WO2022017341A1 - 自动回充方法、装置、存储介质、充电基座及系统 - Google Patents

自动回充方法、装置、存储介质、充电基座及系统 Download PDF

Info

Publication number
WO2022017341A1
WO2022017341A1 PCT/CN2021/107229 CN2021107229W WO2022017341A1 WO 2022017341 A1 WO2022017341 A1 WO 2022017341A1 CN 2021107229 W CN2021107229 W CN 2021107229W WO 2022017341 A1 WO2022017341 A1 WO 2022017341A1
Authority
WO
WIPO (PCT)
Prior art keywords
automatic recharging
image
distance
feature
charging
Prior art date
Application number
PCT/CN2021/107229
Other languages
English (en)
French (fr)
Inventor
孙佳佳
Original Assignee
追觅创新科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 追觅创新科技(苏州)有限公司 filed Critical 追觅创新科技(苏州)有限公司
Priority to EP21847216.5A priority Critical patent/EP4184278A4/en
Priority to KR1020237001867A priority patent/KR20230025706A/ko
Priority to JP2023501663A priority patent/JP2023534795A/ja
Priority to AU2021314387A priority patent/AU2021314387A1/en
Priority to CA3186047A priority patent/CA3186047A1/en
Publication of WO2022017341A1 publication Critical patent/WO2022017341A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/12Target-seeking control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/37Means for automatic or assisted adjustment of the relative position of charging devices and vehicles using optical position determination, e.g. using cameras
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/22Command input arrangements
    • G05D1/221Remote-control arrangements
    • G05D1/222Remote-control arrangements operated by humans
    • G05D1/224Output arrangements on the remote controller, e.g. displays, haptics or speakers
    • G05D1/2244Optic
    • G05D1/2247Optic providing the operator with simple or augmented images from one or more cameras
    • G05D1/2248Optic providing the operator with simple or augmented images from one or more cameras the one or more cameras located remotely from the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/656Interaction with payloads or external entities
    • G05D1/661Docking at a base station
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the present application relates to an automatic recharging method, device and storage medium, belonging to the technical field of computers.
  • self-mobile devices such as sweeping robots, smart lawn mowers, etc.
  • the self-moving device needs to determine the location of the charging base.
  • the method of determining the position of the charging base from the mobile device includes: continuously sending a signal through the charging base, and after receiving the signal from the mobile device, determining the position of the charging base based on the signal.
  • the signals emitted by the charging base include infrared signals, ultrasonic signals, lidar signals, etc.
  • the above-mentioned signals are easily interfered by environmental factors.
  • the self-mobile device may not be able to find the charging base.
  • the present application provides an automatic recharging method, device, storage medium, charging base and system, which can solve the problem that the automatic recharging device cannot find the charging base when the position of the charging base is located based on a signal.
  • This application provides the following technical solutions:
  • an automatic recharging method which is used in an automatic recharging device, wherein the automatic recharging device is installed with an image acquisition component, and the method includes:
  • the relative positional relationship between the charging surface of the charging base and the automatic recharging device is determined based on the position of the feature marker in the automatic recharging image;
  • the feature The logo is arranged on the charging base and displayed on the charging surface of the charging base;
  • the charging base is used for charging the automatic recharging device;
  • the moving direction of the automatic recharging device is determined based on the relative positional relationship, so that the automatic recharging device moves toward the charging surface of the charging base.
  • the number of the feature identifiers is at least one; the relative positional relationship between the charging surface of the charging base and the automatic recharging device is determined based on the position of the feature identifier in the automatic recharging image ,include:
  • a distance and an angle between the charging surface and the automatic recharging device are determined based on the position of the feature marker in the automatic recharging image and the installation position.
  • the number of the feature identifiers is at least two, and the method further includes:
  • the automatic recharging image includes the at least two feature identifiers
  • triggering the execution of determining the charging surface of the charging base and the automatic recharging based on the position of the feature identifiers in the automatic recharging image The steps of the relative positional relationship of the device.
  • the number of the feature identifiers is at least two, and the charging surface and the automatic recharging device are determined based on the position of the feature identifier in the automatic recharging image and the installation position. distances and angles between, including:
  • the image distance in the second direction Based on the distance in the first direction, the image distance in the second direction, and the focal length of the image acquisition component, calculate the distance between the image acquisition component and the feature identifier in parallel with the ground and perpendicular to the travel direction the second direction distance in the direction;
  • the angle between the charging surface and the automatic recharging device is determined based on the distance in the first direction of each feature identification and the distance in the second direction of each feature identification.
  • the display positions of the at least two feature marks displayed through the charging surface have the same or different heights relative to the ground; and/or, the display positions of the at least two feature marks displayed through the charging surface are centrally symmetric.
  • the starting the image acquisition component to collect the automatic recharging image during the automatic recharging process includes:
  • an automatic recharging device which is used in the automatic recharging device, wherein the automatic recharging device is installed with an image acquisition component, and the device includes:
  • an image acquisition module used to start the image acquisition component to acquire an automatic recharge image during the automatic recharge process
  • a position determination module configured to determine the relative relationship between the charging surface of the charging base and the automatic recharging device based on the position of the feature identification in the automatic recharging image when the automatic recharging image includes a feature identification the positional relationship; the feature identification is arranged on the charging base and displayed on the charging surface of the charging base; the charging base is used for charging the automatic recharging device;
  • the movement control module is configured to determine the movement direction of the automatic recharging device based on the relative positional relationship, so as to move the automatic recharging device to the charging surface of the charging base.
  • an automatic recharging device in a third aspect, includes a processor and a memory; a program is stored in the memory, and the program is loaded and executed by the processor to realize the automatic recharging described in the first aspect. charging method.
  • a computer-readable storage medium is provided, and a program is stored in the storage medium, and the program is loaded and executed by the processor to implement the automatic recharging method described in the first aspect.
  • a charging base is provided, wherein the charging base is provided with a characteristic identifier, so that the automatic recharging device can start an image acquisition component to collect an automatic recharging image including the characteristic identifier during the automatic recharging process;
  • the position of the feature identifier in the automatic recharging image determines the relative positional relationship between the charging base and the automatic recharging device; and the relative positional relationship between the automatic recharging device and the charging base is determined based on the relative positional relationship. direction of movement.
  • an automatic recharging system comprising an automatic recharging device and a charging base;
  • the automatic recharging device includes the automatic recharging device provided in the second aspect or the third aspect;
  • the charging base includes the charging base provided in the fifth aspect.
  • the automatic recharging image is collected by starting the image acquisition component during the automatic recharging process; when the automatic recharging image includes the feature identification, the charging base is determined based on the position of the feature identification in the automatic recharging image The relative positional relationship between the charging surface and the automatic recharging device; the feature identification is displayed through the charging surface of the charging base; the moving direction of the automatic recharging device is determined based on the relative positional relationship, so that the automatic recharging device can be charged to the charging base.
  • the automatic recharging device cannot find the charging base when locating the position of the charging base based on the signal; because the characteristic mark is set on the charging surface of the charging base, the automatic recharging device recognizes the characteristic mark Determining the relative positional relationship with the charging surface can ensure that the automatic recharging device can find the charging base, and at the same time, it can ensure that the automatic recharging device can determine the charging surface of the charging base, and improve the movement determined by the automatic recharging device. Orientation accuracy.
  • FIG. 1 is a schematic structural diagram of an automatic recharging system provided by an embodiment of the present application.
  • FIG. 2 is a structural diagram of a charging base provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of an automatic recharging method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a relative positional relationship between a charging surface and an automatic recharging device provided by an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a relative positional relationship between a charging surface and an automatic recharging device provided by another embodiment of the present application;
  • FIG. 6 is a schematic diagram of a relative positional relationship between a charging surface and an automatic recharging device provided by another embodiment of the present application.
  • FIG. 7 is a schematic diagram of a relative positional relationship between a charging surface and an automatic recharging device provided by another embodiment of the present application.
  • FIG. 8 is a block diagram of an automatic recharging device provided by an embodiment of the present application.
  • FIG. 9 is a block diagram of an automatic recharging device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an automatic recharging system provided by an embodiment of the present application. As shown in FIG. 1 , the system at least includes: an automatic recharging device 110 and a charging base 120 .
  • the automatic recharging device 110 refers to a device having the function of automatically finding a charging base.
  • the automatic recharging device 110 is also called a self-moving device, a self-moving robot, etc. This embodiment does not limit the name of the automatic recharging device 110 .
  • the automatic recharging device 110 includes, but is not limited to, a sweeping robot, an Automated Guided Vehicle (AGV), an intelligent lawn mower, etc. This embodiment does not limit the device type of the automatic recharging device 110 .
  • the charging base 120 is used for charging the automatic recharging device 110 .
  • the charging base 120 may charge the automatic recharging device 110 based on a wired charging technology or a wireless charging technology.
  • an image capturing component 130 is installed on the automatic recharging device 110 , and the automatic recharging device 110 is connected in communication with the image capturing component 130 .
  • Characteristic marks are provided on the charging base 120 and displayed through the charging surface of the charging base 120 .
  • the charging surface refers to the surface of the charging base 120 that supplies power to the automatic recharging device 110 .
  • the feature identifier can be installed on the charging surface; or, it can be installed inside the charging base 120, but can be displayed through the charging surface and captured by the image acquisition component 130 (for example: the feature identifier is a light-emitting element, the light-emitting element is set inside the charging base 120, and the emitted light is emitted through the charging surface).
  • the feature identifier is used to identify the charging surface of the charging base 120 .
  • the feature identification is represented by a visual means such as an optical signal (a visible light signal emitted by an LED or the like) or a preset pattern, and this embodiment does not limit the implementation of the feature identification.
  • the number of feature identifiers is at least two. Referring to the charging base 120 shown in FIG. 2 , two feature marks 22 are provided on the charging surface 21 .
  • the display positions of the at least two feature marks displayed through the charging surface have the same or different heights relative to the ground; and/or, the display positions of the at least two feature marks displayed through the charging surface are centrally symmetric.
  • the display positions of the two feature marks 22 on the charging surface have the same height relative to the ground, and are centrally symmetrical on the charging surface.
  • the automatic recharging device 110 is used to start the image capturing component 130 to capture the automatic recharging image during the automatic recharging process.
  • the image capturing component 130 is configured to capture an automatic recharging image under the control of the automatic recharging device 110 , and send the automatic recharging image to the automatic recharging device 110 .
  • the automatic recharging device 110 is further configured to determine the charging surface of the charging base and the automatic recharging based on the position of the feature marking in the automatic recharging image when the automatic recharging image includes the feature identifier after the automatic recharging image is obtained.
  • the relative positional relationship of the device; the moving direction of the automatic recharging device is determined based on the relative positional relationship, so that the automatic recharging device 110 moves to the charging surface of the charging base 120 .
  • the automatic recharging device 110 by setting a characteristic mark on the charging surface of the charging base 120, the automatic recharging device 110 recognizes the characteristic mark to determine the relative positional relationship with the charging surface, which can ensure the automatic recharging device 110 can determine the charging surface of the charging base 120 to improve the accuracy of the movement direction determined by the automatic recharging device 110 .
  • FIG. 3 is a flowchart of an automatic recharging method provided by an embodiment of the present application.
  • the method is applied to the automatic recharging system shown in FIG. 1 , and the execution subject of each step is the automatic recharging system in the system.
  • the charging device 110 is taken as an example for description. The method includes at least the following steps:
  • Step 301 in the automatic recharging process, start the image acquisition component to collect the automatic recharging image.
  • the automatic recharging process refers to the process that the automatic recharging device finds the charging base.
  • the automatic recharging device starts the image capturing component to collect the automatic recharging image when the power of the automatic recharging device is lower than the preset power value; or, when receiving the charging instruction, starts the image capturing component to collect the automatic recharging. image.
  • the automatic recharging device may also determine the timing of starting the automatic recharging process in other ways, and this embodiment does not limit the manner in which the automatic recharging device determines the timing of starting the automatic recharging process.
  • Step 302 when the automatic recharging image includes the feature identifier, determine the relative positional relationship between the charging surface of the charging base and the automatic recharging device based on the position of the feature marker in the automatic recharging image.
  • the feature identification is arranged on the charging base and displayed on the charging surface of the charging base; the charging base is used for charging the automatic recharging device.
  • the automatic recharging device determines the distance and angle between the charging surface and the automatic recharging device based on the position and installation position of the feature marker in the automatic recharging image.
  • the number of feature identifiers is at least two.
  • the automatic recharging device determines the first vertical distance between the image acquisition component and the feature marker in the direction perpendicular to the ground based on the installation position of the feature marker; The second vertical distance of the image center point of the filled image in the direction perpendicular to the ground; based on the first vertical distance, the second vertical distance, and the focal length of the image acquisition component, calculate the travel direction of the image acquisition component and the feature identifier distance in the first direction; the image distance in the second direction between the image position of the acquired feature identification and the image center point of the automatic recharge image in the direction parallel to the ground; based on the distance in the first direction, the image distance in the second direction and the image acquisition The focal length of the component, calculate the second direction distance between the image acquisition component and the feature mark in the direction parallel to the ground and perpendicular to the direction of travel; based on the first direction distance of each feature mark, the second direction distance of each feature mark , to determine
  • the automatic recharging device pre-stores the height H1 of the image acquisition component relative to the ground, and the height H2 of each feature identifier relative to the ground (or storing the height H2 of each feature identifier relative to the bottom of the charging surface) and the distance between the bottom of the charging surface and the ground to obtain H2); based on the difference between H1 and H2, the first vertical distance between the image acquisition component and the feature marker in the direction perpendicular to the ground can be obtained.
  • the direction perpendicular to the ground may also be referred to as the height direction, the z direction, etc. This embodiment does not limit the name of the direction perpendicular to the ground.
  • the second vertical distance is the distance on the automatic recharging image after the first vertical distance is imaged by the image acquisition component.
  • the focal length of the image acquisition component is pre-stored in the automatic recharging device; because the triangle formed by the focal length of the image acquisition component and the distance in the second vertical direction is similar to the distance in the first direction and the distance in the first vertical direction Therefore, based on the triangle similarity principle, the distance in the first direction can be calculated based on the distance in the first vertical direction, the distance in the second vertical direction, and the focal length of the image acquisition component.
  • the traveling direction may also be referred to as the horizontal acquisition direction of the image acquisition component, the y direction, etc., and the name of the traveling direction is not limited in this embodiment.
  • the image distance in the second direction is the distance in the automatic recharge image after the second direction distance is imaged by the image acquisition component.
  • the triangle formed by the focal length of the image acquisition component and the image distance in the second direction is similar to the triangle formed by the distance in the first direction and the distance in the second direction, therefore, based on the triangle similarity principle, the The distance in the first direction, the image distance in the second direction and the focal length of the image acquisition component are used to calculate the distance in the second direction.
  • the direction horizontal to the ground and perpendicular to the traveling direction may also be referred to as the height direction, the x direction, etc.
  • This embodiment does not limit the name of the direction perpendicular to the ground.
  • is the angle between the charging surface and the automatic recharging device, and for any two of the multiple feature markers, X1 is the distance between any feature marker and the central axis of the charging surface, and L1 is the feature.
  • the first direction distance of the mark, S1 is the second direction distance of the characteristic mark;
  • X2 is the distance between another characteristic mark and the central axis of the charging surface,
  • L2 is the first direction distance of another characteristic mark, and S2 is another characteristic mark.
  • a distance in the second direction of the feature identification; L is the distance in the first direction between the charging surface and the automatic recharging device;
  • S is the distance in the second direction between the charging surface and the automatic recharging device.
  • is the angle between the charging surface and the automatic recharging device
  • L is the first direction distance between the charging surface and the automatic recharging device
  • S is the second direction distance between the charging surface and the automatic recharging device.
  • the display position of the feature identification 43 displayed by the charging surface 41 is centrally symmetric, and at this time, L is approximately the average value of the first direction distance from the image capturing component to each feature identification; S is approximately the distance between the image capturing assembly and each feature identification. The average value of the distance in the second direction.
  • L1 is the first directional distance between the image acquisition component and the feature identifier 51
  • L2 is the first directional distance between the image acquisition component and the feature identifier 52
  • S1 is the second distance between the image acquisition component and the feature identifier 51 directional distance
  • S2 is the second directional distance between the image acquisition component and the feature identifier 52 .
  • the first vertical distance H between the image capture assembly and the feature marker 51 (that is, the distance H in the direction perpendicular to the ground) can be determined. distance).
  • the automatic charging device can determine, from the automatic recharging image, the second vertical distance ⁇ H between the image position of the feature marker 51 and the image center point of the automatic recharging image (that is, in the direction perpendicular to the ground of the image acquisition frame) . If the focal length f of the image acquisition component is known, the following formula can be obtained based on the triangle similarity principle.
  • the automatic recharging device determines whether the automatic recharging image includes at least two feature identifiers; this step is performed when the automatic recharging image includes at least two feature identifiers; When the charging image does not include at least two feature identifiers, step 301 is performed again.
  • the number of signatures is at least one.
  • the automatic refilling image includes a feature identifier
  • the second vertical distance between the feature identifier and the image center point of the automatic recharging image, and the image Acquire the focal length of the component and calculate the distance in the first direction between the image acquisition component and the feature marker; obtain the image distance in the second direction between the image position of the feature marker and the image center point of the automatic recharge image in a direction parallel to the ground;
  • Based on the distance in the first direction, the image distance in the second direction, and the focal length of the image acquisition component calculate the distance in the second direction between the image acquisition component and the feature marker in a direction parallel to the ground and perpendicular to the direction of travel; according to the distance in the first direction and the The distance in the second direction determines the initial angle between the charging surface and the automatic recharging device; control the self-moving device to rotate according to the initial angle, and move according
  • the automatic recharging device detects whether the automatic recharging image includes the obstacle image; when the automatic recharging image includes the obstacle image, the automatic recharging device is controlled. Bypass the obstacle corresponding to the obstacle image; perform step 301 again.
  • Step 303 Determine the moving direction of the automatic recharging device based on the relative positional relationship, so that the automatic recharging device moves toward the charging surface of the charging base.
  • the image acquisition component is activated to collect the automatic recharging image during the automatic recharging process; when the automatic recharging image includes a feature identifier, the automatic recharging image is automatically recharged based on the feature identifier.
  • the feature identification is displayed on the charging surface of the charging base, and the charging base is used to charge the automatic recharging device; determined based on the relative positional relationship
  • the moving direction of the automatic recharging device so that the automatic recharging device moves to the charging surface of the charging base; it can solve the problem that the automatic recharging device cannot find the charging base when locating the position of the charging base based on the signal;
  • the automatic recharging device recognizes the characteristic mark to determine the relative positional relationship with the charging surface, which can ensure that the automatic recharging device can find the charging base, and at the same time can ensure the automatic recharging
  • the device can determine the charging surface of the charging base, thereby improving the accuracy of the moving direction determined by the automatic recharging device.
  • FIG. 8 is a block diagram of an automatic recharging device provided by an embodiment of the present application. This embodiment is described by taking the device applied to the automatic recharging device 110 in the automatic recharging system shown in FIG. 1 as an example.
  • the device includes at least the following modules: an image acquisition module 810 , a position determination module 820 and a movement control module 830 .
  • an image acquisition module 810 configured to start the image acquisition component to acquire an automatic recharge image during the automatic recharge process
  • the position determination module 820 is configured to, when the automatic recharging image includes a feature identifier, determine the relationship between the charging surface of the charging base and the automatic recharging device based on the position of the feature identifier in the automatic recharging image. relative positional relationship; the feature identification is arranged on the charging surface of the charging base, and displayed through the charging surface of the charging base; the charging base is used for charging the automatic recharging device;
  • the movement control module 830 is configured to determine the movement direction of the automatic recharging device based on the relative positional relationship, so as to move the automatic recharging device to the charging surface of the charging base.
  • the automatic recharging device provided in the above embodiment performs automatic recharging
  • only the division of the above functional modules is used as an example for illustration. In practical applications, the above functions can be assigned to different functions as required.
  • the module is completed, that is, the internal structure of the automatic recharging device is divided into different functional modules, so as to complete all or part of the functions described above.
  • the automatic recharging device and the automatic recharging method embodiments provided by the above embodiments belong to the same concept, and the specific implementation process thereof is detailed in the method embodiments, which will not be repeated here.
  • FIG. 9 is a block diagram of an automatic recharging device provided by an embodiment of the present application, and the device may be the automatic recharging device 110 in the automatic recharging system shown in FIG. 1 .
  • the apparatus includes at least a processor 901 and a memory 902 .
  • the processor 901 may include one or more processing cores, such as a 4-core processor, an 8-core processor, and the like.
  • the processor 901 can use DSP (Digital Signal Processing, digital signal processing), FPGA (Field-Programmable Gate Array, field programmable gate array), PLA
  • the processor 901 may also include a main processor and a co-processor.
  • the main processor is a processor used to process data in the wake-up state, also called CPU (Central Processing Unit, central processing unit); the co-processor is A low-power processor for processing data in a standby state.
  • the processor 901 may be integrated with a GPU (Graphics Processing Unit, image processor), and the GPU is used for rendering and drawing the content that needs to be displayed on the display screen.
  • the processor 901 may further include an AI (Artificial Intelligence, artificial intelligence) processor, where the AI processor is used to process computing operations related to machine learning.
  • AI Artificial Intelligence, artificial intelligence
  • Memory 902 may include one or more computer-readable storage media, which may be non-transitory. Memory 902 may also include high-speed random access memory, as well as non-volatile memory, such as one or more disk storage devices, flash storage devices. In some embodiments, the non-transitory computer-readable storage medium in the memory 902 is used for storing at least one instruction, and the at least one instruction is used for being executed by the processor 901 to realize the automatic return provided by the method embodiments in this application. charging method.
  • the automatic recharging device may optionally further include: a peripheral device interface and at least one peripheral device.
  • the processor 901, the memory 902 and the peripheral device interface can be connected through a bus or a signal line.
  • Each peripheral device can be connected to the peripheral device interface through bus, signal line or circuit board.
  • peripheral devices include, but are not limited to, radio frequency circuits, touch screen displays, audio circuits, and power supplies.
  • the automatic recharging device may also include fewer or more components, which is not limited in this embodiment.
  • the present application further provides a computer-readable storage medium, where a program is stored in the computer-readable storage medium, and the program is loaded and executed by a processor to implement the automatic recharging method of the foregoing method embodiment.
  • the present application further provides a computer product, the computer product includes a computer-readable storage medium, and a program is stored in the computer-readable storage medium, and the program is loaded and executed by a processor to implement the above method embodiments automatic recharge method.
  • the present application also provides a charging base, the charging base is provided with a feature identification, for the automatic recharging device to start the image acquisition component during the automatic recharging process to collect an automatic recharging image including the feature identification; based on the feature identification
  • the position in the automatic recharging image determines the relative positional relationship between the charging base and the automatic recharging device; the moving direction of the automatic recharging device to the charging base is determined based on the relative positional relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Human Computer Interaction (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Multimedia (AREA)
  • Control Of Charge By Means Of Generators (AREA)
  • Preliminary Treatment Of Fibers (AREA)

Abstract

一种自动回充方法、装置、存储介质、充电基座及系统,属于计算机技术领域,该方法包括:在自动回充过程中启动图像采集组件采集自动回充图像(301);在自动回充图像包括特征标识时,基于特征标识在自动回充图像中的位置,确定充电基座的充电面与自动回充装置的相对位置关系(302);该特征标识通过充电基座的充电面展示;基于相对位置关系确定自动回充装置的移动方向,以使自动回充装置向充电基座的充电面移动(301);可以解决基于信号定位充电基座的位置时,容易出现自动回充装置无法找到充电基座的问题;可以保证自动回充装置能够找到充电基座,同时可以保证自动回充装置能够确定出充电基座的充电面,提高自动回充装置确定出的移动方向的准确性。

Description

自动回充方法、装置、存储介质、充电基座及系统 技术领域
本申请涉及一种自动回充方法、装置及存储介质,属于计算机技术领域。
背景技术
随着智能化的不断发展,自移动设备(比如:扫地机器人、智能割草机等)使用一段时间后可自行回到充电基座进行充电。此时,自移动设备需要确定出充电基座的位置。
目前,自移动设备确定充电基座位置的方式包括:通过充电基座不断发送信号,自移动设备接收到该信号后,基于该信号确定出充电基座的位置。充电基座发出的信号包括红外信号、超声波信号、激光雷达信号等。
然而,上述信号容易受环境因素影出现干扰,此时,自移动设备会出现无法找到充电基座的情况。
发明内容
本申请提供了一种自动回充方法、装置、存储介质、充电基座及系统,可以解决基于信号定位充电基座的位置时,容易出现自动回充装置无法找到充电基座的问题。本申请提供如下技术方案:
第一方面,提供了一种自动回充方法,用于自动回充装置中,所述自动回充装置安装有图像采集组件,所述方法包括:
在自动回充过程中启动所述图像采集组件采集自动回充图像;
在所述自动回充图像包括特征标识时,基于所述特征标识在所述自动回充图像中的位置,确定充电基座的充电面与所述自动回充装置的相对位置关系;所述特征标识设置于所述充电基座上,并通过所述充电基座的充电面展示;所述充电基座用于为所述自动回充装置充电;
基于所述相对位置关系确定所述自动回充装置的移动方向,以使所述自动回充装置向所述充电基座的充电面移动。
可选地,所述特征标识的数量为至少一个;所述基于所述特征标识在所述自动回充图像中的位置,确定充电基座的充电面与所述自动回充装置的相对位置关系,包括:
获取所述特征标识在所述充电面上的安装位置;
基于所述特征标识在所述自动回充图像中的位置和所述安装位置,确定所述充电面与所述自动回充装置之间的距离和角度。
可选地,所述特征标识的数量为至少两个,所述方法还包括:
确定所述自动回充图像是否包括至少两个特征标识;
在所述自动回充图像包括所述至少两个特征标识时,触发执行所述基于所述特征标识在所述自动回充图像中的位置,确定充电基座的充电面与所述自动回充装置的相对位置关系的步骤。
可选地,所述特征标识的数量为至少两个,所述基于所述特征标识在所述自动回充图像中的位置和所述安装位置,确定所述充电面与所述自动回充装置之间的距离和角度,包括:
对于每个特征标识,基于所述特征标识的安装位置确定所述图像采集组件与所述特征标识在与地面垂直的方向上的第一垂直方向距离;
获取所述特征标识的图像位置与所述自动回充图像的图像中心点在所述与地面垂直的方向上的第二垂直方向距离;
基于所述第一垂直方向距离、所述第二垂直方向距离、以及所述图像采集组件的焦距,计算所述图像采集组件与所述特征标识在行进方向上的第一方向距离;
获取所述特征标识的图像位置与所述自动回充图像的图像中心点在与地面平行的方向上的第二方向图像距离;
基于所述第一方向距离和所述第二方向图像距离以及所述图像采集组件的焦距,计算所述图像采集组件与所述特征标识在与所述地面平行、且与所述行进方向垂直的方向上的第二方向距离;
基于每个特征标识的第一方向距离、每个特征标识的第二方向距离,确定所述充电面与所述自动回充装置之间的角度。
可选地,至少两个特征标识通过所述充电面展示的展示位置相对于地面的高度相同或不同;和/或,至少两个特征标识通过所述充电面展示的展示位置呈中心对称。
可选地,所述在自动回充过程中启动所述图像采集组件采集自动回充图像,包括:
在所述自动回充装置的电量低于预设电量值时,启动所述图像采集组件采集所述自动回充图像;或者,
在接收到充电指令时,启动所述图像采集组件采集所述自动回充图像。
第二方面,提供了一种自动回充装置,用于自动回充装置中,所述自动回充装置安装有图像采集组件,所述装置包括:
图像采集模块,用于在自动回充过程中启动所述图像采集组件采集自动回充图像;
位置确定模块,用于在所述自动回充图像包括特征标识时,基于所述特征标识在所述自动回充图像中的位置,确定充电基座的充电面与所述自动回充装置的相对位置关系;所述特征标识设置于所述充电基座上,并通过所述充电基座的充电面展示;所述充电基座用于为所述自动回充装置充电;
移动控制模块,用于基于所述相对位置关系确定所述自动回充装置的移动方向,以使所述自动回充装置向所述充电基座的充电面移动。
第三方面,提供一种自动回充装置,所述装置包括处理器和存储器;所述存储器中存储有程序,所述程序由所述处理器加载并执行以实现第一方面所述的自动回充方法。
第四方面,提供一种计算机可读存储介质,所述存储介质中存储有程序,所述程序由所述处理器加载并执行以实现第一方面所述的自动回充方法。
第五方面,提供一种充电基座,所述充电基座设置有特征标识,以供自动回充装置在自动回充过程中启动图像采集组件采集包括所述特征标识的自动回 充图像;基于所述特征标识在所述自动回充图像中的位置确定充电基座与所述自动回充装置的相对位置关系;基于所述相对位置关系确定所述自动回充装置向所述充电基座的移动方向。
第五方面,提供一种自动回充系统,所述系统包括自动回充装置和充电基座;
所述自动回充装置包括第二方面或第三方面提供的自动回充装置;
所述充电基座包括第五方面提供的充电基座。
本申请的有益效果在于:通过在自动回充过程中启动图像采集组件采集自动回充图像;在自动回充图像包括特征标识时,基于特征标识在自动回充图像中的位置,确定充电基座的充电面与自动回充装置的相对位置关系;该特征标识通过充电基座的充电面展示;基于相对位置关系确定自动回充装置的移动方向,以使自动回充装置向充电基座的充电面移动;可以解决基于信号定位充电基座的位置时,容易出现自动回充装置无法找到充电基座的问题;由于通过在充电基座的充电面设置特征标识,自动回充装置识别该特征标识以确定与充电面之间的相对位置关系,可以保证自动回充装置能够找到充电基座,同时可以保证自动回充装置能够确定出充电基座的充电面,提高自动回充装置确定出的移动方向的准确性。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,并可依照说明书的内容予以实施,以下以本申请的较佳实施例并配合附图详细说明如后。
附图说明
图1是本申请一个实施例提供的自动回充系统的结构示意图;
图2是本申请一个实施例提供的充电基座的结构图;
图3是本申请一个实施例提供的自动回充方法的流程图;
图4是本申请一个实施例提供的充电面与自动回充装置的相对位置关系的示意图;
图5是本申请另一个实施例提供的充电面与自动回充装置的相对位置关系的示意图;
图6是本申请另一个实施例提供的充电面与自动回充装置的相对位置关系的示意图;
图7是本申请另一个实施例提供的充电面与自动回充装置的相对位置关系的示意图;
图8是本申请一个实施例提供的自动回充装置的框图;
图9是本申请一个实施例提供的自动回充装置的框图。
具体实施方式
下面结合附图和实施例,对本申请的具体实施方式作进一步详细描述。以下实施例用于说明本申请,但不用来限制本申请的范围。
图1是本申请一个实施例提供的自动回充系统的结构示意图,如图1所示,该系统至少包括:自动回充装置110和充电基座120。
自动回充装置110是指具有自动寻找充电基座功能的设备。自动回充装置110又称自移动设备、自移动机器人等,本实施例不对自动回充装置110的名称作限定。自动回充装置110包括但不限于:扫地机器人、自动导引装置(Automated Guided Vehicle,AGV)、智能割草机等,本实施例不对自动回充装置110的设备类型作限定。
充电基座120用于为自动回充装置110充电。可选地,充电基座120可以基于有线充电技术或无线充电技术为自动回充装置110充电。
本实施例中,自动回充装置110上安装有图像采集组件130,且自动回充装置110与图像采集组件130通信相连。充电基座120上设置有特征标识,并通过充电基座120的充电面展示。
其中,充电面是指充电基座120上为自动回充装置110供电的一面。
可选地,特征标识可以安装在充电面上;或者,安装在充电基座120内部,但是可以通过充电面展示、并被图像采集组件130采集(比如:特征标识为发光件,该发光件设置在充电基座120内部,且发出的光线穿过充电面射出)。
特征标识用于标识充电基座120的充电面。可选地,特征标识通过光信号(通过LED等发出的可视光信号)、或者预设图案等可视方式表示,本实施例不对特征标识的实现方式作限定。可选地,特征标识的数量为至少两个。参考图2所示的充电基座120在充电面21上设置有2个特征标识22。
可选地,至少两个特征标识通过充电面展示的展示位置相对于地面的高度相同或不同;和/或,至少两个特征标识通过充电面展示的展示位置呈中心对称。以图2为例,2个特征标识22在充电面上的展示位置相对于地面的高度相同,且在充电面上呈中心对称。
自动回充装置110用于在自动回充过程中启动图像采集组件130采集自动回充图像。
相应地,图像采集组件130用于在自动回充装置110的控制下采集自动回充图像:并将该自动回充图像发送至自动回充装置110。
自动回充装置110还用于在获取到自动回充图像之后,在自动回充图像包括特征标识时,基于特征标识在自动回充图像中的位置,确定充电基座的充电面与自动回充装置的相对位置关系;基于相对位置关系确定自动回充装置的移动方向,以使自动回充装置110向充电基座120的充电面移动。
本实施例提供的自动回充系统,通过在充电基座120的充电面设置特征标识,自动回充装置110识别该特征标识以确定与充电面之间的相对位置关系,可以保证自动回充装置110能够确定出充电基座120的充电面,以提高自动回充装置110确定出的移动方向的准确性。
图3是本申请一个实施例提供的自动回充方法的流程图,本实施例以该方法应用于图1所示的自动回充系统中,且各个步骤的执行主体为该系统中的自动回充装置110为例进行说明。该方法至少包括以下几个步骤:
步骤301,在自动回充过程中启动图像采集组件采集自动回充图像。
自动回充过程是指自动回充装置寻找充电基座的过程。
可选地,自动回充装置在自动回充装置的电量低于预设电量值时,启动图像采集组件采集自动回充图像;或者,在接收到充电指令时,启动图像采集组件采集自动回充图像。当然,自动回充装置也可以通过其它方式确定启动自动回充过程的时机,本实施例不对自动回充装置确定启动自动回充过程的时机的方式作限定。
步骤302,在自动回充图像包括特征标识时,基于特征标识在自动回充图像中的位置,确定充电基座的充电面与自动回充装置的相对位置关系。
其中,特征标识设置于充电基座上,并通过充电基座的充电面展示;该充电基座用于为自动回充装置充电。
基于特征标识在自动回充图像中的位置,确定充电基座的充电面与自动回充装置的相对位置关系,包括:获取特征标识在充电面上的安装位置;基于特征标识在自动回充图像中的位置和安装位置,确定充电面与自动回充装置之间的距离和角度。
自动回充装置基于相似三角形原理基于特征标识在自动回充图像中的位置和安装位置,确定充电面与自动回充装置之间的距离和角度。
在一个示例中,特征标识的数量为至少两个。此时,对于每个特征标识,自动回充装置基于该特征标识的安装位置确定图像采集组件与特征标识在与地面垂直的方向上的第一垂直方向距离;获取特征标识的图像位置与自动回充图像的图像中心点在与地面垂直的方向上的第二垂直方向距离;基于第一垂直方向距离、第二垂直方向距离、以及图像采集组件的焦距,计算图像采集组件与特征标识在行进方向上的第一方向距离;获取特征标识的图像位置与自动回充图像的图像中心点在与地面平行的方向上的第二方向图像距离;基于第一方向距离、第二方向图像距离以及图像采集组件的焦距,计算图像采集组件与特征标识在与地面平行、且与行进方向垂直的方向上的第二方向距离;基于每个特征标识的第一方向距离、每个特征标识的第二方向距离,确定充电面与自动回充装置之间的角度。
对于第一垂直方向距离的获取过程,自动回充装置中预先存储有图像采集组件相对于地面的高度H1、以及各个特征标识相对于地面的高度H2(或者存储有各个特征标识相对于充电面底部的距离、以及充电面底部相对于地面的距离,从而得到H2);基于H1和H2之差可以得到图像采集组件与特征标识在与地面垂直的方向上的第一垂直方向距离。
可选地,本申请中,与地面垂直的方向也可以称为高度方向、z方向等,本实施例不对与地面垂直的方向的名称作限定。
第二垂直方向距离即为第一垂直方向距离通过图像采集组件成像后在自动回充图像上的距离。
对于第一方向距离的获取过程,自动回充装置中预存有图像采集组件的焦距;由于图像采集组件的焦距与第二垂直方向距离构成的三角形,相似于第一方向距离与第一垂直方向距离构成的三角形,因此,基于三角形相似原理,即可基于第一垂直方向距离、第二垂直方向距离、以及图像采集组件的焦距,计算出第一方向距离。
可选地,本申请中,在行进方向上也可以称为图像采集组件的水平采集方向、y方向等,本实施例不对行进方向的名称作限定。
第二方向图像距离即为第二方向距离通过图像采集组件成像后在自动回充图像上的距离。
对于第二方向距离的获取过程,由于图像采集组件的焦距与第二方向图像距离构成的三角形,相似于第一方向距离与第二方向距离构成的三角形,因此,基于三角形相似原理,即可基于第一方向距离、第二方向图像距离以及图像采集组件的焦距,计算出第二方向距离。
可选地,本申请中,与地面水平、且与行进方向垂直的方向也可以称为高度方向、x方向等,本实施例不对与地面垂直的方向的名称作限定。
基于每个特征标识的第一方向距离、每个特征标识的第二方向距离,确定充电面与自动回充装置之间的角度,通过下述公式表示:
tanα=S/L
S=((X1*S2)+(X2*S1))/(X1+X2)
L=((X1*L2)+(X2*L1))/(X1+X2)
其中,α为充电面与自动回充装置之间的角度,对于多个特征标识中的任意两个特征标识,X1为任一特征标识与充电面的中心轴线之间的距离、L1为该特征标识的第一方向距离、S1为该特征标识的第二方向距离;X2为另一特征标识与充电面的中心轴线之间的距离、L2为另一特征标识的第一方向距离、S2为另一特征标识的第二方向距离;L为充电面与自动回充装置之间的第一方向距离;S为充电面与自动回充装置之间的第二方向距离。
参考图4所示的充电面41与自动回充装置42之间位置关系的示意图。充电面41上设置有2个特征标识43。基于图4的示意图,可以将充电面41与自动回充装置42之间位置关系等效为图5所示的位置关系。其中,α为充电面与自动回充装置之间的角度;L为充电面至自动回充装置之间的第一方向距离;S为充电面至自动回充装置之间的第二方向距离。
其中,特征标识43通过充电面41展示的展示位置呈中心对称,此时,L近似于图像采集组件至各个特征标识的第一方向距离的平均值;S近似于图像采集组件至各个特征标识的第二方向距离的平均值。
参考图5,以特征标识的数量为两个为例,L=(L1+L2)/2;S=(S1+S2)/2。
其中,L1为图像采集组件与特征标识51之间的第一方向距离;L2为图像采集组件与特征标识52之间的第一方向距离;S1为图像采集组件与特征标识51之间的第二方向距离;S2为图像采集组件与特征标识52之间的第二方向距离。
对于每个特征标识,以获取特征标识51的L1和S1为例,参考图6所示的充电基座的左视图与图像采集组件之间的相对位置关系的示意图。基于至少两个特征标识在充电面上的安装位置、以及图像采集组件的高度,可以确定出图像采集组件与特征标识51之间的第一垂直方向距离H(即在与地面垂直的方向上的距离)。自动充电装置可以从自动回充图像中确定出特征标识51的图像位 置与自动回充图像的图像中心点之间的第二垂直方向距离ΔH(即在图像采集框的与地面垂直的方向上)。图像采集组件的焦距f已知,则基于三角形相似原理可得下述公式。
L1=H×ΔH/f
参考图7所示的充电基座的俯视图与图像采集组件之间的相对位置关系的示意图。基于三角形相似原理可得下述公式。
S1=L1×ΔS/f
L2和S2的获取方式与图6和图7相同,本实施例在此不再赘述。
可选地,在特征标识的数量为至少两个,自动回充装置确定自动回充图像是否包括至少两个特征标识;在自动回充图像包括至少两个特征标识时执行本步骤;在自动回充图像未包括至少两个特征标识时,再次执行步骤301。
在另一个示例中,特征标识的数量为至少一个。此时,在自动回充图像包括一个特征标识时,基于图像采集组件至特征标识的第一垂直方向距离、特征标识与自动回充图像的图像中心点之间的第二垂直方向距离、以及图像采集组件的焦距,计算图像采集组件与至特征标识之间的第一方向距离;获取特征标识的图像位置与自动回充图像的图像中心点在与地面平行的方向上的第二方向图像距离;基于第一方向距离、第二方向图像距离以及图像采集组件的焦距,计算图像采集组件与特征标识在与地面平行、且与行进方向垂直的方向上的第二方向距离;根据第一方向距离和第二方向距离确定充电面与自动回充装置之间的初始角度;控制自移动设备按照初始角度进行旋转,并按照第一方向距离和第二方向距离移动;在移动至充电面后,控制自移动设备移动并旋转以匹配充电座上的充电接口,得到最终距离和最终角度。
可选地,在自动回充图像不包括充电基座的图像时,自动回充装置检测自动回充图像是否包括障碍物图像;在自动回充图像包括障碍物图像时,控制该自动回充装置绕过该障碍物图像对应的障碍物;再次执行步骤301。
步骤303,基于相对位置关系确定自动回充装置的移动方向,以使自动回充装置向充电基座的充电面移动。
综上所述,本实施例提供的自动回充方法,通过在自动回充过程中启动图像采集组件采集自动回充图像;在自动回充图像包括特征标识时,基于特征标识在自动回充图像中的位置,确定充电基座的充电面与自动回充装置的相对位置关系;该特征标识通过充电基座的充电面展示,充电基座用于为自动回充装置充电;基于相对位置关系确定自动回充装置的移动方向,以使自动回充装置向充电基座的充电面移动;可以解决基于信号定位充电基座的位置时,容易出现自动回充装置无法找到充电基座的问题;由于通过在充电基座的充电面设置特征标识,自动回充装置识别该特征标识以确定与充电面之间的相对位置关系,可以保证自动回充装置能够找到充电基座,同时可以保证自动回充装置能够确定出充电基座的充电面,提高自动回充装置确定出的移动方向的准确性。
图8是本申请一个实施例提供的自动回充装置的框图,本实施例以该装置应用于图1所示的自动回充系统中的自动回充装置110中为例进行说明。该装置至少包括以下几个模块:图像采集模块810、位置确定模块820和移动控制模块830。
图像采集模块810,用于在自动回充过程中启动所述图像采集组件采集自动回充图像;
位置确定模块820,用于在所述自动回充图像包括特征标识时,基于所述特征标识在所述自动回充图像中的位置,确定充电基座的充电面与所述自动回充装置的相对位置关系;所述特征标识设置于所述充电基座的充电面上,并通过所述充电基座的充电面展示;所述充电基座用于为所述自动回充装置充电;
移动控制模块830,用于基于所述相对位置关系确定所述自动回充装置的移动方向,以使所述自动回充装置向所述充电基座的充电面移动。
相关细节参考上述方法实施例。
需要说明的是:上述实施例中提供的自动回充装置在进行自动回充时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将自动回充装置的内部结构划分成不同的 功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的自动回充装置与自动回充方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图9是本申请一个实施例提供的自动回充装置的框图,该装置可以是含图1所示的自动回充系统中的自动回充装置110。该装置至少包括处理器901和存储器902。
处理器901可以包括一个或多个处理核心,比如:4核心处理器、8核心处理器等。处理器901可以采用DSP(Digital Signal Processing,数字信号处理)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)、PLA
(Programmable Logic Array,可编程逻辑阵列)中的至少一种硬件形式来实现。处理器901也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称CPU(Central Processing Unit,中央处理器);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。在一些实施例中,处理器901可以在集成有GPU(Graphics Processing Unit,图像处理器),GPU用于负责显示屏所需要显示的内容的渲染和绘制。一些实施例中,处理器901还可以包括AI(Artificial Intelligence,人工智能)处理器,该AI处理器用于处理有关机器学习的计算操作。
存储器902可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是非暂态的。存储器902还可包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备。在一些实施例中,存储器902中的非暂态的计算机可读存储介质用于存储至少一个指令,该至少一个指令用于被处理器901所执行以实现本申请中方法实施例提供的自动回充方法。
在一些实施例中,自动回充装置还可选包括有:外围设备接口和至少一个外围设备。处理器901、存储器902和外围设备接口之间可以通过总线或信号线相连。各个外围设备可以通过总线、信号线或电路板与外围设备接口相连。示 意性地,外围设备包括但不限于:射频电路、触摸显示屏、音频电路、和电源等。
当然,自动回充装置还可以包括更少或更多的组件,本实施例对此不作限定。
可选地,本申请还提供有一种计算机可读存储介质,所述计算机可读存储介质中存储有程序,所述程序由处理器加载并执行以实现上述方法实施例的自动回充方法。
可选地,本申请还提供有一种计算机产品,该计算机产品包括计算机可读存储介质,所述计算机可读存储介质中存储有程序,所述程序由处理器加载并执行以实现上述方法实施例的自动回充方法。
另外,本申请还提供一种充电基座,该充电基座设置有特征标识,以供自动回充装置在自动回充过程中启动图像采集组件采集包括特征标识的自动回充图像;基于特征标识在自动回充图像中的位置确定充电基座与自动回充装置的相对位置关系;基于相对位置关系确定自动回充装置向充电基座的移动方向。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种自动回充方法,其特征在于,用于自动回充装置中,所述自动回充装置安装有图像采集组件,所述方法包括:
    在自动回充过程中启动所述图像采集组件采集自动回充图像;
    在所述自动回充图像包括特征标识时,基于所述特征标识在所述自动回充图像中的位置以及所述特征标识在充电基座的充电面上的安装位置,确定所述图像采集组件与所述特征标识在所述自动回充装置的行进方向上的第一方向距离,以及所述图像采集组件与所述特征标识在与地面平行、且与所述行进方向垂直的方向上的第二方向距离;所述特征标识设置于所述充电基座上,并通过所述充电基座的充电面展示;所述充电基座用于为所述自动回充装置充电;
    基于所述第一方向距离、所述第二方向距离,确定所述充电基座的充电面与所述自动回充装置的相对位置关系;
    基于所述相对位置关系确定所述自动回充装置的移动方向,以使所述自动回充装置向所述充电基座的充电面移动。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述第一方向距离、所述第二方向距离,确定所述充电基座的充电面与所述自动回充装置的相对位置关系,包括:
    基于所述第一方向距离、所述第二方向距离,确定所述充电面与所述自动回充装置之间的距离和角度;
    所述基于所述相对位置关系确定所述自动回充装置的移动方向,以使所述自动回充装置向所述充电基座的充电面移动,包括:
    基于所述充电面与所述自动回充装置之间的距离和角度,确定所述自动回充装置的移动方向,以使所述自动回充装置向所述充电基座的充电面移动。
  3. 根据权利要求2所述的方法,其特征在于,所述基于所述特征标识在所述自动回充图像中的位置以及所述特征标识在所述充电基座的充电面上的安装位置,确定所述图像采集组件与所述特征标识在行进方向上的第一方向距离,以及所述图像采集组件与所述特征标识在与地面平行、且与所述行进方向垂直的方向上的第二方向距离,包括:
    基于所述特征标识的安装位置确定所述图像采集组件与所述特征标识在与地面垂直的方向上的第一垂直方向距离;
    获取所述特征标识的图像位置与所述自动回充图像的图像中心点在所述与地面垂直的方向上的第二垂直方向距离;
    基于所述第一垂直方向距离、所述第二垂直方向距离、以及所述图像采集组件的焦距,计算所述图像采集组件与所述特征标识在所述行进方向上的第一方向距离;
    获取所述特征标识的图像位置与所述自动回充图像的图像中心点在与所述地面平行的方向上的第二方向图像距离;
    基于所述第一方向距离、所述第二方向图像距离以及所述图像采集组件的焦距,计算所述图像采集组件与所述特征标识在与所述地面平行、且与所述行进方向垂直的方向上的第二方向距离。
  4. 根据权利要求1所述的方法,其特征在于,所述特征标识的数量为至少两个,所述方法还包括:
    确定所述自动回充图像是否包括至少两个特征标识;
    在所述自动回充图像包括所述至少两个特征标识时,触发执行所述基于所述特征标识在所述自动回充图像中的位置以及所述特征标识在所述充电基座的充电面上的安装位置,确定所述图像采集组件与所述特征标识在所述自动回充装置的行进方向上的第一方向距离,以及所述图像采集组件与所述特征标识在与地面平行、且与所述行进方向垂直的方向上的第二方向距离的步骤。
  5. 根据权利要求2所述的方法,其特征在于,所述特征标识的数量为至少两个,所述基于所述第一方向距离、所述第二方向距离,确定所述充电面与所述自动回充装置之间的距离和角度,包括:
    基于所述至少两个特征标识中的每个特征标识的第一方向距离、每个特征标识的第二方向距离,确定所述充电面与所述自动回充装置之间的距离和角度。
  6. 根据权利要求1所述的方法,其特征在于,所述特征标识的数量为至少两个,
    所述至少两个特征标识通过所述充电面展示的展示位置相对于地面的高度相同或不同;
    和/或,
    所述至少两个特征标识通过所述充电面展示的展示位置呈中心对称。
  7. 根据权利要求1至6任一所述的方法,其特征在于,所述在自动回充过程中启动所述图像采集组件采集自动回充图像,包括:
    在所述自动回充装置的电量低于预设电量值时,启动所述图像采集组件采集所述自动回充图像;或者,
    在接收到充电指令时,启动所述图像采集组件采集所述自动回充图像。
  8. 一种自动回充装置,其特征在于,所述装置包括处理器和存储器;所述存储器中存储有程序,所述程序由所述处理器加载并执行以实现如权利要求1至7任一项所述的自动回充方法。
  9. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有程序,所述程序被处理器执行时用于实现如权利要求1至7任一项所述的自动回充方法。
  10. 一种自动回充系统,其特征在于,所述系统包括自动回充装置和充电基座;
    所述自动回充装置包括权利要求8所述的自动回充装置;
    所述充电基座设置有特征标识。
PCT/CN2021/107229 2020-07-21 2021-07-20 自动回充方法、装置、存储介质、充电基座及系统 WO2022017341A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21847216.5A EP4184278A4 (en) 2020-07-21 2021-07-20 AUTOMATIC RECHARGING METHOD AND APPARATUS, STORAGE MEDIUM, CHARGING BASE AND SYSTEM
KR1020237001867A KR20230025706A (ko) 2020-07-21 2021-07-20 자동 재충전 방법 및 자동 재충전 시스템
JP2023501663A JP2023534795A (ja) 2020-07-21 2021-07-20 自動帰還充電方法、装置、記憶媒体、充電台及びシステム
AU2021314387A AU2021314387A1 (en) 2020-07-21 2021-07-20 Automatic recharging method and apparatus, storage medium, charging base, and system
CA3186047A CA3186047A1 (en) 2020-07-21 2021-07-20 Automatic recharging method and apparatus, storage medium, charging base, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010704916.0 2020-07-21
CN202010704916.0A CN111596694B (zh) 2020-07-21 2020-07-21 自动回充方法、装置、存储介质及系统

Publications (1)

Publication Number Publication Date
WO2022017341A1 true WO2022017341A1 (zh) 2022-01-27

Family

ID=72190250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107229 WO2022017341A1 (zh) 2020-07-21 2021-07-20 自动回充方法、装置、存储介质、充电基座及系统

Country Status (9)

Country Link
US (1) US11865937B2 (zh)
EP (1) EP4184278A4 (zh)
JP (1) JP2023534795A (zh)
KR (1) KR20230025706A (zh)
CN (2) CN111596694B (zh)
AU (1) AU2021314387A1 (zh)
CA (1) CA3186047A1 (zh)
DE (1) DE102021118748A1 (zh)
WO (1) WO2022017341A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111596694B (zh) * 2020-07-21 2020-11-17 追创科技(苏州)有限公司 自动回充方法、装置、存储介质及系统
CN113872287A (zh) * 2021-09-26 2021-12-31 追觅创新科技(苏州)有限公司 充电设备、自移动设备、充电方法、系统及存储介质
CN114794992B (zh) * 2022-06-07 2024-01-09 深圳甲壳虫智能有限公司 充电座、机器人的回充方法和扫地机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107450540A (zh) * 2017-08-04 2017-12-08 山东大学 基于红外路标的室内移动机器人导航系统及方法
CN107703933A (zh) * 2016-08-09 2018-02-16 深圳光启合众科技有限公司 机器人的充电方法、装置和设备
CN108646727A (zh) * 2018-05-14 2018-10-12 珠海市微半导体有限公司 一种视觉充电座及其定位方法和回充方法
CN109541535A (zh) * 2019-01-11 2019-03-29 浙江智澜科技有限公司 一种基于uwb和视觉slam的agv室内定位及导航的方法
CN110263601A (zh) * 2018-03-12 2019-09-20 杭州萤石软件有限公司 一种充电座识别方法及移动机器人
CN111596694A (zh) * 2020-07-21 2020-08-28 追创科技(苏州)有限公司 自动回充方法、装置、存储介质及系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60148613U (ja) * 1984-03-13 1985-10-02 三菱重工業株式会社 無人搬送車制御装置
JP2005309531A (ja) * 2004-04-16 2005-11-04 Funai Electric Co Ltd 自走式掃除機および移動可能なロボット
KR20060110483A (ko) * 2005-04-20 2006-10-25 엘지전자 주식회사 충전대 자동 복귀 기능을 가진 청소로봇 및 그 방법
CN102327940B (zh) 2011-07-19 2015-02-18 大连液压件有限公司 钢球密封碾压封口装置及工艺
GB2513912B (en) * 2013-05-10 2018-01-24 Dyson Technology Ltd Apparatus for guiding an autonomous vehicle towards a docking station
EP3082005B1 (en) * 2013-12-13 2019-06-12 Toshiba Lifestyle Products & Services Corporation Autonomously traveling electric cleaning device
US10575696B2 (en) * 2016-07-13 2020-03-03 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
TWI645276B (zh) * 2017-08-30 2018-12-21 世擘股份有限公司 自動充電方法以及清潔機器人
KR102203439B1 (ko) * 2018-01-17 2021-01-14 엘지전자 주식회사 이동 로봇 및 이동 로봇의 제어방법
CN108508897B (zh) 2018-04-20 2021-03-05 杭州蓝芯科技有限公司 一种基于视觉的机器人自动充电对准系统及方法
CN110757446B (zh) * 2018-07-25 2021-08-27 深圳市优必选科技有限公司 机器人回充登录的方法、装置及存储装置
CN110893085B (zh) * 2018-09-11 2021-12-31 原相科技股份有限公司 清洁机器人及其充电路径决定方法
JP7025317B2 (ja) * 2018-10-31 2022-02-24 ファナック株式会社 測距装置を有する物体監視システム
CN109975793B (zh) * 2019-04-25 2021-03-12 苏州玖物互通智能科技有限公司 一种激光二维测距传感器的标定方法
CN110353583A (zh) * 2019-08-21 2019-10-22 追创科技(苏州)有限公司 扫地机器人及扫地机器人的自动控制方法
CN110850882A (zh) * 2019-11-29 2020-02-28 小狗电器互联网科技(北京)股份有限公司 一种扫地机器人的充电桩定位方法及装置
CN111136648B (zh) * 2019-12-27 2021-08-27 深圳市优必选科技股份有限公司 一种移动机器人的定位方法、定位装置及移动机器人

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107703933A (zh) * 2016-08-09 2018-02-16 深圳光启合众科技有限公司 机器人的充电方法、装置和设备
CN107450540A (zh) * 2017-08-04 2017-12-08 山东大学 基于红外路标的室内移动机器人导航系统及方法
CN110263601A (zh) * 2018-03-12 2019-09-20 杭州萤石软件有限公司 一种充电座识别方法及移动机器人
CN108646727A (zh) * 2018-05-14 2018-10-12 珠海市微半导体有限公司 一种视觉充电座及其定位方法和回充方法
CN109541535A (zh) * 2019-01-11 2019-03-29 浙江智澜科技有限公司 一种基于uwb和视觉slam的agv室内定位及导航的方法
CN111596694A (zh) * 2020-07-21 2020-08-28 追创科技(苏州)有限公司 自动回充方法、装置、存储介质及系统
CN112327940A (zh) * 2020-07-21 2021-02-05 追创科技(苏州)有限公司 自动回充方法、装置、存储介质、充电基座及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4184278A4 *

Also Published As

Publication number Publication date
EP4184278A4 (en) 2023-11-29
DE102021118748A1 (de) 2022-01-27
CN112327940A (zh) 2021-02-05
JP2023534795A (ja) 2023-08-14
CN111596694B (zh) 2020-11-17
AU2021314387A1 (en) 2023-02-09
KR20230025706A (ko) 2023-02-22
CN111596694A (zh) 2020-08-28
US20220024333A1 (en) 2022-01-27
CA3186047A1 (en) 2022-01-27
CN112327940B (zh) 2023-01-13
US11865937B2 (en) 2024-01-09
EP4184278A1 (en) 2023-05-24

Similar Documents

Publication Publication Date Title
WO2022017341A1 (zh) 自动回充方法、装置、存储介质、充电基座及系统
JP7484015B2 (ja) 障害物検出方法および装置、自走式ロボット並びに記憶媒体
KR102003152B1 (ko) 정보 처리 방법, 디바이스, 및 단말기
WO2018210059A9 (zh) 机器人充电方法及装置
CN103901895B (zh) 一种基于无极FastSLAM算法和匹配优化目标定位方法及机器人
JP2021516401A (ja) データ融合方法及び関連装置
CN113256716B (zh) 一种机器人的控制方法及机器人
CN116278880A (zh) 一种充电设备以及控制机械臂充电的方法
CN113561963A (zh) 一种泊车方法、装置及车辆
WO2023125363A1 (zh) 电子围栏自动生成方法、实时检测方法及装置
US20230297120A1 (en) Method, apparatus, and device for creating map for self-moving device with improved map generation efficiency
CN110871440B (zh) 机器人的行驶控制方法和装置
US11734850B2 (en) On-floor obstacle detection method and mobile machine using the same
EP4242775B1 (en) Charging station, method for returning to said charging station for a lawnmower robot
CN113359712A (zh) 充电对接方法、装置和充电桩
KR102471487B1 (ko) 청소 로봇 및 그 제어방법
CN115474863B (zh) 障碍物检测方法、装置、介质及清洁机器人
CN106204516B (zh) 一种机器人的自动充电方法及装置
CN110412993A (zh) 自主充电的方法以及移动机器人
CN113872287A (zh) 充电设备、自移动设备、充电方法、系统及存储介质
CN115979251B (zh) 地图的生成方法和机器人
WO2023109347A1 (zh) 自移动设备的重定位方法、设备及存储介质
WO2023165329A1 (zh) 自移动设备的地图更新方法、自移动设备及存储介质
US11460854B1 (en) System to determine floor or obstacle by autonomous mobile device
US20240335080A1 (en) Mobile robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21847216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023501663

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3186047

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20237001867

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021314387

Country of ref document: AU

Date of ref document: 20210720

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021847216

Country of ref document: EP

Effective date: 20230217