WO2022017776A1 - Wärmeleitvorrichtung für einen elektrischen energiespeicher eines kraftfahrzeugs - Google Patents

Wärmeleitvorrichtung für einen elektrischen energiespeicher eines kraftfahrzeugs Download PDF

Info

Publication number
WO2022017776A1
WO2022017776A1 PCT/EP2021/068629 EP2021068629W WO2022017776A1 WO 2022017776 A1 WO2022017776 A1 WO 2022017776A1 EP 2021068629 W EP2021068629 W EP 2021068629W WO 2022017776 A1 WO2022017776 A1 WO 2022017776A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
conducting
heat conducting
electrical energy
spring
Prior art date
Application number
PCT/EP2021/068629
Other languages
English (en)
French (fr)
Inventor
Andreas Schurz
Domenico Romano
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Priority to JP2023501558A priority Critical patent/JP2023533570A/ja
Priority to KR1020237001911A priority patent/KR20230027197A/ko
Priority to EP21748510.1A priority patent/EP4182994A1/de
Priority to US18/006,027 priority patent/US20230349646A1/en
Priority to CN202180047820.4A priority patent/CN115769416A/zh
Publication of WO2022017776A1 publication Critical patent/WO2022017776A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/06Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being attachable to the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0029Heat sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0043Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2280/00Mounting arrangements; Arrangements for facilitating assembling or disassembling of heat exchanger parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2280/00Mounting arrangements; Arrangements for facilitating assembling or disassembling of heat exchanger parts
    • F28F2280/08Tolerance compensating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a heat conducting device for an electrical energy store of an at least partially electrically operated motor vehicle according to the preamble of patent claim 1.
  • thermally conductive paste or thermally conductive casting compound is used to cool an electrical energy storage device, for example a high-voltage energy storage device, in order to achieve thermal contact with the cooling system of the electrical energy storage device in the motor vehicle.
  • thermally conductive compounds are very expensive and heavy.
  • an application process of the thermally conductive compound is difficult to control in the series process and there is a risk of air inclusions occurring during the application and leading to problems in ferry operations.
  • the battery blocks can only be removed again with considerable effort due to the adhesive effect.
  • the thermally conductive compound or thermally conductive casting compound is only conditionally recyclable.
  • DE 102008 010 839 A1 relates to a battery with a heat-conducting plate arranged in a battery housing for controlling the temperature of the battery, wherein several individual cells electrically connected in parallel and/or in series with one another are thermally conductively connected to the heat-conducting plate.
  • the battery is characterized in particular by a spring element, by means of which the individual cells can be pressed against the heat-conducting plate in a defined manner.
  • DE 102008 034 876 A1 relates to a battery with a heat-conducting plate arranged on the battery housing for temperature control of the battery, wherein several individual cells electrically connected in parallel and/or in series with one another by means of a cell connector board are thermally conductively connected to the heat-conducting plate, with at least one spring element being provided by means of which the individual cells can be pressed against the heat-conducting plate in a defined manner. There are on the cell connector board or on the Metal plate arranged one or more biasing elements to a bias and attachment of the spring element.
  • DE 102011 003 538 A1 relates to a device for pressing a cooler onto a battery, the cooler having at least one cooling surface for absorbing or dissipating thermal energy, and the battery having at least one contact surface for applying the cooling surface of the cooler.
  • the device has a pressure part with at least one spring-elastic pressure element for transmitting a pressure force to a partial area of the cooler that faces away from a battery.
  • the device also has a suspension device for suspending the pressure part on the battery, the suspension device being designed to generate a suspension force opposing the pressing force when the cooler is arranged on the battery and the suspension device is suspended on the battery.
  • One aspect of the invention relates to a heat conducting device for an electrical energy store of an at least partially electrically operated motor vehicle, with at least one heat conducting element, which is designed to make contact with at least one battery cell of the electrical energy store and to dissipate heat from the at least one battery cell, and with at least one Spring element, which is designed to exert a defined spring force between the at least one battery cell and the at least one heat-conducting element.
  • the heat-conducting element is in contact with a housing, in particular a housing wall of the housing, of the electrical energy store.
  • the heat-conducting element can be in contact with the at least one battery cell on one side and with the housing for dissipating the heat on the other side.
  • the heat conduction path can thus be implemented from the at least one battery cell via the heat conduction element to the housing.
  • a cooling device for the electrical energy store is then formed on the housing side, so that the heat can be dissipated further.
  • the cooling device can be fluidic, for example.
  • the heat conducting device is also formed on an underside of the electrical energy store, in particular on a lower housing wall.
  • the heat-conducting element is made of aluminum.
  • aluminum is a good conductor of heat, so that the heat can be better dissipated from the battery cell.
  • aluminum is very light, so that the heat-conducting device can be provided with reduced weight.
  • the holding device is made of plastic.
  • a holding device that is easy to produce can thus be provided.
  • plastic is hard-wearing and particularly suitable for installation in an electrical energy store, since plastic, for example is not electrically conductive.
  • plastic is light, so that the heat-conducting device is designed to be lighter.
  • the holding device is a plastic injection molded part. This makes it possible for the holding device to be injection molded in a simple manner. The holding device can thus be produced in an injection molding tool with little manufacturing effort.
  • the heat-conducting element is S-shaped when viewed in a cross-section of the heat-conducting element.
  • an upper leg of the S-shape can be coupled to one battery cell.
  • a further leg of the S-shape in particular a lower leg of the S-shape, can be coupled to the housing.
  • the S-shape makes it possible for a thermal coupling to be produced between the at least one battery cell and the housing in the simplest possible way.
  • the S-shape can easily be rotated around a pivot point, so that the rotation can be carried out more easily.
  • the heat-conducting device has a multiplicity of heat-conducting elements which are each rotatably mounted.
  • this makes it possible for good thermal conductivity of the heat-conducting device to be implemented on the basis of the large number of mounted heat-conducting elements.
  • the heat of the at least one battery cell can thus be dissipated in an improved manner.
  • the heat-conducting element can be designed in an S-shape.
  • the S-shape allows easy layering.
  • the thermal heat-conducting elements can be arranged in layers, as a result of which the number of thermal transmission elements, in particular the heat-conducting elements, can be significantly increased. Improved heat dissipation of the electric battery cell can thus be implemented.
  • the heat-conducting elements thus overlap at least partially.
  • the spring element is made of plastic.
  • a simple and weight-reduced variant can thus be used of the spring element are provided.
  • this is very easy to manufacture and easy to assemble.
  • the spring element is designed as a leaf spring.
  • the spring element is then at least partially in contact with the heat-conducting element. A simple spring effect can be generated by the leaf spring.
  • two spring elements are arranged on the heat-conducting element.
  • a spring element can rest on an upper leg and a second spring element on the lower leg of the S-shape.
  • the spring elements can be supported on the holding device, so that a spring effect can be implemented.
  • a further aspect of the invention relates to an electrical energy storage device with a heat-conducting device according to the preceding aspect.
  • the electrical energy store is designed in particular as a high-voltage battery.
  • the electrical energy store has a cooling device for cooling the at least one battery cell.
  • Yet another aspect of the invention relates to a motor vehicle with an electrical energy store according to the preceding aspect.
  • the motor vehicle is in particular at least partially electric, in particular fully electric.
  • FIG. 1 shows a schematic side view of an embodiment of an electrical energy store with an embodiment of a heat conducting device
  • Fig. 2 is a schematic perspective view of an embodiment of
  • FIG. 1 shows a schematic side view of an embodiment of an electrical energy store 10 for an at least partially electrically operated motor vehicle 12, which is shown purely schematically.
  • the motor vehicle 12 can also be operated fully electrically.
  • FIG. 1 shows a heat-conducting device 14 for the electrical energy store 10.
  • the heat-conducting device 14 has at least one heat-conducting element 16, in this case in particular three heat-conducting elements 16.
  • the heat-conducting element 16 is designed to make contact with at least one battery cell 18 of the electrical energy store 10 and to dissipate heat Wy from the battery cell 18 .
  • the electrical energy store 10 has a multiplicity of battery cells 18 .
  • the battery cells 18 can be designed as prismatic battery cells 18, for example.
  • the electrical energy store 10 can thus be embodied in particular as a high-voltage battery.
  • the heat conducting device 14 has at least one spring element 20 , in the present case a multiplicity of spring elements 20 .
  • a respective installation direction in motor vehicle 12 is indicated by the respective axes x, y and z.
  • the z-axis describes in particular a vehicle vertical direction
  • the y-axis describes a vehicle transverse direction
  • the x-axis describes a vehicle longitudinal direction.
  • the electrical energy store 10 also has a housing wall 22 to which the at least one heat-conducting element 16 is contacted.
  • the housing wall 22 can in turn be contacted with a cooling device of the electrical energy store 12, whereby generated heat Wy from the battery cell 18 via the heat conducting element 16 to the Housing wall 22 and then in turn can be delivered to the cooling device.
  • the housing wall 22 is in particular a lower housing wall 22 of the housing.
  • the heat-conducting element 16 is rotatably arranged on a holding device 24 of the heat-conducting device 14 and the spring element 20 is arranged on the heat-conducting element 16 in such a way that a rotary movement 26 of the heat-conducting element 16 is cushioned.
  • the heat-conducting element 16 can be mounted so as to be rotatable about a pivot point 28 .
  • the heat conducting element 16 is S-shaped when viewed in a cross section of the heat conducting element 16 .
  • FIG. 1 shows that the heat-conducting device 14 has a multiplicity of heat-conducting elements 16 which are each rotatably mounted.
  • FIG. 1 shows that the spring element 20 is designed in particular as a leaf spring, it also being shown that two spring elements 20 are arranged on the heat-conducting element 16 .
  • FIG. 2 shows a further embodiment of the heat conducting device 14 in a schematic perspective view.
  • the plurality of heat conducting elements 16 which are each rotatably mounted are arranged in layers.
  • the heat-conducting elements 16 thus overlap at least partially.
  • the heat-conducting element 20 is made of aluminum.
  • the holding device 24 can in particular be made of plastic, in particular the holding device 24 can be a plastic injection molded part.
  • the spring element 20 can in particular also be made of plastic.
  • the heat-conducting elements 20 are designed as individual laminae, in particular as thermal transmission elements, which are used for heat conduction and can be made, for example, from a heat-conducting material such as aluminum.
  • These heat-conducting elements 16 are accommodated in the holding device 24, which can also be made of plastic, for example, and which at the same time mounts them in a resiliently rotatable manner.
  • the holding device 24 can also be made of plastic, for example, and which at the same time mounts them in a resiliently rotatable manner.
  • the thermal transmission elements can be arranged in layers, and thus the number of thermal transmission elements can be chosen to be significantly higher.
  • the plastic springs, in other words the spring elements 20, can be configured relatively freely in the holding device 24, as a result of which low spring rates are also possible.
  • the components of the heat-conducting device 14 or of the electrical energy store 10 are produced very inexpensively.
  • the heat-conducting plates are very easy to assemble and disassemble in the motor vehicle 12 or in the electrical energy store 10 .
  • a very simple and reversion-friendly battery structure can be implemented, making them inexpensive and easily recyclable.
  • structural weight can be saved, since in particular the thermally conductive elements 20 have a lower weight than, for example, the thermally conductive paste.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

Die Erfindung betrifft eine Wärmeleitvorrichtung (14) für einen elektrischen Energiespeicher (10) eines zumindest teilweise elektrisch betriebenen Kraftfahrzeugs (12), mit zumindest einem Wärmeleitelement (16), welches zum Kontaktieren mit zumindest einer Batteriezelle (18) des elektrischen Energiespeichers (10) und zum Abführen von Wärme (Wy) von der zumindest einen Batteriezelle (18) ausgebildet ist, und mit zumindest einem Federelement (20), welches zum Ausüben einer definierten Federkraft zwischen der zumindest einen Batteriezelle (18) und dem zumindest einen Wärmeleitelement (16) ausgebildet ist, wobei das Wärmeleitelement (16) drehbar an einer Halteeinrichtung (24) der Wärmeleitvorrichtung (14) angeordnet ist und das Federelement (20) derart an dem Wärmeleitelement (16) und/oder der Halteeinrichtung (24) angeordnet ist, dass eine Drehbewegung (26) des Wärmeleitelements (16) abgefedert ist.

Description

Wärmeleitvorrichtung für einen elektrischen Energiespeicher eines Kraftfahrzeugs
Die Erfindung betrifft eine Wärmeleitvorrichtung für einen elektrischen Energiespeicher eines zumindest teilweise elektrisch betriebenen Kraftfahrzeugs gemäß dem Oberbegriff von Patentanspruch 1.
Aus dem Stand der Technik ist bereits bekannt, dass zum Kühlen eines elektrischen Energiespeichers, beispielsweise einem Hochvolt-Energiespeicher, eine Wärmeleitpaste oder Wärmeleitvergussmasse verwendet wird, um einen thermischen Kontakt zum Kühlsystem von dem elektrischen Energiespeicher im Kraftfahrzeug zu erreichen. Insbesondere sind Wärmeleitmassen sehr teuer und schwer. Ferner ist ein Aufbringprozess der Wärmeleitmasse im Serienprozess schwer beherrschbar und es kann die Gefahr von Lufteinschlüssen bei der Applikation auftreten und zu Problemen im Fährbetrieb führen. Ferner lassen sich die Batterieblöcke durch die Haftwirkung nur mit erheblichen Aufwand wieder ausbauen. Des Weiteren ist die Wärmeleitmasse beziehungsweise Wärmeleitvergussmasse nur bedingt recyclingfähig.
Die DE 102008 010 839 A1 betrifft eine Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte zum Temperieren der Batterie, wobei mehrere elektrisch parallel und/oder seriell miteinander verschalteten Einzelzellen wärmeleitend mit der Wärmeleitplatte verbunden sind. Die Batterie zeichnet sich insbesondere durch ein Federelement aus, mittels dessen die Einzelzellen definiert an die Wärmeleitplatte pressbar sind.
Die DE 102008 034 876 A1 betrifft eine Batterie mit einer am Batteriegehäuse angeordneten Wärmeleitplatte zum Temperieren der Batterie, wobei mehrere mittels einer Zellverbinderplatine elektrisch parallel und/oder seriell miteinander verschaltete Einzelzellen wärmeleitend mit der Wärmeleitplatte verbunden sind, wobei wenigstens ein Federelement vorgesehen ist, mittels dem die Einzelzellen definiert an die Wärmeleitplatte pressbar sind. Es sind an der Zellverbinderplatine oder an der Metallplatte ein oder mehrere Vorspannelemente zu einer Vorspannung und Befestigung des Federelements angeordnet.
Die DE 102011 003 538 A1 betrifft eine Vorrichtung zum Andrücken eines Kühlers an eine Batterie, wobei der Kühler zumindest eine Kühlfläche zum Aufnehmen oder Abgeben von Wärmeenergie aufweist, und wobei die Batterie zumindest eine Kontaktfläche zum Anlegen der Kühlfläche des Kühlers aufweist. Die Vorrichtung weist ein Druckteil mit zumindest einem federelastischen Druckelement zum Übertragen einer Andruckkraft auf einen Teilbereich einer Batterie abgewandten Fläche des Kühlers auf. Weiterhin weist die Vorrichtung eine Einhängevorrichtung zum Einhängen des Druckteils an der Batterie auf, wobei die Einhängevorrichtung ausgebildet ist, um eine der Andruckkraft entgegen gerichtete Einhängekraft zu erzeugen, wenn der Kühler an der Batterie angeordnet ist und die Einhängevorrichtung an der Batterie eingehängt ist.
Aufgabe der vorliegenden Erfindung ist es, eine Wärmeleitvorrichtung zu schaffen, mittels welcher eine verbesserte Abführung von Wärme von dem elektrischen Energiespeicher an eine Kühlvorrichtung realisiert werden kann.
Diese Aufgabe wird durch eine Wärmeleitvorrichtung gemäß dem unabhängigen Patentanspruch gelöst. Vorteilhafte Ausgestaltungsformen sind in den Unteransprüchen angegeben.
Ein Aspekt der Erfindung betrifft eine Wärmeleitvorrichtung für einen elektrischen Energiespeicher eines zumindest teilweise elektrisch betriebenen Kraftfahrzeugs, mit zumindest einem Wärmeleitelement, welches zum Kontaktieren mit zumindest einer Batteriezelle des elektrischen Energiespeichers und zum Abführen von Wärme von der zumindest einen Batteriezelle ausgebildet ist, und mit zumindest einem Federelement, welches zum Ausüben einer definierten Federkraft zwischen der zumindest einen Batteriezelle und dem zumindest einen Wärmeleitelement ausgebildet ist.
Es ist vorgesehen, das Wärmeleitelement drehbar an einer Halteeinrichtung der Wärmeleitvorrichtung angeordnet ist und das Federelement derart an dem Wärmeleitelement und/oder an der Halteeinrichtung angeordnet ist, dass eine Drehbewegung des Wärmeleitelements abgefedert ist.
Dadurch ist es ermöglicht, dass eine verbesserte Wärmeabführung aus der zumindest einen Batteriezelle an eine Kühleinrichtung realisiert werden kann. Insbesondere ist sowohl das Wärmeleitelement als auch die Halteeinrichtung sehr günstig herstellbar. Ferner können die Wärmeleitplatten im Kraftfahrzeug beziehungsweise in dem elektrischen Energiespeicher sehr einfach montiert beziehungsweise demontiert werden. Des Weiteren kann ein sehr einfacher und reversionsfreundlicher Batterieaufbau realisiert werden, wodurch insbesondere auch der Batterieaufbau kostengünstig ist und eine gute Recyclingfähigkeit aufweist. Ferner kann eine Gewichtseinsparung realisiert werden, insbesondere gegenüber einer herkömmlichen, aus dem Stand der Technik bekannten Wärmeleitpaste.
Insbesondere kann vorgesehen sein, dass das Wärmeleitelement mit einem Gehäuse, insbesondere einer Gehäusewand des Gehäuses, des elektrischen Energiespeichers kontaktiert ist. Mit anderen Worten kann das Wärmeleitelement auf einer Seite mit der zumindest einen Batteriezelle kontaktiert sein und mit der anderen Seite mit dem Gehäuse zum Abführen der Wärme. Somit kann der Wärmeleitpfad von der zumindest einen Batteriezelle über das Wärmeleitelement hin zu dem Gehäuse realisiert werden. Auf der Gehäuseseite ist dann insbesondere eine Kühleinrichtung des elektrischen Energiespeichers ausgebildet, sodass die Wärme weiter abgeführt werden kann. Die Kühleinrichtung kann beispielsweise fluidisch sein.
Ferner kann vorgesehen sein, dass der elektrische Energiespeicher eine Vielzahl von Batteriezellen und/oder Batteriemodulen aufweist, wobei die Wärmeleitvorrichtung zum Abführen der Wärme der Vielzahl von Batteriezellen und/oder Batteriemodulen ausgebildet ist.
Insbesondere ist Ferner die Wärmeleitvorrichtung an einer Unterseite des elektrischen Energiespeichers, insbesondere an einer unteren Gehäusewand, ausgebildet.
Gemäß einer vorteilhaften Ausgestaltungsform ist das Wärmeleitelement aus Aluminium ausgebildet. Insbesondere ist Aluminium ein guter Wärmeleiter, sodass verbessert die Wärme von der Batteriezelle abgeführt werden kann. Des Weiteren ist Aluminium sehr leicht, sodass die Wärmeleitvorrichtung gewichtsreduziert bereitgestellt werden kann.
Es hat sich weiterhin als vorteilhaft erwiesen, wenn die Halteeinrichtung aus Kunststoff ausgebildet ist. Insbesondere kann somit eine einfach herstellbare Halteeinrichtung bereitgestellt werden. Des Weiteren ist Kunststoff strapazierfähig und insbesondere für den Einbau in einen elektrischen Energiespeicher geeignet, da beispielsweise Kunststoff nicht elektrisch leitend ist. Ferner ist Kunststoff leicht, sodass die Wärmeleitvorrichtung gewichtsreduziert ausgebildet ist.
In einer weiteren vorteilhaften Ausgestaltungsform ist die Halteeinrichtung ein Kunststoff- Spritzgussteil. Dadurch ist es ermöglicht, dass auf einfache Weise die Halteeinrichtung gespritzt werden kann. Somit lässt sich mit wenig Herstellungsaufwand die Halteeinrichtung in einem Spritzgusswerkzeug hersteilen.
Ebenfalls vorteilhaft ist, wenn das Wärmeleitelement in einem Querschnitt des Wärmeleitelements betrachtet S-förmig ausgebildet ist. Insbesondere kann beispielsweise ein oberer Schenkel der S-Form mit der einen Batteriezelle gekoppelt sein. Insbesondere kann ein weiterer Schenkel der S-Form, insbesondere ein unterer Schenkel der S-Form, mit dem Gehäuse gekoppelt sein. Durch die S-Form ist es ermöglicht, dass auf möglichst einfache Art und Weise eine thermische Kopplung zwischen der zumindest einen Batteriezelle und dem Gehäuse hergestellt werden kann. Des Weiteren ist die S-Form einfach um einen Drehpunkt drehbar, sodass die Drehung vereinfach durchgeführt werden kann.
Es hat sich weiterhin als vorteilhaft erwiesen, wenn die Wärmeleitvorrichtung eine Vielzahl von jeweils drehbar gelagerten Wärmeleitelementen aufweist. Insbesondere ist es dadurch ermöglicht, dass auf Basis der Vielzahl gelagerter Wärmeleitelemente eine gute Wärmeleitfähigkeit der Wärmeleitvorrichtung realisiert ist. Somit kann verbessert die Wärme der zumindest einen Batteriezelle abgeführt werden.
Es hat sich weiterhin als vorteilhaft erwiesen, wenn die Vielzahl von jeweils drehbar gelagerten Wärmeleitelementen geschichtet angeordnet ist. Insbesondere kann dabei das Wärmeleitelement S-förmig ausgebildet sein. Durch die S-Form kann eine einfache Schichtung realisiert werden. Dies hat insbesondere den Vorteil, dass die thermischen Wärmeleitelemente geschichtet angeordnet werden können, wodurch die Anzahl der thermischen Übertragungselemente, insbesondere der Wärmeleitelemente, signifikant erhöht werden kann. Somit kann eine verbesserte Wärmeabfuhr der elektrischen Batteriezelle realisiert werden. Insbesondere überlappen sich somit jeweils die Wärmeleitelemente zumindest teilweise.
Es hat sich weiterhin als vorteilhaft erwiesen, wenn das Federelement aus Kunststoff ausgebildet ist. Insbesondere kann somit eine einfache und gewichtsreduzierte Variante des Federelements bereitgestellt werden. Insbesondere ist dieses sehr einfach herstellbar sowie einfach montierbar.
Weiterhin vorteilhaft ist, wenn das Federelement als Blattfeder ausgebildet ist. Insbesondere liegt das Federelement dann zumindest bereichsweise an dem Wärmeleitelement an. Durch die Blattfeder kann eine einfache Federwirkung erzeugt werden.
In einer weiteren vorteilhaften Ausgestaltungsform sind an dem Wärmeleitelement jeweils zwei Federelemente angeordnet. Beispielsweise bei einer S-förmigen Ausgestaltungsform des Wärmeleitelements kann ein Federelement an einem oberen Schenkel anliegen und ein zweites Federelement an dem unteren Schenkel der S-Form. Insbesondere können sich die Federelemente an der Halteeinrichtung abstützen, sodass eine Federwirkung realisiert werden kann.
Ein weiterer Aspekt der Erfindung betrifft einen elektrischen Energiespeicher mit einer Wärmeleitvorrichtung gemäß dem vorhergehenden Aspekt. Der elektrische Energiespeicher ist insbesondere als Hochvolt-Batterie ausgebildet. Insbesondere weist der elektrische Energiespeicher eine Kühlvorrichtung zum Kühlen der zumindest einen Batteriezelle auf.
Ein nochmals weiterer Aspekt der Erfindung betrifft ein Kraftfahrzeug mit einem elektrischen Energiespeicher gemäß dem vorhergehenden Aspekt. Das Kraftfahrzeug ist insbesondere zumindest teilweise elektrisch, insbesondere vollelektrisch, ausgebildet.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen. Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen. Dabei zeigen:
Fig. 1 eine schematische Seitenansicht einer Ausführungsform eines elektrischen Energiespeichers mit einer Ausführungsform einer Wärmeleitvorrichtung; und
Fig. 2 eine schematische Perspektivansicht einer Ausführungsform der
Wärmeleitvorrichtung.
In den Fig. sind gleiche oder funktionsgleiche Elemente mit gleichen Bezugszeichen versehen.
Fig. 1 zeigt in einer schematischen Seitenansicht eine Ausführungsform eines elektrischen Energiespeichers 10 für ein zumindest teilweise elektrisch betriebenes Kraftfahrzeug 12, welches rein schematisch dargestellt ist. Insbesondere kann das Kraftfahrzeug 12 auch vollelektrisch betrieben sein.
Ferner zeigt die Fig. 1 eine Wärmeleitvorrichtung 14 für den elektrischen Energiespeicher 10. Die Wärmeleitvorrichtung 14 weist zumindest ein Wärmeleitelement 16, vorliegend insbesondere drei Wärmeleitelemente 16, auf. Das Wärmeleitelement 16 ist zum Kontaktieren mit zumindest einer Batteriezelle 18 des elektrischen Energiespeichers 10 und zum Abführen von Wärme Wy von der Batteriezelle 18 ausgebildet. Insbesondere kann vorgesehen sein, dass der elektrische Energiespeicher 10 eine Vielzahl von Batteriezellen 18 aufweist. Die Batteriezellen 18 können beispielsweise als prismatische Batteriezellen 18 ausgebildet sein. Der elektrische Energiespeicher 10 kann somit insbesondere als Hochvolt-Batterie ausgebildet sein.
Ferner weist die Wärmeleitvorrichtung 14 zumindest ein Federelement 20, vorliegend eine Vielzahl von Federelementen 20 auf. Ferner ist durch die jeweiligen Achsen x, y und z eine jeweilige Einbaurichtung im Kraftfahrzeug 12 angezeigt. Die z-Achse beschreibt dabei insbesondere eine Fahrzeughochrichtung, die y-Achse eine Fahrzeugquerrichtung und die x-Achse eine Fahrzeuglängsrichtung. Der elektrische Energiespeicher 10 weist ferner eine Gehäusewand 22 auf, an welcher das zumindest eine Wärmeleitelement 16 kontaktiert ist. Insbesondere kann die Gehäusewand 22 wiederum mit einer Kühlvorrichtung des elektrischen Energiespeichers 12 kontaktiert sein, wodurch erzeugte Wärme Wy von der Batteriezelle 18 über das Wärmeleitelement 16 an die Gehäusewand 22 und dann wiederum an die Kühlvorrichtung abgegeben werden kann. Die Gehäusewand 22 ist insbesondere eine untere Gehäusewand 22 des Gehäuses.
Insbesondere ist gezeigt, dass das Wärmeleitelement 16 drehbar an einer Halteeinrichtung 24 der Wärmeleitvorrichtung 14 angeordnet ist und das Federelement 20 derart an dem Wärmeleitelement 16 angeordnet ist, dass eine Drehbewegung 26 des Wärmeleitelements 16 abgefedert ist. Insbesondere kann das Wärmeleitelement 16 um einen Drehpunkt 28 drehbar gelagert sein.
Insbesondere ist zu sehen, dass das Wärmeleitelement 16 in einem Querschnitt des Wärmeleitelements 16 betrachtet S-förmig ausgebildet ist. Des Weiteren zeigt die Fig. 1, dass die Wärmeleitvorrichtung 14 eine Vielzahl von jeweils drehbar gelagerten Wärmeleitelementen 16 aufweist.
Ferner ist in der Fig. 1 gezeigt, dass das Federelement 20 insbesondere als Blattfeder ausgebildet ist, wobei ferner gezeigt ist, dass an dem Wärmeleitelement 16 jeweils zwei Federelemente 20 angeordnet sind.
Fig. 2 zeigt in einer schematischen Perspektivansicht eine weitere Ausführungsform der Wärmeleitvorrichtung 14. Vorliegend ist insbesondere gezeigt, dass die Vielzahl von jeweils drehbar gelagerten Wärmeleitelementen 16 geschichtet angeordnet ist. Insbesondere überlappen sich somit jeweils die Wärmeleitelemente 16 zumindest teilweise.
Insbesondere kann vorgesehen sein, dass das Wärmeleitelement 20 aus Aluminium ausgebildet ist. Die Halteeinrichtung 24 kann insbesondere aus Kunststoff ausgebildet sein, insbesondere kann es sich bei der Halteeinrichtung 24 um ein Kunststoff- Spritzgussteil handeln. Das Federelement 20 kann insbesondere ebenfalls aus Kunststoff ausgebildet sein.
Insbesondere ist somit in der Fig. 2 gezeigt, dass die Wärmeleitelemente 20 als einzelne Blättchen, insbesondere als thermische Übertragungselemente ausgebildet sind, die der Wärmeleitung dienen und beispielsweise aus einem wärmeleitfähigen Material, wie beispielsweise aus Aluminium, ausgebildet sein können. Diese Wärmeleitelemente 16 werden in der Halteeinrichtung 24, welche beispielsweise ebenfalls aus Kunststoff ausgebildet sein kann, aufgenommen, die diese gleichzeitig federnd drehbar lagert. Dies hat den Vorteil gegenüber einer aus dem Stand der Technik bekannten Blechplatte, dass die thermischen Übertragungselemente geschichtet angeordnet werden können, und somit die Anzahl der thermischen Übertragungselemente signifikant höher gewählt werden kann. Des Weiteren können die Kunststoff-Federn, mit anderen Worten die Federelemente 20, in der Halteeinrichtung 24 relativ frei gestaltet werden, wodurch auch geringe Federraten möglich sind.
Insbesondere ist es dadurch ermöglicht, dass die Bauteile der Wärmeleitvorrichtung 14 beziehungsweise des elektrischen Energiespeichers 10 sehr kostengünstig herstellbar sind. Die Wärmeleitplatten sind im Kraftfahrzeug 12 beziehungsweise im elektrischen Energiespeicher 10 sehr einfach zu montieren und zu demontieren. Des Weiteren kann ein sehr einfacher und reversionsfreundlicher Batterieaufbau realisiert werden, wodurch diese kostengünstig und gut recyclingfähig sind. Ferner kann Baugewicht eingespart werden, da insbesondere die Wärmeleitelemente 20 ein geringeres Gewicht aufweisen als beispielsweise die Wärmeleitpaste.
Insgesamt zeigen die Fig. eine Wärmeleitplatte zur Anwendung in HV-Batterien.
Bezugszeichenliste
10 elektrischer Energiespeicher
12 Kraftfahrzeug
14 Wärmeleitvorrichtung
16 Wärmeleitelement
18 Batteriezelle
20 Federelement
22 Gehäusewand
24 Halteeinrichtung
26 Drehbewegung
28 Drehpunkt x x-Achse y y-Achse z-Achse
Wy Wärme

Claims

Patentansprüche
1. Wärmeleitvorrichtung (14) für einen elektrischen Energiespeicher (10) eines zumindest teilweise elektrisch betriebenen Kraftfahrzeugs (12), mit zumindest einem Wärmeleitelement (16), welches zum Kontaktieren mit zumindest einer Batteriezelle (18) des elektrischen Energiespeichers (10) und zum Abführen von Wärme (Wy) von der zumindest einen Batteriezelle (18) ausgebildet ist, und mit zumindest einem Federelement (20), welches zum Ausüben einer definierten Federkraft zwischen der zumindest einen Batteriezelle (18) und dem zumindest einen Wärmeleitelement (16) ausgebildet ist, dadurch gekennzeichnet, dass das Wärmeleitelement (16) drehbar an einer Halteeinrichtung (24) der Wärmeleitvorrichtung (14) angeordnet ist und das Federelement (20) derart an dem Wärmeleitelement (16) und/oder der Halteeinrichtung (24) angeordnet ist, dass eine Drehbewegung (26) des Wärmeleitelements (16) abgefedert ist.
2. Wärmeleitvorrichtung (14) nach Anspruch 1, dadurch gekennzeichnet, dass das Wärmeleitelement (16) aus Aluminium ausgebildet ist.
3. Wärmeleitvorrichtung (14) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Halteeinrichtung (24) aus Kunststoff ausgebildet ist.
4. Wärmeleitvorrichtung (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Halteeinrichtung (24) ein Kunststoff-Spritzgussteil ist.
5. Wärmeleitvorrichtung (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wärmeleitelement (16) in einem Querschnitt des Wärmeleitelements (16) betrachtet S-förmig ausgebildet ist.
6. Wärmeleitvorrichtung (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wärmeleitvorrichtung (14) eine Vielzahl von jeweils drehbar gelagerten Wärmeleitelementen (16) aufweist.
7. Wärmeleitvorrichtung (14) nach Anspruch 6, dadurch gekennzeichnet, dass die Vielzahl von jeweils drehbar gelagerten Wärmeleitelementen (16) geschichtet angeordnet sind.
8. Wärmeleitvorrichtung (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Federelement (20) aus Kunststoff ausgebildet ist.
9. Wärmeleitvorrichtung (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Federelement (20) als Blattfeder ausgebildet ist.
10. Wärmeleitvorrichtung (14) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an dem Wärmeleitelement (16) und/oder der Halteeinrichtung (24) jeweils zwei Federelemente (20) angeordnet sind.
PCT/EP2021/068629 2020-07-20 2021-07-06 Wärmeleitvorrichtung für einen elektrischen energiespeicher eines kraftfahrzeugs WO2022017776A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023501558A JP2023533570A (ja) 2020-07-20 2021-07-06 自動車の電気エネルギー貯蔵装置用の熱伝導装置
KR1020237001911A KR20230027197A (ko) 2020-07-20 2021-07-06 자동차의 전기 에너지 저장 장치를 위한 열전도 장치
EP21748510.1A EP4182994A1 (de) 2020-07-20 2021-07-06 Wärmeleitvorrichtung für einen elektrischen energiespeicher eines kraftfahrzeugs
US18/006,027 US20230349646A1 (en) 2020-07-20 2021-07-06 Heat Conduction Device for an Electric Energy Storage of a Motor Vehicle
CN202180047820.4A CN115769416A (zh) 2020-07-20 2021-07-06 用于机动车的蓄电器的导热装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020004354.2 2020-07-20
DE102020004354.2A DE102020004354A1 (de) 2020-07-20 2020-07-20 Wärmeleitvorrichtung für einen elektrischen Energiespeicher eines Kraftfahrzeugs

Publications (1)

Publication Number Publication Date
WO2022017776A1 true WO2022017776A1 (de) 2022-01-27

Family

ID=77126772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/068629 WO2022017776A1 (de) 2020-07-20 2021-07-06 Wärmeleitvorrichtung für einen elektrischen energiespeicher eines kraftfahrzeugs

Country Status (7)

Country Link
US (1) US20230349646A1 (de)
EP (1) EP4182994A1 (de)
JP (1) JP2023533570A (de)
KR (1) KR20230027197A (de)
CN (1) CN115769416A (de)
DE (1) DE102020004354A1 (de)
WO (1) WO2022017776A1 (de)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008010839A1 (de) 2008-02-23 2009-08-27 Daimler Ag Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte
DE102008034876A1 (de) 2008-07-26 2010-01-28 Daimler Ag Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte zum Temperieren der Batterie und Verfahren zur Herstellung einer Batterie
DE102008059953A1 (de) * 2008-12-02 2010-06-24 Daimler Ag Batterie
DE102011003538A1 (de) 2011-02-02 2012-08-02 Behr Gmbh & Co. Kg Verspannungsbügel
CN108461686A (zh) * 2018-04-28 2018-08-28 江苏欧力特能源科技有限公司 一种电动车用锂电池放置装置
FR3066326A1 (fr) * 2017-05-15 2018-11-16 Valeo Systemes Thermiques Dispositif de refroidissement pour une batterie de vehicule automobile
CN109378420A (zh) * 2018-11-27 2019-02-22 国网江西省电力有限公司赣州供电分公司 一种直流供电的铅酸蓄电池装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3010834B1 (fr) 2013-09-18 2017-01-27 Valeo Systemes Thermiques Dispositif de regulation thermique d'un pack-batterie

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008010839A1 (de) 2008-02-23 2009-08-27 Daimler Ag Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte
DE102008034876A1 (de) 2008-07-26 2010-01-28 Daimler Ag Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte zum Temperieren der Batterie und Verfahren zur Herstellung einer Batterie
DE102008059953A1 (de) * 2008-12-02 2010-06-24 Daimler Ag Batterie
DE102011003538A1 (de) 2011-02-02 2012-08-02 Behr Gmbh & Co. Kg Verspannungsbügel
FR3066326A1 (fr) * 2017-05-15 2018-11-16 Valeo Systemes Thermiques Dispositif de refroidissement pour une batterie de vehicule automobile
CN108461686A (zh) * 2018-04-28 2018-08-28 江苏欧力特能源科技有限公司 一种电动车用锂电池放置装置
CN109378420A (zh) * 2018-11-27 2019-02-22 国网江西省电力有限公司赣州供电分公司 一种直流供电的铅酸蓄电池装置

Also Published As

Publication number Publication date
JP2023533570A (ja) 2023-08-03
KR20230027197A (ko) 2023-02-27
EP4182994A1 (de) 2023-05-24
CN115769416A (zh) 2023-03-07
DE102020004354A1 (de) 2022-01-20
US20230349646A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
EP2153487B1 (de) Elektrochemische energiespeichereinheit mit kühlvorrichtung
EP2789029B1 (de) Batterie und zellblock für eine batterie
DE102008034699B4 (de) Batterie mit mehreren Batteriezellen
DE102008059967B4 (de) Batterie und Verfahren zur Herstellung einer Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte
EP2220719B1 (de) Batterie mit einem gehäuse und einer wärmeleitplatte
EP1835251B1 (de) Vorrichtung zur Kühlung elektrischer Elemente
EP2026387B1 (de) Elektrochemische Energiespeichereinheit
EP2165379B1 (de) Elektrochemische energiespeichereinheit
DE102010013025A1 (de) Batterie und Verfahren zur Herstellung einer Batterie mit einer in einem Batteriegehäuse angeordneten Kühlplatte
WO2013075801A1 (de) Elektroenergie-speichervorrichtung mit flachen speicherzellen
DE102008034875A1 (de) Batterie, insbesondere Fahrzeugbatterie
DE102010028728A1 (de) Kühlung eines Energiespeichers
DE102008059947A1 (de) Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte und daran direkt montierten elektronischen Bauelementen zum Temperieren der Batterie
WO2017005345A1 (de) Zellmodul, batteriemodul und elektrische batterie
WO2022017776A1 (de) Wärmeleitvorrichtung für einen elektrischen energiespeicher eines kraftfahrzeugs
DE102014103095A1 (de) Energiespeichereinheit und Batteriesystem
WO2013000617A1 (de) Kontaktelement zum mechanischen, thermischen und elektrischen kontaktieren eines energiespeichers
DE102017004462A1 (de) Aufnahmevorrichtung zur Aufnahme von Batteriezellen
DE102010013028A1 (de) Zellverbund mit einer vorgebbaren Anzahl von parallel und/oder seriell miteinander verschalteten Einzelzellen
DE102021202037B4 (de) Flüssigkeitsgekühlter Bremswiderstand in Plattenwärmetauscher-Bauweise
DE102017214476A1 (de) Batteriemodul, Batteriezellenaufnahme und Verfahren zur Herstellung eines Batteriemoduls
WO2020212192A1 (de) Batterie für ein fahrzeug, kühlsystem und herstellungsverfahren
WO2022184629A1 (de) Materialschonend aufgebauter flüssigkeitsgekühlter bremswiderstand mit erhöhter effizienz
DE102022130226A1 (de) Batterie für ein Kraftfahrzeug
DE102023210660A1 (de) Batteriemodul und Batterie mit solchen Batteriemodulen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21748510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023501558

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021748510

Country of ref document: EP

Effective date: 20230220