WO2022019326A1 - 脳腫瘍の検出を補助する方法 - Google Patents

脳腫瘍の検出を補助する方法 Download PDF

Info

Publication number
WO2022019326A1
WO2022019326A1 PCT/JP2021/027292 JP2021027292W WO2022019326A1 WO 2022019326 A1 WO2022019326 A1 WO 2022019326A1 JP 2021027292 W JP2021027292 W JP 2021027292W WO 2022019326 A1 WO2022019326 A1 WO 2022019326A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
base sequence
rna fragment
abundance
nos
Prior art date
Application number
PCT/JP2021/027292
Other languages
English (en)
French (fr)
Inventor
栄俊 田原
俊平 大西
文之 山崎
Original Assignee
国立大学法人広島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人広島大学 filed Critical 国立大学法人広島大学
Priority to JP2022538038A priority Critical patent/JPWO2022019326A1/ja
Publication of WO2022019326A1 publication Critical patent/WO2022019326A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Definitions

  • the present invention relates to a method for assisting the detection of a brain tumor.
  • Brain tumors are tumors that develop inside the skull, and glioblastoma and primary lymphoma of the central nervous system account for a high proportion of malignant brain tumors. Glioblastoma is the most deadly tumor in the current classification of brain tumors, and the removal rate of the tumor is involved in the prognosis. In addition, primary lymphoma of the central nervous system accounts for 2.4 to 3% of brain tumors, and the incidence of patients aged 60 years or older has increased in the past 20 years. Since the treatment methods for these tumors are very different, accurate preoperative diagnosis is extremely important clinically.
  • MRI and CT have traditionally been used to diagnose brain tumors, but pathological diagnosis is essential for the diagnosis of glioblastoma and primary lymphoma of the central nervous system because they have similar radiological characteristics. It was difficult to make a diagnosis without a surgical biopsy.
  • Patent Document 1 a method of analyzing the excised brain tissue and detecting the brain tumor based on the detection of the N-linked glycosylation of a glycoprotein peculiar to the brain tumor.
  • the conventional method for detecting a brain tumor requires the removal of brain tissue, which places a heavy burden on the patient, and a non-invasive biomarker has been eagerly desired.
  • an object of the present invention is to provide a method for assisting in detecting a brain tumor with high accuracy.
  • miRNAs whose abundance increases or decreases in brain tumors, their isoforms (isomiR), transfer RNA fragments (tRF), and non-coding RNA fragments (lncRNA). We have found that it is possible to detect brain tumors with high accuracy by using the above as an index, and completed the present invention.
  • the present invention contains a miRNA whose base sequence is represented by any of SEQ ID NOs: 1 to 9, an isoform (isomiR) thereof, a transfer RNA fragment (tRF), or a transfer RNA fragment (tRF) contained in a test sample isolated from a living body.
  • a method for assisting the detection of a brain tumor using the abundance of at least one non-coding RNA fragment (lncRNA) as an index.
  • the method of the present invention it is possible to detect a brain tumor with high accuracy and yet easily, which greatly contributes to the detection of a brain tumor.
  • miRNA a specific miRNA, isomiR, a transfer RNA fragment, or a non-coding RNA fragment contained in a test sample isolated from a living body
  • miRNA or the like a test sample isolated from a living body
  • the abundance of is used as an index.
  • the base sequences of these miRNAs themselves are as shown in the sequence listing.
  • a list of miRNAs and the like used in the method of the present invention is shown in Table 1 below.
  • miRNAs whose base sequences are represented by SEQ ID NOs: 1 to 9 are present in the serum (hereinafter, for convenience, for example, "miRNAs whose base sequences are represented by SEQ ID NO: 1" are simply referred to as “miRNAs of SEQ ID NO: 1”. Etc. ”or“ the one with SEQ ID NO: 1 ”).
  • the miRNAs and the like of SEQ ID NOs: 1 and 3 are miRNAs and the like whose abundance in glioblastoma patients is significantly higher than those in healthy subjects, and the miRNAs and the like of SEQ ID NO: 2 are present in glioblastoma patients.
  • the amount of miRNA etc. is significantly smaller than the abundance in healthy subjects.
  • the miRNAs of SEQ ID NOs: 4 and 6 are miRNAs and the like whose abundance in patients with central nervous system primary lymphoma is significantly higher than those in healthy subjects, and the miRNAs and the like of SEQ ID NO: 5 are those in patients with central nervous system primary lymphoma.
  • the abundance of miRNA etc. is significantly smaller than the abundance in healthy subjects.
  • the miRNAs and the like of SEQ ID NOs: 7 to 9 are miRNAs and the like whose abundance in glioblastoma patients is significantly smaller than that in central nervous system primary lymphoma patients. These miRNAs, etc. can assist in the differentiation of glioblastoma and central nervous system primary lymphoma alone, but by combining the miRNAs of SEQ ID NOs: 7 to 9, the differentiation between glioblastoma and central nervous system primary lymphoma can be further enhanced. It can be done with high accuracy.
  • the area under the ROC curve (AUC (Area Under Curve)) is used as an index showing the accuracy of the cancer marker, and it is generally said that an AUC of 0.7 or more is effective as a cancer marker.
  • AUC Area Under Curve
  • Those with an AUC of 0.90 or higher are highly accurate, those with an AUC of 0.97 or higher are extremely accurate, those with an AUC of 0.99 or higher are extremely accurate, and 1.00 is perfect (no false positives or false negatives). Therefore, also in the present invention, those having an AUC of 0.90 are preferable, those having an AUC of 0.97 or more are preferable, those having an AUC of 0.99 or more are preferable, and those having an AUC of 1.00 are most preferable.
  • test sample is not particularly limited as long as it is a body fluid containing miRNA, but a blood sample (including plasma, serum and whole blood) is usually preferably used.
  • a blood sample including plasma, serum and whole blood
  • serum or plasma for those present in serum, it is convenient and preferable to use serum or plasma as a test sample. Methods for extracting total RNA in serum or plasma are well known and are specifically described in the Examples below.
  • next-generation sequencer it is a device that reads an array, such as a next-generation sequencer, the model is not specified.
  • the quantified miRNAs and the like lack, for example, only one or more bases from the 5'and / or 3'ends of normal mature miRNAs. Since it is necessary to quantify isomiR that is only lost or added separately from the underlying miRNA, from the viewpoint of accuracy, it is better than quantitative reverse transcription PCR (qRT-PCR), which is widely used for quantifying miRNAs. It is also preferable to use a next-generation sequencer.
  • this quantification method can be performed as follows.
  • the RNA present in serum or plasma is constant, among the number of reads read in the next-generation sequence analysis using them, the human-derived sequence is converted into 1 million reads, and per 1 million reads. The read number of each isomiR and mature miRNA of is used as a measured value. If RNA in serum or plasma changes due to disease compared to healthy subjects, miRNA with less variation in serum and plasma abundance may be used.
  • the group consists of let-7g-5p, miR-425-3p, and miR-425-5p, which are miRNAs whose abundance does not fluctuate in serum or plasma. It is preferable to use at least one miRNA selected from the above as an internal standard.
  • the cutoff value of the abundance of each miRNA or the like used for the determination a statistically significant difference (p ⁇ 0.05, preferably p ⁇ 0.01, more preferably p ⁇ 0.01 in the t-test) with respect to the comparison target for each miRNA or the like. It is preferable to use the presence or absence of 0.001) as a reference. Specifically, for example, the number of Log2 reads (cutoff value) at the plot point where the false positive rate is the best value (the lowest value) can be set for each miRNA or the like. Note that these cutoff values are merely examples, and other values can be adopted as cutoff values as long as there is a statistically significant difference. Usually, the cutoff value can be set within the range of ⁇ 20% of the cutoff values shown in Tables 2 to 4, particularly within the range of ⁇ 10%.
  • a method for detecting the abundance of miRNA and the like in a human test sample in which a brain tumor is suspected or suffers from a brain tumor That is, A miRNA, its isoform (isomiR), a transfer RNA fragment (tRF) or a non-coding RNA fragment whose base sequence in a human test sample suspected of having a brain tumor or suffering from a brain tumor is represented by any of SEQ ID NOs: 1 to 9.
  • examples of brain tumors include glioblastoma or primary lymphoma of the central nervous system. Further, in the present invention, detecting a brain tumor not only detects a disease classified as a brain tumor such as glioblastoma or central nervous system primary lymphoma, but also distinguishes between glioblastoma and central nervous system primary lymphoma. Also includes differentiating multiple diseases classified as brain tumors.
  • the brain tumor is treated by administering an effective amount of a brain tumor therapeutic agent after performing excision surgery as necessary for the patient in which the brain tumor is detected.
  • a brain tumor therapeutic agent for brain tumors
  • examples of the therapeutic agent for brain tumors include temozolomide, lomustine, carmustine, cisplatin, bevacizumab, geftinib, erlotinib and the like.
  • Examples 1-9 1.
  • Method (1) Clinical specimens Blood samples were collected from 26 patients with isocitrate dehydrogenase wild-type glioblastoma diagnosed based on the WHO brain tumor classification 2016, 14 patients with primary central nervous system lymphoma, and 112 healthy subjects. The blood sample was centrifuged at 3,500 xg for 10 minutes, the upper serum was collected again, and the upper serum was collected again by further centrifuging at 12,000 xg for 10 minutes. Serum was stored at -80 ° C.
  • Statistical analysis was performed using JMP pro ver. 14.0 and GraphPad Prism 7. Logarithmic conversion of short non-coding RNA was performed in the following groups (Mann-Whitney U test): 1) Glioblastoma and healthy subjects, 2) Central nervous system primary lymphoma and healthy subjects, 3 ) Glioblastoma and central nervous system primary lymphoma. Then, in order to search for candidate short-chain non-coding RNA, cross-validation was performed without one, and then logistic analysis was performed. The accuracy of the diagnostic model combined with short non-coding RNA was evaluated using the receiver operating characteristic curve.
  • microRNA-205 SEQ ID NO: 1
  • microRNA-133a-1 SEQ ID NO: 3
  • transfer RNA-derived fragment-valine AAC / CAC
  • the glioblastoma prediction model (model 1) was calculated as follows: ((2.39923846 ⁇ MicroRNA-205 (Mature5')) + (-0.9319122 ⁇ Transfer RNA-derived fragment-valine (AAC / CAC)) + (0.92272519 ⁇ MicroRNA-133a-1 // MicroRNA-133a-2)- 12.556536)
  • the ROC curve of model 1 is shown in FIG. Model 1 was able to distinguish glioblastoma patients from healthy subjects with a sensitivity of 96.2%, a specificity of 98.2%, and an AUC (area under the curve) of 0.991.
  • the cutoff value was -0.0667.
  • the abundance of miRNAs of SEQ ID NOs: 1 and 3 in glioblastoma patients is significantly higher than that in healthy subjects, and the abundance of miRNAs of SEQ ID NO: 2 is glioblastoma.
  • the abundance in patients was significantly lower than that in healthy subjects.
  • glioblastoma can be detected with high accuracy by combining miRNAs of SEQ ID NOs: 1 to 3.
  • Example 4 Comparison of expression of small and medium-sized serum RNA in patients with central nervous system primary lymphoma and healthy subjects Following cross-sectional verification without one piece, logistic analysis was performed in patients with central nervous system primary lymphoma and healthy subjects, and long-chain non-coding RNA was performed. Coding RNA fragment 1 (Example 4: SEQ ID NO: 4), transfer RNA-derived fragment-proline (AGG / CGG / TGG) (Example 5: SEQ ID NO: 5), long-chain non-coding RNA fragment 2 (Example 6: SEQ ID NO: 6) was selected. Subsequently, a comparative evaluation of the expression of small RNA in serum was performed. The results are shown in Table 3.
  • RNA fragments 1 and 2 The abundance of long-chain non-coding RNA fragments 1 and 2 (SEQ ID NOs: 4 and 6) was higher in patients with CNS primary lymphoma than in healthy subjects.
  • the central nervous system primary lymphoma prediction model (model 2) was calculated as follows: ((1.05542133 x long non-coding RNA fragment 1) + (-1.0234034 x transfer RNA-derived fragment-proline (AGG / CGG / TGG))) + (0.43273974 x long non-coding RNA fragment 2) --3.6261834)
  • the ROC curve of model 2 is shown in FIG. Model 2 was able to distinguish patients with CNS primary lymphoma from healthy subjects with a sensitivity of 100%, a specificity of 96.4%, and an AUC (area under the curve) of 0.992.
  • the cutoff value was -1.7574.
  • the abundance of miRNAs of SEQ ID NOs: 4 and 6 in patients with primary lymphoma of the central nervous system is significantly higher than that in healthy subjects, and the abundance of miRNAs of SEQ ID NO: 5 is in the central nervous system.
  • the abundance in patients with primary lymphoma was significantly lower than that in healthy subjects.
  • central nervous system primary lymphoma can be detected with high accuracy by combining miRNAs of SEQ ID NOs: 4 to 6.
  • Example 7 Comparison of expression of small and medium-sized serum RNA in glioblastoma patients and central nervous system primary lymphoma patients
  • logistic analysis was performed following cross-validation without one.
  • Long-chain non-coding RNA fragment 3 (Example 7: SEQ ID NO: 7), transfer RNA-derived fragment-valine (AAC / CAC)
  • Example 8 SEQ ID NO: 8
  • microRNA-122 (Mature 5'super)
  • Example 9 Three small RNAs of SEQ ID NO: 9) were selected. Subsequently, a comparative evaluation of the expression of small and medium-sized serum RNA was performed. The results are shown in Table 4.
  • RNA fragment 3 SEQ ID NO: 7
  • transfer RNA-derived fragment-valine AAC / CAC
  • microRNA-122 MicroRNA-122 (Mature 5'super)
  • SEQ ID NO: 9 The abundance of long non-coding RNA fragment 3 (SEQ ID NO: 7), transfer RNA-derived fragment-valine (AAC / CAC) (SEQ ID NO: 8), microRNA-122 (Mature 5'super) (SEQ ID NO: 9) is The number of patients with glioblastoma was lower than that of patients with primary RNA lymphoma.
  • the model (model 3) for differentiating glioblastoma patients from patients with primary lymphoma of the central nervous system was calculated as follows: ((-0.9585476 x long non-coding RNA fragment 3) + (-0.9110373 x transfer RNA-derived fragment-valine (AAC / CAC)) + (-0.5038918 x microRNA-122 (Mature 5'super)) + 9.48875825) ..
  • the ROC curve of Model 3 is shown in FIG. Model 3 was able to differentiate patients with glioblastoma from patients with primary lymphoma of the central nervous system with a sensitivity of 92.3%, a specificity of 78.6%, and an AUC (area under the curve) of 0.920.
  • the cutoff value was 0.23985.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本発明は、脳腫瘍を高精度に検出することを補助する方法を提供する。 本発明は、生体から分離された被検試料中に含まれる、塩基配列が配列番号1~9のいずれかで示されるmiRNA、そのアイソフォーム(isomiR)、転移RNA断片(tRF)、若しくは非コードRNA断片(lncRNA)の少なくとも1種の存在量を指標として用いる、脳腫瘍の検出を補助する方法を提供する。

Description

脳腫瘍の検出を補助する方法
 本発明は、脳腫瘍の検出を補助する方法に関する。
 脳腫瘍とは頭蓋骨の内部に発生する腫瘍であり、悪性脳腫瘍の中でも膠芽腫及び中枢神経原発リンパ腫は高い割合を占める。膠芽腫は、現在の脳腫瘍の分類の中で最も致死的な腫瘍であり、腫瘍の摘出率が予後に関与している。また、中枢神経原発リンパ腫は、脳腫瘍の中で2.4~3%を占め、過去20年で60歳以上の患者の発症率が増加している。これらの腫瘍の治療方法は大きく異なるため、正確な術前診断を行うことが臨床上極めて重要である。
 脳腫瘍の診断には従来からMRIとCTが使用されているが、膠芽腫と中枢神経原発リンパ腫は放射線学的な特徴が類似しているため、両者の診断には病理学的な診断が必須であり、外科的な生検なしに診断を行うことは困難であった。
 このような脳腫瘍を検出する方法として、摘出された脳組織を解析し、脳腫瘍に特有の糖蛋白質のN結合型糖鎖の検出に基づいて脳腫瘍を検出する方法(特許文献1)が提案されている。
国際公開第2006/022114号公報
 上記の通り、従来の脳腫瘍の検出方法は脳組織を摘出する必要があり患者への負担が大きく、非侵襲的なバイオマーカーが切望されていた。
 したがって、本発明の目的は、脳腫瘍を高精度に検出することを補助する方法を提供することである。
 本願発明者らは、鋭意研究の結果、脳腫瘍において存在量が増大又は減少するmiRNA、そのアイソフォーム(isomiR)、転移RNA断片(tRF)、及び非コードRNA断片(lncRNA)を新たに見出し、これらを指標とすることにより、高精度に脳腫瘍の検出が可能になることを見出し、本発明を完成した。
 すなわち、本発明は、生体から分離された被検試料中に含まれる、塩基配列が配列番号1~9のいずれかで示されるmiRNA、そのアイソフォーム(isomiR)、転移RNA断片(tRF)、若しくは非コードRNA断片(lncRNA)の少なくとも1種の存在量を指標として用いる、脳腫瘍の検出を補助する方法、を提供する。
 本発明の方法によれば、高精度に、かつ、それでいて簡便に脳腫瘍を検出することが可能であるので、脳腫瘍の検出に大いに寄与する。
実施例1~3のマーカーを用いたモデル1のROC曲線を示す図である。 実施例4~6のマーカーを用いたモデル2のROC曲線を示す図である。 実施例7~9のマーカーを用いたモデル3のROC曲線を示す図である。
 上記の通り、本発明の方法では、生体から分離された被検試料中に含まれる特定のmiRNA、isomiR、転移RNA断片、又は非コードRNA断片(以下、便宜的に「miRNA等」と呼ぶことがある)の存在量を指標とする。これらのmiRNA等自体の塩基配列は配列表に示すとおりである。本発明の方法に用いるmiRNA等の一覧を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 塩基配列が配列番号1~9で示されるmiRNA等は、血清中に存在するものである(以下、便宜上、例えば「塩基配列が配列番号1で示されるmiRNA等」を単に「配列番号1のmiRNA等」や「配列番号1のもの」と呼ぶことがある)。
 配列番号1及び3のmiRNA等は、膠芽腫患者中の存在量が健常者中の存在量よりも有意に多いmiRNA等であり、配列番号2のmiRNA等は、膠芽腫患者中の存在量が健常者中の存在量よりも有意に少ないmiRNA等である。これらのmiRNA等は単独でも膠芽腫の検出を補助することができるが、配列番号1~3のmiRNA等を組み合わせることにより、膠芽腫をさらに高精度に検出することができる。
 配列番号4及び6のmiRNA等は、中枢神経原発リンパ腫患者中の存在量が健常者中の存在量よりも有意に多いmiRNA等であり、配列番号5のmiRNA等は、中枢神経原発リンパ腫患者中の存在量が健常者中の存在量よりも有意に少ないmiRNA等である。これらのmiRNA等は単独でも中枢神経原発リンパ腫の検出を補助することができるが、配列番号4~6のmiRNA等を組み合わせることにより、中枢神経原発リンパ腫をさらに高精度に検出することができる。
 配列番号7~9のmiRNA等は、膠芽腫患者中の存在量が中枢神経原発リンパ腫患者中の存在量よりも有意に少ないmiRNA等である。これらのmiRNA等は単独でも膠芽腫と中枢神経原発リンパ腫の鑑別を補助することができるが、配列番号7~9のmiRNA等を組み合わせることにより、膠芽腫と中枢神経原発リンパ腫の鑑別をさらに高精度に行うことができる。
 がんマーカーの精度を示す指標としてROC曲線下面積(AUC(Area Under Curve))が用いられており、一般的にAUCが0.7以上のものががんマーカーとして有効であると言われている。AUCが0.90以上のものは高精度であり、0.97以上は非常に高精度、0.99以上は極めて高精度、1.00で完璧(偽陽性及び偽陰性が全くない)である。したがって、本発明においても、AUCが0.90のものが好ましく、さらに0.97以上のものが好ましく、さらに0.99以上のものが好ましく、1.00のものが最も好ましい。
 被検試料としては、miRNAを含む体液であれば特に限定されないが、通常、血液試料(血漿、血清及び全血を包含する)が好ましく用いられる。血清中に存在するものは、血清又は血漿を被検試料とすることが簡便で好ましい。血清又は血漿中の全RNAの抽出方法は周知であり、下記実施例に具体的に記載されている。
 各miRNA等の存在量の測定(定量)は、次世代シーケンサーを用いて行うことが好ましい。次世代シーケンサーのように配列を読む機器であれば、機種を特定しない。下記実施例に具体的に記載されるように、本発明の方法では、定量するmiRNA等には、例えば、通常の成熟型miRNAの5’末端および/または3’末端からわずか1塩基以上が欠失または付加されているだけのisomiRを、基本となるmiRNAと区別して定量する必要があるので、精度の観点から、miRNAの定量に広く用いられている定量的逆転写PCR(qRT-PCR)よりも次世代シーケンサーを用いて行うことが好ましい。具体的には下記実施例において詳細に記載するが、簡単に述べると、この定量方法は、次のようにしておこなうことができる。血清或いは血漿中に存在するRNAが一定である場合、それらを用いた次世代シークエンス解析において読まれたリード数のうち、ヒト由来のシーケンスを100万リード数に換算して、100万リード数当たりのそれぞれのisomiRや成熟型miRNAのリード数を測定値とする。疾患によって健常人に比較して血清中または血漿中のRNAが変化する場合は、血清及び血漿中で存在量の変動が少ないmiRNAを用いる場合がある。なお、血清又は血漿中のmiRNA等を定量する場合には、血清及び血漿中で存在量の変動が少ないmiRNAであるlet-7g-5p、miR-425-3p及びmiR-425-5pから成る群より選ばれる少なくとも1種のmiRNAを内部標準として用いることが好ましい。
 判定に用いる、各miRNA等の存在量のカットオフ値としては、各miRNA等について、比較対象に対する統計学的有意差(t検定で、p<0.05、好ましくはp<0.01、さらに好ましくはp<0.001)の有無を基準とすることが好ましい。具体的には、好ましくは、例えば、偽陽性率が最良の値(最も低くなる値)となるプロット点におけるLog2 リード数(カットオフ値)を各miRNA等について設定することができる。なお、これらのカットオフ値は、単なる例に過ぎず、統計学的有意差が出る限り、他の値をカットオフ値として採用することができる。通常、表2~表4に示されるカットオフ値の±20%の範囲内、特には±10%の範囲内でカットオフ値を設定することができる。
 また、脳腫瘍が疑われるか又は脳腫瘍に罹患するヒトの被検試料中のmiRNA等の存在量を検出する方法も提供される。すなわち、
 脳腫瘍が疑われる又は脳腫瘍に罹患するヒトの被検試料中の塩基配列が配列番号1~9のいずれかで示されるmiRNA、そのアイソフォーム(isomiR)、転移RNA断片(tRF)又は非コードRNA断片(lncRNA)の少なくとも1種の存在量を検出する方法であって、
 ヒトから血液試料を得る工程、及び
 次世代シーケンサーまたはqRT-PCRを用いて、前記血液試料内のmiRNA等の存在量を測定する工程を含む方法、も提供される。
 本発明において、脳腫瘍としては、膠芽腫又は中枢神経原発リンパ腫が挙げられる。また、本発明において、脳腫瘍を検出するとは、膠芽腫や中枢神経原発リンパ腫などの脳腫瘍に分類される疾患を検出することのみならず、膠芽腫と中枢神経原発リンパ腫とを鑑別するように、脳腫瘍に分類される複数の疾患を鑑別することも含む。
 また、上記した本願発明の方法により、脳腫瘍が検出された場合、脳腫瘍が検出された患者に必要に応じて摘出手術を施した後、有効量の脳腫瘍治療薬を投与することにより、脳腫瘍を治療することができる。脳腫瘍治療薬としては、テモゾロマイド、ロムスチン、カルムスチン、シスプラチン、ベバシズマブ、ゲフティニブ、エルロチニブ等を挙げることができる。
 以下、本発明を実施例及び比較例に基づき具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。
実施例1~9
1. 方法
(1) 臨床検体
 WHO脳腫瘍分類2016に基づいて診断されたイソクエン酸脱水素酵素野生型の膠芽腫患者26名、中枢神経原発リンパ腫14名、健常人112名から血液検体を採取した。血液検体は、3,500×gで10分間遠心を行い、上部の血清を再度採取し、12,000×gで10分間さらに遠心を行い上部の血清を回収した。血清は-80℃で保管した。
(2) 血清中のRNAの抽出
 200μLの血清からmiRNeasy Mini Kit(キアゲン)を使用して、全RNAを50μLのヌクレアーゼフリー水で抽出した。次いで、抽出したRNAは遠心濃縮器機で5倍に濃縮した。
(3) miRNA等の定量
(転写産物のライブラリの作成)
 4μLの濃縮したRNAからライブラリの作成を行った。ライブラリは、Total RNA-Seq Kit v2(サーモフィッシャーサイエンティフィック)を使用し、製品手順書に従って作成した。3.0%アガロースゲルとパルスフィールドゲル電気泳動(ブルーピッピン, セージ サイエンス)を用いて、88から112塩基の産物を抽出した。高感度DNAアッセイチップとアジレント 2100 バイオアナライザー(アジレント・テクノジー)を用いて、製品手順書に従い最終産物の品質を確認した。
(次世代シーケンス解析)
 各々のサンプルは75pMに希釈し、Ion Chef システムで準備を行った。Ion 540 kit と Ion S5XL system(サーモフィッシャー サイエンティフィック)を用いて、製品手順書に従いシーケンスを行った。
(短鎖ノンコーディングRNAの解析)
 短鎖ノンコーディングRNAのシーケンシングデータは、CLC Genomics Workbench 7.5.1(キアゲン)を用い、15~55塩基の短鎖ノンコーディングRNAの解析を行った。小分子RNAのシーケンスデータは、miRbase Release 21, GtRNAdb hg19-tRNAs, Ensembl Homo_sapiens.GRCh38.ncrnaを参照した。データを標準化するために、総リード数が100万リードだった場合に合わせて補正を行った。
(統計学的解析)
 統計学的解析は、JMP pro ver. 14.0とGraphPad Prism 7を用いて行った。短鎖ノンコーディングRNAを対数変換し、下記のグループで2群間比較を行った(マン・ホイットニーのU検定):1) 膠芽腫と健常人、2) 中枢神経原発リンパ腫と健常人、3) 膠芽腫と中枢神経原発リンパ腫。その後、候補となる短鎖ノンコーディングRNAを検索するために、一個抜き交差検証を行った後、ロジスティック解析を行った。短鎖ノンコーディングRNAを組み合わせた診断モデルの正確性は、受信者動作特性曲線を用いて評価を行った。
2. 結果
(実施例1~3)膠芽腫患者と健常人における血清中小分子RNAの発現の比較
 膠芽腫患者と健常人において、一個抜き交差検証に続き、ロジスティック解析を行った結果、マイクロRNA-205 (Mature5')(実施例1:配列番号1)、トランスファーRNA由来フラグメント-バリン(AAC/CAC)(実施例2:配列番号2)、マイクロRNA-133a-1//マイクロRNA-133a-2(実施例3:配列番号3)の3つの小分子RNAを選択した。
 続いて、血清中小分子RNAの発現の比較評価を行った。結果を表2に示す。マイクロRNA-205(配列番号1)とマイクロRNA-133a-1//マイクロRNA-133a-2(配列番号3)の存在量は、膠芽腫患者において健常人より上昇していた。一方、トランスファーRNA由来フラグメント-バリン (AAC/CAC) (配列番号2)の存在量は、膠芽腫患者において健常人より減少していた。
 膠芽腫予測モデル(モデル1)は下記のように算出した:
((2.39923846×マイクロRNA-205 (Mature5')) + (-0.9319122×トランスファーRNA由来フラグメント-バリン(AAC/CAC)) + (0.92272519×マイクロRNA-133a-1//マイクロRNA-133a-2) - 12.556536)
 モデル1のROC曲線を図1に示す。モデル1は、膠芽腫患者を健常人から感度96.2%、特異度98.2%、AUC(曲線下面積)0.991で鑑別することができた。カットオフ値は、-0.0667であった。
Figure JPOXMLDOC01-appb-T000002
 上記の結果から分かるように、配列番号1及び3のmiRNA等は、膠芽腫患者中の存在量が健常者中の存在量よりも有意に多く、配列番号2のmiRNA等は、膠芽腫患者中の存在量が健常者中の存在量よりも有意に少なかった。また、配列番号1~3のmiRNA等を組み合わせることにより、膠芽腫を高精度に検出できることが示された。
(実施例4~6)中枢神経原発リンパ腫患者と健常人における血清中小分子RNAの発現の比較
 中枢神経原発リンパ腫患者と健常人において、一個抜き交差検証に続き、ロジスティック解析を行い、長鎖型ノンコーディングRNAフラグメント1(実施例4:配列番号4)、トランスファーRNA由来フラグメント-プロリン (AGG/CGG/TGG)(実施例5:配列番号5)、長鎖型ノンコーディングRNAフラグメント2(実施例6:配列番号6)を選択した。
 続いて、血清中small RNAの発現の比較評価を行った。結果を表3に示す。長鎖型ノンコーディングRNAフラグメント1及び2(配列番号4及び6)の存在量は、中枢神経原発リンパ腫患者において健常人より上昇していた。トランスファーRNA由来フラグメント-プロリン (AGG/CGG/TGG)(配列番号5)の存在量は、中枢神経原発リンパ腫患者において健常人より減少していた。
 中枢神経原発リンパ腫予測モデル(モデル2)は下記のように算出した:
((1.05542133×長鎖型ノンコーディングRNAフラグメント1) + (-1.0234034×トランスファーRNA由来フラグメント-プロリン (AGG/CGG/TGG)) + (0.43273974×長鎖型ノンコーディングRNAフラグメント2) - 3.6261834)
 モデル2のROC曲線を図2に示す。モデル2は、中枢神経原発リンパ腫患者を健常人から感度100%、特異度96.4%、AUC(曲線下面積)0.992で鑑別することができた。カットオフ値は、-1.7574であった。
Figure JPOXMLDOC01-appb-T000003
 上記の結果から分かるように、配列番号4及び6のmiRNA等は、中枢神経原発リンパ腫患者中の存在量が健常者中の存在量よりも有意に多く、配列番号5のmiRNA等は、中枢神経原発リンパ腫患者中の存在量が健常者中の存在量よりも有意に少なかった。また、配列番号4~6のmiRNA等を組み合わせることにより、中枢神経原発リンパ腫を高精度に検出できることが示された。
(実施例7~9)膠芽腫患者と中枢神経原発リンパ腫患者における血清中小分子RNAの発現の比較
 膠芽腫患者と中枢神経原発リンパ腫患者において、一個抜き交差検証に続き、ロジスティック解析を行い、長鎖型ノンコーディングRNAフラグメント 3(実施例7:配列番号7)、トランスファーRNA由来フラグメント-バリン (AAC/CAC)(実施例8:配列番号8)、マイクロRNA-122 (Mature 5' super)(実施例9:配列番号9)の3つの小分子RNAを選択した。
 続いて、血清中小分子RNAの発現の比較評価を行った。結果を表4に示す。長鎖型ノンコーディングRNAフラグメント3(配列番号7),トランスファーRNA由来フラグメント-バリン(AAC/CAC)(配列番号8),マイクロRNA-122 (Mature 5' super)(配列番号9)の存在量は、膠芽腫患者において中枢神経原発リンパ腫患者より減少していた。
 膠芽腫患者を中枢神経原発リンパ腫患者から鑑別するモデル(モデル3)は、下記のように算出した:
((-0.9585476×長鎖型ノンコーディングRNAフラグメント3) + (-0.9110373×トランスファーRNA由来フラグメント-バリン (AAC/CAC)) + (-0.5038918×マイクロRNA-122(Mature 5' super)) + 9.48875825)。
 モデル3のROC曲線を図3に示す。モデル3は、膠芽腫患者を中枢神経原発リンパ腫患者から、感度92.3%、特異度78.6%、AUC(曲線下面積)0.920で鑑別することができた。カットオフ値は、0.23985であった。
Figure JPOXMLDOC01-appb-T000004
 上記の結果から分かるように、配列番号7~9のmiRNA等は、膠芽腫患者中の存在量が中枢神経原発リンパ腫患者中の存在量よりも有意に少なかった。また、配列番号7~9のmiRNA等を組み合わせることにより、膠芽腫と中枢神経原発リンパ腫を高精度に鑑別できることが示された。

Claims (10)

  1.  生体から分離された被検試料中に含まれる、塩基配列が配列番号1~9のいずれかで示されるmiRNA、そのアイソフォーム(isomiR)、転移RNA断片(tRF)、若しくは非コードRNA断片(lncRNA)の少なくとも1種の存在量を指標として用いる、脳腫瘍の検出を補助する方法。
  2.  塩基配列が配列番号1~3のいずれかで示されるmiRNA、そのアイソフォーム(isomiR)、若しくは転移RNA断片(tRF)の少なくとも1種の存在量を指標とし、塩基配列が配列番号1及び3のいずれかで示される少なくとも1種のmiRNA、若しくはisomiRの存在量が健常者よりも多いこと、又は塩基配列が配列番号2で示される転移RNA断片の存在量が健常者よりも少ないことが、脳腫瘍を発症している可能性が大きいことを示す、請求項1記載の方法。
  3.  塩基配列が配列番号1のmiRNAと、塩基配列が配列番号2の転移RNA断片と、塩基配列が配列番号3のisomiRの存在量を指標とする、請求項2記載の方法。
  4.  脳腫瘍が膠芽腫である請求項2又は3記載の方法。
  5.  塩基配列が配列番号4~6のいずれかで示される転移RNA断片(tRF)、若しくは非コードRNA断片(lncRNA)の少なくとも1種の存在量を指標とし、塩基配列が配列番号4及び6のいずれかで示される少なくとも1種の非コードRNA断片の存在量が健常者よりも多いこと、又は塩基配列が配列番号5で示される転移RNA断片の存在量が健常者よりも少ないことが、脳腫瘍を発症している可能性が大きいことを示す、請求項1記載の方法。
  6.  塩基配列が配列番号4の非コードRNA断片と、塩基配列が配列番号5の転移RNA断片と、塩基配列が配列番号6の非コードRNA断片の存在量を指標とする、請求項5記載の方法。
  7.  脳腫瘍が中枢神経原発リンパ腫である請求項5又は6記載の方法。
  8.  被検試料が膠芽腫患者又は中枢神経原発リンパ腫患者から分離された試料であり、塩基配列が配列番号7~9のいずれかで示されるmiRNAのアイソフォーム(isomiR)、転移RNA断片(tRF)、若しくは非コードRNA断片(lncRNA)の少なくとも1種の存在量を指標として用いて膠芽腫と中枢神経原発リンパ腫を鑑別する、請求項1記載の方法。
  9.  塩基配列が配列番号7~9のいずれかで示される少なくとも1種のisomiR、転移RNA断片、若しくは非コードRNA断片の存在量が中枢神経原発リンパ腫患者よりも少ないことが、膠芽腫を発症している可能性が大きいことを示す、請求項8記載の方法。
  10.  塩基配列が配列番号7の非コードRNA断片と、塩基配列が配列番号8の転移RNA断片と、塩基配列が配列番号9のisomiRの存在量を指標とする、請求項8又は9記載の方法。
PCT/JP2021/027292 2020-07-22 2021-07-21 脳腫瘍の検出を補助する方法 WO2022019326A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022538038A JPWO2022019326A1 (ja) 2020-07-22 2021-07-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-124854 2020-07-22
JP2020124854 2020-07-22

Publications (1)

Publication Number Publication Date
WO2022019326A1 true WO2022019326A1 (ja) 2022-01-27

Family

ID=79729165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027292 WO2022019326A1 (ja) 2020-07-22 2021-07-21 脳腫瘍の検出を補助する方法

Country Status (2)

Country Link
JP (1) JPWO2022019326A1 (ja)
WO (1) WO2022019326A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066291A2 (en) * 2007-11-21 2009-05-28 Rosetta Genomics Ltd. Micrornas expression signature for determination of tumors origin
JP2010522554A (ja) * 2007-03-27 2010-07-08 ロゼッタ ゲノミックス エルティーディー. 癌の分類のための遺伝子発現サイン
CN106978415A (zh) * 2016-01-18 2017-07-25 上海市第六人民医院东院 转运rna片段及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010522554A (ja) * 2007-03-27 2010-07-08 ロゼッタ ゲノミックス エルティーディー. 癌の分類のための遺伝子発現サイン
WO2009066291A2 (en) * 2007-11-21 2009-05-28 Rosetta Genomics Ltd. Micrornas expression signature for determination of tumors origin
CN106978415A (zh) * 2016-01-18 2017-07-25 上海市第六人民医院东院 转运rna片段及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANA HERMAN, KRISTINA GRUDEN, ANDREJ BLEJEC, VID PODPEČAN, HELENA MOTALN, PRIMOŽ ROŽMAN, MATJAŽ HREN, K: "Analysis of Glioblastoma Patients' Plasma Revealed the Presence of MicroRNAs with a Prognostic Impact on Survival and Those of Viral Origin", PLOS ONE, vol. 10, no. 5, pages e0125791, XP055335309, DOI: 10.1371/journal.pone.0125791 *
NAKANO YOSHIKO, KAISHI SATOMI, HIROKAZU TAKAMI, RYO NISHIKAWA, FUMIYUKI YAMASAKI, MAEHARA TAKETOSHI, NOBUHITO SAITO, YONEHIRO KANE: "ANALYSIS OF MICRORNA EXPRESSION PROFILE OF INTRACRANIAL GERM CELL TUMORS: A PROMISING TOOL FOR DIFFERENTIAL DIAGNOSIS", NEURO-ONCOLOLGY; GCT-72, 31 December 2020 (2020-12-31), pages 342 - 343, XP055889390 *
ONISHI, SHUMPEI ET AL.: "S5-3 Circulating biomarker for glioblastoma and primary central nervous system lymphoma-Next Generation Sequencing of small noncoding RNA-analysis", PROGRAM/ABSTRACTS OF THE 38TH ANNUAL MEETING OF JAPANESE SOCIETY FOR NEURO-ONCOLOGY; NOVEMBER 29 - DECEMBER 01, 2020, vol. 38, 10 November 2020 (2020-11-10) - 1 December 2020 (2020-12-01), JP, pages 83, XP009533761 *
YUE XIAO, LAN FENGMING, HU MAN, PAN QIANG, WANG QIONG, WANG JINHUAN: "Downregulation of serum microRNA-205 as a potential diagnostic and prognostic biomarker for human glioma", JOURNAL OF NEUROSURGERY, AMERICAN ASSOCIATION OF NEUROLOGICAL SURGEONS, US, vol. 124, no. 1, 1 January 2016 (2016-01-01), US , pages 122 - 128, XP055889385, ISSN: 0022-3085, DOI: 10.3171/2015.1.JNS141577 *

Also Published As

Publication number Publication date
JPWO2022019326A1 (ja) 2022-01-27

Similar Documents

Publication Publication Date Title
CN107338324B (zh) 用于诊断不明原因复发性流产的血清lncRNA标志物、引物组及应用和试剂盒
CN105256014B (zh) 乳腺癌联合诊断标志物及检测试剂盒
CN113337613B (zh) 一种与肝癌相关的血清外泌体tsRNA标志物、探针及其应用
CN105518154B (zh) 脑癌检测
JP2023113881A (ja) 乳がんの検出を補助する方法
JP2023113877A (ja) 膵がんの検出を補助する方法
JP7390002B2 (ja) 頭頸部がんの検出を補助する方法
TWI571514B (zh) 評估罹患大腸直腸癌風險的方法
TWI758670B (zh) 健康風險評估方法
CN111424085B (zh) tRNA来源片段在制备乳腺癌诊断试剂中的应用
CN108300788A (zh) 一种用于检测轻型脑外伤的微小核糖核酸组合及其应用
CN110656176A (zh) 一种pnck基因的pcr检测试剂盒及应用
WO2022019326A1 (ja) 脳腫瘍の検出を補助する方法
CN113584169B (zh) 一种与肝癌相关的血清tsRNA标志物、探针及其应用
CN111733242B (zh) lncRNA AK024561作为卵巢癌诊断标志物的应用
JP7345860B2 (ja) 胃癌バイオマーカー及びその用途
EP3298165A1 (en) Method and kit for the diagnosis of colorectal cancer
CN114746551A (zh) 大肠癌诊断用标志物、辅助大肠癌的诊断的方法、收集数据以用于大肠癌诊断的方法、大肠癌的诊断试剂盒、大肠癌治疗药物、大肠癌的治疗方法、大肠癌的诊断方法
LU503615B1 (en) Serodiagnosis marker for gastric cancer (gc), and determination method
TWI626314B (zh) 評估罹患大腸直腸癌風險的方法
JP7514458B2 (ja) 関節リウマチ治療薬の奏効を予測する方法及びそれに用いるバイオマーカー
CN109182520B (zh) 一种宫颈癌及其癌前病变检测试剂盒及其应用
WO2022210783A1 (ja) 甲状腺濾胞癌特異的マーカー
EP4379064A1 (en) Diagnostic methods and diagnostic assay comprising detection of lncrnas
CN114959018A (zh) 非小细胞肺癌miRNA标志物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21846913

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022538038

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21846913

Country of ref document: EP

Kind code of ref document: A1