WO2022016646A1 - 移相器及其制作方法、天线 - Google Patents

移相器及其制作方法、天线 Download PDF

Info

Publication number
WO2022016646A1
WO2022016646A1 PCT/CN2020/110756 CN2020110756W WO2022016646A1 WO 2022016646 A1 WO2022016646 A1 WO 2022016646A1 CN 2020110756 W CN2020110756 W CN 2020110756W WO 2022016646 A1 WO2022016646 A1 WO 2022016646A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
hollow portion
detection
main electrode
Prior art date
Application number
PCT/CN2020/110756
Other languages
English (en)
French (fr)
Inventor
席克瑞
彭旭辉
秦锋
崔婷婷
段勤肄
毛琼琴
Original Assignee
上海天马微电子有限公司
成都天马微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海天马微电子有限公司, 成都天马微电子有限公司 filed Critical 上海天马微电子有限公司
Priority to US17/425,572 priority Critical patent/US11791553B2/en
Publication of WO2022016646A1 publication Critical patent/WO2022016646A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/181Phase-shifters using ferroelectric devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • the invention relates to the technical field of liquid crystal antennas, and in particular, to a phase shifter, a manufacturing method thereof, and an antenna.
  • liquid crystal phase shifters control the rotation of liquid crystals to change the dielectric constant of liquid crystals to achieve The radio frequency signal transmitted in the liquid crystal phase shifter is phase shifted.
  • the ground electrode in the liquid crystal phase shifter covers a large area. Therefore, in the production process of the liquid crystal phase shifter, after the two substrates are assembled to form a liquid crystal cell, no light can pass through the liquid crystal cell, so it is impossible to The cell thickness test and optical judgment of the liquid crystal phase shifter may lead to the application of the liquid crystal phase shifter with reduced function or failure in the antenna, which will not only lead to the waste of the cost of the subsequent module process, but also seriously affect the radiation of the antenna. performance.
  • embodiments of the present invention provide a phase shifter, a manufacturing method thereof, and an antenna, which can realize cell thickness testing and optical judgment of the phase shifter, and improve yield.
  • an embodiment of the present invention provides a phase shifter, including:
  • the ground electrode is arranged on the side of the first substrate facing the second substrate;
  • the transmission electrode is arranged on the side of the second substrate facing the first substrate, and in a direction perpendicular to the plane where the second substrate is located, the transmission electrode overlaps the ground electrode;
  • liquid crystal the liquid crystal is filled between the first substrate and the second substrate;
  • the ground electrode has a detection hollow portion, and in a direction perpendicular to the plane of the second substrate, at least a part of the detection hollow portion does not overlap with the transmission electrode.
  • an embodiment of the present invention provides a method for fabricating a phase shifter, including:
  • a first substrate is provided, and a ground electrode with a detection hollow portion is formed on the first substrate;
  • the first substrate and the second substrate are cell-to-cell and filled with liquid crystal, wherein, in the direction perpendicular to the plane of the second substrate, the ground electrode overlaps the transmission electrode, and the detection The hollow portion does not overlap the transmission electrode.
  • an embodiment of the present invention provides an antenna, including:
  • the feeding line is arranged on the side of the first substrate facing away from the second substrate, and is used for receiving radio frequency signals;
  • a radiator the radiator is arranged on the side of the first substrate facing away from the second substrate, and is used to radiate the phase-shifted radio frequency signal.
  • the detection hollow portion by arranging the detection hollow portion on the ground electrode, and making at least part of the detection hollow portion not overlap with the transmission electrode, a light-transmitting area can be formed in the liquid crystal cell of the phase shifter, Then, before the phase shifter is put into use, the box thickness test and optical judgment can be performed on the phase shifter, so as to detect whether the phase shifter has function degradation or function failure, so as to avoid the function degradation or function failure.
  • the phase shifter is applied in the antenna, which not only avoids the cost waste of the subsequent antenna module manufacturing process, but also avoids the impact on the radiation performance of the antenna.
  • FIG. 1 is a schematic structural diagram of a phase shifter provided by an embodiment of the present invention.
  • Fig. 2 is the sectional view of Fig. 1 along A1-A2 direction;
  • FIG. 3 is a cross-sectional view of FIG. 1 along the B1-B2 direction;
  • phase shifter 4 is another schematic structural diagram of a phase shifter provided by an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of FIG. 4 along the C1-C2 direction;
  • FIG. 6 is another schematic structural diagram of a phase shifter provided by an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of FIG. 6 along the D1-D2 direction;
  • FIG. 8 is another schematic structural diagram of a phase shifter provided by an embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of FIG. 8 along the direction E1-E2;
  • FIG. 10 is another schematic structural diagram of a phase shifter provided by an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of still another phase shifter provided by an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a transparent electrode provided by an embodiment of the present invention.
  • FIG. 13 is another schematic structural diagram of the transparent electrode provided by the embodiment of the present invention.
  • FIG. 14 is another schematic structural diagram of the transparent electrode provided by the embodiment of the present invention.
  • 15 is another schematic structural diagram of a transparent electrode provided by an embodiment of the present invention.
  • FIG. 16 is another schematic structural diagram of the transparent electrode provided by the embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of a protective layer provided by an embodiment of the present invention.
  • FIG. 19 is another flowchart of the manufacturing method provided by the embodiment of the present invention.
  • FIG. 20 is a schematic structural diagram of an antenna provided by an embodiment of the present invention.
  • FIG. 21 is a cross-sectional view of FIG. 20 along the direction F1-F2.
  • first and second may be used to describe the substrates, electrodes, and toothed electrode bars in the embodiments of the present invention
  • these substrates, electrodes, and toothed electrode bars should not be limited to these terms, and these terms are only used to describe the substrates, electrodes, and toothed electrode bars.
  • electrodes, and toothed electrode strips are distinguished from each other.
  • the first substrate may also be referred to as the second substrate
  • the second substrate may also be referred to as the first substrate without departing from the scope of the embodiments of the present invention.
  • FIGS. 1 and 2 An embodiment of the present invention provides a phase shifter, as shown in FIGS. 1 and 2 , where FIG. 1 is a schematic structural diagram of the phase shifter provided by an embodiment of the present invention, and FIG. 2 is a cross-sectional view of FIG. 1 along the direction A1-A2 , the phase shifter includes: a first substrate 1 and a second substrate 2 arranged oppositely; a ground electrode 3, the ground electrode 3 is arranged on the side of the first substrate 1 facing the second substrate 2; a transmission electrode 4, the transmission electrode 4 is arranged On the side of the second substrate 2 facing the first substrate 1, in the direction perpendicular to the plane of the second substrate 2, the transmission electrode 4 overlaps the ground electrode 3; Between the two substrates 2 ; wherein, the ground electrode 3 has a detection hollow portion 6 , and in the direction perpendicular to the plane of the second substrate 2 , at least part of the detection hollow portion 6 does not overlap with the transmission electrode 4 .
  • the detection light can be provided to the phase shifter, and the detection light emitted through the detection hollow part 6 can be used to detect the phase shifter.
  • Carry out cell thickness test and optical judgment such as judging the alignment condition and filling condition of liquid crystal 5 in the phase shifter.
  • the detection light is provided to the phase shifter along the direction of the second substrate 2 toward the first substrate 1 , and the cell thickness measurement equipment is used to measure the light emitted through the plurality of detection hollow parts 6 .
  • the light is detected to judge the cell thickness; when judging the alignment of the liquid crystal 5 of the phase shifter, a polarizer is placed on the side of the first substrate 1 facing away from the second substrate 2, and a polarizer is placed on the side of the second substrate 2 facing away from the first substrate 2.
  • a polarizer is placed on one side of the substrate 1, and along the direction of the second substrate 2 toward the first substrate 1, the detection light is provided to the phase shifter.
  • the first substrate 1 and the second substrate 2 can be transparent substrates, such as glass substrates, or the first substrate 1 and the second substrate 2 can also be opaque Optical substrates, such as high-frequency substrates, only need to set openings at positions corresponding to the detection hollows 6 in the first substrate 1 and the second substrate 2 to ensure that the detection light can be injected through the openings of the first substrate 1 , and is emitted through the opening of the second substrate 2 .
  • the liquid crystal of the phase shifter can be A light-transmitting area is formed in the box, then, before the phase shifter is put into use, the box thickness test and optical judgment can be performed on the phase shifter, so as to detect whether the phase shifter has a function decline or function failure, thereby avoiding the situation.
  • Applying the phase shifter with reduced function or failure in the antenna not only avoids the cost waste of the subsequent antenna module manufacturing process, but also avoids the influence on the radiation angle of the beam radiated by the antenna, and optimizes the radiation performance of the antenna.
  • the ground electrode 3 and the transmission electrode 4 can be made of opaque metal materials, such as copper, gold, silver, aluminum It is formed of materials with better electrical conductivity, which increases the selectable range of materials for the ground electrode 3 and the transmission electrode 4 .
  • Fig. 3 is a cross-sectional view of Fig. 1 along the direction B1-B2
  • the ground electrode 3 is further provided with a first coupling hollow portion 7 and The second coupling hollow part 8
  • the transmission electrode 4 includes a main electrode 9, a first electrode 10 and a second electrode 11, the main electrode 9 communicates with the first electrode 10 and the second electrode 11 respectively, and the first electrode 10 and the second electrode 11 are located on opposite sides of the main electrode 9 ; in the direction perpendicular to the plane of the first substrate 1 , the first electrode 10 overlaps the first coupling hollow portion 7 , and the second electrode 11 overlaps the second coupling hollow portion 8 .
  • a feeder 200 and a radiator 300 are provided in the antenna, and the feeder 200 is used to receive radio frequency signals.
  • the phase shifter shifts the phase of the radio frequency signal
  • the radio frequency signal transmitted on the feed line 200 is coupled to the first electrode 10 of the transmission electrode 4 through the first coupling hollow part 7 of the ground electrode 3 and transmitted to the main electrode 9, and the liquid crystal 5
  • the rotation occurs, the dielectric constant of the liquid crystal 5 changes, and the radio frequency signal transmitted on the main electrode 9 is phase-shifted, and the phase-shifted radio frequency signal is transmitted to the second
  • the electrode 11 is coupled to the radiator 300 through the second coupling hollow part 8 of the ground electrode 3, and is radiated through the radiator 300, thereby ensuring that the antenna radiates signals normally.
  • the main electrode 9 is a planar structure. In the direction perpendicular to the plane of the second substrate 2 , the detection hollow portion 6 and the main electrode 9 do not overlap, and the detection hollow portion 6 and the transmission electrode are not overlapped.
  • the spacing between the edges of 4 is L, 0 ⁇ L ⁇ 2mm.
  • the area where the main electrode 9 is located is the key area for phase-shifting the radio frequency signal in the phase shifter. That is to say, the cell thickness of the liquid crystal cell corresponding to the area where the main electrode 9 is located, and the alignment and filling of the liquid crystal 5 play a decisive role in the phase-shifting effect of the radio frequency signal.
  • the detection hollow portion 6 in an area within 2 mm of the periphery of the main electrode 9, the detection light emitted through the detection hollow portion 6 can more closely reflect the cell thickness, the alignment of the liquid crystal 5 and the liquid crystal in the region where the main electrode 9 is located. 5 fill conditions for more accurate cell thickness testing and optical judgment of critical areas in the phase shifter. Moreover, it should be noted that since the influence of other areas other than the key area on the phase-shifting effect of the radio frequency signal is far less significant than the effect of the key area on the phase-shifting effect of the radio frequency signal, the cell thickness test and optical judgment have been carried out on the key area.
  • disposing the detection hollow 6 around the main electrode 9 can also avoid The feed line 200 and the radiator 300 overlap with the detection hollow portion 6 , so as to prevent the feed line 200 and the radiator 300 from blocking the detection hollow portion 6 .
  • FIG. 4 is another schematic structural diagram of the phase shifter provided by the embodiment of the present invention
  • FIG. 5 is a cross-sectional view of FIG. 4 along the C1-C2 direction
  • the main electrode 9 is a plane In the structure, in the direction perpendicular to the plane of the second substrate 2 , the part of the detection hollow part 6 overlaps with the main electrode 9 , and the rest of the detection hollow part 6 does not overlap the main electrode 9 .
  • the detection light is emitted through the part of the detection hollow part 6 that does not overlap with the main electrode 9, and the emitted detection light can accurately reflect the cell thickness at the edge of the main electrode 9 and the condition of the liquid crystal 5, so that the detection light can be detected to a greater extent. It tends to reflect the cell thickness of the area where the main electrode 9 is located, the alignment of the liquid crystal 5 and the filling of the liquid crystal 5, so as to achieve a more accurate cell thickness test and optical judgment on the key area. Moreover, with this structure, there is no need to provide an opening for transmitting detection light in the main electrode 9 , thereby ensuring the reliability of radio frequency signal transmission in the main electrode 9 .
  • FIG. 6 is another structural schematic diagram of the phase shifter provided by the embodiment of the present invention
  • FIG. 7 is a cross-sectional view along the D1-D2 direction of FIG. 6
  • the main electrode 9 is a plane
  • the main electrode 9 is provided with an opening 12
  • the detection hollow portion 6 overlaps with the opening 12 in the direction perpendicular to the plane of the second substrate 2 .
  • the detection light passing through the opening 12 and emitted through the detection hollow portion 6 can directly detect the location of the main electrode 9 .
  • the cell thickness inside the area and the condition of the liquid crystal 5 are accurately fed back, so as to achieve more accurate cell thickness test and optical judgment on key areas.
  • the opening 12 on the main electrode 9 covers part of the edge of the main electrode 9 , that is, the opening 12 is located at the edge of the main electrode 9 , thereby reducing the transmission of the opening 12 to the main electrode 9
  • the loss of the RF signal improves the reliability of the RF signal transmission.
  • FIG. 8 is another schematic structural diagram of the phase shifter provided by the embodiment of the present invention
  • FIG. 9 is a cross-sectional view of FIG. 8 along the direction E1-E2
  • the main electrode 9 is Comb-shaped structure
  • the main electrode 9 includes a main electrode strip 13 and a plurality of tooth electrode strips 14, wherein the main electrode strip 13 extends along the first direction, the plurality of tooth electrode strips 14 are arranged along the first direction, and each tooth electrode strip 14 is arranged along the first direction. 14 extends along the second direction, and the first direction and the second direction intersect; in the direction perpendicular to the plane where the second substrate 2 is located, at least part of the detection hollow portion 6 overlaps with the gap between two adjacent tooth electrode bars 14 .
  • the main electrode 9 adopts the above-mentioned comb-like structure, based on the self-junction characteristics of the main electrode 9, it is only necessary to provide the detection hollow part 6 at the position corresponding to the gap between the toothed electrode bars 14 in the ground electrode 3, and then the detection of the main electrode 9 can be realized. Effective detection of the cell thickness and liquid crystal 5 in the entire area where the electrode 9 is located not only conducts more accurate cell thickness test and optical judgment on the key area, but also judges whether the radio frequency signal can be accurately phase-shifted in the key area. An opening is provided on the main electrode 9 to avoid the loss of the radio frequency signal transmitted on the main electrode strip 13 caused by the opening. Moreover, setting the main electrode 9 into the above-mentioned comb-like structure can also increase the transmission path of the radio frequency signal on the main electrode 9, so that the phase shift of the radio frequency signal is more sufficient.
  • the main electrode 9 is a comb-like structure, and the main electrode 9 includes a main electrode strip 13 , a plurality of first The toothed electrode bar 15 and the plurality of second toothed electrode bars 16, wherein the main electrode bar 13 extends along the first direction, and the first toothed electrode bar 15 and the second toothed electrode bar 16 are located on both sides of the main electrode bar 13, respectively.
  • the first tooth electrode bars 15 are arranged along the first direction, each first tooth electrode bar 15 extends along the second direction, the plurality of second tooth electrode bars 16 are arranged along the first direction, and each second tooth electrode bar 16 is arranged along the first direction
  • the second direction extends, and the first direction and the second direction intersect. In a direction perpendicular to the plane of the second substrate 2 , at least partially detect the gap between the hollow portion 6 and the two adjacent first tooth electrode bars 15 , and/or the gap between the two adjacent second tooth electrode bars 16 gaps overlap.
  • the main electrode 9 adopts the above-mentioned comb-like structure, based on the self-junction characteristics of the main electrode 9, only the position corresponding to the gap between the first tooth electrode strips 15 and/or the second tooth electrode strips 16 in the ground electrode 3 is required. Setting the detection hollow part 6 can effectively detect the cell thickness and the condition of the liquid crystal 5 in the entire area where the main electrode 9 is located. The radio frequency signal can be accurately phase shifted, and there is no need to set an opening on the main electrode 9 , which avoids the loss of the radio frequency signal transmitted on the main electrode strip 13 caused by the opening. Moreover, setting the main electrode 9 into the above-mentioned comb-like structure can also increase the transmission path of the radio frequency signal on the main electrode 9, so that the phase shift of the radio frequency signal is more sufficient.
  • the main electrode 9 is a serpentine structure, and the main electrode 9 includes a first electrode strip extending along the second direction. 17 and the second electrode strip 18 extending along the first direction, two adjacent first electrode strips 17 are connected through the second electrode strip 18, and the first direction and the second direction intersect; In the direction, at least part of the detection hollow portion 6 overlaps with the gap between two adjacent first electrode strips 17 .
  • the main electrode 9 adopts the above-mentioned serpentine structure, based on the self-junction characteristics of the main electrode 9, it is only necessary to provide the detection hollow part 6 at the position corresponding to the gap between the first electrode strips 17 on the ground electrode 3, and then the detection can be realized.
  • the cell thickness and liquid crystal 5 in the entire area where the main electrode 9 is located are effectively detected, not only more accurate cell thickness test and optical judgment are carried out on the key area, to determine whether the radio frequency signal can be accurately phase shifted in the key area, but also There is no need to set an opening on the main electrode 9 , which avoids the loss of the radio frequency signal transmitted on the main electrode strip 13 caused by the opening.
  • setting the main electrode 9 into the above-mentioned serpentine structure can also increase the transmission path of the radio frequency signal on the main electrode 9, so that the phase shift of the radio frequency signal is more sufficient.
  • the width of the detection hollow part 6 in the first direction is smaller than the width of the overlapping slot in the first direction, so as to reduce the detection hollow part 6 to the ground electrode 3 .
  • the width of the detection hollow part 6 in the first direction is L1
  • the width of the detection hollow part 6 in the second direction is L2, L1 ⁇ 5 ⁇ m, L2 ⁇ 5 ⁇ m to ensure that the width of the detection hollow part 6 in the first direction and the second direction is not too small, to avoid the phenomenon of pinhole imaging, so as to avoid affecting the detection light emitted through the detection hollow part 6 and improve the detection accuracy. sex.
  • FIG. 12 is a schematic structural diagram of a transparent electrode provided by an embodiment of the present invention
  • FIG. 13 is another structural schematic diagram of a transparent electrode provided by an embodiment of the present invention
  • FIG. 14 It is another structural schematic diagram of the transparent electrode provided by the embodiment of the present invention.
  • the phase shifter further includes a transparent electrode 19.
  • the transparent electrode 19 is electrically connected to the ground electrode 3. In the direction perpendicular to the plane of the first substrate 1, please Referring again to FIG. 12 , the transparent electrode 19 covers the detection hollow portion 6 .
  • the transparent electrode 19 and the ground electrode 3 are arranged in the same layer, the transparent electrode 19 and the ground electrode 3 do not overlap, and the transparent electrode 19 is only located inside the detection hollow portion 6 .
  • the orthographic projection of the transparent electrode 19 coincides with the detection hollow portion 6; or, please refer to FIGS. 13 and 14 again, the transparent electrode 19 and the detection hollow portion 6 overlap, this At this time, the transparent electrode 19 and the ground electrode 3 are disposed in different layers.
  • the ground electrode 3 can be improved.
  • the continuity of signal transmission and the shielding performance of the ground electrode 3 are improved.
  • the transparent electrode 19 is located in the detection hollow part 6. At this time, the transparent electrode 19 and the ground electrode 3 are arranged in the same layer, and the transparent electrode 19 does not need to occupy additional film layer space, which is more conducive to the lightness and thinness of the phase shifter. Or, please refer to FIG. 13 again, the transparent electrode 19 is located on the side of the ground electrode 3 facing the first substrate 1, or, please refer to FIG. 14 again, the transparent electrode 19 is located on a side of the ground electrode 3 facing away from the first substrate 1 At this time, the transparent electrode 19 and the ground electrode 3 are disposed in different layers, which increases the contact area between the transparent electrode 19 and the ground electrode 3, thereby improving the reliability of the electrical connection between the two.
  • the transparent electrode 19 when the transparent electrode 19 overlaps the detection hollow portion 6, as shown in FIG. 13 and FIG. 14, the transparent electrode 19 may be a plurality of electrode block structures arranged at intervals, or, in other optional configurations of the present invention In the embodiment, the transparent electrode 19 may also be a structure covered by a whole layer.
  • FIG. 15 and FIG. 16 FIG. 15 is another structural schematic diagram of the transparent electrode provided by the embodiment of the present invention, and FIG. In another schematic structural diagram of the transparent electrode provided in the embodiment of the invention, in the direction perpendicular to the plane where the first substrate 1 is located, the orthographic projection of the transparent electrode 19 covers the orthographic projection of the ground electrode 3 .
  • FIG. 17 which is a schematic structural diagram of a protective layer provided by an embodiment of the present invention
  • a protective layer 20 is provided on the side of the ground electrode 3 facing away from the first substrate 1 to be used in the phase shifter
  • the detection light does not need to pass through the protective layer 20 when it is emitted through the detection hollow portion 6 , which reduces the loss of the protective layer 20 to the detection light and improves the detection accuracy.
  • the protective layer 20 may be formed of inorganic materials, such as silicon nitride and silicon oxide, so as to further reduce the loss of the protective layer 20 to radio frequency signals and improve the reliability of radio frequency signal transmission.
  • An embodiment of the present invention further provides a method for fabricating a phase shifter.
  • the fabrication method is used to fabricate the above-mentioned phase shifter.
  • FIG. 18 is an embodiment of the invention.
  • the flow chart of the production method, the production method includes:
  • Step S1 a first substrate 1 is provided, and a ground electrode 3 having a detection hollow portion 6 is formed on the first substrate 1 .
  • Step S2 providing the second substrate 2 and forming the transfer electrodes 4 on the second substrate 2 .
  • Step S3 aligning the first substrate 1 and the second substrate 2, and filling the liquid crystal 5, wherein, in the direction perpendicular to the plane of the second substrate 2, the ground electrode 3 overlaps the transmission electrode 4, and the hollow portion 6 is detected. Does not overlap with the transfer electrode 4 .
  • the detection hollow part 6 is arranged on the ground electrode 3, and after the box is set, the At least part of the detection hollow part 6 does not overlap with the transmission electrode 4, and a light-transmitting area can be formed in the liquid crystal cell of the phase shifter.
  • the cell thickness test and the Optical judgment so as to detect whether the phase shifter has function degradation or function failure, thus avoiding the application of the function degradation or function failure phase shifter in the antenna, which not only avoids the cost waste of the subsequent antenna module process, It also avoids affecting the radiation performance of the antenna.
  • step S3 the manufacturing method further includes:
  • Step S4 Provide detection light, and use the detection light passing through the detection hollow part 6 to detect the phase shifter, for example, to perform cell thickness test and optical judgment, wherein the specific process of cell thickness test and optical judgment has been in the above-mentioned embodiment. for description, and details are not repeated here.
  • FIG. 19 is another flowchart of the manufacturing method provided by the embodiment of the present invention, and step S1 may specifically include:
  • Step S11 depositing a metal material for forming the ground electrode 3 on the first substrate 1 .
  • Step S12 patterning the metal material to form a ground electrode 3 having a detection hollow portion 6 , a first coupling hollow portion 7 for coupling radio frequency signals, and a second coupling hollow portion 8 .
  • Step S2 may specifically include:
  • Step S21 depositing a metal material for forming the transfer electrode 4 on the second substrate 2 .
  • Step S22 patterning the metal material to form the main electrode 9 , the first electrode 10 and the second electrode 11 , wherein the main electrode 9 communicates with the first electrode 10 and the second electrode 11 respectively.
  • step S3 after the first substrate 1 and the second substrate 2 are boxed together, in the direction perpendicular to the plane where the first substrate 1 is located, the first electrode 10 and the first coupling hollow portion 7 overlap, and the second electrode 11 overlaps with the second coupling hollow portion 8 .
  • the radio frequency signal transmitted on the feed line 200 is coupled to the first electrode 10 of the transmission electrode 4 through the first coupling hollow part 7 of the ground electrode 3 and transmitted To the main electrode 9, the liquid crystal 5 rotates under the action of the electric field formed by the ground electrode 3 and the transmission electrode 4, the dielectric constant of the liquid crystal 5 changes, and the radio frequency signal transmitted on the main electrode 9 is phase-shifted.
  • the radio frequency signal is transmitted to the second electrode 11, and is coupled to the radiator 300 through the second coupling hollow part 8 of the ground electrode 3, and is radiated through the radiator 300, thereby ensuring that the antenna radiates signals normally.
  • the process of forming the main electrode 9 in step S22 includes: forming the main electrode 9 with a planar structure. Also, please refer to FIG. 1 again, after the first substrate 1 and the second substrate 2 are boxed together, in the direction perpendicular to the plane where the second substrate 2 is located, the detection hollow portion 6 and the main electrode 9 do not overlap, and the detection hollow
  • the distance between the part 6 and the edge of the transmission electrode 4 is L, 0 ⁇ L ⁇ 2mm, at this time, the detection hollow part 6 is located in the area within 2mm of the periphery of the main electrode 9, and the detection light emitted through the detection hollow part 6 can be more It tends to reflect the cell thickness of the area where the main electrode 9 is located, the alignment of the liquid crystal 5 and the filling of the liquid crystal 5, so that the cell thickness test and optical judgment of the key area in the phase shifter can be more accurately performed.
  • the part of the detection hollow part 6 overlaps with the main electrode 9, and the detection hollow
  • the rest of the part 6 does not overlap with the main electrode 9, so that the emitted detection light can accurately reflect the cell thickness at the edge of the main electrode 9 and the condition of the liquid crystal 5, which can more closely reflect the main electrode 9 Cell thickness, alignment of liquid crystal 5 and filling of liquid crystal 5 in the region.
  • the main electrode 9 is provided with an opening 12. After the first substrate 1 and the second substrate 2 are boxed together, the hollow portion 6 and the opening 12 are detected in the direction perpendicular to the plane of the second substrate 2. Overlap, at this time, the detection light that passes through the opening 12 and exits through the detection hollow part 6 can directly feedback the cell thickness and the liquid crystal 5 in the area where the main electrode 9 is located, so as to realize more accurate detection of key areas. Box thickness test and optical judgment.
  • the process of forming the main electrode 9 in step S22 includes: forming a main electrode 9 with a comb-tooth structure, the main electrode 9 includes a main electrode strip 13 and a plurality of tooth electrode strips 14 , wherein the main electrode strip 13 extends along a first direction, a plurality of tooth electrode bars 14 are arranged along the first direction, each tooth electrode bar 14 extends along a second direction, and the first direction and the second direction intersect.
  • the first substrate 1 and the second substrate 2 are boxed together, in the direction perpendicular to the plane where the second substrate 2 is located, at least part of the gap between the hollow portion 6 and the adjacent two tooth electrode bars 14 is detected to overlap. .
  • the process of forming the main electrode 9 in step S22 includes: forming a main electrode 9 with a comb-like structure, the main electrode 9 including a main electrode strip 13 , a plurality of first tooth electrode strips 15 and a plurality of second teeth Electrode strips 16, wherein the main electrode strips 13 extend along the first direction, the first toothed electrode strips 15 and the second toothed electrode strips 16 are located on both sides of the main electrode strips 13, respectively, and the plurality of first toothed electrode strips 15 extend along the first direction, each first tooth electrode bar 15 extends along the second direction, a plurality of second tooth electrode bars 16 are arranged along the first direction, each second tooth electrode bar 16 extends along the second direction, the first direction and the second The two directions intersect.
  • first substrate 1 and the second substrate 2 are boxed together, in the direction perpendicular to the plane where the second substrate 2 is located, at least partially detect the gap between the hollow portion 6 and the adjacent two first tooth electrode bars 15 , and overlap with the gap between two adjacent second tooth electrode bars 16 .
  • the detection hollow part 6 is arranged at the position corresponding to the gap between the two parts, which can effectively detect the cell thickness and the liquid crystal 5 in the entire area where the main electrode 9 is located, and not only carry out more accurate cell thickness test and optical judgment on key areas. , judging whether the radio frequency signal can be accurately phase-shifted in the key area, and there is no need to set an opening on the main electrode 9 , which avoids the loss of the radio frequency signal transmitted on the main electrode strip 13 caused by the opening.
  • the process of forming the main electrode 9 in step S22 includes: forming a main electrode 9 with a serpentine structure, and the main electrode 9 includes a first electrode strip 17 extending along the second direction and a second electrode extending along the first direction.
  • the electrode strips 18 two adjacent first electrode strips 17 communicate with each other through the second electrode strips 18, and the first direction and the second direction intersect.
  • the first substrate 1 and the second substrate 2 are boxed together, in a direction perpendicular to the plane where the second substrate 2 is located, at least a part of the gap between the hollow portion 6 and the adjacent two first electrode strips 17 is detected. stack.
  • the main electrode 9 By adopting the above manufacturing method, by setting the main electrode 9 into the above-mentioned serpentine structure, based on the self-junction characteristics of the main electrode 9, it is only necessary to provide a detection hollow at the position corresponding to the gap between the first electrode strips 17 on the ground electrode 3 Part 6, the cell thickness and liquid crystal 5 in the entire area where the main electrode 9 is located can be effectively detected, and not only more accurate cell thickness test and optical judgment are carried out on the key area, but also whether the radio frequency can be detected in the key area.
  • the signal is accurately phase-shifted, and there is no need to set an opening on the main electrode 9 , which avoids the loss of the radio frequency signal transmitted on the main electrode strip 13 caused by the opening.
  • the manufacturing method provided by the embodiment of the present invention further includes: forming a transparent electrode 19 , the transparent electrode 19 is electrically connected to the ground electrode 3 , and the transparent electrode 19 is electrically connected to the ground electrode 3 , and is perpendicular to the plane where the first substrate 1 is located. In the direction, the transparent electrode 19 covers the detection hollow portion 6 , or the transparent electrode 19 overlaps the detection hollow portion 6 .
  • the transparent electrode 19 covers the detection hollow portion 6, referring to FIG. 12, the transparent electrode 19 and the ground electrode 3 are arranged in the same layer, and the transparent electrode 19 and the ground electrode 3 do not overlap.
  • the transparent electrode 19 is formed on the first substrate 1, and then the ground electrode 3 is formed.
  • the ground electrode 3 can be formed on the first substrate 1 first, and then the transparent electrode 19 is formed; or, when the transparent electrode 19 overlaps the detection hollow 6, the transparent electrode 19 and the ground electrode 3 are arranged in different layers.
  • the transparent electrode 19 is located on the side of the ground electrode 3 facing the first substrate 1.
  • the transparent electrode 19 is first formed on the first substrate 1, and then the ground electrode 3 is formed.
  • the transparent electrode 19 is located on the side of the ground electrode 3 facing away from the first substrate 1 . In this case, the ground electrode 3 is first formed on the first substrate 1 , and then the transparent electrode 19 is formed.
  • the ground electrode 3 can be improved.
  • the continuity of signal transmission and the shielding performance of the ground electrode 3 are improved.
  • the manufacturing method further includes: depositing a layer of inorganic material such as silicon nitride or silicon oxide on the side of the ground electrode 3 facing away from the first substrate 1 to form a protective layer 20 .
  • a layer of inorganic material such as silicon nitride or silicon oxide
  • the protective layer 20 overlapping with the detection hollow portion 6 is hollowed out, so that the detection light does not need to pass through the protective layer 20 when it is emitted through the detection hollow portion 6, thereby reducing The loss of the protective layer 20 to the detection light is reduced, and the detection accuracy is improved.
  • FIG. 20 is a schematic structural diagram of the antenna provided by an embodiment of the present invention
  • FIG. 21 is a cross-sectional view of FIG. 20 along the F1-F2 direction. It includes: the above-mentioned phase shifter 100; a feeder 200, the feeder 200 is arranged on the side of the first substrate 1 facing away from the second substrate 2, the feeder 200 is electrically connected to the radio frequency signal source 400, and is used for receiving the radio frequency signal source 400 to provide The radio frequency signal; the radiator 300, the radiator 300 is arranged on the side of the first substrate 1 facing away from the second substrate 2, and is used to radiate the phase-shifted radio frequency signal.
  • the use of this antenna can improve the yield of the applied phase shifter, improve the accuracy of the radiation angle of the beam radiated by the antenna, and optimize the radiation of the antenna. performance.
  • the ground electrode is further provided with a first coupling hollow part 7 and a second coupling hollow part 8 for coupling radio frequency signals; in the direction perpendicular to the plane where the first substrate 1 is located,
  • the feed line 200 overlaps with the first coupling hollow part 7
  • the radiator 300 overlaps with the second coupling hollow part 8
  • neither the feed line 200 nor the radiator 300 overlaps with the detection hollow part 6 .
  • the radio frequency signal transmitted on the feed line 200 is coupled to the transmission electrode 4 through the first coupling hollow portion 7 of the ground electrode 3 , the liquid crystal 5 rotates under the action of the electric field formed by the ground electrode 3 and the transmission electrode 4 , and the liquid crystal 5 rotates.
  • the dielectric constant of the ground electrode 3 changes, and the radio frequency signal transmitted on the transmission electrode 4 is phase-shifted.
  • the phase-shifted radio frequency signal is coupled to the radiator 300 through the second coupling hollow part 8 of the ground electrode 3 and radiated through the radiator 300 .
  • the feeder 200 and the radiator 300 not overlap with the detection hollow part 6, it can also prevent the feeder 200 and the radiator 300 from blocking the detection hollow part 6, thereby improving the reliability of detection.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

本实施例提供了一种移相器及其制作方法、天线,涉及液晶天线技术领域,对移相器的盒厚测试和光学判断,提升良率。移相器包括:第一基板和第二基板;接地电极,设于第一基板朝向第二基板的一侧;传输电极,设于第二基板朝向第一基板的一侧,在垂直于第二基板所在平面的方向上,传输电极与接地电极交叠;液晶,填充在第一基板和第二基板之间;接地电极具有检测镂空部,在垂直于第二基板所在平面的方向上,检测镂空部的至少部分与传输电极不交叠。

Description

移相器及其制作方法、天线
本申请要求于2020年07月24日提交中国专利局、申请号为202010721226.6、发明名称为“移相器及其制作方法、天线”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及液晶天线技术领域,尤其涉及一种移相器及其制作方法、天线。
背景技术
随着通信系统的逐渐演进,移相器得到了越来越广泛的应用,以液晶移相器为例,液晶移相器是通过控制液晶旋转,使液晶的介电常数发生变化,以实现对液晶移相器内传输的射频信号进行移相。
在现有技术中,液晶移相器中的接地电极大面积覆盖,因此,在液晶移相器的制作过程中,两个基板对盒形成液晶盒之后,液晶盒内无光线可通过,因而无法对液晶移相器进行盒厚测试及光学判断,进而可能会将功能下降或者功能失效的液晶移相器应用在天线中,不仅会导致后续模组制程的成本浪费,还会严重影响天线的辐射性能。
发明内容
有鉴于此,本发明实施例提供了一种移相器及其制作方法、天线,能够实现对移相器的盒厚测试和光学判断,提升良率。
一方面,本发明实施例提供了一种移相器,包括:
相对设置的第一基板和第二基板;
接地电极,所述接地电极设于所述第一基板朝向所述第二基板的一侧;
传输电极,所述传输电极设于所述第二基板朝向第一基板的一侧,在垂直于所述第二基板所在平面的方向上,所述传输电极与所述接地电极交叠;
液晶,所述液晶填充在所述第一基板和所述第二基板之间;
其中,所述接地电极具有检测镂空部,在垂直于所述第二基板所在平面的方向上,所述检测镂空部的至少部分与所述传输电极不交叠。
另一方面,本发明实施例提供了一种移相器的制作方法,包括:
提供第一基板,在所述第一基板上形成具有检测镂空部的接地电极;
提供第二基板,在所述第二基板上形成传输电极;
将所述第一基板和所述第二基板对盒、填充液晶,其中,在垂直于所述第二基板所在平面的方向上,所述接地电极与所述传输电极交叠,且所述检测镂空部与所述传输电极不交叠。
再一方面,本发明实施例提供了一种天线,包括:
上述移相器;
馈电线,所述馈电线设于第一基板背向第二基板的一侧,用于接收射频信号;
辐射体,所述辐射体设于所述第一基板背向所述第二基板的一侧,用于将移相后的射频信号辐射出去。
上述技术方案中的一个技术方案具有如下有益效果:
采用本发明实施例所提供的技术方案,通过在接地电极上设置检测镂空部,并且令检测镂空部的至少部分与传输电极不交叠,可以在移相器的液晶盒内形成透光区域,那么,在移相器投入应用前,就能够对移相器进行盒厚测试和光学判断,从而检测移相器是否存在功能下降或是功能失效的情况,从而避免了将功能下降或是功能失效的移相器应用在天线中,既避免了后续天线模组制程的成本浪费,还避免了对天线的辐射性能造成影响。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在 不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例所提供的移相器的结构示意图;
图2为图1沿A1-A2方向的剖视图;
图3为图1沿B1-B2方向的剖视图;
图4为本发明实施例所提供的移相器的另一种结构示意图;
图5为图4沿C1-C2方向的剖视图;
图6为本发明实施例所提供的移相器的再一种结构示意图;
图7为图6沿D1-D2方向的剖视图;
图8为本发明实施例所提供的移相器的又一种结构示意图;
图9为图8沿E1-E2方向的剖视图;
图10为本发明实施例所提供的移相器的另一种结构示意图;
图11为本发明实施例所提供的移相器的再一种结构示意图;
图12为本发明实施例所提供的透明电极的结构示意图;
图13为本发明实施例所提供的透明电极的另一种结构示意图;
图14为本发明实施例所提供的透明电极的再一种结构示意图;
图15为本发明实施例所提供的透明电极的又一种结构示意图;
图16为本发明实施例所提供的透明电极的另一种结构示意图;
图17为本发明实施例所提供的保护层的结构示意图;
图18为本发明实施例所提供的制作方法的流程图;
图19为本发明实施例所提供的制作方法的另一种流程图;
图20为本发明实施例所提供的天线的结构示意图;
图21为图20沿F1-F2方向的剖视图。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本发明实施例中可能采用术语第一、第二来描述基板、电极、齿电极条,但这些基板、电极、齿电极条不应限于这些术语,这些术语仅用来将基板、电极、齿电极条彼此区分开。例如,在不脱离本发明实施例范围的情况下,第一基板也可以被称为第二基板,类似地,第二基板也可以被称为第一基板。
本发明实施例提供了一种移相器,如图1和图2所示,图1为本发明实施例所提供的移相器的结构示意图,图2为图1沿A1-A2方向的剖视图,该移相器包括:相对设置的第一基板1和第二基板2;接地电极3,接地电极3设于第一基板1朝向第二基板2的一侧;传输电极4,传输电极4设于第二基板2朝向第一基板1的一侧,在垂直于第二基板2所在平面的方向上,传输电极4与接地电极3交叠;液晶5,液晶5填充在第一基板1和第二基板2之间;其中,接地电极3具有检测镂空部6,在垂直于第二基板2所在平面的方向上,检测镂空部6的至少部分与传输电极4不交叠。
在移相器的制作工艺中,在第一基板1和第二基板2对盒形成液晶盒之后,可向移相器提供检测光线,利用经由检测镂空部6射出的检测光线,对移相器进行盒厚测试和光学判断,例如判断移相器中液晶5的配向情况和填充情况等。
具体地,对移相器进行盒厚测试时,沿第二基板2朝向第一基板1的方向,向移相器提供检测光线,利用盒厚测定设备,对经由多个检测镂空部6射出的光线进行检测以判断盒厚;对移相器的液 晶5配向情况进行判断时,在第一基板1背向第二基板2的一侧放置上偏振片,以及在第二基板2背向第一基板1的一侧放置下偏振片,沿第二基板2朝向第一基板1的方向,向移相器提供检测光线,通过判断经由不同检测镂空部6射出的光线亮度,对不同位置处液晶5的配向情况进行判断:若检测到经由不同检测镂空部6射出的光线亮度相同,则说明移相器的液晶5配向完全,若检测到经由不同检测镂空部6射出的光线亮度不同,则说明移相器的液晶5配向不完全;对移相器的液晶5填充情况的判断时,沿第二基板2朝向第一基板1的方向,向移相器提供检测光线,利用人眼或者检测设备透过检测镂空部6,对液晶盒内的液晶5填充情况进行判断。
需要说明的是,为实现对移相器的正常检测,第一基板1和第二基板2可以为透光基板,如玻璃基板,或者,第一基板1和第二基板2也可为不透光基板,如高频基板,此时,仅需在第一基板1和第二基板2中与检测镂空部6对应的位置处设置开口,以保证检测光线能够经由第一基板1的开口射入,并经由第二基板2的开口射出。
可见,采用本发明实施例所提供的移相器,通过在接地电极3上设置检测镂空部6,并且令检测镂空部6的至少部分与传输电极4不交叠,可以在移相器的液晶盒内形成透光区域,那么,在移相器投入应用前,就能够对移相器进行盒厚测试和光学判断,从而检测移相器是否存在功能下降或是功能失效的情况,进而避免了将功能下降或是功能失效的移相器应用在天线中,既避免了后续天线模组制程的成本浪费,还避免了对天线所辐射波束的辐射角度造成影响,优化天线的辐射性能。
可选地,由于已经在检测镂空部6所在区域处形成了将检测光线透出的透光区域,因此,接地电极3和传输电极4可由不透光金属材料,如铜、金、银、铝等导电性较好的材料形成,增大了接地电极3和传输电极4材料的可选择范围。
可选地,结合图1和图2,如图3所示,图3为图1沿B 1-B2 方向的剖视图,接地电极3上还设有用于耦合射频信号的第一耦合镂空部7和第二耦合镂空部8;传输电极4包括主电极9、第一电极10和第二电极11,主电极9分别与第一电极10和第二电极11连通,且第一电极10与第二电极11位于主电极9相对的两侧;在垂直第一基板1所在平面的方向上,第一电极10与第一耦合镂空部7交叠,第二电极11与第二耦合镂空部8交叠。
具体地,结合图20和图21,天线中设有馈电线200和辐射体300,馈电线200用于接收射频信号。在移相器对射频信号进行移相时,馈电线200上传输的射频信号通过接地电极3的第一耦合镂空部7耦合到传输电极4的第一电极10并传输至主电极9,液晶5在接地电极3和传输电极4所形成的电场的作用下发生旋转,液晶5的介电常数发生变化,对主电极9上传输的射频信号进行移相,移相后的射频信号传输至第二电极11,并通过接地电极3的第二耦合镂空部8耦合到辐射体300上,经由辐射体300辐射出去,从而保证天线正常辐射信号。
进一步地,请再次参见图1,主电极9为面状结构,在垂直于第二基板2所在平面的方向上,检测镂空部6与主电极9不交叠,且检测镂空部6与传输电极4的边缘之间的间距为L,0≤L≤2mm。
结合上述移相原理可知,射频信号是在主电极9上传输时,在液晶的作用下实现了移相,因此,主电极9所在的区域为移相器中对射频信号进行移相的关键区域,也就是说,主电极9所在区域对应的液晶盒的盒厚,以及液晶5的配向和填充情况,对射频信号的移相效果起到决定性作用。为此,通过将检测镂空部6设置在主电极9周边2mm以内的区域内,经由检测镂空部6射出的检测光线能更趋近于反映主电极9所在区域的盒厚、液晶5配向和液晶5填充情况,从而更为准确地对移相器中的关键区域进行盒厚测试和光学判断。而且,需要说明的是,由于关键区域以外的其他区域对射频信号移相效果的影响远不如关键区域对射频信号移相效果的影响显著,因此,在已经对关键区域进行盒厚测试和光学判断的前提下, 无需再额外检测其他区域的盒厚及液晶情况,因而也就无需在接地电极3的其他区域设置镂空检测部6,减少了接地电极3中所需设置的镂空检测部6的数量,降低了对接地电极3屏蔽性能的影响。此外,采用该种结构,也无需在主电极9内部设置用于透过检测光线的开口,从而保证了主电极9中射频信号传输的可靠性。
此外,还需要说明的是,由于馈电线200与第一电极10交叠,而辐射体300与第二电极11交叠,因此,将检测镂空部6设置在主电极9的周边,还能够避免馈电线200和辐射体300与检测镂空部6交叠,从而避免馈电线200和辐射体300对检测镂空部6造成遮挡。
或者,如图4和图5所示,图4为本发明实施例所提供的移相器的另一种结构示意图,图5为图4沿C1-C2方向的剖视图,主电极9为面状结构,在垂直于第二基板2所在平面的方向上,检测镂空部6的部分与主电极9交叠,检测镂空部6的其余部分与主电极9不交叠。此时,检测光线经由检测镂空部6中与主电极9不交叠的部分射出,射出的检测光线能够准确反映出主电极9边缘位置处的盒厚和液晶5情况,从而能够更大程度地趋近于反映主电极9所在区域的盒厚、液晶5配向和液晶5填充情况,以实现对关键区域进行更加准确的盒厚测试和光学判断。而且,采用该种结构,也无需在主电极9内部设置用于透过检测光线的开口,从而保证了主电极9中射频信号传输的可靠性。
或者,如图6和图7所示,图6为本发明实施例所提供的移相器的再一种结构示意图,图7为图6沿D1-D2方向的剖视图,主电极9为面状结构,主电极9上设有开口12,在垂直第二基板2所在平面的方向上,检测镂空部6与开口12交叠。在该种设置方式中,通过在主电极9内设置开口12,并且令检测镂空部6与开口12交叠,穿过开口12并经由检测镂空部6射出的检测光线能够直接对主电极9所在区域内部的盒厚及液晶5情况进行准确地反馈,从而实现对关键区域进行更加准确的盒厚测试和光学判断。
进一步地,请再次参见图6,主电极9上的开口12覆盖主电极9的部分边缘,也就是说,开口12位于主电极9的边缘位置处,从而降低了开口12对主电极9上传输的射频信号的损耗,提高了射频信号传输的可靠性。
可选地,如图8和图9所示,图8为本发明实施例所提供的移相器的又一种结构示意图,图9为图8沿E1-E2方向的剖视图,主电极9为梳齿状结构,主电极9包括主电极条13和多个齿电极条14,其中,主电极条13沿第一方向延伸,多个齿电极条14沿第一方向排列,每个齿电极条14沿第二方向延伸,第一方向和第二方向相交;在垂直于第二基板2所在平面的方向上,至少部分检测镂空部6与相邻两个齿电极条14之间的缝隙交叠。
当主电极9采用上述梳状结构时,基于主电极9的自身结特性,仅需在接地电极3中与齿电极条14之间的缝隙对应的位置处设置检测镂空部6,即可实现对主电极9所在整个区域内的盒厚和液晶5情况进行有效检测,不仅对关键区域进行了更加准确的盒厚测试和光学判断,判断该关键区域内是否能够对射频信号进行准确移相,还无需在主电极9上设置开口,避免了开口对主电极条13上传输的射频信号造成损耗。而且,将主电极9设置为上述梳状结构,还能够增大射频信号在主电极9上的传输路径,从而使得射频信号移相地更加充分。
或者,如图10所示,图10为本发明实施例所提供的移相器的另一种结构示意图,主电极9为梳齿状结构,主电极9包括主电极条13、多个第一齿电极条15和多个第二齿电极条16,其中,主电极条13沿第一方向延伸,第一齿电极条15和第二齿电极条16分别位于主电极条13的两侧,多个第一齿电极条15沿第一方向排列,每个第一齿电极条15沿第二方向延伸,多个第二齿电极条16沿第一方向排列,每个第二齿电极条16沿第二方向延伸,第一方向和第二方向相交。在垂直于第二基板2所在平面的方向上,至少部分检测镂空部6与相邻两个第一齿电极条15之间的缝隙,和/或,相邻 两个第二齿电极条16之间的缝隙交叠。
当主电极9采用上述梳状结构时,基于主电极9的自身结特性,仅需在接地电极3中与第一齿电极条15和/或第二齿电极条16之间的缝隙对应的位置处设置检测镂空部6,即可实现对主电极9所在整个区域内的盒厚和液晶5情况进行有效检测,不仅对关键区域进行了更加准确的盒厚测试和光学判断,判断该关键区域内是否能够对射频信号进行准确移相,还无需在主电极9上设置开口,避免了开口对主电极条13上传输的射频信号造成损耗。而且,将主电极9设置为上述梳状结构,还能够增大射频信号在主电极9上的传输路径,从而使得射频信号移相地更加充分。
或者,如图11所示,图11为本发明实施例所提供的移相器的再一种结构示意图,主电极9为蛇状结构,主电极9包括沿第二方向延伸的第一电极条17和沿第一方向延伸的第二电极条18,相邻两个第一电极条17通过第二电极条18连通,第一方向和第二方向相交;在垂直于第二基板2所在平面的方向上,至少部分检测镂空部6与相邻两个第一电极条17之间的缝隙交叠。
当主电极9采用上述蛇状结构时,基于主电极9的自身结特性,仅需在接地电极3上与第一电极条17之间的缝隙对应的位置处设置检测镂空部6,即可实现对主电极9所在整个区域内的盒厚和液晶5情况进行有效检测,不仅对关键区域进行了更加准确的盒厚测试和光学判断,判断该关键区域内是否能够对射频信号进行准确移相,还无需在主电极9上设置开口,避免了开口对主电极条13上传输的射频信号造成损耗。而且,将主电极9设置为上述蛇状结构,还能够增大射频信号在主电极9上的传输路径,从而使得射频信号移相地更加充分。
进一步地,请再次参见图8、图10和图11,检测镂空部6在第一方向上的宽度小于与其交叠的缝隙在第一方向上的宽度,以降低检测镂空部6对接地电极3屏蔽性能的影响。
可选地,请再次参见图8、图10和图11,检测镂空部6在第一 方向上的宽度为L1,检测镂空部6在第二方向上的宽度为L2,L1≥5μm,L2≥5μm,以保证检测镂空部6在第一方向和第二方向上的宽度不会过小,避免出现小孔成像的现象,从而避免对经由检测镂空部6射出的检测光线造成影响,提高检测准确性。
可选地,如图12~图14所示,图12为本发明实施例所提供的透明电极的结构示意图,图13为本发明实施例所提供的透明电极的另一种结构示意图,图14为本发明实施例所提供的透明电极的再一种结构示意图,移相器还包括透明电极19,透明电极19与接地电极3电连接,在垂直于第一基板1所在平面的方向上,请再次参见图12,透明电极19覆盖检测镂空部6,此时,透明电极19与接地电极3同层设置,透明电极19与接地电极3不存在交叠,透明电极19仅位于检测镂空部6内部,在垂直于第一基板1所在平面的方向上,透明电极19的正投影与检测镂空部6重合;或,请再次参见图13和图14,透明电极19与检测镂空部6交叠,此时,透明电极19与接地电极3异层设置。
如此设置,基于透明电极19的透光特性,在其不会对检测光线造成遮挡,仍能保证正常的检测的前提下,通过令透明电极19与接地电极3电连接,还能提高接地电极3上信号传输的连续性,以及提高接地电极3的屏蔽性能。
进一步地,请再次参见图12,透明电极19位于检测镂空部6内,此时,透明电极19与接地电极3同层设置,透明电极19无需额外占用膜层空间,更利于移相器的轻薄化设计;或,请再次参见图13,透明电极19位于接地电极3朝向第一基板1的一侧,或,请再次参见图14,透明电极19位于接地电极3背向第一基板1的一侧,此时,透明电极19与接地电极3异层设置,提高了透明电极19和接地电极3的接触面积,从而提高了二者电连接的可靠性。
需要说明的是,当透明电极19与检测镂空部6交叠时,如图13和图14所示,透明电极19可以为多个间隔排列的电极块结构,或者,在本发明其他可选的实施例中,透明电极19也可以为整层覆 盖的结构,例如,如图15和图16所示,图15为本发明实施例所提供的透明电极的又一种结构示意图,图16为本发明实施例所提供的透明电极的另一种结构示意图,在垂直于第一基板1所在平面的方向上,透明电极19的正投影覆盖接地电极3的正投影。
可选地,如图17所示,图17为本发明实施例所提供的保护层的结构示意图,接地电极3背向第一基板1的一侧设置有保护层20,用以在移相器的制作工艺中,降低接地电极3被氧化、被腐蚀的风险,提高移相器工作的稳定性与可靠性,进一步地,保护层20中与检测镂空部6交叠的位置镂空设置,从而使得检测光线经由检测镂空部6射出时无需透过保护层20,降低了保护层20对检测光线的损耗,提高了检测精度。
需要说明的是,保护层20可由无机材料,如氮化硅、氧化硅材料形成,从而进一步降低保护层20对射频信号的损耗,提高射频信号传输的可靠性。
本发明实施例还提供了一种移相器的制作方法,该制作方法用于制作上述移相器,结合图1和图2,如图18所示,图18为本发明实施例所提供的制作方法的流程图,该制作方法包括:
步骤S1:提供第一基板1,在第一基板1上形成具有检测镂空部6的接地电极3。
步骤S2:提供第二基板2,在第二基板2上形成传输电极4。
步骤S3:将第一基板1和第二基板2对盒、填充液晶5,其中,在垂直于第二基板2所在平面的方向上,接地电极3与传输电极4交叠,且检测镂空部6与传输电极4不交叠。
结合上述实施例中对移相器进行盒厚测试和光学判断的具体过程可知,采用本发明实施例所提供的制作方法,通过在接地电极3上设置检测镂空部6,并且在对盒之后令检测镂空部6的至少部分与传输电极4不交叠,可以在移相器的液晶盒内形成透光区域,那么,在移相器投入应用前,就能够对移相器进行盒厚测试和光学判断,从而检测移相器是否存在功能下降或是功能失效的情况,从而 避免了将功能下降或是功能失效的移相器应用在天线中,既避免了后续天线模组制程的成本浪费,还避免了对天线的辐射性能造成影响。
进一步地,为了检测移相器是否存在功能下降或是功能失效的情况,请再次参见图18,步骤S3之后,制作方法还包括:
步骤S4:提供检测光线,利用透过检测镂空部6的检测光线对移相器进行检测,例如进行盒厚测试和光学判断,其中,盒厚测试和光学判断的具体过程已在上述实施例中进行说明,此处不再赘述。
可选地,结合图1~图3,如图19所示,图19为本发明实施例所提供的制作方法的另一种流程图,步骤S1具体可包括:
步骤S11:在第一基板1上沉积用于形成接地电极3的金属材料。
步骤S12:对金属材料进行图案化,形成具有检测镂空部6、用于耦合射频信号的第一耦合镂空部7和第二耦合镂空部8的接地电极3。
步骤S2具体可包括:
步骤S21:在第二基板2上沉积用于形成传输电极4的金属材料。
步骤S22:对金属材料进行图案化,形成主电极9、第一电极10和第二电极11,其中,主电极9分别与第一电极10和第二电极11连通。
并且,步骤S3中,将第一基板1和第二基板2对盒之后,在垂直第一基板1所在平面的方向上,第一电极10与第一耦合镂空部7交叠,第二电极11的与第二耦合镂空部8交叠。
结合图20和图21,在移相器对射频信号进行移相时,馈电线200上传输的射频信号通过接地电极3的第一耦合镂空部7耦合到传输电极4的第一电极10并传输至主电极9,液晶5在接地电极3和传输电极4所形成的电场的作用下发生旋转,液晶5的介电常数发生变化,对主电极9上传输的射频信号进行移相,移相后的射频 信号传输至第二电极11,并通过接地电极3的第二耦合镂空部8耦合到辐射体300上,经由辐射体300辐射出去,从而保证天线正常辐射信号。
进一步地,结合图1、图4和图6,步骤S22中形成主电极9的过程包括:形成面状结构的主电极9。并且,请再次参见图1,将第一基板1和第二基板2对盒之后,在垂直于第二基板2所在平面的方向上,检测镂空部6与主电极9不交叠,且检测镂空部6与传输电极4的边缘之间的间距为L,0≤L≤2mm,此时,检测镂空部6位于主电极9周边2mm以内的区域内,经由检测镂空部6射出的检测光线能更趋近于反映主电极9所在区域的盒厚、液晶5配向和液晶5填充情况,从而更为准确地对移相器中的关键区域进行盒厚测试和光学判断。
或,请再次参见图4,将第一基板1和第二基板2对盒之后,在垂直于第二基板2所在平面的方向上,检测镂空部6的部分与主电极9交叠,检测镂空部6的其余部分与主电极9不交叠,从而使得射出的检测光线能够准确反映出主电极9边缘位置处的盒厚和液晶5情况,进而能够更大程度地趋近于反映主电极9所在区域的盒厚、液晶5配向和液晶5填充情况。
或,请再次参见图6,主电极9上开设有开口12,将第一基板1和第二基板2对盒之后,在垂直第二基板2所在平面的方向上,检测镂空部6与开口12交叠,此时,穿过开口12并经由检测镂空部6射出的检测光线能够直接对主电极9所在区域内部的盒厚及液晶5情况进行准确地反馈,从而实现对关键区域进行更加准确的盒厚测试和光学判断。
可选地,结合图8,步骤S22中形成主电极9的过程包括:形成梳齿状结构的主电极9,主电极9包括主电极条13和多个齿电极条14,其中,主电极条13沿第一方向延伸,多个齿电极条14沿第一方向排列,每个齿电极条14沿第二方向延伸,第一方向和第二方向相交。并且,将第一基板1和第二基板2对盒之后,在垂直于第 二基板2所在平面的方向上,至少部分检测镂空部6与相邻两个齿电极条14之间的缝隙交叠。
采用上述制作方法,通过将主电极9设置为上述梳状结构,基于主电极9的自身结特性,仅需在接地电极3中与齿电极条14之间的缝隙对应的位置处设置检测镂空部6,即可实现对主电极9所在整个区域内的盒厚和液晶5情况进行有效检测,不仅对关键区域进行了更加准确的盒厚测试和光学判断,判断该关键区域内是否能够对射频信号进行准确移相,还无需在主电极9上设置开口,避免了开口对主电极条13上传输的射频信号造成损耗。
或者,结合图10,步骤S22中形成主电极9的过程包括:形成梳齿状结构的主电极9,主电极9包括主电极条13、多个第一齿电极条15和多个第二齿电极条16,其中,主电极条13沿第一方向延伸,第一齿电极条15和第二齿电极条16分别位于主电极条13的两侧,多个第一齿电极条15沿第一方向排列,每个第一齿电极条15沿第二方向延伸,多个第二齿电极条16沿第一方向排列,每个第二齿电极条16沿第二方向延伸,第一方向和第二方向相交。并且,将第一基板1和第二基板2对盒之后,在垂直于第二基板2所在平面的方向上,至少部分检测镂空部6与相邻两个第一齿电极条15之间的缝隙、以及与相邻两个第二齿电极条16之间的缝隙交叠。
采用上述制作方法,通过将主电极9设置为上述梳状结构,基于主电极9的自身结特性,仅需在接地电极3中与第一齿电极条15和/或第二齿电极条16之间的缝隙对应的位置处设置检测镂空部6,即可实现对主电极9所在整个区域内的盒厚和液晶5情况进行有效检测,不仅对关键区域进行了更加准确的盒厚测试和光学判断,判断该关键区域内是否能够对射频信号进行准确移相,还无需在主电极9上设置开口,避免了开口对主电极条13上传输的射频信号造成损耗。
或者,结合图11,步骤S22中形成主电极9的过程包括:形成蛇状结构的主电极9,主电极9包括沿第二方向延伸的第一电极条 17和沿第一方向延伸的第二电极条18,相邻两个第一电极条17通过第二电极条18连通,第一方向和第二方向相交。并且,将第一基板1和第二基板2对盒之后,在垂直于第二基板2所在平面的方向上,至少部分检测镂空部6与相邻两个第一电极条17之间的缝隙交叠。
采用上述制作方法,通过将主电极9设置为上述蛇状结构,基于主电极9的自身结特性,仅需在接地电极3上与第一电极条17之间的缝隙对应的位置处设置检测镂空部6,即可实现对主电极9所在整个区域内的盒厚和液晶5情况进行有效检测,不仅对关键区域进行了更加准确的盒厚测试和光学判断,判断该关键区域内是否能够对射频信号进行准确移相,还无需在主电极9上设置开口,避免了开口对主电极条13上传输的射频信号造成损耗。
可选地,结合图12~图14,本发明实施例所提供的制作方法还包括:形成透明电极19,透明电极19与接地电极3电连接,并且,在垂直于第一基板1所在平面的方向上,透明电极19覆盖检测镂空部6,或,透明电极19与检测镂空部6交叠。
具体地,当透明电极19覆盖检测镂空部6时,结合图12,透明电极19与接地电极3同层设置,透明电极19与接地电极3不存在交叠,此时,可先在第一基板1上形成透明电极19,再形成接地电极3,也可先在第一基板1上形成接地电极3,再形成透明电极19;或者,当透明电极19与检测镂空部6交叠时,透明电极19与接地电极3异层设置,结合图13,透明电极19位于接地电极3朝向第一基板1的一侧,此时,先在第一基板1上形成透明电极19,再形成接地电极3,或,结合图14,透明电极19位于接地电极3背向第一基板1的一侧,此时,先在第一基板1上形成接地电极3,再形成透明电极19。
如此设置,基于透明电极19的透光特性,在其不会对检测光线造成遮挡,仍能保证正常的检测的前提下,通过令透明电极19与接地电极3电连接,还能提高接地电极3上信号传输的连续性,以及 提高接地电极3的屏蔽性能。
可选地,结合图17,步骤S1之后,制作方法还包括:在接地电极3背向第一基板1的一侧,沉积一层氮化硅或氧化硅等无机材料以形成保护层20,用以保护接地电极3不被氧化、不被腐蚀,并且令保护层20中与检测镂空部6交叠的位置镂空设置,从而使得检测光线经由检测镂空部6射出时无需透过保护层20,降低了保护层20对检测光线的损耗,提高了检测精度。
本发明实施例还提供了一种天线,如图20和图21所示,图20为本发明实施例所提供的天线的结构示意图,图21为图20沿F1-F2方向的剖视图,该天线包括:上述移相器100;馈电线200,馈电线200设于第一基板1背向第二基板2的一侧,馈电线200与射频信号源400电连接,用于接收射频信号源400提供的射频信号;辐射体300,辐射体300设于第一基板1背向第二基板2的一侧,用于将移相后的射频信号辐射出去。
由于本发明实施例所提供的天线包括上述移相器100,因此,采用该天线,能够提高其应用的移相器的良率,提高天线所辐射波束的辐射角度的准确性,优化天线的辐射性能。
进一步地,请再次参见图20和图21,地电极上还设有用于耦合射频信号的第一耦合镂空部7和第二耦合镂空部8;在垂直于第一基板1所在平面的方向上,馈电线200与第一耦合镂空部7交叠,辐射体300与第二耦合镂空部8交叠,且馈电线200和辐射体300与检测镂空部6均不交叠。
具体地,馈电线200上传输的射频信号通过接地电极3的第一耦合镂空部7耦合到传输电极4,液晶5在接地电极3和传输电极4所形成的电场的作用下发生旋转,液晶5的介电常数发生变化,对传输电极4上传输的射频信号进行移相,移相后的射频信号通过接地电极3的第二耦合镂空部8耦合到辐射体300上,经由辐射体300辐射出去。而且,通过令馈电线200和辐射体300与检测镂空部6不交叠,还能避免馈电线200和辐射体300对检测镂空部6造成遮 挡,提高检测的可靠性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (25)

  1. 一种移相器,其特征在于,包括:
    相对设置的第一基板和第二基板;
    接地电极,所述接地电极设于所述第一基板朝向所述第二基板的一侧;
    传输电极,所述传输电极设于所述第二基板朝向第一基板的一侧,在垂直于所述第二基板所在平面的方向上,所述传输电极与所述接地电极交叠;
    液晶,所述液晶填充在所述第一基板和所述第二基板之间;
    其中,所述接地电极具有检测镂空部,在垂直于所述第二基板所在平面的方向上,所述检测镂空部的至少部分与所述传输电极不交叠。
  2. 根据权利要求1所述的移相器,其特征在于,所述接地电极和所述传输电极由不透光金属材料形成。
  3. 根据权利要求1所述的移相器,其特征在于,所述接地电极上还设有用于耦合射频信号的第一耦合镂空部和第二耦合镂空部;
    所述传输电极包括主电极、第一电极和第二电极,所述主电极分别与所述第一电极和所述第二电极连通;在垂直所述第一基板所在平面的方向上,所述第一电极与所述第一耦合镂空部交叠,所述第二电极与所述第二耦合镂空部交叠。
  4. 根据权利要求3所述的移相器,其特征在于,所述主电极为面状结构,在垂直于所述第二基板所在平面的方向上,所述检测镂空部与所述主电极不交叠,且所述检测镂空部与所述传输电极的边缘之间的间距为L,0≤L≤2mm。
  5. 根据权利要求3所述的移相器,其特征在于,所述主电极为面状结构,在垂直于所述第二基板所在平面的方向上,所述检测镂空部的部分与所述主电极交叠,所述检测镂空部的其余部分与所述主电极不交叠。
  6. 根据权利要求3所述的移相器,其特征在于,所述主电极为 面状结构,所述主电极上设有开口,在垂直所述第二基板所在平面的方向上,所述检测镂空部与所述开口交叠。
  7. 根据权利要求6所述的移相器,其特征在于,所述开口覆盖所述主电极的部分边缘。
  8. 根据权利要求3所述的移相器,其特征在于,所述主电极为梳齿状结构,所述主电极包括主电极条和多个齿电极条,其中,所述主电极条沿第一方向延伸,多个所述齿电极条沿所述第一方向排列,每个所述齿电极条沿第二方向延伸,所述第一方向和所述第二方向相交;
    在垂直于所述第二基板所在平面的方向上,至少部分所述检测镂空部与相邻两个所述齿电极条之间的缝隙交叠。
  9. 根据权利要求3所述的移相器,其特征在于,所述主电极为梳齿状结构,所述主电极包括主电极条、多个第一齿电极条和多个第二齿电极条,其中,所述主电极条沿第一方向延伸,所述第一齿电极条和所述第二齿电极条分别位于所述主电极条的两侧,多个所述第一齿电极条沿所述第一方向排列,每个所述第一齿电极条沿第二方向延伸,多个所述第二齿电极条沿所述第一方向排列,每个所述第二齿电极条沿第二方向延伸,所述第一方向和所述第二方向相交;
    在垂直于所述第二基板所在平面的方向上,至少部分所述检测镂空部与相邻两个所述第一齿电极条之间的缝隙,和/或,相邻两个所述第二齿电极条之间的缝隙交叠。
  10. 根据权利要求3所述的移相器,其特征在于,所述主电极为蛇状结构,所述主电极包括沿第二方向延伸的第一电极条和沿第一方向延伸的第二电极条,相邻两个所述第一电极条通过所述第二电极条连通,所述第一方向和所述第二方向相交;
    在垂直于所述第二基板所在平面的方向上,至少部分所述检测镂空部与相邻两个所述第一电极条之间的缝隙交叠。
  11. 根据权利要求8~10任一项所述的移相器,其特征在于,所述检测镂空部在所述第一方向上的宽度小于与其交叠的所述缝隙在 所述第一方向上的宽度。
  12. 根据权利要求1所述的移相器,其特征在于,所述检测镂空部在第一方向上的宽度为L1,所述检测镂空部在第二方向上的宽度为L2,L1≥5μm,L2≥5μm。
  13. 根据权利要求1所述的移相器,其特征在于,所述移相器还包括透明电极,所述透明电极与所述接地电极电连接,在垂直于所述第一基板所在平面的方向上,所述透明电极覆盖所述检测镂空部,或,所述透明电极与所述检测镂空部交叠。
  14. 根据权利要求13所述的移相器,其特征在于,所述透明电极位于所述检测镂空部内;
    或,所述透明电极位于所述接地电极朝向所述第一基板的一侧;
    或,所述透明电极位于所述接地电极背向所述第一基板的一侧。
  15. 根据权利要求1所述的移相器,其特征在于,所述接地电极背向所述第一基板的一侧设置有保护层,所述保护层中与所述检测镂空部交叠的位置镂空设置。
  16. 一种移相器的制作方法,其特征在于,包括:
    提供第一基板,在所述第一基板上形成具有检测镂空部的接地电极;
    提供第二基板,在所述第二基板上形成传输电极;
    将所述第一基板和所述第二基板对盒、填充液晶,其中,在垂直于所述第二基板所在平面的方向上,所述接地电极与所述传输电极交叠,且所述检测镂空部与所述传输电极不交叠。
  17. 根据权利要求16所述的制作方法,其特征在于,将所述第一基板和所述第二基板对盒之后,所述制作方法还包括:
    提供检测光线,利用透过所述检测镂空部的检测光线对所述移相器进行检测。
  18. 根据权利要求16所述的制作方法,其特征在于,在所述第一基板上形成具有所述检测镂空部的所述接地电极的过程包括:
    在所述第一基板上沉积用于形成所述接地电极的金属材料;
    对所述金属材料进行图案化,形成具有所述检测镂空部、用于耦合射频信号的第一耦合镂空部和第二耦合镂空部的接地电极;
    在所述第二基板上形成所述传输电极的过程包括:
    在所述第二基板上沉积用于形成所述传输电极的金属材料;
    对所述金属材料进行图案化,形成主电极、第一电极和第二电极,其中,所述主电极分别与所述第一电极和所述第二电极连通;
    并且,将所述第一基板和所述第二基板对盒之后,在垂直所述第一基板所在平面的方向上,所述第一电极与所述第一耦合镂空部交叠,所述第二电极的与所述第二耦合镂空部交叠。
  19. 根据权利要求18所述的制作方法,其特征在于,形成所述主电极的过程包括:形成面状结构的所述主电极;
    将所述第一基板和所述第二基板对盒之后,在垂直于所述第二基板所在平面的方向上,所述检测镂空部与所述主电极不交叠,且所述检测镂空部与所述传输电极的边缘之间的间距为L,0≤L≤2mm;
    或,将所述第一基板和所述第二基板对盒之后,在垂直于所述第二基板所在平面的方向上,所述检测镂空部的部分与所述主电极交叠,所述检测镂空部的其余部分与所述主电极不交叠;
    或,所述主电极上开设有开口,将所述第一基板和所述第二基板对盒之后,在垂直所述第二基板所在平面的方向上,所述检测镂空部与所述开口交叠。
  20. 根据权利要求18所述的制作方法,其特征在于,形成所述主电极的过程包括:形成梳齿状结构的所述主电极,所述主电极包括主电极条和多个齿电极条,其中,所述主电极条沿第一方向延伸,多个所述齿电极条沿所述第一方向排列,每个所述齿电极条沿第二方向延伸,所述第一方向和所述第二方向相交;
    将所述第一基板和所述第二基板对盒之后,在垂直于所述第二基板所在平面的方向上,至少部分所述检测镂空部与相邻两个所述齿电极条之间的缝隙交叠。
  21. 根据权利要求18所述的制作方法,其特征在于,形成所述 主电极的过程包括:形成梳齿状结构的所述主电极,所述主电极包括主电极条、多个第一齿电极条和多个第二齿电极条,其中,所述主电极条沿第一方向延伸,所述第一齿电极条和所述第二齿电极条分别位于所述主电极条的两侧,多个所述第一齿电极条沿所述第一方向排列,每个所述第一齿电极条沿第二方向延伸,多个所述第二齿电极条沿所述第一方向排列,每个所述第二齿电极条沿第二方向延伸,所述第一方向和所述第二方向相交;
    将所述第一基板和所述第二基板对盒之后,在垂直于所述第二基板所在平面的方向上,至少部分所述检测镂空部与相邻两个所述第一齿电极条之间的缝隙、以及与相邻两个所述第二齿电极条之间的缝隙交叠。
  22. 根据权利要求18所述的制作方法,其特征在于,形成所述主电极的过程包括:形成蛇状结构的所述主电极,所述主电极包括沿第二方向延伸的第一电极条和沿第一方向延伸的第二电极条,相邻两个所述第一电极条通过所述第二电极条连通,所述第一方向和所述第二方向相交;
    将所述第一基板和所述第二基板对盒之后,在垂直于所述第二基板所在平面的方向上,至少部分所述检测镂空部与相邻两个所述第一电极条之间的缝隙交叠。
  23. 根据权利要求16所述的制作方法,其特征在于,所述制作方法还包括:
    形成透明电极,所述透明电极与所述接地电极电连接,并且,在垂直于所述第一基板所在平面的方向上,所述透明电极覆盖所述检测镂空部,或,所述透明电极与所述检测镂空部交叠。
  24. 根据权利要求16所述的制作方法,其特征在于,在所述第一基板上形成具有所述检测镂空部的所述接地电极之后,所述制作方法还包括:在所述接地电极背向所述第一基板的一侧形成保护层,所述保护层中中与所述检测镂空部交叠的位置镂空设置。
  25. 一种天线,其特征在于,包括:
    如权利要求1~15任一项所述的移相器;
    馈电线,所述馈电线设于第一基板背向第二基板的一侧,用于接收射频信号;
    辐射体,所述辐射体设于所述第一基板背向所述第二基板的一侧,用于将移相后的射频信号辐射出去。
PCT/CN2020/110756 2020-07-24 2020-08-24 移相器及其制作方法、天线 WO2022016646A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/425,572 US11791553B2 (en) 2020-07-24 2020-08-24 Phase shifter, fabrication method thereof, and antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010721226.6A CN113972453B (zh) 2020-07-24 2020-07-24 移相器及其制作方法、天线
CN202010721226.6 2020-07-24

Publications (1)

Publication Number Publication Date
WO2022016646A1 true WO2022016646A1 (zh) 2022-01-27

Family

ID=79585802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110756 WO2022016646A1 (zh) 2020-07-24 2020-08-24 移相器及其制作方法、天线

Country Status (3)

Country Link
US (1) US11791553B2 (zh)
CN (1) CN113972453B (zh)
WO (1) WO2022016646A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4123837A1 (en) * 2021-07-23 2023-01-25 ALCAN Systems GmbH Phased array antenna device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011106831A1 (en) * 2010-03-02 2011-09-09 The University Of Sydney Phase shifter and photonic controlled beam former for phased array antennas
CN104236857A (zh) * 2014-09-11 2014-12-24 电子科技大学 基于四分之一波片法的液晶光学移相分布检测系统及方法
CN106773338A (zh) * 2017-01-16 2017-05-31 京东方科技集团股份有限公司 一种液晶移相器
CN108710232A (zh) * 2018-07-20 2018-10-26 成都天马微电子有限公司 一种液晶移相单元及其制作方法、液晶移相器、天线
CN110824735A (zh) * 2018-08-10 2020-02-21 京东方科技集团股份有限公司 液晶移相器及液晶天线

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL176000A (en) * 2006-05-30 2013-01-31 Kilolambda Tech Ltd Optically driven antenna
CN101762809B (zh) * 2009-12-29 2012-08-08 江苏徕兹光电科技有限公司 基于液晶光阀原理相位测量的校准方法、校准装置和测距装置
CN105739211B (zh) * 2016-04-29 2019-03-26 西安空间无线电技术研究所 一种用于双频液晶光学相控阵波束控制的电压控制方法
CN106154603B (zh) * 2016-07-29 2019-12-06 合肥工业大学 一种液晶移相单元及其构成的相控天线
CN106054442B (zh) 2016-08-18 2019-04-09 京东方科技集团股份有限公司 显示面板及其盒厚测试方法、显示装置
CN107706502A (zh) * 2017-09-29 2018-02-16 京东方科技集团股份有限公司 天线单元及其制造方法、液晶天线、通信设备
CN108398816B (zh) * 2018-03-26 2020-12-29 北京京东方专用显示科技有限公司 一种液晶移相器及其制作方法、移相方法
CN109164608B (zh) 2018-09-25 2022-02-25 京东方科技集团股份有限公司 移相器、天线及移相器的控制方法
CN113540767B (zh) * 2020-04-15 2022-12-16 上海天马微电子有限公司 相控阵天线及其控制方法
CN113871818B (zh) * 2020-06-30 2022-07-26 上海天马微电子有限公司 移相器及其制作方法、天线及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011106831A1 (en) * 2010-03-02 2011-09-09 The University Of Sydney Phase shifter and photonic controlled beam former for phased array antennas
CN104236857A (zh) * 2014-09-11 2014-12-24 电子科技大学 基于四分之一波片法的液晶光学移相分布检测系统及方法
CN106773338A (zh) * 2017-01-16 2017-05-31 京东方科技集团股份有限公司 一种液晶移相器
CN108710232A (zh) * 2018-07-20 2018-10-26 成都天马微电子有限公司 一种液晶移相单元及其制作方法、液晶移相器、天线
CN110824735A (zh) * 2018-08-10 2020-02-21 京东方科技集团股份有限公司 液晶移相器及液晶天线

Also Published As

Publication number Publication date
CN113972453A (zh) 2022-01-25
US11791553B2 (en) 2023-10-17
US20220320731A1 (en) 2022-10-06
CN113972453B (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2019210825A1 (zh) 液晶天线及其制备方法和电子设备
US7795621B2 (en) Thin film transistor panel
US20210367314A1 (en) Liquid crystal phase shifting device, manufacturing method therefor, liquid crystal phase shifter, and antenna
US11264684B2 (en) Liquid crystal phase shifter comprising a liquid crystal cell with first and second substrates separated by a partition plate having first and second microstrips on opposing surfaces of the plate
TWI742758B (zh) 包含天線的顯示裝置及其製造方法
WO2022016646A1 (zh) 移相器及其制作方法、天线
US20190148824A1 (en) Tft substrate, scanned antenna having tft substrate, and method for manufacturing tft substrate
WO2018221327A1 (ja) Tft基板およびtft基板を備えた走査アンテナ
JP2019134032A (ja) Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法
WO2022147747A9 (zh) 移相器及天线
WO2020071316A1 (ja) 平面アンテナ及び窓ガラス
US11387260B2 (en) TFT substrate, scanning antenna provided with TFT substrate, and manufacturing method of TFT substrate
US11223142B2 (en) TFT substrate and scanning antenna provided with TFT substrate
CN113594686B (zh) 天线及其制作方法
CN114256571B (zh) 液晶移相器及液晶天线
CN113937439B (zh) 移相器的制作方法及移相器、天线
US20220299561A1 (en) A method of inspecting a radio frequency device and a radio frequency device
US11637370B2 (en) Scanning antenna and method for manufacturing scanning antenna
JP2013138356A (ja) 平面線路導波管変換器
US11848503B2 (en) Scanning antenna and method for manufacturing scanning antenna
US20210088824A1 (en) Display device and touch display device
JP6578334B2 (ja) Tft基板およびtft基板を備えた走査アンテナ
WO2023225984A1 (zh) 阵列基板、显示面板和用于制造阵列基板的方法
EP4145636A1 (en) Electromagnetic wave transmission structure
CN118116912A (zh) 显示模组、显示基板、显示装置和厚度监测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946137

Country of ref document: EP

Kind code of ref document: A1