WO2022016661A1 - 冰湖溃决型洪水泥石流防治方法 - Google Patents

冰湖溃决型洪水泥石流防治方法 Download PDF

Info

Publication number
WO2022016661A1
WO2022016661A1 PCT/CN2020/112008 CN2020112008W WO2022016661A1 WO 2022016661 A1 WO2022016661 A1 WO 2022016661A1 CN 2020112008 W CN2020112008 W CN 2020112008W WO 2022016661 A1 WO2022016661 A1 WO 2022016661A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
width
dam
flood
outburst
Prior art date
Application number
PCT/CN2020/112008
Other languages
English (en)
French (fr)
Inventor
陈剑刚
陈晓清
崔鹏
游勇
陈华勇
栗帅
唐金波
赵万玉
曾璐
王喜安
Original Assignee
中国科学院、水利部成都山地灾害与环境研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院、水利部成都山地灾害与环境研究所 filed Critical 中国科学院、水利部成都山地灾害与环境研究所
Priority to US17/783,756 priority Critical patent/US12024842B2/en
Publication of WO2022016661A1 publication Critical patent/WO2022016661A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B7/00Barrages or weirs; Layout, construction, methods of, or devices for, making same
    • E02B7/02Fixed barrages
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B1/00Equipment or apparatus for, or methods of, general hydraulic engineering, e.g. protection of constructions against ice-strains
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/30Flood prevention; Flood or storm water management, e.g. using flood barriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/40Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping

Definitions

  • the invention relates to the fields of disaster prevention and mitigation, engineering design and application, in particular to a method for preventing and controlling glacial lake outburst floods and gravel flows.
  • glacial lake outbursts occur frequently in high-altitude mountainous areas around the world, often destroying infrastructure and washing out villages and towns, causing serious economic losses and casualties.
  • glacial lake outburst events in the world have shown an obvious increasing trend, and a total of 33 serious glacial lake outburst floods and cement-rock flow disasters have occurred in my country.
  • the outburst of Sangwangcuo Glacier Lake in Kangma County resulted in a huge flood and mudslides, which killed about 400 people and affected more than 20,000 people.
  • Glacial lake outburst events in Cambodia show an increasing trend.
  • the purpose of the present invention is to aim at the deficiencies of the prior art, and propose a method for preventing and controlling glacial lake outburst flood and gravel flow.
  • the sand retaining dam controls the source of the channel and ditch bank to start to form debris flow, reducing the risk of cascading enlargement of the scale of the outburst flood.
  • the layered and smooth drainage of the flood, cement and debris flow in the vertical direction can be achieved to the greatest extent. Reduce the damage caused by outburst floods, cement and rock flow disasters to railways, highways, water conservancy projects, residential areas and farmland in downstream areas.
  • a method for preventing and controlling glacial lake outburst flood and gravel flow comprising:
  • Step 1 Determine the planning and design standards for the prevention and control engineering system in the basin according to the sand conveying capacity of the main river downstream of the channel, the major engineering facilities that need to be protected, and the protection standards for villages and towns, cities and towns along the main river, and other protection objects;
  • the survey divides the channel behind the moraine dam into upstream, midstream and downstream regions in turn; further determine the diameter of large rocks distributed in the channel in the upstream region and the particle size of provenance particles in the channel in the midstream region.
  • D90 Determine the source distribution and thickness of the channel; Determine the length, width and slope range of the drainage project according to the environmental conditions around the railway, highway and bridge; Determine the maximum burst peak flow Q Total under different burst conditions;
  • Step 2 Build a pile forest dam group in the upstream area, and place large stones in layers in the reservoir area. If the number of large stones in the channel is limited, prefabricated artificial structures can be placed. The spacing between them is b, and the spacing between rows is B; the diameter D of the stacked boulders or artificial structures satisfies D>b, and they are placed upstream in sequence, and each interval (50-100) D is set.
  • the 1-2 rows of pile forests are started by stabilizing the upstream boulders and controlling the downstream boulders. At the same time, the pile forests and the placed boulders form a stepped water drop to consume the energy of the flooding and gravel flow;
  • Step 3 Build energy dissipation potential sills in the midstream area, build a sand retaining dam after several levels of potential sills are built, to prevent the channel from rapidly cutting down under the action of the burst flood, and control the source of the ditch and bank to start to form debris flow;
  • Step 4 In the downstream area, build a controlled sand dam to divert the burst flood cement and stone flow, and then discharge the burst flood cement and stone flow to the main river through the drainage channels located at the lower part of the railway, highway bridge and above the top respectively.
  • the auxiliary piles in the pile forest dam reservoir area and the boulders or artificial structures stacked upstream constitute a stepped water drop to consume the energy of the burst flood, and the height of the formed stepped water drop is (2- 4) D, the length range is (50-100) D.
  • the depth of a single pile in the pile forest should be greater than (10-20) D, and the height above the surface should be greater than (5-10) D; the stacked boulders or artificial prefabricated
  • the stacking height of the structure is 0.5-0.8 times the height above the ground of the pile forest, and the spacing between the large stones is (0.25-0.5) D to allow water to flow through.
  • the top width of the energy dissipation sill is d
  • the height above the ground is (2-5) d
  • the buried depth below the ground is 1.0-2.0 times the height above the ground
  • the bottom of the energy dissipation sill is provided with a pile foundation
  • the interval width of the pile foundation is (3-5)d
  • the depth of the pile foundation is 1.5-3 times the distance between the pile foundations.
  • the sand retaining dam is a sand retaining bar with large openings, so as to play the role of blocking the coarse and discharging the fine, and the width of the discharge hole is 1.2-2.0 of the diameter D90 of the boulders distributed in the upstream channel of the sand retaining dam. times, and the height is 1-2 times the width of the vent hole.
  • the method for determining the flow distribution at the top and bottom of the control-type sand bar is as follows:
  • the scale level of the flood and gravel flow generated by the outburst of the glacial lake belongs to the large-scale or extra-large scale.
  • is the flow coefficient
  • b hole is the width of the discharge hole
  • g is the acceleration of gravity
  • H down is the water depth above the bottom of the discharge hole
  • the maximum flow capacity of the upper row guide groove is Q row,Up , and the proposed values of the width B Up and depth h Up of the upper row guide groove are determined according to the terrain conditions, and the maximum flow capacity is calculated according to the following method :
  • the width of the overflow weir of the control-type sand retaining dam is determined by the following method:
  • m is the flow coefficient
  • b weir is the width of the discharge hole
  • g is the acceleration of gravity
  • H weir is the water depth above the bottom of the overflow
  • an upper discharge guide groove design discharge flow rate Q, Up, and the flow rate Q Up weir need to satisfy the following relationship: Q safety coefficient row, Up> kQ Up, where k is.
  • Q safety coefficient row Up> kQ Up, where k is.
  • the safety factor k is taken according to the risk of glacial lake outburst and the importance of the downstream protection objects, and is generally taken as 1.2-3.0;
  • the form of the upper and lower row guide grooves can be selected from rectangular grooves constructed of reinforced concrete, double row guide grooves, asymmetric discharge guide grooves, etc.
  • the flow capacity should be checked and calculated according to different row guide grooves.
  • the beneficial effects of the present invention are: in the areas involving the layout of important engineering facilities and personnel distribution, and in the areas where there is a risk of glacial lake outburst and catastrophic floods, if a sudden glacial lake outburst and catastrophic floods are encountered
  • the prevention and control engineering system built in advance can be used to separate the flow of flood cement and stone flow, consume its energy, and use energy dissipation potential sills and sand dams to gradually reduce the energy of the burst flood cement and stone flow, and the blocking has huge impact energy on the downstream
  • the formed dilute debris flow or high bulk density and low viscosity debris flow can be separated from water and stone, and the dilute debris flow can be converted into flood, and the controlled sand flow can be passed downstream.
  • the dam is used for diversion regulation, and the drainage project is used to smoothly discharge the burst flood cement and stone flow to the main river, so as to minimize the threat and harm to the railways, highways, bridges,
  • Figure 1 schematically shows a schematic diagram of the present invention.
  • the method for preventing and controlling the glacial lake outburst type flood cement and gravel flow in the present invention controls the scale of the outburst flood cement and gravel flow through separation of water and stone and water flow dispersion to achieve rapid peak regulation, and uses the step-by-step energy dissipation method to control the starting of the material source to reduce the level of the outburst flood cement and stone flow scale.
  • the control-type sand-blocking dam is constructed to conduct diversion regulation, so as to stratify and quickly discharge the cement and stone flow of the outburst flood to the main river.
  • the method can construct a prevention and control system for the prevention and control projects constructed in advance in the area where the ice lake bursts the risk of the cement and stone flow, separates the flow of the flood cement and stone flow, consumes its energy, adopts the energy dissipation potential threshold and the sand retaining dam. and other projects, gradually reduce the energy of the outburst flood cement and stone flow, block the boulders with huge impact energy downstream, control the source of the ditch and bank to start the formation of debris flow, and at the same time, it can also reduce the formation of dilute debris flow or high bulk density and low viscosity debris flow.
  • Separation of water and stone is carried out to convert the dilute debris flow into flood, and the control-type sand retaining dam in the downstream is used for diversion and regulation to smoothly discharge the cement and stone flow of the outburst flood to the main river, minimizing the impact of the outburst flood on the railways, highways, railways, roads and railways in the downstream area to the greatest extent.
  • Hazardous to water conservancy projects, settlements and farmland.
  • the general idea of the present invention is to control the scale of the outburst flood cement and stone flow by diverting and reducing energy, reduce the cascade amplification of the outburst flood cement and stone flow scale by using the method of step-by-step energy dissipation to control the starting of the material source, and reasonably distribute the drainage flow to protect important infrastructure and people. Purpose of life and property.
  • a certain watershed on the Qinghai-Tibet Plateau belongs to a branch ditch on the left side of the upper reaches of Palong Zangbo. Its watershed area is 118km 2 .
  • the length of the ditch in the downstream area of the glacial lake is 10km. is 5%.
  • the storage capacity of the ice lake is about 300 ⁇ 104m 3 when the lake is full of water.
  • the glacial lake collapsed in 1988 with a maximum peak flow of 1150m 3 /s.
  • Step 1 According to the on-site investigation and the actual terrain conditions, the 0-2km downstream of the moraine dam is designated as the upstream area, the 2-7km area is designated as the midstream area, and the 7-10km area is designated as the downstream area.
  • the average channel width at the upstream region is 15m.
  • the D90 of the particle size of the channel source in the midstream region was determined to be 0.4m by sampling along the way and by particle sieving test.
  • the design slope range of the drainage channel engineering in the downstream area is about 5-15°.
  • the clearance under the bridge of the downstream highway bridge is 10.7m, the bridge is a three-span passage channel, and the peak flow value that the bridge can pass under normal operation is 550m 3 /s.
  • step 2 the pile forest dam group is built in the shape of a zigzag in the upstream.
  • Auxiliary piles and boulders jointly form a multi-step energy dissipation section, which is 300m long, and the total stepped water drop height formed is 11m.
  • the foundation depth of each single pile buried in the soil body is 30m, and the ground height is 15m.
  • the stacking height of large boulders at each step is 10m, and the spacing between large stones is set to 1m to ensure the normal passage of water.
  • a pile foundation is set at the bottom every 3m, and the depth of the pile foundation is 5m.
  • An open-type sand retaining dam will be built downstream of the potential sill.
  • the proposed dam is 5m high, 10m wide at the bottom and 18m wide at the top.
  • the designed discharge hole has a width of 0.8m and a height of 1.2m.
  • Step 2 build a large diversion dam in the downstream area to separate the outburst flood cement and stone flow, and then discharge the outburst flood cement and stone flow to the main river through the drainage channel located at the lower part of the railway bridge.
  • the Q component / Total 1050m 3 / s, according to the construction field stop silt range formulate flow 650m 3 / s Q Up to dispensing, dispensing flow 400m 3 / s to Q Down.
  • the proposed diverter dam is designed with a lower width of 13m, an upper width of 25m, and a designed dam height of 6.5m. Therefore, the upstream width of the back-silting section is also regarded as 13m.
  • the diverter dam is designed with the following steps:
  • n is the roughness coefficient
  • B Down is the width of the drainage channel
  • h Down is the maximum water depth
  • the depth of the drainage channel is taken.
  • the debris flow in the lower drainage channel is transported by the lower discharge hole of the diverter dam, in order to ensure that the debris flow in the lower discharge hole is in a pore flow state. It is required that the h hole /h water depth is less than 0.65. According to the calculation results in 1, the height of the discharge hole is proposed to be 3.5m.
  • the debris flow in the upper drainage channel is provided by the overflow at the overflow weir at the top of the diversion dam.
  • the depth of the overflow port is planned to be 2.5m.
  • H weir 17.8m.
  • the flow coefficient m 0.48.
  • a watershed in the Qinghai-Tibet Plateau is located in Gongbujiangda County, with a watershed area of 150km 2 .
  • the length of the channel in the downstream area of the glacial lake is 20km, with an average vertical ratio of 5%.
  • the storage capacity of the ice lake is about 600 ⁇ 104m 3 when the lake is full of water.
  • the glacial lake collapsed in 1964 with a maximum peak flow of 2800m 3 /s.
  • the upstream area 0-3km downstream of the moraine dam is designated as the upstream area
  • 3-15km is designated as the mid-stream area
  • 15-20km is designated as the downstream area.
  • the average channel width in the upstream region is 12m.
  • the D90 of the particle size of the channel source in the midstream region was determined to be 0.5m by sampling along the route and by particle sieving test.
  • the design slope range of the drainage channel engineering in the downstream area is about 5-15°.
  • the design value of the maximum outburst peak flow is determined.
  • the clearance under the bridge under the investigation is 19.7m
  • the bridge is a double-span through channel
  • the design value of the maximum under-bridge flow of the bridge is 1500m 3 /s.
  • the foundation depth of each single pile buried in the soil body is 30m, and the ground height is 20m.
  • the height of the boulders stacked on the artificial steps is 15m, and the spacing between the large stones is 0.75m to ensure the normal passage of water.
  • n is the roughness coefficient
  • B Down is the width of the drainage channel
  • h Down is the maximum water depth
  • the depth of the drainage channel is taken.
  • the debris flow in the lower drainage channel is transported by the lower discharge hole of the diverter dam, in order to ensure that the debris flow in the lower discharge hole is in a pore flow state. It is required that the h hole /h water depth is less than 0.65. Combined with the calculation results in 1, the height of the discharge hole is proposed to be 4m.
  • the debris flow in the upper drainage channel is provided by the overflow at the overflow weir at the top of the diversion dam.
  • the proposed overflow weir depth is 1.8m.
  • H weir 15.8m.
  • the design width of the overflow weir is 14.9m
  • the present invention proposes a corresponding prevention method from the perspective of the river basin in combination with the proposed moraine dam reinforcement method, which can not only effectively It is of great practical significance to regulate the cascading magnification of large-scale glacial lake outburst floods and cement flow in the watershed, suppress the bottoming and blocking effects, and effectively protect major projects such as highways and railways in the downstream area and the safety of people's lives and properties. and engineering application value.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Barrages (AREA)
  • Revetment (AREA)
  • Sewage (AREA)

Abstract

一种冰湖(2)溃决型洪水泥石流(4)的防治方法,通过水石分离、水流分散达到快速调峰,控制溃决洪水泥石流(4)的规模,利用逐级消能控制物源起动的方法降低溃决洪水泥石流(4)规模的级联放大,在下游区域通过修建分流坝(9)进行分流调控将溃决洪水泥石流(4)分层、快速排导至主河(13),可在冰湖(2)溃决特大洪水泥石流(4)风险的区域,提前修建防治工程构建防治体系,对洪水泥石流(4)流量进行分离、消耗其能量、采用消能潜槛(7)和拦砂坝(8)等工程,逐级降低溃决洪水泥石流(4)的能量,拦挡对下游有巨大冲击能量的块石,控制沟道沟岸物源起动形成泥石流,同时也可以将形成的稀性泥石流或高容重低粘性的泥石流进行水石分离,将稀性泥石流转化为洪水。

Description

冰湖溃决型洪水泥石流防治方法 技术领域
本发明涉及防灾减灾、工程设计和应用领域,特别涉及一种冰湖溃决型洪水泥石流防治方法。
背景技术
随着全球气候变暖,世界各高海拔山区的冰湖溃决事件频繁发生,常损毁基础设施和冲毁村镇,造成严重的经济损失和人员伤亡。自20世纪30年代至21世纪初,全球有记录的冰湖溃决事件呈现明显的增加趋势,而我国累计发生严重的冰湖溃决洪水泥石流灾害33起。如:1954年康马县桑旺错冰湖溃决形成特大洪水和泥石流造成约400人死亡,2万多人受灾,并使位于中下游的江孜和日喀则等城镇遭受严重危害。西藏地区冰湖溃决事件呈增加趋势,冰湖溃决高发地带分布于海洋性冰川和大陆性冰川的过渡带,以及帕隆藏布流域的海洋性冰川带,对我国西藏南亚大通道和藏东的川藏铁路、川藏高速等重要交通干线建设和后期的运行维护构成严重威胁。
随着全球气候变暖和冰川退缩加剧,冰碛湖溃决灾害日趋增多,已成为对线路方案起控制作用的特殊环境地质灾害类型。根据冰碛坝下游沟道的固体物源分布情况,溃决后的洪水可能演变为泥石流。而冰湖溃决引发的洪水或泥石流灾害规模往往是一般洪水、泥石流的数十倍,造成的危害也更大。随着对重大工程建设和安全运行的标准逐步提升,对冰湖溃决洪水泥石流的防治需求越来越迫切。但现有技术中并未有从流域尺度出发,针对冰湖溃决洪水泥石流的防治提 出有效的处理方法。
发明内容
本发明的目的就是针对现有技术的不足,提出一种冰湖溃决型洪水泥石流防治方法,该方法能够通过水石分离、水流分散达到快速调峰、降低水流动能的目的,通过修建潜槛和拦砂坝控制沟道、沟岸物源起动形成泥石流,降低溃决洪水规模级联放大的风险,在下游区域通过坝体分流作用实现洪水泥石流在垂直方向上的分层顺畅排导,最大程度的减小溃决洪水泥石流灾害对下游地区的铁路、公路、水利工程、居民点和农田造成危害。
为解决上述问题,作为本发明的一个方面,提供了一种冰湖溃决型洪水泥石流防治方法,包括:
步骤1,根据沟道下游主河的输砂能力、需要保护的重大工程设施和村镇、主河沿岸区域的城镇等保护对象的防护标准,确定流域内防治工程体系规划设计标准;通过现场调查与勘查对冰碛坝后的沟道进行分区,依次分为上游区、中游区、下游区;进一步确定上游区沟道内分布的大块石直径、中游区域沟道内分布的物源颗粒粒径,确定D90;确定沟道物源分布及其厚度;依据铁路、公路桥梁周围环境条件确定排导工程的长度、宽度和坡度范围;确定不同溃决条件下的最大溃决洪峰流量Q Total
步骤2,在上游区修建桩林坝群,库区内分层摆放大块石,若沟道内大块石数量有限,则可放置预制人工结构体,每一行桩林中的桩与桩之间的间距为b,行与行之间的间距为B;所述堆放的大漂石或人工结构体的直径D满足D>b,依次向上游摆放,每间隔(50-100)D设置1-2排桩林以稳固上游的漂石和控制下游的漂石起动,同时桩林和摆放的块石形成阶梯跌水,以消耗洪水泥石流的能量;
步骤3,在中游区域修建消能潜槛,修建若干级潜槛后修建一座拦砂坝,防止沟道在溃决洪水的作用下快速下切,控制沟道沟岸的物源起动形成泥石流;
步骤4,在下游区域,通过修建一座控制型拦砂坝将溃决洪水泥石流进行分流,然后分别通过位于铁路、公路桥梁下部和顶部以上的排导槽将溃决洪水泥石流泄放至主河。
优选地,所述的桩林坝库区内的辅助桩及其上游堆放的漂石或人工结构体构成阶梯状跌水消耗溃决洪水的能量,所形成的阶梯状跌水的高度为(2-4)D,长度范围为(50-100)D。
优选地,所述的桩林中的单根桩埋入土体深度应满足大于(10-20)D、地表以上的高度满足大于(5-10)D;所述堆放的漂石或人工预制结构体堆叠高度为桩林地面以上高度的0.5-0.8倍,大块石之间间距为(0.25-0.5)D,以使水流通过。
优选地,所述的消能潜槛顶宽为d,地面以上高度为(2-5)d,地面以下埋入深度为地面以上高度的1.0-2.0倍,消能潜槛底部设置桩基,桩基的间隔宽度为(3-5)d,桩基的深度为桩基间距的1.5-3倍。
优选地,所述的拦砂坝为大开孔的拦砂坝,以起到拦粗排细的作用,泄流孔的宽度为拦砂坝上游沟道内分布的块石直径D90的1.2-2.0倍,高度为泄流孔宽度的1-2倍。
优选地,所述分流坝或控流坝的设计流量分配满足以下关系Q Total=Q Up+Q Down,上层排导槽下底面与铁路、公路桥梁顶面之间的高差需要满足以下关系:H 高差=ηH ,η为安全系数,一般取值为η=1.5-3.0;H 为通行的车辆最大高度;然后,依次根据分流坝或控流坝到桥梁的距离L 坝到桥、上层排导槽的设计坡度J Up确定坝体溢流口高程;
控制型拦砂坝上部和底部的流量分配确定方法如下:
(1)所述的下层排导槽的最大过流能力Q 排,Down,根据公路、铁路桥梁下部允许通过的排导槽宽度B Down和水深h Down拟定设计值,依据以下方法进行计算:
Figure PCTCN2020112008-appb-000001
(2)冰湖溃决产生的洪水泥石流规模等级属于大规模或特大规模,当溃决洪水泥石流到控制型拦砂坝位置时,泄流孔的泄流方式满足闸孔出流条件,因此,泄流孔的过流面积A Down按照下式确定:
Figure PCTCN2020112008-appb-000002
其中,μ为流量系数,b 为泄流孔宽度,g为重力加速度,H down为高于泄流孔底部以上的水深;
(3)下层排导槽设计流量Q 排,Down和泄流孔泄放的流量Q Down需要满足以下关系:Q 排,Down>kQ Down,其中k为安全系数。根据下层排导槽的宽度B Down和水深h Down拟定值,在满足排导槽宽度B Down和泄流孔的宽度b 之间关系的条件下,B Down>βb ,确定泄流孔的宽度b 和高度h ,其中,β为过流断面宽度比例系数;
(4)所述的上层排导槽的最大过流能力为Q 排,Up,根据地形条件确定上层排导槽的宽度B Up和深度h Up拟定值,其最大过流能力依据以下方法进行计算:
Figure PCTCN2020112008-appb-000003
(5)所述控制型拦砂坝的溢流堰宽度采用以下方法确定:
Figure PCTCN2020112008-appb-000004
其中,m为流量系数,b 为泄流孔宽度,g为重力加速度,H 为高于溢流口底部以上的水深;
(6)上层排导槽设计流量Q 排,Up和通过溢流堰的流量Q Up需要满足以下关系:Q 排,Up>kQ Up,其中k为安全系数。根据上层排导槽的宽度B Up和水深h Up拟定值,在满足排导槽宽度B Up和溢流堰的宽度b 之间关系的条件下,B Up>βb ,确定溢流堰的宽度b ,其中,β为过流断面宽度比例系数。
优选地,安全系数k根据冰湖溃决风险和下游保护对象的重要程度取值,一般情况取1.2-3.0;过流断面宽度比例系数β取1.5-3.0。
优选地,上下层排导槽的形式可选用钢筋混凝土修建的矩形槽、复式排导槽、非对称排导槽等形式,其过流能力要根据不同排导槽形式进行验算。
与现有技术相比,本发明的有益效果是:在涉及重要工程设施布局和人员分布的地区,且同时存在冰湖溃决特大洪水泥石流风险的区域,若遭遇突发性冰湖溃决特大洪水泥石流时,可利用提前修建的防治工程体系,对洪水泥石流流量进行分离、消耗其能量、采用消能潜槛和拦砂坝等工程,逐级降低溃决洪水泥石流的能量,拦挡对下游有巨大冲击能量的块石,控制沟道沟岸物源起动形成泥石流,同时也可以将形成的稀性泥石流或高容重低粘性的泥石流进行水石分离,将稀性泥石流转化为洪水,通过下游的控制型拦砂坝进行分流调控、利用排导工程将溃决洪水泥石流顺畅的排导至主河,从而最大程度地减小对下游地区铁路、公路、桥梁、隧道等的威胁和危害。
附图说明
图1示意性地示出了本发明的示意图。
图中附图标记:1、冰川;2、冰湖;3、冰碛坝;4、溃决洪水泥石流;5、漂石或大块石;6、桩林;7、消能固床潜槛;8、拦砂坝;9、分流坝或控流坝;10、上层排导槽;11、下层排导槽;12、桥梁;13、下游主河。
具体实施方式
以下对本发明的实施例进行详细说明,但是本发明可以由权利要求限定和覆盖的多种不同方式实施。
本发明中的冰湖溃决型洪水泥石流防治方法,通过在水石分离、水流分散达到快速调峰,控制溃决洪水泥石流的规模,利用逐级消能控制物源起动的方法降低溃决洪水泥石流规模的级联放大,在下游区域通过修建控制型拦砂坝进行分流调控将溃决洪水泥石流分层、快速排导至主河。与现有技术相比,本方法可在冰湖溃决特大洪水泥石流风险的区域,提前修建的防治工程构建防治体系,对洪水泥石流流量进行分离、消耗其能量、采用消能潜槛和拦砂坝等工程,逐级降低溃决洪水泥石流的能量,拦挡对下游有巨大冲击能量的块石,控制沟道沟岸物源起动形成泥石流,同时也可以将形成的稀性泥石流或高容重低粘性的泥石流进行水石分离,将稀性泥石流转化为洪水,通过下游的控制型拦砂坝进行分流调控将溃决洪水泥石流顺畅的排导至主河,最大程度的减小溃决洪水对下游地区的铁路、公路、水利工程、居民点和农田造成危害。
本发明的总体思路为通过分流降能控制溃决洪水泥石流的规模,利用逐级消能控制物源起动的方法降低溃决洪水泥石流规模的级联放大,合理分配排导流量达到保护重要基础设施和人民生命财产的目的。
实施例一
青藏高原某流域属帕隆藏布上游左侧的一条支沟,其流域面积为118km 2,,在位于海拔3800m的位置有一冰湖,冰湖下游区域的沟道长度为10km,平均纵比降为5%。通过现场调查在冰湖蓄满水的情况下库容约为300×104m 3。该冰湖曾于1988年发生溃决,最大洪峰流量达1150m 3/s。为最大程度地减小对冰湖下游地区铁路、公路、水利设施、居民点和农田等的威胁和危害,采用本发明的冰湖溃决型泥石流防治方法,具体实施步骤如下:
步骤1,根据现场调查并结合实际地形条件,将冰碛坝下游处的0~2km定为上游区,2-7km定为中游区,7-10km定为下游区。其中上游区处平均沟道宽度为15m。沿程采样并通过颗粒筛分试验确定中游区域内沟道物源粒径的D90为0.4m。根据遥感影像确定下游区域的排导槽工程设计坡度范围约为5~15°。根据冰湖深度及面积,以及下游保护对象的重要程度,确定冰碛坝溃口位置最大溃决洪峰流量的设计值为Q Total=1300m 3/s,溃决洪水泥石流到达下游区域分流坝位置的最大峰值流量为Q 分/Total=1050m 3/s。下游公路桥梁桥下净空为10.7m,桥梁为三跨通过沟道,桥梁正常运营状态下可通过的洪峰流量值为550m 3/s。
步骤2,在上游以品字形修建桩林坝群,每一行桩林中桩之间的间距为b=1.0m,行与行之间的间距为2m。在库区内人工分层摆放直径D=2-3m的大漂石,并在漂石布置段每隔100m设置两行桩林以稳固漂石。辅助桩与漂石共同组建出多阶梯消能段,该段长300m,所形成的总阶梯状跌水高度为11m。桩林施工时各单桩埋入土体内的基础深度为30m,地面高度为15m。每段阶梯处大漂石堆叠高度为10m,大块石之间间距设置为1m,保证水流正常通过。
步骤1,在中游区修建10道消能潜槛,顶宽d=1m,地面以上高度为1.5m, 地面以下埋入深度为2m。为保证消能潜槛安全,在底部每隔3m设置一桩基,桩基深度为5m。在潜槛的下游修建一座开口型拦砂坝,根据地形条件,拟设坝高5m,坝底宽10m,顶宽18m。设置两排泄流孔,每排5个,同一排中各泄流孔间隔1.2m,排与排之间间隔2m。结合(一)中勘察得到的D90粒径,设计泄流孔宽度为0.8m,高度为1.2m。
步骤2,在下游地区修建一座大型分流坝,用于将溃决洪水泥石流进行分离,然后通过位于铁路桥梁下部的排导槽将溃决洪水泥石流排放至主河。分流坝的流量分配需满足Q Total=Q Up+Q Down。根据步骤1中勘察结果,在Q 分/Total=1050m 3/s时,根据停淤场建设范围,拟定为Q Up分配650m 3/s的流量,为Q Down分配400m 3/s的流量。根据沟道形态,拟定分流坝设计下宽为13m,上宽25m,设计坝高6.5m。故回淤段上游宽度也视作13m。根据此分级标准分流坝采用如下步骤设计:
1.按分流坝前最大流量值Q 分/Total在分流坝前出现时计算分流坝前泥深及流速。由公式
Figure PCTCN2020112008-appb-000005
反算得到当出现最大洪峰流量Q 分/Total时分流坝前的水深,糙率n=0.04,J=0.08解得h 坝前=5.5m,坝前流速为
Figure PCTCN2020112008-appb-000006
2.采用下式计算下层排导槽的最大过流能力Q 排,Down
Figure PCTCN2020112008-appb-000007
其中n为糙率系数,B Down为排导槽宽度,h Down为水深最大值,取排导槽深度。
根据步骤1中勘察数据及拟设的排导槽参数,取糙率n=0.025,拟定排导槽宽度B Down=17m,h Down=3m,排导槽修建处水力坡度J=0.12,得Q 排,Down=1201m3/s,取安全系数k=1.2,则该拟定方案满足Q 排,Down>1.2Q Down,排导槽设计合理。
3.下层排导槽的泥石流由分流坝的下部泄流孔输送,为保证下部泄流孔的泥石流为孔流状态。需h /h 水深<0.65,结合1中计算结果,拟设泄流孔高度3.5m。
4.由1中勘察数据结合曼宁公式得到分流坝处出现Q 分/Total=1050m 3/s的洪峰流量时,分流坝坝前的流速为14.7m/s。则
Figure PCTCN2020112008-appb-000008
其中H0为泄流孔前总水头,
Figure PCTCN2020112008-appb-000009
ε为垂向收缩系数,查表取值为0.67。
Figure PCTCN2020112008-appb-000010
为流速系数,查表取值为1.0。μ=0.574。可得分流坝处泄流孔面积应为
Figure PCTCN2020112008-appb-000011
由于溢流口高度为6m,故宽度b孔应为11.0m,取11m。由1知下层泄流孔宽度B Down=17m,取过流断面宽度比例系数β为1.5,该设计满足B Down>βb 。故该泄流孔位置及形状参数设计合理。
5.采用下式计算上层排导槽的最大过流能力Q 排,Up
Figure PCTCN2020112008-appb-000012
根据(一)中勘察数据及拟设的排导槽参数,取糙率n=0.025,上层排导槽 修建处水力坡度J=0.11,拟定上层排导槽宽度B Up=12m。深度h Up=4m。得Q 排,Up=1141m 3/s,取安全系数k=1.2,则该拟定方案满足Q 排,Up>1.2Q Up,该上层排导槽设计合理。
6.上层排导槽中的泥石流由分流坝顶处的溢流堰处溢流提供。拟设溢流口深度为2.5m。则以溢流口底部为零势能面其上部部分的总水头为H =17.8m。根据
Figure PCTCN2020112008-appb-000013
计算溢流堰高度,流量系数m=0.48。计算得b ==4.03m。由5知上层排导槽宽度B Up=12m,取过流断面宽度比例系数β为1.5,该设计满足B Up>βb 。故该溢流口位置及形状参数设计合理。
实施例二
青藏高原某流域位于工布江达县境内,其流域面积为150km 2,在位于海拔5000m的位置有一冰湖,冰湖下游区域的沟道长度为20km,平均纵比降为5%。通过现场调查在冰湖蓄满水的情况下库容约为600×104m 3。该冰湖曾于1964年发生溃决,最大洪峰流量达2800m 3/s。为最大程度地减小对冰湖下游地区铁路、公路、水利设施、居民点和农田等的威胁和危害,采用本发明的冰湖溃决型泥石流防治方法,具体实施步骤如下:
(一)根据地形条件,将冰碛坝下游处的0-3km定为上游区,3-15km定为中游区,15-20km定为下游区。其中上游区处平均沟道宽度为12m。沿程采样并通过颗粒筛分试验确定中游区域内沟道物源粒径的D90为0.5m。根据遥感影 像确定下游区域的排导槽工程设计坡度范围约为5-15°。根据冰湖深度及面积,以及下游保护对象的重要程度,确定最大溃决洪峰流量的设计值为。确定冰碛坝溃口位置的最大溃决洪峰流量为Qtotal=3500m 3/s,溃决洪水泥石流到达下游区域分流坝位置的峰值流量为Q分/total=2800m 3/s。勘察下游桥梁桥下净空为19.7m,桥梁为双跨通过沟道,桥梁的设计最大桥下流量设计值为1500m 3/s。
(二)在上游以品字形修建桩林坝群并在库区内人工分层摆放直径D=1.5-3m的大漂石,每一行桩林中桩之间的间距为b=0.75m,每隔100m设置一排桩林以稳固上游的漂石,并控制下游漂石的启动。在桩林坝施工库区内设置辅助桩与漂石共同组建出多阶梯消能段,实现对溃决洪水的消能。组合段长300m,所形成的总阶梯状跌水高度为12m。桩林施工时各单桩埋入土体内的基础深度为30m,地面高度为20m。人工阶梯段堆放的漂石高度为15m,布置的大块石之间间距为0.75m,保证水流正常通过。
(三)在中游区修建10道消能潜槛,顶宽d=1m,地面以上高度为1.5m,地面以下埋入深度为2m。为保证消能潜槛安全,在底部每隔3m设置一桩基,桩基深度为5m。在潜槛的下游修建一座开口型拦砂坝,根据地形条件,设计坝高5m,底宽12m,顶宽15m,设置两排泄流孔每排4个,其中单排泄流孔之间间距为1m,排与排之间间距为2m。结合(一)中勘察得到的D90粒径,设计泄流孔宽度为1m,高度为1.5m。
(四)在下游地区修建一座大型分流坝,用于将溃决洪水泥石流进行分离,然后通过位于铁路桥梁下部的排导槽将溃决洪水泥石流排放至主河。分流坝的流量分配需满足Q 分/Total=Q Up+Q Down。根据(一)中勘察结果,在Q 分/Total=2800m 3/s时,根据停淤场建设范围,拟定为Q Up分配 2000m 3/s的流量,为Q Down分配800m 3/s的流量。拟定分流坝设计下宽为25m,上宽为35m,设计坝高7.5m。故回淤段上游宽度也可视作25m。根据此分级标准分流坝采用如下步骤设计:
1.按最大流量值Qtotal在分流坝前出现时计算分流坝前泥深及流速。由公式
Figure PCTCN2020112008-appb-000014
反算得到当出现最大洪峰流量Q分/total时分流坝前的水深,根据(一)中勘察结果知糙率n=0.04,J=0.07。解得h 坝前=6.5m,坝前流速为
Figure PCTCN2020112008-appb-000015
2.采用下式计算下层排导槽的最大过流能力Q 排,Down
Figure PCTCN2020112008-appb-000016
其中n为糙率系数,B Down为排导槽宽度,h Down为水深最大值,取排导槽深度。
根据(一)中勘察数据及拟设的排导槽参数,取糙率n=0.028,拟定排导槽宽度B Down=31m,h Down=2.5m,排导槽修建处水力坡度J=0.11,得Q 排,Down=1530m 3/s,取安全系数k=1.5,则该拟定方案满足Q 排,Down>1.5Q Down,排导槽设计合理。
3.下层排导槽的泥石流由分流坝的下部泄流孔输送,为保证下部泄流孔的泥石流为孔流状态。需h /h 水深<0.65,结合1中计算结果,拟设泄流孔高度4m。
4.由1中勘察数据结合曼宁公式得到分流坝处出现Q分/total=2800m 3/s的洪峰流量时,分流坝坝前的流速为17.3m/s。则
Figure PCTCN2020112008-appb-000017
其中H0为泄流孔前总水头,
Figure PCTCN2020112008-appb-000018
ε为垂向收缩系数,查表取值为0.67。
Figure PCTCN2020112008-appb-000019
为流速系数,查表取值为1.0。计算得μ=0.59。可得分流坝处泄流孔面积应为
Figure PCTCN2020112008-appb-000020
由于溢流口高度为4m,故宽度b孔应为16.34m,取16.4m。由1知下层泄流孔宽度B Down=31m,取过流断面宽度比例系数β为1.5,该设计满足B Down>βb 。故该泄流孔位置及形状参数设计合理。
5.采用下式计算上层排导槽的最大过流能力Q 排,Up
Figure PCTCN2020112008-appb-000021
根据(一)中勘察数据及拟设的排导槽参数,取糙率n=0.028,排导槽修建处水力坡度J=0.12,拟定上层排导槽宽度B Up=25m。深度h Up=5m。得Q 排,Up=3613m 3/s,取安全系数k=1.5,则该拟定方案满足Q 排,Up>1.5Q Up,该上层排导槽设计合理。
6.上层排导槽中的泥石流由分流坝顶处的溢流堰处溢流提供。拟设溢流堰深度为1.8m。则以溢流口底部为零势能面其上部部分的总水头为H =15.8m。 根据
Figure PCTCN2020112008-appb-000022
计算溢流堰高度,流量系数m=0.48。计算得
Figure PCTCN2020112008-appb-000023
故溢流堰设计宽度取14.9m,深度取1.8m。由5知上层排导槽的宽度B Up=25m,取过流断面宽度比例系数β为1.5,该设计满足B Up>βb 。故该溢流堰位置及形状参数设计合理。
本发明针对全球气候变暖条件下的冰碛坝溃决风险持续增大,潜在威胁持续增加等问题,结合已提出冰碛坝加固方法,从流域角度出发,提出相应的防治方法,不仅能够有效的调控流域内大规模冰湖溃决洪水泥石流的级联溃决放大过程,抑制揭底和堵溃效应,还能够有效的保护下游区域的公路、铁路等重大工程和人民的生命财产安全,具有显著的现实意义和工程应用价值。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种冰湖溃决型洪水泥石流防治方法,其特征在于,包括:
    步骤1,根据沟道下游主河的输砂能力、需要保护的重大工程设施和村镇、主河沿岸区域的城镇等保护对象的防护标准,确定流域内防治工程体系规划设计标准;通过现场调查与勘查对冰碛坝后的沟道进行分区,依次分为上游区、中游区、下游区;进一步确定上游区沟道内分布的大块石直径、中游区域沟道内分布的物源颗粒粒径,确定D90;确定沟道物源分布及其厚度;依据铁路、公路桥梁周围环境条件确定排导工程的长度、宽度和坡度范围;确定不同溃决条件下的最大溃决洪峰流量Q Total
    步骤2,在上游区修建桩林坝群,库区内分层摆放大块石,若沟道内大块石数量有限,则可放置预制人工结构体,每一行桩林中的桩与桩之间的间距为b,行与行之间的间距为B;所述堆放的大漂石或人工结构体的直径D满足D>b,依次向上游摆放,每间隔(50-100)D设置1-2排桩林以稳固上游的漂石和控制下游的漂石起动,同时桩林和摆放的块石形成阶梯跌水,以消耗洪水泥石流的能量;
    步骤3,在中游区域修建消能潜槛,修建若干级潜槛后修建一座拦砂坝,防止沟道在溃决洪水的作用下快速下切,控制沟道沟岸的物源起动形成泥石流;
    步骤4,在下游区域,通过修建一座控制型拦砂坝将溃决洪水泥石流进行分流,然后分别通过位于铁路、公路桥梁下部和顶部以上的排导槽将溃决洪水泥石流泄放至主河。
  2. 根据权利要求1所述的冰湖溃决型洪水泥石流防治方法,其特征在于,所述的桩林坝库区内的辅助桩及其上游堆放的漂石或人工结构体构成阶梯状跌水消耗溃决洪水的能量,所形成的阶梯状跌水的高度为(2-4)D,长 度范围为(50-100)D。
  3. 根据权利要求1所述的冰湖溃决型洪水泥石流防治方法,其特征在于,所述的桩林中的单根桩埋入土体深度应满足大于(10-20)D、地表以上的高度满足大于(5-10)D;所述堆放的漂石或人工预制结构体堆叠高度为桩林地面以上高度的0.5-0.8倍,大块石之间间距为(0.25-0.5)D,以使水流通过。
  4. 根据权利要求1所述的冰湖溃决型洪水泥石流防治方法,其特征在于,所述的消能潜槛顶宽为d,地面以上高度为(2-5)d,地面以下埋入深度为地面以上高度的1.0-2.0倍,消能潜槛底部设置桩基,桩基的间隔宽度为(3-5)d,桩基的深度为桩基间距的1.5-3倍。
  5. 根据权利要求1所述的冰湖溃决型洪水泥石流防治方法,其特征在于,所述的拦砂坝为的开孔的拦砂坝,以起到拦粗排细的作用,泄流孔的宽度为拦砂坝上游沟道内分布的块石直径D90的1.2-2.0倍,高度为泄流孔宽度的1-2倍。
  6. 根据权利要求1所述的冰湖溃决型洪水泥石流防治方法,其特征在于,所述分流坝或控流坝的设计流量分配满足以下关系Q Total=Q Up+Q Down,上层排导槽下底面与铁路、公路桥梁顶面之间的高差需要满足以下关系:H 高差=ηH ,η为安全系数,一般取值为η=1.5-3.0;H 为通行的车辆最大高度;然后,依次根据分流坝或控流坝到桥梁的距离L 坝到桥、上层排导槽的设计坡度J Up确定坝体溢流口高程;
    控制型拦砂坝上部和底部的流量分配确定方法如下:
    (1)所述的下层排导槽的最大过流能力Q 排,Down,根据公路、铁路桥梁下部允许通过的排导槽宽度B Down和水深h Down拟定设计值,依据以 下方法进行计算:
    Figure PCTCN2020112008-appb-100001
    (2)冰湖溃决产生的洪水泥石流规模等级属于大规模或特大规模,当溃决洪水泥石流到控制型拦砂坝位置时,泄流孔的泄流方式满足闸孔出流条件,因此,泄流孔的过流面积A Down按照下式确定:
    Figure PCTCN2020112008-appb-100002
    其中,μ为流量系数,b 为泄流孔宽度,g为重力加速度,H down为高于泄流孔底部以上的水深;
    (3)下层排导槽设计流量Q 排,Down和泄流孔泄放的流量Q Down需要满足以下关系:Q 排,Down>kQ Down,其中k为安全系数。根据下层排导槽的宽度B Down和水深h Down拟定值,在满足排导槽宽度B Down和泄流孔的宽度b 之间关系的条件下,B Down>βb 孔,确定泄流孔的宽度b 和高度h ,其中,β为过流断面宽度比例系数;
    (4)所述的上层排导槽的最大过流能力为Q 排,Up,根据地形条件确定上层排导槽的宽度B Up和深度h Up拟定值,其最大过流能力依据以下方法进行计算:
    Figure PCTCN2020112008-appb-100003
    (5)所述控制型拦砂坝的溢流堰宽度采用以下方法确定:
    Figure PCTCN2020112008-appb-100004
    其中,m为流量系数,b 为泄流孔宽度,g为重力加速度,H 为高于溢流口底部以上的水深;
    (6)上层排导槽设计流量Q 排,Up和通过溢流堰的流量Q Up需要满足以下关系:Q 排,Up>kQ Up,其中k为安全系数。根据上层排导槽的宽度B Up和水深h Up拟定值,在满足排导槽宽度B Up和溢流堰的宽度b 之间关系的条件下,B Up>βb ,确定溢流堰的宽度b ,其中,β为过流断面宽度比例系数。
  7. 根据权利要求1所述的冰湖溃决型洪水泥石流防治方法,其特征在于,安全系数k根据冰湖溃决风险和下游保护对象的重要程度取值,一般情况取1.2-3.0;过流断面宽度比例系数β取1.5-3.0。
  8. 根据权利要求1所述的冰湖溃决型洪水泥石流防治方法,其特征在于,上下层排导槽的形式可选用钢筋混凝土修建的矩形槽、复式排导槽、非对称排导槽等形式,其过流能力要根据不同排导槽形式进行验算。
PCT/CN2020/112008 2020-07-22 2020-08-28 冰湖溃决型洪水泥石流防治方法 WO2022016661A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/783,756 US12024842B2 (en) 2020-07-22 2020-08-28 Prevention method for floods and debris flows caused by glacial lake outbursts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010714145.3 2020-07-22
CN202010714145.3A CN111809556B (zh) 2020-07-22 2020-07-22 冰湖溃决型洪水泥石流防治方法

Publications (1)

Publication Number Publication Date
WO2022016661A1 true WO2022016661A1 (zh) 2022-01-27

Family

ID=72862237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112008 WO2022016661A1 (zh) 2020-07-22 2020-08-28 冰湖溃决型洪水泥石流防治方法

Country Status (2)

Country Link
CN (1) CN111809556B (zh)
WO (1) WO2022016661A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112726494A (zh) * 2020-12-28 2021-04-30 中水北方勘测设计研究有限责任公司 一种沟道治理方法
CN115953705B (zh) * 2023-03-09 2023-05-16 昆明理工大学 一种冰川冰湖溃决型泥石流判识方法及系统
CN116341237B (zh) * 2023-03-17 2023-12-19 长江水利委员会水文局长江中游水文水资源勘测局 一种涉水建筑物阻水分析方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207431A (ja) * 2000-01-21 2001-08-03 Shigeru Ito 土石流防災堰
CN103306242A (zh) * 2013-07-02 2013-09-18 中国科学院、水利部成都山地灾害与环境研究所 一种调节洪峰流量的泥石流控流坝及其设计方法和应用
CN204370384U (zh) * 2014-12-25 2015-06-03 清远市水利水电建筑工程有限公司 一种泥石流分级消能排导系统
CN106250635A (zh) * 2016-08-02 2016-12-21 中国科学院水利部成都山地灾害与环境研究所 一种冰湖溃决型泥石流的防治方法及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3000201B2 (ja) * 1996-02-23 2000-01-17 日本ゼニスパイプ株式会社 砂防ダム及び砂防方法
CN205591175U (zh) * 2016-04-21 2016-09-21 中国科学院水利部成都山地灾害与环境研究所 一种泥石流拦砂坝
CN105862679A (zh) * 2016-05-19 2016-08-17 中国电建集团成都勘测设计研究院有限公司 用于泥石流防护的桩林坝

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207431A (ja) * 2000-01-21 2001-08-03 Shigeru Ito 土石流防災堰
CN103306242A (zh) * 2013-07-02 2013-09-18 中国科学院、水利部成都山地灾害与环境研究所 一种调节洪峰流量的泥石流控流坝及其设计方法和应用
CN204370384U (zh) * 2014-12-25 2015-06-03 清远市水利水电建筑工程有限公司 一种泥石流分级消能排导系统
CN106250635A (zh) * 2016-08-02 2016-12-21 中国科学院水利部成都山地灾害与环境研究所 一种冰湖溃决型泥石流的防治方法及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Hydraulics", 28 February 2014, CN, ISBN: 978-7-5623-4163-5, article YIN, XIAOLING : "Chapter 6. Open Channel Constant Flow [Passage]", pages: 239 - 243, XP009533834 *
YAN FEI: "Discussion on Planning and Practice of Mountain Towns Based on Comprehensive Disaster Management after Earthquake", SICHUAN ARCHITECTURE, vol. 33, no. 6, 28 December 2013 (2013-12-28), XP055888237, ISSN: 1007-8983 *
YANG, DONGFANG ET AL.: "(Prediction Model of Railway Debris Flow)", THE APPLICATION AND RESEARCH OF MATHEMATICAL MODEL IN ECOLOGY, 31 August 2015 (2015-08-31), pages 197 - 200, XP009533660, ISBN: 978-7-5027-8947-3 *

Also Published As

Publication number Publication date
CN111809556B (zh) 2021-07-13
CN111809556A (zh) 2020-10-23
US20230002991A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
WO2022016661A1 (zh) 冰湖溃决型洪水泥石流防治方法
CN103088791B (zh) 一种消能式排导拦挡结合的泥石流拦砂坝
CN105256768B (zh) 箱体消能式泥石流排导槽的箱体消能段设计方法
CN111608139B (zh) 超大规模洪水泥石流防治方法
CN106638501B (zh) 适用于弯道陡槽溢洪道的水沙分离建筑物布置形式
CN110889151A (zh) 一种自溃堤坝分洪道的设计方法
CN210562053U (zh) 堰塞湖应急处置的控制泄流结构
CN106013007B (zh) 适用于直线型陡槽溢洪道的水沙分离建筑物
Li Mountain hazards in China
US12024842B2 (en) Prevention method for floods and debris flows caused by glacial lake outbursts
CN205591175U (zh) 一种泥石流拦砂坝
CN209798515U (zh) 一种桥梁用泥石流防护结构
KR101262093B1 (ko) 정부도로 및 중개수로를 이용한 월류 파괴 방지형 필댐
CN105544455B (zh) 堤坝超标准洪水分洪管带
KR101262094B1 (ko) 부분 피복사면 및 사면수로를 이용한 월류 파괴 방지형 필댐
TWI766820B (zh) 野溪的土石流整治構造
CN114592485B (zh) 适于黄土高原水土保持的拼装板式坝
Vetrova et al. Ecological and engineering solutions for the reconstruction of anti-mudflow hydraulic structures of the Crimea
Zavadskii et al. The evolution of the Kolpashevskaya meaner of the Ob’and ongoing hazardous manifestations of channel processes
CN215367057U (zh) 一种岸边挑流消能的尾水排放口
CN113250021B (zh) 一种沙漠腹地公路输沙导流防沙体系
Matsiy et al. Antimudflow protection with rigid thorough structures
Zhang et al. Discussion on the Methods to Make the Military Highway Unimpeded in Plateau
Salem et al. Analysis of a new railway model facing floods
Malakhanov Flood-Control for Embankment Dams Using a Filtering Spillway

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945820

Country of ref document: EP

Kind code of ref document: A1