ltd 圧力センサの取付構造
US5396803A (en) * 1993-07-07 1995-03-14 Tylan General, Inc. Dual balanced capacitance manometers for suppressing vibration effects
JPH0723256U (ja) * 1993-10-04 1995-04-25 太平洋工業株式会社 静電容量式圧力検出装置
US5625152A (en) 1996-01-16 1997-04-29 Mks Instruments, Inc. Heated pressure transducer assembly
US5808206A (en) 1996-01-16 1998-09-15 Mks Instruments, Inc. Heated pressure transducer assembly
SE9700612D0 (sv) 1997-02-20 1997-02-20 Cecap Ab Sensorelement med integrerat referenstryck
US5942692A (en) 1997-04-10 1999-08-24 Mks Instruments, Inc. Capacitive pressure sensing method and apparatus avoiding interelectrode capacitance by driving with in-phase excitation signals
US5911162A (en) 1997-06-20 1999-06-08 Mks Instruments, Inc. Capacitive pressure transducer with improved electrode support
US5965821A (en) 1997-07-03 1999-10-12 Mks Instruments, Inc. Pressure sensor
US20040099061A1 (en) 1997-12-22 2004-05-27 Mks Instruments Pressure sensor for detecting small pressure differences and low pressures
US6568274B1 (en) 1998-02-04 2003-05-27 Mks Instruments, Inc. Capacitive based pressure sensor design
US6029525A (en) 1998-02-04 2000-02-29 Mks Instruments, Inc. Capacitive based pressure sensor design
FR2775075B1 (fr) * 1998-02-18 2000-05-05 Theobald Sa A Capteur de pression differentielle
US6105436A (en) * 1999-07-23 2000-08-22 Mks Instruments, Inc. Capacitive pressure transducer with improved electrode support
DE29918915U1 (de) * 1999-10-27 2000-03-09 Trw Automotive Electron & Comp Drucksensor
US6672171B2 (en) 2001-07-16 2004-01-06 Mks Instruments, Inc. Combination differential and absolute pressure transducer for load lock control
US6901808B1 (en) * 2002-02-12 2005-06-07 Lam Research Corporation Capacitive manometer having reduced process drift
CN101358889B (zh) * 2003-03-22 2011-06-08 霍里巴斯特克公司 电容量隔膜压力计和其构造方法
US6993973B2 (en) 2003-05-16 2006-02-07 Mks Instruments, Inc. Contaminant deposition control baffle for a capacitive pressure transducer
US6909975B2 (en) 2003-11-24 2005-06-21 Mks Instruments, Inc. Integrated absolute and differential pressure transducer
US7201057B2 (en) 2004-09-30 2007-04-10 Mks Instruments, Inc. High-temperature reduced size manometer
US7141447B2 (en) 2004-10-07 2006-11-28 Mks Instruments, Inc. Method of forming a seal between a housing and a diaphragm of a capacitance sensor
US7137301B2 (en) 2004-10-07 2006-11-21 Mks Instruments, Inc. Method and apparatus for forming a reference pressure within a chamber of a capacitance sensor
US7000479B1 (en) 2005-05-02 2006-02-21 Mks Instruments, Inc. Heated pressure transducer
DE112007001835B4 (de) 2006-08-09 2018-05-09 Mks Instruments, Inc. Konstanter Leistungsumsatz in kapazitiven Druckwandlern
US7706995B2 (en) 2007-04-16 2010-04-27 Mks Instr Inc Capacitance manometers and methods relating to auto-drift correction
US7757563B2 (en) 2008-04-10 2010-07-20 Mks Instruments, Inc. Capacitance manometers and methods of making same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200401887A (en) * 2002-06-13 2004-02-01 Mykrolis Corp An improved electronic interface for use with dual electrode capacitance diaphragm gauges
WO2004013593A1 (de) * 2002-07-31 2004-02-12 Endress + Hauser Gmbh + Co. Kg Kapazitiver drucksensor
CN1672023A (zh) * 2002-07-31 2005-09-21 恩德莱斯和豪瑟尔两合公司 电容压力传感器
US20050081639A1 (en) * 2003-10-20 2005-04-21 Gourlay Robert D. Inhalation detector
US20050229711A1 (en) * 2004-04-16 2005-10-20 Torsten Ohms Capacitive pressure sensor and method of manufacture
US20070245829A1 (en) * 2006-04-25 2007-10-25 Rosemount, Inc. Pressure sensor using near net shape sintered ceramics
TW200842363A (en) * 2007-04-26 2008-11-01 Ind Tech Res Inst Inertial sensor and producing method thereof

Also Published As

Publication number Publication date
US20120031190A1 (en) 2012-02-09
WO2011097249A1 (en) 2011-08-11
KR101423063B1 (ko) 2014-08-13
GB2491503B (en) 2016-08-03
CN102812342B (zh) 2014-11-26
SG182731A1 (en) 2012-08-30
US8333118B2 (en) 2012-12-18
JP2013519091A (ja) 2013-05-23
GB201213194D0 (en) 2012-09-05
TW201144783A (en) 2011-12-16
GB2491503A (en) 2012-12-05
KR20120112854A (ko) 2012-10-11
JP5680677B2 (ja) 2015-03-04
DE112011100416T5 (de) 2012-12-06
CN102812342A (zh) 2012-12-05

Similar Documents

Publication Publication Date Title
TWI408351B (zh) 電容式壓力感測器
KR101588714B1 (ko) 개선된 전극 구조를 가진 용량성 압력 센서
US5965821A (en) Pressure sensor
JP5795369B2 (ja) 静電容量センサの改善
US9976922B2 (en) Fluid pressure sensor
US8561471B2 (en) Capacitive pressure sensor with improved electrode structure
JP4993345B2 (ja) 静電容量型圧力センサ
JP6654157B2 (ja) 圧力センサ
JP2007225344A (ja) 圧力センサ
JP5889540B2 (ja) 圧力センサ
JP2019510239A (ja) 多電極を有する容量式真空測定セル
JP4798605B2 (ja) 静電容量型圧力センサ
JP2002055008A (ja) 薄膜ゲッター内蔵型真空センサ
JP2006200980A (ja) 静電容量型圧力センサおよび静電容量型アクチュエータ
JPWO2005003711A1 (ja) 水晶式圧力センサ、及びその製造方法
WO2010125601A1 (ja) 静電容量型隔膜真空計、真空装置及びデバイスの製造方法
JP2017072384A (ja) 圧力センサ
CN116296051A (zh) 一种电容式真空规
KR20110121137A (ko) 배향 접촉 거동 구조를 갖는 정전용량형 압력센서
JPH11326093A (ja) サーボ式静電容量型真空センサ
JPH06265570A (ja) 半導体加速度センサ及び半導体圧力センサ
JP2015114232A (ja) 半導体圧力センサ