WO2022016621A1 - Oled 显示面板及电子设备 - Google Patents

Oled 显示面板及电子设备 Download PDF

Info

Publication number
WO2022016621A1
WO2022016621A1 PCT/CN2020/107280 CN2020107280W WO2022016621A1 WO 2022016621 A1 WO2022016621 A1 WO 2022016621A1 CN 2020107280 W CN2020107280 W CN 2020107280W WO 2022016621 A1 WO2022016621 A1 WO 2022016621A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
support column
substrate
common electrode
pixel definition
Prior art date
Application number
PCT/CN2020/107280
Other languages
English (en)
French (fr)
Inventor
叶剑
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US17/254,270 priority Critical patent/US11844261B2/en
Publication of WO2022016621A1 publication Critical patent/WO2022016621A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present application relates to the field of display, and in particular, to an OLED display panel and an electronic device.
  • Capacitive touch screens are widely used in various electronic interaction scene devices due to their high durability, long life, and support for multi-touch functions.
  • the working principle of the capacitive touch screen is to detect the specific position of the finger touch by detecting the change of the capacitance at the position where the finger touches.
  • the touch electrode is usually made directly in the thin film package
  • the thin film encapsulation layer usually less than 10 microns in thickness
  • the distance between the touch electrode and the cathode is small, and the parasitic capacitance between the touch electrode and the cathode is large, making the remote end of the large-size touch screen
  • the RC delay of the touch electrode channel is large, so that the scanning frequency of the touch electrode is greatly reduced, and the key performance such as the touch point reporting rate is reduced.
  • the support column of this structure maintains the continuity of the cathode material, so that the cathode located above the support column is The distance between the touch electrode and the touch electrode is smaller than other positions, and the parasitic capacitance between the touch electrode above the support column and the cathode is larger than other positions, which further increases the RC delay of the touch signal and affects the touch The touch reporting rate and sensitivity of the screen.
  • the existing AMOLED On-cell display screen has the problem of low touch reporting rate, which needs to be solved.
  • the present application provides an OLED display panel and an electronic device to improve the problem of low touch reporting rate in the existing AMOLED On-cell display screen.
  • the present application provides an OLED display panel, which includes:
  • a light-emitting functional layer, formed on the driving circuit layer, includes a pixel electrode layer, a pixel definition layer, a support column, a light-emitting material layer, and a common electrode layer that are arranged in sequence in a direction away from the substrate, the common electrode layer covering the pixel definition layer, the support pillar, and the luminescent material layer;
  • the touch layer is formed on the encapsulation layer and includes touch electrodes, the touch electrodes are in a grid structure surrounding the luminescent material layer, and the projection of the touch electrodes on the substrate is consistent with all the touch electrodes.
  • the projections of the support pillars on the substrate at least partially overlap;
  • the support column includes a lower bottom surface in contact with the pixel definition layer, an upper bottom surface away from the pixel definition layer, and a side surface connecting the upper bottom surface and the lower bottom surface, and there is at least one of the side surfaces, so The included angle between the side surface and the upper bottom surface is less than or equal to 90 degrees, and/or the included angle between the side surface and the lower bottom surface is greater than or equal to 90 degrees;
  • the common electrode layer includes a suspension electrode covering the upper bottom surface, and A common electrode covering the pixel definition layer and the light-emitting material layer, and the floating electrode is disconnected from the common electrode.
  • the projection of the grid lines of the touch electrodes on the substrate passes through the projection of the support column on the substrate.
  • the horizontal height of the support column relative to the pixel definition layer ranges from 1.5 to 2 micrometers, and the thickness of the common electrode layer ranges from 15 to 20 nanometers.
  • the geometric shape of the support column is a pseudo-column.
  • the geometric shape of the support column is a circular truncated cone
  • the lower bottom surface of the circular truncated truncated cone is in contact with the pixel definition layer
  • the projection of the lower bottom surface of the circular truncated cone on the substrate is located at The upper and bottom surfaces of the circular frustum are in the projection on the substrate.
  • the geometric shape of the support column is a prism
  • the lower bottom surface of the prism is in contact with the pixel definition layer
  • the lower bottom surface of the prism is on the substrate.
  • the projection is located in the projection of the upper bottom surface of the prism on the substrate.
  • the geometric shape of the support column is a ball table
  • the lower bottom surface of the ball table is in contact with the pixel definition layer
  • the projection of the lower bottom surface of the ball table on the substrate is located at The upper bottom surface of the table is in the projection on the substrate.
  • the geometric shape of the support column is a tower, the lower bottom surface of the tower is in contact with the pixel definition layer, and the lower bottom surface of the tower is on the substrate.
  • the projection is located in the projection of the upper bottom surface of the stage tower on the substrate.
  • the geometric shape of the support column is a cylinder.
  • the geometric shape of the support column is a prism.
  • the support column has a curved surface with at least one side concave, and the included angle between the curved surface and the upper bottom surface and the included angle with the lower bottom surface are acute angles.
  • the support column is a non-quasi-column body.
  • the present application also provides an electronic device, which includes an OLED display panel, and the OLED display panel includes:
  • a light-emitting functional layer, formed on the driving circuit layer, includes a pixel electrode layer, a pixel definition layer, a support column, a light-emitting material layer, and a common electrode layer that are arranged in sequence in a direction away from the substrate, the common electrode layer covering the pixel definition layer, the support pillar, and the luminescent material layer;
  • the touch layer is formed on the encapsulation layer and includes touch electrodes, the touch electrodes are in a grid structure surrounding the luminescent material layer, and the projection of the touch electrodes on the substrate is consistent with all the touch electrodes.
  • the projections of the support pillars on the substrate at least partially overlap;
  • the support column includes a lower bottom surface in contact with the pixel definition layer, an upper bottom surface away from the pixel definition layer, and a side surface connecting the upper bottom surface and the lower bottom surface, and there is at least one of the side surfaces, so The included angle between the side surface and the upper bottom surface is less than or equal to 90 degrees, and/or the included angle between the side surface and the lower bottom surface is greater than or equal to 90 degrees;
  • the common electrode layer includes a suspension electrode covering the upper bottom surface, and A common electrode covering the pixel definition layer and the light-emitting material layer, and the floating electrode is disconnected from the common electrode.
  • the projection of the grid lines of the touch electrodes on the substrate passes through the projection of the support column on the substrate.
  • the horizontal height of the support column relative to the pixel definition layer is in the range of 1.5-2 microns, and the thickness of the common electrode layer is in the range of 15-20 nanometers.
  • the geometric shape of the support column is a pseudo-cylinder.
  • the geometric shape of the support column is any one of a circular truncated cone, a prismatic table, a ball table, and a platform tower, and the projection of the lower bottom surface of the support column on the substrate is located in the The upper bottom surface of the support column is in the projection on the substrate.
  • the geometric shape of the support column is a cylinder or a prism.
  • At least one side surface of the support column is a concave curved surface, and the included angle between the curved surface and the upper bottom surface and the included angle with the lower bottom surface are acute angles.
  • the geometric shape of the support column is a non-quasi-cylindrical body.
  • the application provides an OLED display panel and an electronic device.
  • the OLED display panel includes: a substrate; a driving circuit layer formed on the substrate; a light-emitting functional layer formed on the driving circuit layer, including a A pixel electrode layer, a pixel definition layer, a support column, a luminescent material layer, and a common electrode layer are sequentially arranged in a direction away from the substrate, and the common electrode layer covers the pixel definition layer, the support column, and the a luminescent material layer; an encapsulation layer, formed on the common electrode layer; a touch layer, formed on the encapsulation layer, including a touch electrode, and the touch electrode is a grid structure surrounding the luminescent material layer,
  • the projection of the touch electrodes on the substrate at least partially overlaps with the projection of the support column on the substrate; wherein, the support column includes a lower bottom surface in contact with the pixel definition layer, Away from the upper bottom surface of the pixel definition layer and the side surface connecting the upper bottom surface and the lower bottom surface
  • the common electrode layer material By improving the design of the structure of the support column, there is no smooth transition between the support column and the pixel definition layer. After the common electrode layer material is evaporated, the common electrode layer material on the bottom surface of the support column is covered. , it is impossible to form a continuous film layer with the common electrode layer material covering the pixel definition layer and the luminescent material layer, so that the common electrode layer material covering the upper and bottom surfaces of the support column forms a floating electrode, covering the pixel definition layer.
  • a common electrode is formed with the common electrode layer material of the luminescent material layer, and the floating electrode is disconnected from the common electrode; the floating electrode does not receive electrical signals, which reduces the contact between the touch electrode and the common electrode. Therefore, the touch reporting rate and the touch sensitivity of the OLED display panel are improved.
  • FIG. 1 is a schematic diagram of a first structure of an OLED display panel provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a second structure of an OLED display panel provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a third structure of the OLED display panel provided by the embodiment of the present application.
  • FIG. 4 is a first enlarged schematic view of the area 101 in FIG. 1 .
  • FIG. 5 is a second enlarged schematic view of the area 101 in FIG. 1 .
  • FIG. 6 is a third enlarged schematic view of the area 101 in FIG. 1 .
  • FIG. 7 is a fourth enlarged schematic view of the area 101 in FIG. 1 .
  • FIG. 8 is a fifth enlarged schematic view of the area 101 in FIG. 1 .
  • FIG. 9 is a sixth enlarged schematic view of the area 101 in FIG. 1 .
  • FIG. 10 is a schematic structural diagram of a touch layer provided by an embodiment of the present application.
  • FIG. 11 is a schematic plan view of a touch electrode provided by an embodiment of the present application.
  • the present application provides an OLED display panel that can alleviate this problem.
  • FIG. 1 shows a first structural schematic diagram of an OLED display panel provided by an embodiment of the present application.
  • the OLED display panel provided by the embodiment of the present application includes:
  • the driving circuit layer 120 is formed on the substrate 110;
  • the light-emitting functional layer 130 is formed on the driving circuit layer 120 and includes a pixel electrode layer 131 , a pixel definition layer 132 , a support column 133 , a light-emitting material layer 134 , and a common electrode that are sequentially arranged in a direction away from the substrate 110 .
  • layer 135, the common electrode 135 layer covers the pixel definition layer 132, the support column 133, and the light-emitting material layer 134;
  • the encapsulation layer 140 is formed on the common electrode layer 135;
  • the touch layer 150 is formed on the encapsulation layer 140 and includes touch electrodes 151.
  • the touch electrodes 151 are in a grid structure surrounding the light-emitting material layer 134.
  • the touch electrodes 151 are on the substrate.
  • the projection on the substrate 110 at least partially overlaps with the projection of the support column 133 on the substrate 110;
  • the support column 133 includes a lower bottom surface in contact with the pixel definition layer 132, an upper bottom surface away from the pixel definition layer 132, and a side surface connecting the upper bottom surface and the lower bottom surface, and there is at least one of the Side, the angle between the side and the upper bottom is less than or equal to 90 degrees, and/or the angle between the side and the lower bottom is greater than or equal to 90 degrees;
  • the common electrode layer 135 includes a The floating electrode 1351 and the common electrode 1352 covering the pixel definition layer 132 and the light-emitting material layer 134 are disconnected from the common electrode 1352 .
  • the OLED display panel includes a support column, and the support column includes a lower bottom surface in contact with the pixel definition layer, an upper bottom surface away from the pixel definition layer, and a connection with the pixel definition layer.
  • the common electrode layer includes a suspension electrode covering the upper bottom surface, and a common electrode covering the pixel definition layer and the luminescent material layer, and the suspension electrode is disconnected from the common electrode;
  • the structural improvement design of the support column makes there no smooth transition between the support column and the pixel definition layer.
  • the common electrode layer material on the bottom surface of the support column can not be covered with the common electrode layer material.
  • the common electrode layer material of the pixel definition layer and the light-emitting material layer forms a continuous film layer, so that the common electrode layer material covering the upper and bottom surfaces of the support pillars forms a floating electrode, covering the pixel definition layer and the light-emitting material layer.
  • the material of the common electrode layer of the material layer forms a common electrode, and the floating electrode is disconnected from the common electrode; the floating electrode does not receive electrical signals, which reduces the parasitic capacitance between the touch electrode and the common electrode , thereby improving the touch reporting rate and touch sensitivity of the OLED display panel.
  • FIG. 1 to FIG. 10 For the specific structure of the OLED display panel provided by the embodiment of the present application, please refer to FIG. 1 to FIG. 10 , wherein,
  • the substrate 110 may be a rigid substrate or a flexible substrate.
  • the rigid substrate is generally a glass substrate composed of aluminosilicates and other components;
  • the flexible substrate generally includes a first organic substrate, an inorganic substrate, and a second inorganic substrate, the first organic substrate
  • the substrate and the second organic substrate are used for realizing the flexible performance of the OLED display panel, the inorganic substrate is used for maintaining the supporting performance of the flexible substrate, and preventing water and oxygen outside the OLED display panel from entering the display OLED display panel.
  • the driving circuit layer 120 is disposed on the substrate 110 .
  • the driving circuit layer 120 includes thin film transistors and metal wires arranged in an array.
  • the thin film transistors are connected with the metal wires to form a driving circuit of the OLED display panel, and are used to drive the light-emitting functional layer 130 to perform light-emitting display.
  • the driving circuit layer 120 includes a first buffer layer 121, a semiconductor active layer 122, a first insulating layer 123, a gate metal layer 124, a second insulating layer 125, a source and drain layer 126, Planarization layer 127 .
  • the semiconductor active layer 122 is patterned to form the channel of the thin film transistor, the gate metal layer 124 is patterned to form the gate of the thin film transistor and the scan line of the driving circuit, the source and drain layers 126 are patterned The source and drain electrodes of the thin film transistors and the data lines and power lines of the driving circuit are formed by chemically forming the thin film transistors.
  • the planarization layer 127 covers the second insulating layer 125 and the source and drain layers 126 and is used for planarizing the driving circuit layer 120 to provide a planar substrate for the preparation of the pixel electrode layer 131 .
  • the material of the planarization layer 127 is usually organic.
  • the thin film transistor is a thin film transistor with a top gate structure, and in other embodiments, the thin film transistor may also be a thin film transistor with a bottom gate structure; in the implementation shown in FIG. 1 , In an example, the thin film transistor is a thin film transistor with a single gate structure, and in other embodiments, the thin film transistor may also be a thin film transistor with a double gate structure or a triple gate structure, which is not limited herein.
  • the light-emitting functional layer 130 includes a pixel electrode layer 131 , a pixel definition layer 132 , a support column 133 , a light-emitting material layer 134 , and a common electrode layer 135 , which are sequentially arranged in a direction away from the substrate 110 .
  • the pixel electrode layer 131 is patterned to form a pixel electrode 1311 ;
  • the pixel definition layer 132 is patterned to form a pixel definition area 1321 , and the pixel definition area 1321 corresponds to the pixel electrode 1311 and is located on and exposed to the pixel electrode 1311
  • the pixel electrode 1311 ; the luminescent material layer 134 is formed in the pixel definition area 1321 and is in contact with the pixel electrode 1311 .
  • the support column 133 is formed on the side of the pixel definition layer 132 away from the substrate 110 .
  • the support column 133 includes an upper bottom surface, a lower bottom surface, and a connection to the upper bottom surface. and the side surface of the lower bottom surface, the lower bottom surface is in contact with the pixel definition layer 132, the upper bottom surface is away from the pixel definition layer 132, the angle between the side surface and the upper bottom surface is less than or equal to 90 degrees, and /or the included angle between the side surface and the lower bottom surface is greater than or equal to 90 degrees.
  • the support column 133 and the pixel definition layer 132 may be integrally formed or separately formed.
  • the height of the support column is in the range of 1.5-2.0 microns, and the diameter is in the range of 4-6 microns.
  • the common electrode layer 135 covers the pixel definition layer 132 , the support pillars 133 , and the light-emitting material layer 134 .
  • the thickness of the common electrode layer 135 is 15-20 nanometers, which is much smaller than the height of the support pillars 133 .
  • the support column 133 includes a lower bottom surface in contact with the pixel definition layer 132, an upper bottom surface away from the pixel definition layer 132, and a side surface connecting the upper bottom surface and the lower bottom surface, the side surface is connected to the bottom surface.
  • the included angle of the upper bottom surface is less than or equal to 90 degrees, and/or the included angle between the side surface and the lower bottom surface is greater than or equal to 90 degrees.
  • the supporting column 133 designed in this shape makes the material of the common electrode layer covering the upper and bottom surfaces of the supporting column 133 after the evaporation of the common electrode layer material, so that the material of the common electrode layer covering the pixel definition layer 132 and the luminescent material layer 134 cannot be
  • the material of the common electrode layer forms a continuous film layer, so that the material of the common electrode layer covering the upper and bottom surfaces of the support pillars 133 forms the floating electrode 1351 , and the material of the common electrode layer covering the pixel definition layer 132 and the luminescent material layer 134 is formed
  • the common electrode 1352, the floating electrode 1351 is disconnected from the common electrode 1352, as shown in FIG. 1 to FIG. 9 .
  • the encapsulation layer 140 is formed on the common electrode layer 135 and is used to encapsulate the OLED display panel to prevent water and oxygen from entering the light-emitting functional layer 130.
  • the encapsulation layer 140 generally includes a first inorganic layer, A second inorganic layer, and an organic layer between the first inorganic layer and the second inorganic layer.
  • the touch layer 150 is formed on the encapsulation layer 140 and includes a second buffer layer 152 , a touch electrode 151 , an insulating layer 153 and a passivation layer 154 disposed in a direction away from the encapsulation layer.
  • FIG. 10 shows a schematic structural diagram of a touch layer provided by an embodiment of the present application.
  • the touch layer 150 includes a second buffer layer 152 , which is disposed in the second buffer layer.
  • the control electrode 1512 is connected to the same bridge electrode 1511 through a via hole, and covers the passivation layer 154 of the first touch electrode 1512 and the second touch electrode 1513 .
  • the first touch electrodes 1512 may be touch driving electrodes and the second touch electrodes 1513 may be touch sensing electrodes, or the first touch electrodes 1512 may be touch sensing electrodes and all
  • the second touch electrodes 1513 are touch drive electrodes.
  • FIG. 11 shows a schematic plan view of a touch electrode provided by an embodiment of the present application.
  • the touch electrode 151 is a grid structure, and the touch electrode 151 surrounds the Pixel lines, the area enclosed by the grid lines corresponds to the position of the luminescent material layer 134, that is, the grid lines of the touch electrodes 151 are located between the adjacent pixel definition areas 1321 and surround the The pixel definition area 1321 is set.
  • the support pillars 133 are also disposed between the adjacent pixel definition regions 1321 .
  • the projection of the touch electrodes 151 on the substrate 110 is the same as the projection of the support pillars 133 on the substrate 110 .
  • the projections exist at least partially coincident. Further, the projection of the grid lines of the touch electrodes 151 on the substrate 110 passes through the projection of the support pillars 133 on the substrate 110 .
  • the The suspension electrode 1351 is disconnected from the common electrode 1352, which greatly reduces the parasitic capacitance between the touch electrode and the common electrode, thereby improving the touch reporting rate and touch sensitivity of the OLED display panel. .
  • the support column 133 plays a supporting role in the OLED display panel, so the geometric shape of the support column 133 is generally a column with good supporting effect, which can be a pseudo-column.
  • a polyhedron in two parallel planes, the sides of the quasi-cylinder can be triangles, trapezoids, or parallelograms.
  • the two parallel planes of the pseudo-column refer to the upper bottom surface and the lower bottom surface of the support column 133 respectively.
  • the geometric shape of the support column 133 is a truncated cone. That is, the upper bottom surface and the lower bottom surface of the support column 133 are both circular, the side view of the support column 133 is a fan ring, and the projection of the upper bottom surface on the substrate 110 falls into the lower surface. The bottom surface is in the projection on the substrate 110 .
  • FIG. 4 is a first enlarged schematic view of the region 101 in FIG. 1 , that is, a first cross-sectional structural schematic view of the support column 133 .
  • the size of the cross section of the support column 133 gradually decreases in the direction away from the upper bottom surface, and there is no smooth transition between the support column 133 and the pixel definition layer 132 .
  • the common electrode layer material covering the upper and bottom surfaces of the support pillars 133 cannot form a continuous film layer with the common electrode layer material covering the pixel definition layer 132 and the luminescent material layer 134 .
  • the material of the common electrode layer covering the upper and bottom surfaces of the support pillars 133 forms the floating electrode 1351
  • the material of the common electrode layer covering the pixel definition layer 132 and the luminescent material layer 134 forms the common electrode 1352
  • the floating electrode 1351 and the The common electrode 1352 is disconnected; the floating electrode 1351 does not receive electrical signals, which reduces the parasitic capacitance between the touch electrode 151 and the common electrode 1352, thereby improving the touch control of the OLED display panel Dot rate and touch sensitivity.
  • the geometric shape of the support column 133 is an elliptical stage. That is, the upper bottom surface and the lower bottom surface of the support column 133 are both elliptical, the side view of the support column 133 is an irregular fan ring, and the projection of the upper bottom surface on the substrate 110 falls into The lower bottom surface is in the projection on the substrate 110 .
  • the cross-sectional structure of the support column 133 is also shown in FIG. 4 , and the first embodiment can be referred to for details, which will not be repeated here.
  • the geometric shape of the support column 133 is a pyramid. That is, the upper bottom surface and the lower bottom surface of the support column 133 are polygons with the same shape, and the polygons can be any one of triangles, quadrilaterals, pentagons, hexagons, etc., and can be regular polygons or not. Polygonal, the side surface of the support column 133 is a trapezoid, and the projection of the upper bottom surface on the substrate 110 falls within the projection of the lower bottom surface on the substrate 110 .
  • the cross-sectional structure of the support column 133 is also shown in FIG. 4 , and the first embodiment can be referred to for details, which will not be repeated here.
  • the geometric shape of the support column 133 is a cylinder. That is, the upper bottom surface and the lower bottom surface of the support column 133 are both circular, the side development view of the support column 133 is a rectangle, and the projection of the upper bottom surface on the substrate 110 is where the lower bottom surface is located. The projections on the substrate 110 are coincident.
  • FIG. 5 is a second enlarged schematic view of the area 101 in FIG. 1 , that is, a second schematic cross-sectional structure view of the support column 133 .
  • the side surfaces of the support pillars 133 are perpendicular to the upper surface of the pixel definition layer 132 , there is no smooth transition between the support pillars 133 and the pixel definition layer 132 , and the support pillars 133 are horizontal with respect to the pixel definition layer 132 .
  • the height is in the range of 1.5-2 microns, which is much larger than the thickness of the common electrode layer 135 by 15-20 nanometers.
  • the material of the common electrode layer covering the upper and bottom surfaces of the support pillars 133 forms the floating electrode 1351
  • the material of the common electrode layer covering the pixel definition layer 132 and the luminescent material layer 134 forms the common electrode 1352
  • the floating electrode 1351 and the The common electrode 1352 is disconnected; the floating electrode 1351 does not receive electrical signals, which reduces the parasitic capacitance between the touch electrode 151 and the common electrode 1352, thereby improving the touch control of the OLED display panel Dot rate and touch sensitivity.
  • the geometric shape of the support column 133 is a prism. That is, the upper bottom surface and the lower bottom surface of the support column 133 are polygons with the same shape, and the polygons can be any one of triangles, quadrilaterals, pentagons, hexagons, etc., and can be regular polygons or not.
  • the side surface of the support column 133 is a rectangle, and the projection of the upper bottom surface on the substrate 110 coincides with the projection of the lower bottom surface on the substrate 110 .
  • the cross-sectional structure of the support column 133 is also shown in FIG. 5 , and reference may be made to the fourth embodiment for details, which will not be repeated here.
  • the geometric shape of the support column 133 is a tower. That is, the upper bottom surface of the supporting column 133 is a polygon, and the lower bottom surface of the supporting column 133 is a polygon with twice the number of sides of the upper bottom surface, or the lower bottom surface of the supporting column 133 is a polygon, and the The upper bottom surface of the support column 133 is a polygon with twice the number of sides of the lower bottom surface, and the side edge of the support column 133 is a rectangle or a triangle; the projection of the upper bottom surface on the substrate 110 falls into the lower bottom surface within the projection on the substrate 110 .
  • the cross-sectional structure of the support column 133 is shown in FIG. 4 or FIG. 5 . For details, reference may be made to the first or the fourth embodiment, which will not be repeated here.
  • the geometric shape of the support column 133 is a ball table. That is, the upper bottom surface and the lower bottom surface of the support column 133 are both circular, the side surface of the support column 133 is a spherical surface, and the projection of the upper bottom surface on the substrate 110 falls into the lower bottom surface on the substrate. in the projection on the bottom 110 .
  • FIG. 6 is a third enlarged schematic view of the region 101 in FIG. 1 , that is, a third schematic cross-sectional structure view of the support column 133 .
  • the size of the cross section of the support column 133 gradually decreases in the direction away from the upper bottom surface, and there is no smooth transition between the support column 133 and the pixel definition layer 132 .
  • the common electrode layer material covering the upper and bottom surfaces of the support pillars 133 cannot form a continuous film layer with the common electrode layer material covering the pixel definition layer 132 and the luminescent material layer 134 .
  • the material of the common electrode layer covering the upper and bottom surfaces of the support pillars 133 forms the floating electrode 1351
  • the material of the common electrode layer covering the pixel definition layer 132 and the luminescent material layer 134 forms the common electrode 1352
  • the floating electrode 1351 and the The common electrode 1352 is disconnected; the floating electrode 1351 does not receive electrical signals, which reduces the parasitic capacitance between the touch electrode 151 and the common electrode 1352, thereby improving the touch control of the OLED display panel Dot rate and touch sensitivity.
  • the shape of the support column 133 can also be other such that there is at least one side surface, the angle between the side surface and the upper bottom surface is less than or equal to 90 degrees, and/or the side surface is A pseudo-cylinder with an included angle of the lower bottom surface greater than or equal to 90 degrees.
  • FIG. 7 is a fourth enlarged schematic view of the region 101 in FIG. 1 , that is, a fourth schematic cross-sectional structure view of the support column 133 .
  • the side surface of the support column 133 is a concave curved surface, the size of the cross section of the support column 133 first decreases and then increases in the direction away from the upper bottom surface, and there is no space between the support column 133 and the pixel definition layer 132 . Smooth transitions. After the common electrode layer material is evaporated, the common electrode layer material covering the upper and bottom surfaces of the support pillars 133 cannot form a continuous film layer with the common electrode layer material covering the pixel definition layer 132 and the luminescent material layer 134 .
  • the material of the common electrode layer covering the upper and bottom surfaces of the support pillars 133 forms the floating electrode 1351
  • the material of the common electrode layer covering the pixel definition layer 132 and the luminescent material layer 134 forms the common electrode 1352
  • the floating electrode 1351 and the The common electrode 1352 is disconnected; the floating electrode 1351 does not receive electrical signals, which reduces the parasitic capacitance between the touch electrode 151 and the common electrode 1352, thereby improving the touch control of the OLED display panel Dot rate and touch sensitivity.
  • the geometric shape of the support column 133 may also be non-quasi-cylindrical.
  • the support column 133 has at least one apex, the apex is located on the side surface, and is located outside the upper bottom surface and the lower bottom surface of the support column 133;
  • the projection on the substrate is located within the projection of the upper bottom surface of the support column 133 on the substrate.
  • FIG. 8 is a fifth enlarged schematic view of the region 101 in FIG. 1 , that is, a fifth schematic cross-sectional structure view of the support column 133 .
  • the side surface of the support column 133 is a concave folded surface. The size of the cross section of the support column 133 first decreases and then increases in the direction away from the upper bottom surface.
  • the distance between the support column 133 and the pixel definition layer 132 There are no smooth transitions.
  • the upper bottom surface and the lower bottom surface of the support column 133 can be geometric figures of any shape, as long as the common electrode layer covering the upper bottom surface of the support column 133 is disconnected from the common electrode layer covering the pixel definition layer.
  • the structural design is all within the protection scope of this embodiment.
  • the support column 133 has at least one vertex, and the vertex is located on the side surface and outside the upper bottom surface and the lower bottom surface of the support column 133;
  • the projection on the substrate is located outside the projection of the upper bottom surface of the support column 133 on the substrate.
  • FIG. 9 is a sixth enlarged schematic view of the region 101 in FIG. 1 , that is, a sixth schematic cross-sectional structure view of the support column 133 .
  • the side surface of the support column 133 is a convex folded surface.
  • the size of the cross section of the support column 133 increases first and then decreases in the direction away from the upper bottom surface.
  • the distance between the support column 133 and the pixel definition layer 132 There are no smooth transitions.
  • the upper bottom surface and the lower bottom surface of the support column 133 can be geometric figures of any shape, as long as the common electrode layer covering the upper bottom surface of the support column 133 is disconnected from the common electrode layer covering the pixel definition layer.
  • the structural design is all within the protection scope of this embodiment.
  • the vertex refers to the intersection of two or more mathematical objects such as edges, hyperedges, lines, line segments or curves, and the endpoint of an angle or vertex intersected by two edges or edges in a polyhedron or polygon is called a vertex. .
  • the vertex is a point formed by the intersection of the side surfaces of the support column.
  • FIG. 2 and FIG. 3 respectively show the second and third structural schematic diagrams of the OLED display panel provided by the embodiments of the present application.
  • the pixel definition layer 132 may also be patterned to form grooves 1322, and the grooves 1322 are disposed between at least two adjacent pixel definition regions 1321;
  • the projection of the touch electrodes 151 on the substrate 110 at least partially overlaps with the projection of the grooves 1322 on the substrate 110 . Further, the projection of the touch electrodes 151 on the substrate 110 falls within the projection of the grooves 1322 on the substrate 110 .
  • the common electrode 1352 is formed on the side and bottom of the groove 1322 , and the touch electrode 151 is formed directly above the groove 1322 . Therefore, the distance D1 between the touch electrodes 151 and the common electrodes 1352 located directly under the touch electrodes 151 is greater than the distance D1 between the touch electrodes 151 and the touch electrodes 1352 in the case where the grooves 1322 are not provided. The distance D2 of the common electrode 1352 directly below 151. The distance between the touch electrodes 151 and the common electrodes 135 is increased, the parasitic capacitance between the common electrodes 135 and the touch electrodes 151 is reduced, and the touch of the OLED display panel is improved. Control reporting point rate and touch sensitivity.
  • the depth of the groove 1322 is different, the distance between the touch electrode 151 and the common electrode 135 is different, the parasitic capacitance between the touch electrode 151 and the common electrode 135 is different, the OLED The touch reporting rate and touch sensitivity of the display panel will be different.
  • the grooves 1322 are located in the pixel definition layer 132 , and the bottoms of the grooves 1322 are located in the pixel definition layer 132 .
  • this embodiment increases the distance between the touch electrode 151 and the common electrode 135 , and the increased distance is from the bottom of the groove 1322 to the upper surface of the pixel definition layer 132 .
  • the distance between the common electrodes 135 and the touch electrodes 151 is reduced, and the touch reporting rate and the touch sensitivity of the OLED display panel are improved.
  • the grooves 1322 penetrate through the pixel definition layer 132 , and the bottoms of the grooves 1322 are located in the pixel definition layer 132 and the planarization layer 127 on the interface.
  • this embodiment further increases the distance between the touch electrode 151 and the common electrode 135 , and the increased distance is the thickness of the pixel definition layer 132 , and further reduces The parasitic capacitance between the common electrode 135 and the touch electrode 151 is reduced, and the touch reporting rate and the touch sensitivity of the OLED display panel are improved.
  • the grooves 1322 penetrate through the pixel definition layer 132 , and the bottoms of the grooves 1322 are located in the planarization layer 127 .
  • this embodiment further increases the distance between the touch electrode 151 and the common electrode 135, and the increased distance is defined by the bottom of the groove 1322 to the pixel.
  • the distance between the upper surface of the layer 132 further reduces the parasitic capacitance between the common electrode 135 and the touch electrode 151, and improves the touch reporting rate and the touch sensitivity of the OLED display panel.
  • the groove 1322 penetrates through the pixel definition layer 132 and the planarization layer 127 at the same time, and the bottom of the groove 1322 is located in the planarization layer 127 and the second insulating layer on the interface of layer 125.
  • this embodiment further increases the distance between the touch electrode 151 and the common electrode 135 , and the increased distance is the pixel definition layer 132 and the planarization layer.
  • the total thickness of the layer 127 further reduces the parasitic capacitance between the common electrode 135 and the touch electrode 151 , and improves the touch reporting rate and the touch sensitivity of the OLED display panel.
  • the groove 1322 includes a first groove portion 1323 and a second groove portion 1324, and the second groove portion 1324 is disposed in the first groove
  • the portion 1323 is away from the side of the encapsulation layer 140 .
  • the projection of the second groove portion 1324 on the substrate 110 falls within the projection of the first groove portion 1323 on the substrate 110 , and is located beyond the first groove portion 1323 .
  • the projected area on the substrate 110 is small, that is, the lateral opening L1 of the first groove portion 1323 is larger than the lateral opening L2 of the second groove portion 1324 .
  • the arrangement of the first groove portion 1323 and the second groove portion 1324 is the common electrode 135
  • the deposition on the side of the groove provides a transition step, which prevents the common electrode 135 from being located at the groove 1322 due to the depth of the groove 1322 being too large or the inclination angle of the side of the groove 1322 being too large. risk of disconnection.
  • Both the first groove portion 1323 and the second groove portion 1324 are located in the pixel definition layer 132 , and the bottom of the second groove portion 1324 is located in the pixel definition layer 132 .
  • this embodiment also increases the distance between the touch electrodes 151 and the common electrodes 135 , and the increased distance is from the bottom of the second groove portion 1324 to the The distance between the upper surface of the pixel definition layer 132 reduces the parasitic capacitance between the common electrode 135 and the touch electrode 151, and improves the touch reporting rate and touch sensitivity of the OLED display panel; The risk of disconnection of the common electrode 135 at the groove 1322 is avoided because the depth of the groove 1322 is too large or the inclination angle of the side of the groove 1322 is too large.
  • both the first groove portion 1323 and the second groove portion 1324 are located in the pixel definition layer 132, and the bottom of the second groove portion 1324 is located at the pixel On the interface between the definition layer 132 and the planarization layer 127 .
  • this embodiment further increases the distance between the touch electrode 151 and the common electrode 135 , and the increased distance is the thickness of the pixel definition layer 132 , which is further reduced The parasitic capacitance between the common electrode 135 and the touch electrode 151 is reduced, and the touch reporting rate and the touch sensitivity of the OLED display panel are improved.
  • the first groove portion 1323 penetrates through the pixel definition layer 132 , the second groove portion 1324 is located in the planarization layer 127 , and the second groove portion 1324 The bottom of the planarization layer 127 is located on the bottom.
  • this embodiment further increases the distance between the touch electrode 151 and the common electrode 135 , and the increased distance is from the bottom of the second groove portion 1324 to The distance between the upper surface of the pixel definition layer 132 further reduces the parasitic capacitance between the common electrode 135 and the touch electrode 151, and improves the touch reporting rate and the touch control of the OLED display panel. sensitivity.
  • the first groove portion 1323 penetrates the pixel definition layer 132
  • the second groove portion 1324 penetrates the planarization layer 127
  • the second groove portion 1324 penetrates the pixel definition layer 132 .
  • the bottom is located on the interface between the planarization layer 127 and the second insulating layer 125 .
  • this embodiment further increases the distance between the touch electrode 151 and the common electrode 135 , and the increased distance is the pixel definition layer 132 and the planarization layer.
  • the total thickness of the layer 127 further reduces the parasitic capacitance between the common electrode 135 and the touch electrode 151 , and improves the touch reporting rate and the touch sensitivity of the OLED display panel.
  • the planarization layer 127 includes a first planarization layer 1271 and a second planarization layer 1272, and the second planarization layer 1272 is disposed on the first planarization layer 1271 away from the On one side of the encapsulation layer 140 , the first groove portion 1323 penetrates the pixel definition layer 132 , the second groove portion 1324 penetrates the first planarization layer 1271 , and the second groove portion 1324 The bottom of is located on the interface between the first planarization layer 1271 and the second planarization layer 1272 .
  • the planarization layer 127 covers the source/drain layer 126, and the metal lines on the source/drain layer 126 are denser, when the bottom of the groove 1322 is located between the planarization layer 127 and the second When on the interface of the insulating layer 125 , there is a risk of short circuit between the common electrode 135 and the metal lines on the source and drain layers 126 .
  • the bottom of the second groove portion 1324 is located on the interface between the first planarization layer 1271 and the second planarization layer 1272 , and the common electrode 135 Deposition on the upper surface of the second planarization layer 1272 avoids the risk of short circuit between the common electrode 135 and the metal lines on the source and drain layers 126 .
  • the present application also provides an electronic device, the electronic device includes the OLED display panel provided in the embodiment of the present application, and the OLED display panel includes:
  • a light-emitting functional layer, formed on the driving circuit layer, includes a pixel electrode layer, a pixel definition layer, a support column, a light-emitting material layer, and a common electrode layer that are arranged in sequence in a direction away from the substrate, the common electrode layer covering the pixel definition layer, the support pillar, and the luminescent material layer;
  • the touch layer is formed on the encapsulation layer and includes touch electrodes, the touch electrodes are in a grid structure surrounding the luminescent material layer, and the projection of the touch electrodes on the substrate is consistent with all the touch electrodes.
  • the projections of the support pillars on the substrate at least partially overlap;
  • the support column includes a lower bottom surface in contact with the pixel definition layer, an upper bottom surface away from the pixel definition layer, and a side surface connecting the upper bottom surface and the lower bottom surface, and there is at least one of the side surfaces, so The included angle between the side surface and the upper bottom surface is less than or equal to 90 degrees, and/or the included angle between the side surface and the lower bottom surface is greater than or equal to 90 degrees;
  • the common electrode layer includes a suspension electrode covering the upper bottom surface, and A common electrode covering the pixel definition layer and the light-emitting material layer, and the floating electrode is disconnected from the common electrode.
  • This embodiment provides an electronic device, the electronic device includes the OLED display panel provided by the implementation of this application, the OLED display panel is designed by improving the structure of the support column, so that the support column and the pixel are defined There is no smooth transition between layers. After the common electrode layer material is evaporated, the common electrode layer material covering the upper and bottom surfaces of the support column cannot be formed with the common electrode layer material covering the pixel definition layer and the luminescent material layer.
  • a continuous film layer so that the material of the common electrode layer covering the upper and bottom surfaces of the support posts forms a suspended electrode, and the material of the common electrode layer covering the pixel definition layer and the luminescent material layer forms a common electrode, and the suspended electrode and all
  • the common electrode is disconnected; the floating electrode does not receive electrical signals, which reduces the parasitic capacitance between the touch electrode and the common electrode, thereby improving the touch reporting rate and the touch point of the OLED display panel. control sensitivity.
  • the projection of the grid lines of the touch electrodes on the substrate passes through the projection of the support column on the substrate.
  • the horizontal height of the support column relative to the pixel definition layer is in the range of 1.5-2 micrometers, and the thickness of the common electrode layer is in the range of 15-20 nanometers.
  • the geometric shape of the support column is a pseudo-cylinder.
  • the geometric shape of the support column is a circular truncated cone
  • the lower bottom surface of the circular truncated truncated cone is in contact with the pixel definition layer
  • the projection of the lower bottom surface of the circular truncated truncated surface on the substrate is located on the circular truncated cone
  • the upper and lower surfaces of are in the projection on the substrate.
  • the geometric shape of the support column is a prism
  • the lower bottom surface of the prism is in contact with the pixel definition layer
  • the projection of the lower bottom surface of the prism on the substrate is located at The upper bottom surface of the pyramid is in the projection on the substrate.
  • the geometric shape of the support column is a ball table
  • the lower bottom surface of the ball table is in contact with the pixel definition layer
  • the projection of the lower bottom surface of the ball table on the substrate is located on the ball table
  • the upper and lower surfaces of are in the projection on the substrate.
  • the geometric shape of the support column is a tower, the lower bottom surface of the tower is in contact with the pixel definition layer, and the projection of the lower bottom surface of the tower on the substrate is located at The upper bottom surface of the table tower is in the projection on the substrate.
  • the geometry of the support column is cylindrical.
  • the geometry of the support posts is prismatic.
  • At least one side surface of the support column is a concave curved surface, and the included angle between the curved surface and the upper bottom surface and the included angle with the lower bottom surface are both acute angles.
  • the support column is a non-quasi-column.
  • Embodiments of the present application provide an OLED display panel and an electronic device.
  • the OLED display panel includes: a substrate; a driving circuit layer formed on the substrate; a light-emitting functional layer formed on the driving circuit layer, It includes a pixel electrode layer, a pixel definition layer, a support column, a luminescent material layer, and a common electrode layer that are sequentially arranged in a direction away from the substrate, and the common electrode layer covers the pixel definition layer, the support column, and the luminescent material layer; an encapsulation layer, formed on the common electrode layer; a touch layer, formed on the encapsulation layer, including touch electrodes, the touch electrodes being a grid surrounding the luminescent material layer structure, the projection of the touch electrodes on the substrate at least partially overlaps with the projection of the support column on the substrate; wherein, the support column includes a lower layer in contact with the pixel definition layer.
  • the common electrode layer includes a floating electrode covering the upper bottom surface, and a common electrode covering the pixel definition layer and the luminescent material layer, The floating electrode is disconnected from the common electrode.
  • the material cannot form a continuous film layer with the material of the common electrode layer covering the pixel definition layer and the luminescent material layer, so that the material of the common electrode layer covering the upper bottom surface of the support column forms a floating electrode, covering the pixel definition layer.
  • layer and the common electrode layer material of the luminescent material layer form a common electrode, the floating electrode is disconnected from the common electrode; the floating electrode does not receive electrical signals, reducing the touch electrode and the common electrode The parasitic capacitance between them, thereby improving the touch reporting rate and touch sensitivity of the OLED display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED显示面板及电子设备,OLED显示面板的触控电极(151)在衬底(110)上的投影,与支撑柱(133)在衬底(110)上的投影存在至少部分重合,支撑柱(133)存在至少一个侧面,其与上底面的夹角小于等于90度,和/或侧面与下底面的夹角大于等于90度,公共电极层(135)在支撑柱(133)处断接。提高了OLED显示面板的触控报点率和触控灵敏度。

Description

OLED显示面板及电子设备 技术领域
本申请涉及显示领域,尤其涉及一种OLED显示面板及电子设备。
背景技术
电容式触摸屏由于其高耐久性,长寿命,并且支持多点触控的功能,广泛应用于各种电子交互场景设备中。电容式触摸屏的工作原理是通过检测手指触摸位置处电容量的变化来检测手指触摸的具体位置。
目前针对柔性AMOLED(Active-matrix organic light-emitting diode,有源矩阵有机发光二极体或主动矩阵有机发光二极体)On-cell(在AMOLED盖板上集成触控层)显示屏,其触控电极通常直接制作在薄膜封装层上表面,然而由于薄膜封装层较薄(通常厚度<10微米),触控电极与阴极之间的距离较小,触控电极与阴极之间的寄生电容较大,使得大尺寸触摸屏远端的触控电极通道的RC延时大,从而导致触控电极的扫描频率大幅下降,进而导致触控报点率等关键性能降低。
另外,现有技术中,为了防止发光材料蒸镀过程中,掩膜版刮伤OLED显示模板的膜层结构,增强OLED显示面板的抗压能力,同时保持大尺寸OLED显示面板的盒厚均匀性,通常会在像素定义层上制作多个支撑柱,支撑柱采用顶部小、底部大的圆台形或棱台形,这种结构的支撑柱维持了阴极材料的连续性,使得位于支撑柱上方的阴极和触控电极之间的距离较其他位置更小,支撑柱上方的触控电极与阴极之间的寄生电容较其他位置更大,进一步加大了触控信号的RC延时,影响了触控屏的触控报点率以及灵敏度。
因此,现有AMOLED On-cell显示屏存在触控报点率低的问题,需要解决。
技术问题
本申请提供一种OLED显示面板及电子设备,以改进现有AMOLED On-cell显示屏存在触控报点率低的问题。
技术解决方案
本申请提供一种OLED显示面板,其包括:
衬底;
驱动电路层,形成于所述衬底上;
发光功能层,形成于所述驱动电路层上,包括在远离所述衬底方向上依次设置的像素电极层、像素定义层、支撑柱、发光材料层、以及公共电极层,所述公共电极层覆盖所述像素定义层、所述支撑柱、以及所述发光材料层;
封装层,形成于所述公共电极层上;
触控层,形成于所述封装层上,包括触控电极,所述触控电极为围绕所述发光材料层的网格结构,所述触控电极在所述衬底上的投影,与所述支撑柱在所述衬底上的投影存在至少部分重合;
其中,所述支撑柱包括与所述像素定义层接触的下底面、远离所述像素定义层的上底面、以及连接所述上底面和所述下底面的侧面,存在至少一个所述侧面,所述侧面与所述上底面的夹角小于等于90度,和/或所述侧面与所述下底面的夹角大于等于90度;所述公共电极层包括覆盖所述上底面的悬浮电极、以及覆盖所述像素定义层和所述发光材料层的公共电极,所述悬浮电极与所述公共电极断接。
在本申请提供的OLED显示面板中,所述触控电极的网格线在所述衬底上的投影,穿过所述支撑柱在所述衬底上的投影。
在本申请提供的OLED显示面板中,所述支撑柱相对于所述像素定义层的水平高度范围为1.5-2微米,所述公共电极层的厚度范围为15-20纳米。
在本申请提供的OLED显示面板中,所述支撑柱的几何形状为拟柱体。
在本申请提供的OLED显示面板中,所述支撑柱的几何形状为圆台,所述圆台的下底面与所述像素定义层接触,所述圆台的下底面在所述衬底上的投影,位于所述圆台的上底面在所述衬底上的投影内。
在本申请提供的OLED显示面板中,所述支撑柱的几何形状为棱台,所述棱台的下底面与所述像素定义层接触,所述棱台的下底面在所述衬底上的投影,位于所述棱台的上底面在所述衬底上的投影内。
在本申请提供的OLED显示面板中,所述支撑柱的几何形状为球台,所述球台的下底面与所述像素定义层接触,所述球台的下底面在所述衬底上的投影,位于所述球台的上底面在所述衬底上的投影内。
在本申请提供的OLED显示面板中,所述支撑柱的几何形状为台塔,所述台塔的下底面与所述像素定义层接触,所述台塔的下底面在所述衬底上的投影,位于所述台塔的上底面在所述衬底上的投影内。
在本申请提供的OLED显示面板中,所述支撑柱的几何形状为圆柱。
在本申请提供的OLED显示面板中,所述支撑柱的几何形状为棱柱。
在本申请提供的OLED显示面板中,所述支撑柱存在至少一个侧面为内凹的曲面,所述曲面与所述上底面的夹角、与所述下底面的夹角均为锐角。
在本申请提供的OLED显示面板中,所述支撑柱为非拟柱体。
同时,本申请还提供一种电子设备,其包括OLED显示面板,所述OLED显示面板包括:
衬底;
驱动电路层,形成于所述衬底上;
发光功能层,形成于所述驱动电路层上,包括在远离所述衬底方向上依次设置的像素电极层、像素定义层、支撑柱、发光材料层、以及公共电极层,所述公共电极层覆盖所述像素定义层、所述支撑柱、以及所述发光材料层;
封装层,形成于所述公共电极层上;
触控层,形成于所述封装层上,包括触控电极,所述触控电极为围绕所述发光材料层的网格结构,所述触控电极在所述衬底上的投影,与所述支撑柱在所述衬底上的投影存在至少部分重合;
其中,所述支撑柱包括与所述像素定义层接触的下底面、远离所述像素定义层的上底面、以及连接所述上底面和所述下底面的侧面,存在至少一个所述侧面,所述侧面与所述上底面的夹角小于等于90度,和/或所述侧面与所述下底面的夹角大于等于90度;所述公共电极层包括覆盖所述上底面的悬浮电极、以及覆盖所述像素定义层和所述发光材料层的公共电极,所述悬浮电极与所述公共电极断接。
在本申请提供的电子设备中,所述触控电极的网格线在所述衬底上的投影,穿过所述支撑柱在所述衬底上的投影。
在本申请提供的电子设备中,所述支撑柱相对于所述像素定义层的水平高度范围为1.5-2微米,所述公共电极层的厚度范围为15-20纳米。
在本申请提供的电子设备中,所述支撑柱的几何形状为拟柱体。
在本申请提供的电子设备中,所述支撑柱的几何形状为圆台、棱台、球台、台塔中的任意一种,所述支撑柱的下底面在所述衬底上的投影,位于所述支撑柱的上底面在所述衬底上的投影内。
在本申请提供的电子设备中,所述支撑柱的几何形状为圆柱或棱柱。
在本申请提供的电子设备中,所述支撑柱存在至少一个侧面为内凹的曲面,所述曲面与所述上底面的夹角、与所述下底面的夹角均为锐角。
在本申请提供的电子设备中,所述支撑柱的几何形状为非拟柱体。
有益效果
本申请提供了一种OLED显示面板及电子设备,所述OLED显示面板包括:衬底;驱动电路层,形成于所述衬底上;发光功能层,形成于所述驱动电路层上,包括在远离所述衬底方向上依次设置的像素电极层、像素定义层、支撑柱、发光材料层、以及公共电极层,所述公共电极层覆盖所述像素定义层、所述支撑柱、以及所述发光材料层;封装层,形成于所述公共电极层上;触控层,形成于所述封装层上,包括触控电极,所述触控电极为围绕所述发光材料层的网格结构,所述触控电极在所述衬底上的投影,与所述支撑柱在所述衬底上的投影存在至少部分重合;其中,所述支撑柱包括与所述像素定义层接触的下底面、远离所述像素定义层的上底面、以及连接所述上底面和所述下底面的侧面,存在至少一个所述侧面,所述侧面与所述上底面的夹角小于等于90度,和/或所述侧面与所述下底面的夹角大于等于90度;所述公共电极层包括覆盖所述上底面的悬浮电极、以及覆盖所述像素定义层和所述发光材料层的公共电极,所述悬浮电极与所述公共电极断接。通过对所述支撑柱的结构改进设计,使得所述支撑柱与所述像素定义层之间没有平滑的过渡,公共电极层材料在蒸镀后,覆盖所述支撑柱上底面的公共电极层材料,无法与覆盖所述像素定义层和所述发光材料层的公共电极层材料形成连续的膜层,从而使得覆盖所述支撑柱上底面的公共电极层材料形成悬浮电极,覆盖所述像素定义层和所述发光材料层的公共电极层材料形成公共电极,所述悬浮电极与所述公共电极断接;所述悬浮电极不接收电信号,减小了所述触控电极与所述公共电极之间的寄生电容,从而提高了所述OLED显示面板的触控报点率和触控灵敏度。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为本申请实施例提供的OLED显示面板的第一种结构示意图。
图2为本申请实施例提供的OLED显示面板的第二种结构示意图。
图3为本申请实施例提供的OLED显示面板的第三种结构示意图。
图4为图1中区域101的第一种放大示意图。
图5为图1中区域101的第二种放大示意图。
图6为图1中区域101的第三种放大示意图。
图7为图1中区域101的第四种放大示意图。
图8为图1中区域101的第五种放大示意图。
图9为图1中区域101的第六种放大示意图。
图10为本申请实施例提供的触控层的结构示意图。
图11为本申请实施例提供的触控电极的平面结构示意图。
本发明的实施方式
针对现有AMOLED On-cell显示屏存在触控报点率低的问题,本申请提供一种OLED显示面板可以缓解这个问题。
在一种实施例中,请参照图1,图1示出了本申请实施例提供的OLED显示面板的第一种结构示意图。如图1所示,本申请实施例提供的OLED显示面板包括:
衬底110;
驱动电路层120,形成于所述衬底110上;
发光功能层130,形成于所述驱动电路层120上,包括在远离所述衬底110方向上依次设置的像素电极层131、像素定义层132、支撑柱133、发光材料层134、以及公共电极层135,所述公共电极135层覆盖所述像素定义层132、所述支撑柱133、以及所述发光材料层134;
封装层140,形成于所述公共电极层135上;
触控层150,形成于所述封装层140上,包括触控电极151,所述触控电极151为围绕所述发光材料层134的网格结构,所述触控电极151在所述衬底110上的投影,与所述支撑柱133在所述衬底110上的投影存在至少部分重合;
其中,所述支撑柱133包括与所述像素定义层132接触的下底面、远离所述像素定义层132的上底面、以及连接所述上底面和所述下底面的侧面,存在至少一个所述侧面,所述侧面与所述上底面的夹角小于等于90度,和/或所述侧面与所述下底面的夹角大于等于90度;所述公共电极层135包括覆盖所述上底面的悬浮电极1351、以及覆盖所述像素定义层132和所述发光材料层134的公共电极1352,所述悬浮电极1351与所述公共电极1352断接。
本实施例提供了一种OLED显示面板,所述OLED显示面板包括支撑柱,所述支撑柱包括与所述像素定义层接触的下底面、远离所述像素定义层的上底面、以及连接所述上底面和所述下底面的侧面,存在至少一个所述侧面,所述侧面与所述上底面的夹角小于等于90度,和/或所述侧面与所述下底面的夹角大于等于90度;所述公共电极层包括覆盖所述上底面的悬浮电极、以及覆盖所述像素定义层和所述发光材料层的公共电极,所述悬浮电极与所述公共电极断接;通过对所述支撑柱的结构改进设计,使得所述支撑柱与所述像素定义层之间没有平滑的过渡,公共电极层材料在蒸镀后,覆盖所述支撑柱上底面的公共电极层材料,无法与覆盖所述像素定义层和所述发光材料层的公共电极层材料形成连续的膜层,从而使得覆盖所述支撑柱上底面的公共电极层材料形成悬浮电极,覆盖所述像素定义层和所述发光材料层的公共电极层材料形成公共电极,所述悬浮电极与所述公共电极断接;所述悬浮电极不接收电信号,减小了所述触控电极与所述公共电极之间的寄生电容,从而提高了所述OLED显示面板的触控报点率和触控灵敏度。
本申请实施例提供的OLED显示面板的具体结构请参照图1至图10,其中,
所述衬底110可以是刚性衬底,也可以是柔性衬底。所述刚性衬底一般是由铝硅酸盐和其他成分构成的玻璃衬底;所述柔性衬底通常包括第一有机衬底、无机衬底、以及第二无机衬底,所述第一有机衬底和所述第二有机衬底用于实现OLED显示面板的柔性性能,所述无机衬底用于维持所述柔性衬底的支撑性能,和防止OLED显示面板外的水氧进入所述显示OLED显示面板。
所述驱动电路层120,设置于所述衬底110上。所述驱动电路层120包括阵列设置的薄膜晶体管以及金属导线,所述薄膜晶体管与所述金属导线连接,共同构成所述OLED显示面板的驱动电路,用于驱动所述发光功能层130进行发光显示。驱动电路层120包括在衬底110上依次层叠设置的第一缓冲层121、半导体有源层122、第一绝缘层123、栅极金属层124、第二绝缘层125、源漏极层126、平坦化层127。所述半导体有源层122图案化形成薄膜晶体管的沟道,所述栅极金属层124图案化形成所述薄膜晶体管的栅极以及所述驱动电路的扫描线,所述源漏极层126图案化形成所述薄膜晶体管的源极、漏极以及所述驱动电路的数据线、电源线等。平坦化层127,覆盖所述第二绝缘层125和所述源漏极层126,用于平坦化所述驱动电路层120,为所述像素电极层131的制备提供平坦的基底。所述平坦化层127的材料通常为有机物。
在如图所示的实施例中,所述薄膜晶体管为顶栅结构的薄膜晶体管,在其他实施例中,所述薄膜晶体管也可以是底栅结构的薄膜晶体管;在如图1所示的实施例中,所述薄膜晶体管为单栅结构的薄膜晶体管,在其他实施例中,所述薄膜晶体管也可以是双栅、三栅结构的薄膜晶体管,在此不做限定。
所述发光功能层130,包括在远离所述衬底110方向依次设置的像素电极层131、像素定义层132、支撑柱133、发光材料层134、以及公共电极层135。所述像素电极层131图案化形成像素电极1311;所述像素定义层132图案化形成像素定义区1321,所述像素定义区1321对应于所述像素电极1311,位于所述像素电极1311上且露出所述像素电极1311;所述发光材料层134形成于所述像素定义区1321内,与所述像素电极1311接触。
所述支撑柱133形成于所述像素定义层132远离所述衬底110的一侧,如图1至图9所示,所述支撑柱133包括上底面、下底面、以及连接所述上底面和所述下底面的侧面,所述下底面与所述像素定义层132接触,所述上底面远离所述像素定义层132,所述侧面与所述上底面的夹角小于等于90度,和/或所述侧面与所述下底面的夹角大于等于90度。所述支撑柱133与所述像素定义层132可以是一体成型,也可以是分体成型。所述支撑柱的高度范围为1.5-2.0微米,口径范围为4-6微米。
所述公共电极层135层覆盖所述像素定义层132、所述支撑柱133、以及所述发光材料层134。所述公共电极层135的厚度为15-20纳米,远小于所述支撑柱133的高度。又由于所述支撑柱133包括与所述像素定义层132接触的下底面、远离所述像素定义层132的上底面、以及连接所述上底面和所述下底面的侧面,所述侧面与所述上底面的夹角小于等于90度,和/或所述侧面与所述下底面的夹角大于等于90度。该种形状设计的支撑柱133,使得公共电极层材料在蒸镀后,覆盖所述支撑柱133上底面的公共电极层材料,无法与覆盖所述像素定义层132和所述发光材料层134的公共电极层材料形成连续的膜层,从而使得覆盖所述支撑柱133上底面的公共电极层材料形成悬浮电极1351,覆盖所述像素定义层132和所述发光材料层134的公共电极层材料形成公共电极1352,所述悬浮电极1351与所述公共电极1352断接,如图1至图9所示。
所述封装层140,形成于所述公共电极层135上,用于封装所述OLED显示面板,防止外界的水氧进入所述发光功能层130,所述封装层140一般包括第一无机层、第二无机层、以及位于第一无机层和第二无机层之间的有机层。
触控层150,形成于所述封装层140上,包括在远离所述封装层方向上设置的第二缓冲层152、触控电极151、绝缘层153、以及钝化层154。
具体请参照图10,图10示出了本申请实施例提供的触控层的结构示意图,如图10所示,所述触控层150包括第二缓冲层152,设置于所述第二缓冲层152上的桥接电极1511,覆盖所述桥接电极1511的绝缘层153,设置于所述绝缘层153上的第一触控电极1512和第二触控电极1513,相邻的所述第一触控电极1512通过过孔与同一所述桥接电极1511连接,覆盖所述第一触控电极1512和所述第二触控电极1513的钝化层154。可以是所述第一触控电极1512为触控驱动电极且所述第二触控电极1513为触控感测电极,也可以是所述第一触控电极1512为触控感测电极且所述第二触控电极1513为触控驱动电极。
具体请参照图11,图11示出了本申请实施例提供的触控电极的平面结构示意图,如图11所示,所述触控电极151为网格结构,所述触控电极151围绕子像素走线,网格线围成的区域对应于所述发光材料层134所在的位置,即所述触控电极151的网格线位于相邻的所述像素定义区1321之间,且围绕所述像素定义区1321设置。所述支撑柱133同样设置于相邻的所述像素定义区1321之间,所述触控电极151在所述衬底110上的投影,与所述支撑柱133在所述衬底110上的投影存在至少部分重合。进一步的,所述触控电极151的网格线在所述衬底110上的投影,穿过所述支撑柱133在所述衬底110上的投影。
相比于现有技术中公共电极整面设置,覆盖支撑柱的公共电极与触控电极之间形成较大寄生电容,本申请实施例提供的OLED显示面板中,覆盖所述支撑柱的所述悬浮电极1351与所述公共电极1352断接,大大减小了所述触控电极与所述公共电极之间的寄生电容,从而提高了所述OLED显示面板的触控报点率和触控灵敏度。
所述支撑柱133在所述OLED显示面板内起支撑作用,因此所述支撑柱133的几何形状一般为支撑效果良好的柱体,可以是拟柱体,拟柱体是指所有的顶点都在两个平行平面中的多面体,拟柱体的侧面可以是三角形、梯形或平行四边形。在本申请提供的实施例中,拟柱体的两个平行的平面分别指所述支撑柱133的上底面和下底面。
在第一种实施例中,所述支撑柱133的几何形状为圆台。即所述支撑柱133的上底面和下底面均为圆形,所述支撑柱133的侧面展开图为一扇环,且所述上底面在所述衬底110上的投影落入所述下底面在所述衬底110上的投影内。请参照图4,图4为图1中区域101的第一种放大示意图,即所述支撑柱133的第一种剖面结构示意图。所述支撑柱133的横截面的尺寸在远离所述上底面的方向上逐渐递减,所述支撑柱133与像素定义层132之间没有平滑的过渡。公共电极层材料在蒸镀后,覆盖所述支撑柱133上底面的公共电极层材料,无法与覆盖所述像素定义层132和所述发光材料层134的公共电极层材料形成连续的膜层,从而使得覆盖所述支撑柱133上底面的公共电极层材料形成悬浮电极1351,覆盖所述像素定义层132和所述发光材料层134的公共电极层材料形成公共电极1352,所述悬浮电极1351与所述公共电极1352断接;所述悬浮电极1351不接收电信号,减小了所述触控电极151与所述公共电极1352之间的寄生电容,从而提高了所述OLED显示面板的触控报点率和触控灵敏度。
在第二种实施例中,所述支撑柱133的几何形状为椭圆台。即所述支撑柱133的上底面和下底面均为椭圆形,所述支撑柱133的侧面展开图为一不规则的扇环,且所述上底面在所述衬底110上的投影落入所述下底面在所述衬底110上的投影内。所述支撑柱133的剖面结构同样如图4所示,具体可参照第一种实施例,在此不再赘述。
在第三种实施例中,所述支撑柱133的几何形状为棱台。即所述支撑柱133的上底面和下底面均为形状相同的多边形,所述多边形可以是三角形、四边形、五边形、六边形等中的任意一种,可以是正多边形,也可以不是正多边形,所述支撑柱133的侧面为梯形,所述上底面在所述衬底110上的投影落入所述下底面在所述衬底110上的投影内。所述支撑柱133的剖面结构同样如图4所示,具体可参照第一种实施例,在此不再赘述。
在第四种实施例中,所述支撑柱133的几何形状为圆柱。即所述支撑柱133的上底面和下底面均为圆形,所述支撑柱133的侧面展开图为一矩形,所述上底面在所述衬底110上的投影与所述下底面在所述衬底110上的投影重合。请参照图5,图5为图1中区域101的第二种放大示意图,即所述支撑柱133的第二种剖面结构示意图。所述支撑柱133的侧面与像素定义层132的上表面垂直,所述支撑柱133与像素定义层132之间没有平滑的过渡,且所述支撑柱133相对于所述像素定义层132的水平高度范围为1.5-2微米,远大于所述公共电极层135的厚度15-20纳米。公共电极层材料在蒸镀后,覆盖所述支撑柱133上底面的公共电极层材料,无法与覆盖所述像素定义层132和所述发光材料层134的公共电极层材料形成连续的膜层,从而使得覆盖所述支撑柱133上底面的公共电极层材料形成悬浮电极1351,覆盖所述像素定义层132和所述发光材料层134的公共电极层材料形成公共电极1352,所述悬浮电极1351与所述公共电极1352断接;所述悬浮电极1351不接收电信号,减小了所述触控电极151与所述公共电极1352之间的寄生电容,从而提高了所述OLED显示面板的触控报点率和触控灵敏度。
在第五种实施例中,所述支撑柱133的几何形状为棱柱。即所述支撑柱133的上底面和下底面均为形状相同的多边形,所述多边形可以是三角形、四边形、五边形、六边形等中的任意一种,可以是正多边形,也可以不是正多边形,所述支撑柱133的侧面为矩形,所述上底面在所述衬底110上的投影与所述下底面在所述衬底110上的投影重合。所述支撑柱133的剖面结构同样如图5所示,具体可参照第四种实施例,在此不再赘述。
在第六种实施例中,所述支撑柱133的几何形状为台塔。即所述支撑柱133的上底面为一多边形,且所述支撑柱133的下底面是所述上底面边数两倍的多边形,或所述支撑柱133的下底面为一多边形,且所述支撑柱133的上底面是所述下底面边数两倍的多边形,所述支撑柱133的侧边为矩形或三角形;所述上底面在所述衬底110上的投影落入所述下底面在所述衬底110上的投影内。所述支撑柱133的剖面结构如图4或图5所示,具体可参照第一种或第四种实施例,在此不再赘述。
在第七种实施例中,所述支撑柱133的几何形状为球台。即所述支撑柱133的上底面和下底面均为圆形,所述支撑柱133的侧面为球面,所述上底面在所述衬底110上的投影落入所述下底面在所述衬底110上的投影内。请参照图6,图6为图1中区域101的第三种放大示意图,即所述支撑柱133的第三种剖面结构示意图。所述支撑柱133的横截面的尺寸在远离所述上底面的方向上逐渐递减,所述支撑柱133与像素定义层132之间没有平滑的过渡。公共电极层材料在蒸镀后,覆盖所述支撑柱133上底面的公共电极层材料,无法与覆盖所述像素定义层132和所述发光材料层134的公共电极层材料形成连续的膜层,从而使得覆盖所述支撑柱133上底面的公共电极层材料形成悬浮电极1351,覆盖所述像素定义层132和所述发光材料层134的公共电极层材料形成公共电极1352,所述悬浮电极1351与所述公共电极1352断接;所述悬浮电极1351不接收电信号,减小了所述触控电极151与所述公共电极1352之间的寄生电容,从而提高了所述OLED显示面板的触控报点率和触控灵敏度。
在第八种实施例中,所述支撑柱133的形状还可以是其他满足存在至少一个所述侧面,所述侧面与所述上底面的夹角小于等于90度,和/或所述侧面与所述下底面的夹角大于等于90度的拟柱体。请参照图7,图7为图1中区域101的第四种放大示意图,即所述支撑柱133的第四种剖面结构示意图。所述支撑柱133的侧面为内凹的曲面,所述支撑柱133的横截面的尺寸在远离所述上底面的方向上先递减再递增,所述支撑柱133与像素定义层132之间没有平滑的过渡。公共电极层材料在蒸镀后,覆盖所述支撑柱133上底面的公共电极层材料,无法与覆盖所述像素定义层132和所述发光材料层134的公共电极层材料形成连续的膜层,从而使得覆盖所述支撑柱133上底面的公共电极层材料形成悬浮电极1351,覆盖所述像素定义层132和所述发光材料层134的公共电极层材料形成公共电极1352,所述悬浮电极1351与所述公共电极1352断接;所述悬浮电极1351不接收电信号,减小了所述触控电极151与所述公共电极1352之间的寄生电容,从而提高了所述OLED显示面板的触控报点率和触控灵敏度。
所述支撑柱133的几何形状也可以是非拟柱体。
在第九种实施例中,所述支撑柱133存在至少一个顶点,所述顶点位于所述侧面上,且位于所述支撑柱133的上底面和所述下底面之外;所述顶点在所述衬底上的投影,位于所述支撑柱133的上底面在所述衬底上的投影内。请参照图8,图8为图1中区域101的第五种放大示意图,即所述支撑柱133的第五种剖面结构示意图。所述支撑柱133的侧面为内凹的折面,所述支撑柱133的横截面的尺寸在远离所述上底面的方向上先递减再递增,所述支撑柱133与像素定义层132之间没有平滑的过渡。所述支撑柱133的上底面和下底面可以是任意形状的几何图形,只要满足使得覆盖所述支撑柱133的上底面的公共电极层,与覆盖所述像素定义层的公共电极层断接的结构设计,均是本实施例的保护范围。
在第十种实施例中,所述支撑柱133存在至少一个顶点,所述顶点位于所述侧面上,且位于所述支撑柱133的上底面和所述下底面之外;所述顶点在所述衬底上的投影,位于所述支撑柱133的上底面在所述衬底上的投影之外。请参照图9,图9为图1中区域101的第六种放大示意图,即所述支撑柱133的第六种剖面结构示意图。所述支撑柱133的侧面为外凸的折面,所述支撑柱133的横截面的尺寸在远离所述上底面的方向上先递增再递减,所述支撑柱133与像素定义层132之间没有平滑的过渡。所述支撑柱133的上底面和下底面可以是任意形状的几何图形,只要满足使得覆盖所述支撑柱133的上底面的公共电极层,与覆盖所述像素定义层的公共电极层断接的结构设计,均是本实施例的保护范围。
所述顶点是指2条或以上的边、超边、线、线段或曲线等数学对象的交会,多面体或多边形中由2条边或棱所交出的角或顶角其端点称为一个顶点。在上述支撑柱133的几何形状中,所述顶点为所述支撑柱的侧面相交形成的点。
另外,请参照图2和图3,图2和图3分别示出了本申请实施例提供的OLED显示面板的第二种和第三种结构示意图。在本申请实施例提供的OLED显示面板中,所述像素定义层132还可以图案化形成凹槽1322,所述凹槽1322设置于至少两个相邻的所述像素定义区1321之间;所述触控电极151在所述衬底110上的投影,与所述凹槽1322在所述衬底110上的投影存在至少部分重合。进一步的,所述触控电极151在所述衬底110上的投影,落入所述凹槽1322在所述衬底110上的投影内。
在所述凹槽1322处,所述公共电极1352形成于所述凹槽1322的侧边和底部,所述触控电极151形成所述凹槽1322的正上方。因此,所述触控电极151与位于所述触控电极151正下方的公共电极1352的距离D1,大于未设置所述凹槽1322情况下、所述触控电极151与位于所述触控电极151正下方的公共电极1352的距离D2。增大了所述触控电极151和所述公共电极135之间的距离,减小了所述公共电极135与所述触控电极151之间的寄生电容,提高了所述OLED显示面板的触控报点率以及触控灵敏度。
所述凹槽1322的深度设置不同,所述触控电极151和所述公共电极135之间的距离不同,所述触控电极151与所述公共电极135之间的寄生电容不同,所述OLED显示面板的触控报点率以及触控灵敏度就会不同。
在第一种实施方案中,所述凹槽1322位于所述像素定义层132内,且所述凹槽1322的底部位于所述像素定义层132内。本实施例相比于现有技术,增大了所述触控电极151和所述公共电极135之间的距离,增大的距离为所述凹槽1322底部到所述像素定义层132上表面的距离,减小了所述公共电极135与所述触控电极151之间的寄生电容,提高了所述OLED显示面板的触控报点率以及触控灵敏度。
在第二种实施方案中,如图2所示,所述凹槽1322贯穿所述像素定义层132内,且所述凹槽1322的底部位于所述像素定义层132和所述平坦化层127的交界面上。本实施例相比于第一种实施例,进一步增大了所述触控电极151和所述公共电极135之间的距离,增大的距离为所述像素定义层132的厚度,进一步减小了所述公共电极135与所述触控电极151之间的寄生电容,提高了所述OLED显示面板的触控报点率以及触控灵敏度。
在第三种实施方案中,所述凹槽1322贯穿所述像素定义层132,且所述凹槽1322的底部位于所述平坦化层127内。本实施例相比于第二种实施例,又进一步增大了所述触控电极151和所述公共电极135之间的距离,增大的距离为所述凹槽1322底部到所述像素定义层132上表面的距离,又进一步减小了所述公共电极135与所述触控电极151之间的寄生电容,提高了所述OLED显示面板的触控报点率以及触控灵敏度。
在第四种实施方案中,所述凹槽1322同时贯穿所述像素定义层132和所述平坦化层127,且所述凹槽1322的底部位于所述平坦化层127和所述第二绝缘层125的交界面上。本实施例相比于第三种实施例,更进一步增大了所述触控电极151和所述公共电极135之间的距离,增大的距离为所述像素定义层132和所述平坦化层127的总厚度,更进一步减小了所述公共电极135与所述触控电极151之间的寄生电容,提高了所述OLED显示面板的触控报点率以及触控灵敏度。
在第五种实施方案中,如图3所示,所述凹槽1322包括第一凹槽部1323和第二凹槽部1324,所述第二凹槽部1324设置于所述第一凹槽部1323远离所述封装层140的一侧。所述第二凹槽部1324在所述衬底110上的投影落入所述第一凹槽部1323在所述衬底110上的投影内、且比所述第一凹槽部1323在所述衬底110上的投影面积小,即所述第一凹槽部1323的横向开口L1比所述第二凹槽部1324的横向开口L2大。
在所述凹槽1322深度一定、且所述凹槽1322侧边倾斜角度一定的情况下,所述第一凹槽部1323和所述第二凹槽部1324的设置,为所述公共电极135在所述凹槽侧边的沉积提供了过渡阶梯,避免了由于凹槽1322深度过大,或所述凹槽1322侧边倾斜角度过大,导致所述公共电极135在所述凹槽1322处断接的风险。
所述第一凹槽部1323和所述第二凹槽部1324均位于所述像素定义层132内,且所述第二凹槽部1324的底部位于所述像素定义层132内。本实施例相比于第一种实施例,同样增大了所述触控电极151和所述公共电极135之间的距离,增大的距离为所述第二凹槽部1324的底部到所述像素定义层132上表面的距离,减小了所述公共电极135与所述触控电极151之间的寄生电容,提高了所述OLED显示面板的触控报点率以及触控灵敏度;同时避免了由于凹槽1322深度过大或所述凹槽1322侧边倾斜角度过大,导致所述公共电极135在所述凹槽1322处断接的风险。
在第六种实施方案中,所述第一凹槽部1323和所述第二凹槽部1324均位于所述像素定义层132内,且所述第二凹槽部1324的底部位于所述像素定义层132和所述平坦化层127的交界面上。本实施例相比于第五种实施例,进一步增大了所述触控电极151和所述公共电极135之间的距离,增大的距离为所述像素定义层132的厚度,进一步减小了所述公共电极135与所述触控电极151之间的寄生电容,提高了所述OLED显示面板的触控报点率以及触控灵敏度。
在第七种实施方案中,所述第一凹槽部1323贯穿所述像素定义层132,所述第二凹槽部1324位于所述平坦化层127内、且所述第二凹槽部1324的底部位于所述平坦化层127内上。本实施例相比于第六种实施例,又进一步增大了所述触控电极151和所述公共电极135之间的距离,增大的距离为所述第二凹槽部1324的底部到所述像素定义层132上表面的距离,又进一步减小了所述公共电极135与所述触控电极151之间的寄生电容,提高了所述OLED显示面板的触控报点率以及触控灵敏度。
在第八种实施方案中,所述第一凹槽部1323贯穿所述像素定义层132,所述第二凹槽部1324贯穿所述平坦化层127、且所述第二凹槽部1324的底部位于所述平坦化层127和所述第二绝缘层125的交界面上。本实施例相比于第七种实施例,更进一步增大了所述触控电极151和所述公共电极135之间的距离,增大的距离为所述像素定义层132和所述平坦化层127的总厚度,更进一步减小了所述公共电极135与所述触控电极151之间的寄生电容,提高了所述OLED显示面板的触控报点率以及触控灵敏度。
在第九种实施方案中,所述平坦化层127包括第一平坦化层1271和第二平坦化层1272,所述第二平坦化层1272设置于所述第一平坦化层1271远离所述封装层140的一侧,所述第一凹槽部1323贯穿所述像素定义层132,所述第二凹槽部1324贯穿所述第一平坦化层1271,且所述第二凹槽部1324的底部位于所述第一平坦化层1271和所述第二平坦化层1272的交界面上。
由于所述平坦化层127覆盖所述源漏极层126,而所述源漏极层126上金属线路较密集,当所述凹槽1322的底部位于所述平坦化层127和所述第二绝缘层125的交界面上时,存在所述公共电极135与所述源漏极层126上的金属线路短接的风险。本实施例相比于第八种实施例,所述第二凹槽部1324的底部位于所述第一平坦化层1271和所述第二平坦化层1272的交界面上,所述公共电极135沉积于所述第二平坦化层1272的上表面,避免了所述公共电极135与所述源漏极层126上的金属线路短接的风险。
同时,本申请还提供一种电子设备,所述电子设备包括本申请实施例提供的OLED显示面板,所述OLED显示面板包括:
衬底;
驱动电路层,形成于所述衬底上;
发光功能层,形成于所述驱动电路层上,包括在远离所述衬底方向上依次设置的像素电极层、像素定义层、支撑柱、发光材料层、以及公共电极层,所述公共电极层覆盖所述像素定义层、所述支撑柱、以及所述发光材料层;
封装层,形成于所述公共电极层上;
触控层,形成于所述封装层上,包括触控电极,所述触控电极为围绕所述发光材料层的网格结构,所述触控电极在所述衬底上的投影,与所述支撑柱在所述衬底上的投影存在至少部分重合;
其中,所述支撑柱包括与所述像素定义层接触的下底面、远离所述像素定义层的上底面、以及连接所述上底面和所述下底面的侧面,存在至少一个所述侧面,所述侧面与所述上底面的夹角小于等于90度,和/或所述侧面与所述下底面的夹角大于等于90度;所述公共电极层包括覆盖所述上底面的悬浮电极、以及覆盖所述像素定义层和所述发光材料层的公共电极,所述悬浮电极与所述公共电极断接。
本实施例提供了一种电子设备,所述电子设备包括本申请实施提供的OLED显示面板,所述OLED显示面板通过对所述支撑柱的结构改进设计,使得所述支撑柱与所述像素定义层之间没有平滑的过渡,公共电极层材料在蒸镀后,覆盖所述支撑柱上底面的公共电极层材料,无法与覆盖所述像素定义层和所述发光材料层的公共电极层材料形成连续的膜层,从而使得覆盖所述支撑柱上底面的公共电极层材料形成悬浮电极,覆盖所述像素定义层和所述发光材料层的公共电极层材料形成公共电极,所述悬浮电极与所述公共电极断接;所述悬浮电极不接收电信号,减小了所述触控电极与所述公共电极之间的寄生电容,从而提高了所述OLED显示面板的触控报点率和触控灵敏度。
在一种实施例中,所述触控电极的网格线在所述衬底上的投影,穿过所述支撑柱在所述衬底上的投影。
在一种实施例中,所述支撑柱相对于所述像素定义层的水平高度范围为1.5-2微米,所述公共电极层的厚度范围为15-20纳米。
在一种实施例中,所述支撑柱的几何形状为拟柱体。
在一种实施例中,所述支撑柱的几何形状为圆台,所述圆台的下底面与所述像素定义层接触,所述圆台的下底面在所述衬底上的投影,位于所述圆台的上底面在所述衬底上的投影内。
在一种实施例中,所述支撑柱的几何形状为棱台,所述棱台的下底面与所述像素定义层接触,所述棱台的下底面在所述衬底上的投影,位于所述棱台的上底面在所述衬底上的投影内。
在一种实施例中,所述支撑柱的几何形状为球台,所述球台的下底面与所述像素定义层接触,所述球台的下底面在所述衬底上的投影,位于所述球台的上底面在所述衬底上的投影内。
在一种实施例中,所述支撑柱的几何形状为台塔,所述台塔的下底面与所述像素定义层接触,所述台塔的下底面在所述衬底上的投影,位于所述台塔的上底面在所述衬底上的投影内。
在一种实施例中,所述支撑柱的几何形状为圆柱。
在一种实施例中,所述支撑柱的几何形状为棱柱。
在一种实施例中,所述支撑柱存在至少一个侧面为内凹的曲面,所述曲面与所述上底面的夹角、与所述下底面的夹角均为锐角。
在一种实施例中,所述支撑柱为非拟柱体。
根据上述实施例可知:
本申请实施例提供了一种OLED显示面板及电子设备,所述OLED显示面板包括:衬底;驱动电路层,形成于所述衬底上;发光功能层,形成于所述驱动电路层上,包括在远离所述衬底方向上依次设置的像素电极层、像素定义层、支撑柱、发光材料层、以及公共电极层,所述公共电极层覆盖所述像素定义层、所述支撑柱、以及所述发光材料层;封装层,形成于所述公共电极层上;触控层,形成于所述封装层上,包括触控电极,所述触控电极为围绕所述发光材料层的网格结构,所述触控电极在所述衬底上的投影,与所述支撑柱在所述衬底上的投影存在至少部分重合;其中,所述支撑柱包括与所述像素定义层接触的下底面、远离所述像素定义层的上底面、以及连接所述上底面和所述下底面的侧面,存在至少一个所述侧面,所述侧面与所述上底面的夹角小于等于90度,和/或所述侧面与所述下底面的夹角大于等于90度;所述公共电极层包括覆盖所述上底面的悬浮电极、以及覆盖所述像素定义层和所述发光材料层的公共电极,所述悬浮电极与所述公共电极断接。通过对所述支撑柱的结构改进设计,,使得所述支撑柱与所述像素定义层之间没有平滑的过渡,公共电极层材料在蒸镀后,覆盖所述支撑柱上底面的公共电极层材料,无法与覆盖所述像素定义层和所述发光材料层的公共电极层材料形成连续的膜层,从而使得覆盖所述支撑柱上底面的公共电极层材料形成悬浮电极,覆盖所述像素定义层和所述发光材料层的公共电极层材料形成公共电极,所述悬浮电极与所述公共电极断接;所述悬浮电极不接收电信号,减小了所述触控电极与所述公共电极之间的寄生电容,从而提高了所述OLED显示面板的触控报点率和触控灵敏度。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种OLED显示面板,其包括:
    衬底;
    驱动电路层,形成于所述衬底上;
    发光功能层,形成于所述驱动电路层上,包括在远离所述衬底方向上依次设置的像素电极层、像素定义层、支撑柱、发光材料层、以及公共电极层,所述公共电极层覆盖所述像素定义层、所述支撑柱、以及所述发光材料层;
    封装层,形成于所述公共电极层上;
    触控层,形成于所述封装层上,包括触控电极,所述触控电极为围绕所述发光材料层的网格结构,所述触控电极在所述衬底上的投影,与所述支撑柱在所述衬底上的投影存在至少部分重合;
    其中,所述支撑柱包括与所述像素定义层接触的下底面、远离所述像素定义层的上底面、以及连接所述上底面和所述下底面的侧面,存在至少一个所述侧面,所述侧面与所述上底面的夹角小于等于90度,和/或所述侧面与所述下底面的夹角大于等于90度;所述公共电极层包括覆盖所述上底面的悬浮电极、以及覆盖所述像素定义层和所述发光材料层的公共电极,所述悬浮电极与所述公共电极断接。
  2. 如权利要求1所述的OLED显示面板,其中,所述触控电极的网格线在所述衬底上的投影,穿过所述支撑柱在所述衬底上的投影。
  3. 如权利要求1所述的OLED显示面板,其中,所述支撑柱相对于所述像素定义层的水平高度范围为1.5-2微米,所述公共电极层的厚度范围为15-20纳米。
  4. 如权利要求1所述的OLED显示面板,其中,所述支撑柱的几何形状为拟柱体。
  5. 如权利要求4所述的OLED显示面板,其中,所述支撑柱的几何形状为圆台,所述圆台的下底面与所述像素定义层接触,所述圆台的下底面在所述衬底上的投影,位于所述圆台的上底面在所述衬底上的投影内。
  6. 如权利要求4所述的OLED显示面板,其中,所述支撑柱的几何形状为棱台,所述棱台的下底面与所述像素定义层接触,所述棱台的下底面在所述衬底上的投影,位于所述棱台的上底面在所述衬底上的投影内。
  7. 如权利要求4所述的OLED显示面板,其中,所述支撑柱的几何形状为球台,所述球台的下底面与所述像素定义层接触,所述球台的下底面在所述衬底上的投影,位于所述球台的上底面在所述衬底上的投影内。
  8. 如权利要求4所述的OLED显示面板,其中,所述支撑柱的几何形状为台塔,所述台塔的下底面与所述像素定义层接触,所述台塔的下底面在所述衬底上的投影,位于所述台塔的上底面在所述衬底上的投影内。
  9. 如权利要求4所述的OLED显示面板,其中,所述支撑柱的几何形状为圆柱。
  10. 如权利要求4所述的OLED显示面板,其中,所述支撑柱的几何形状为棱柱。
  11. 如权利要求4所述的OLED显示面板,其中,所述支撑柱存在至少一个侧面为内凹的曲面,所述曲面与所述上底面的夹角、与所述下底面的夹角均为锐角。
  12. 如权利要求1所述的OLED显示面板,其中,所述支撑柱的几何形状为非拟柱体。
  13. 一种电子设备,其包括OLED显示面板,所述OLED显示面板包括:
    衬底;
    驱动电路层,形成于所述衬底上;
    发光功能层,形成于所述驱动电路层上,包括在远离所述衬底方向上依次设置的像素电极层、像素定义层、支撑柱、发光材料层、以及公共电极层,所述公共电极层覆盖所述像素定义层、所述支撑柱、以及所述发光材料层;
    封装层,形成于所述公共电极层上;
    触控层,形成于所述封装层上,包括触控电极,所述触控电极为围绕所述发光材料层的网格结构,所述触控电极在所述衬底上的投影,与所述支撑柱在所述衬底上的投影存在至少部分重合;
    其中,所述支撑柱包括与所述像素定义层接触的下底面、远离所述像素定义层的上底面、以及连接所述上底面和所述下底面的侧面,存在至少一个所述侧面,所述侧面与所述上底面的夹角小于等于90度,和/或所述侧面与所述下底面的夹角大于等于90度;所述公共电极层包括覆盖所述上底面的悬浮电极、以及覆盖所述像素定义层和所述发光材料层的公共电极,所述悬浮电极与所述公共电极断接。
  14. 如权利要求13所述的电子设备,其中,所述触控电极的网格线在所述衬底上的投影,穿过所述支撑柱在所述衬底上的投影。
  15. 如权利要求13所述的电子设备,其中,所述支撑柱相对于所述像素定义层的水平高度范围为1.5-2微米,所述公共电极层的厚度范围为15-20纳米。
  16. 如权利要求13所述的电子设备,其中,所述支撑柱的几何形状为拟柱体。
  17. 如权利要求16所述的电子设备,其中,所述支撑柱的几何形状为圆台、棱台、球台、台塔中的任意一种,所述支撑柱的下底面在所述衬底上的投影,位于所述支撑柱的上底面在所述衬底上的投影内。
  18. 如权利要求16所述的电子设备,其中,所述支撑柱的几何形状为圆柱或棱柱。
  19. 如权利要求16所述的电子设备,其中,所述支撑柱存在至少一个侧面为内凹的曲面,所述曲面与所述上底面的夹角、与所述下底面的夹角均为锐角。
  20. 如权利要求13所述的电子设备,其中,所述支撑柱的几何形状为非拟柱体。
PCT/CN2020/107280 2020-07-21 2020-08-06 Oled 显示面板及电子设备 WO2022016621A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/254,270 US11844261B2 (en) 2020-07-21 2020-08-06 OLED display panel and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010704184.5 2020-07-21
CN202010704184.5A CN111897451B (zh) 2020-07-21 2020-07-21 Oled显示面板及电子设备

Publications (1)

Publication Number Publication Date
WO2022016621A1 true WO2022016621A1 (zh) 2022-01-27

Family

ID=73189691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107280 WO2022016621A1 (zh) 2020-07-21 2020-08-06 Oled 显示面板及电子设备

Country Status (3)

Country Link
US (1) US11844261B2 (zh)
CN (1) CN111897451B (zh)
WO (1) WO2022016621A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102583203B1 (ko) * 2018-11-29 2023-09-27 삼성디스플레이 주식회사 전자 패널 및 이를 포함하는 전자 장치

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103389824A (zh) * 2012-05-07 2013-11-13 胜华科技股份有限公司 一种触控显示装置及其制造方法
US20160282987A1 (en) * 2015-03-24 2016-09-29 Samsung Display Co., Ltd. Display device
CN106406590A (zh) * 2015-07-31 2017-02-15 昆山国显光电有限公司 触控显示装置及其制备方法
CN107037921A (zh) * 2016-01-20 2017-08-11 三星显示有限公司 显示装置
CN107123621A (zh) * 2017-05-10 2017-09-01 京东方科技集团股份有限公司 一种oled触控显示面板及其制作方法、触控显示装置
CN206657340U (zh) * 2017-03-30 2017-11-21 昆山国显光电有限公司 有机发光二极管触摸屏
CN107706212A (zh) * 2017-09-06 2018-02-16 武汉华星光电半导体显示技术有限公司 一种显示面板的制备方法及显示面板
CN108803928A (zh) * 2018-06-05 2018-11-13 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
CN109213348A (zh) * 2017-06-29 2019-01-15 昆山工研院新型平板显示技术中心有限公司 触控显示面板及其制作方法和显示器
CN110286803A (zh) * 2019-06-28 2019-09-27 上海天马有机发光显示技术有限公司 显示面板及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10592028B2 (en) * 2018-03-30 2020-03-17 Sharp Kabushiki Kaisha Touch sensor feedlines for display
US10452201B1 (en) * 2018-03-30 2019-10-22 Sharp Kabushiki Kaisha Touch sensor for display with shield
CN109360837A (zh) * 2018-09-20 2019-02-19 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置
CN110752244A (zh) * 2019-10-31 2020-02-04 合肥视涯显示科技有限公司 阵列基板、显示面板及阵列基板的制作方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103389824A (zh) * 2012-05-07 2013-11-13 胜华科技股份有限公司 一种触控显示装置及其制造方法
US20160282987A1 (en) * 2015-03-24 2016-09-29 Samsung Display Co., Ltd. Display device
CN106406590A (zh) * 2015-07-31 2017-02-15 昆山国显光电有限公司 触控显示装置及其制备方法
CN107037921A (zh) * 2016-01-20 2017-08-11 三星显示有限公司 显示装置
CN206657340U (zh) * 2017-03-30 2017-11-21 昆山国显光电有限公司 有机发光二极管触摸屏
CN107123621A (zh) * 2017-05-10 2017-09-01 京东方科技集团股份有限公司 一种oled触控显示面板及其制作方法、触控显示装置
CN109213348A (zh) * 2017-06-29 2019-01-15 昆山工研院新型平板显示技术中心有限公司 触控显示面板及其制作方法和显示器
CN107706212A (zh) * 2017-09-06 2018-02-16 武汉华星光电半导体显示技术有限公司 一种显示面板的制备方法及显示面板
CN108803928A (zh) * 2018-06-05 2018-11-13 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
CN110286803A (zh) * 2019-06-28 2019-09-27 上海天马有机发光显示技术有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN111897451A (zh) 2020-11-06
US11844261B2 (en) 2023-12-12
US20220293687A1 (en) 2022-09-15
CN111897451B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
KR102614070B1 (ko) 터치 패널 및 터치 패널 일체형 유기 발광 표시 장치
WO2020087804A1 (zh) 显示面板、显示屏和显示终端
WO2022142141A1 (zh) 显示基板及显示装置
US11437447B2 (en) Display device and manufacturing method thereof
US20220190042A1 (en) Oled display panel and display device
US20210202684A1 (en) Touch display panel and display device
TWI782380B (zh) 顯示裝置
CN212725311U (zh) Oled显示面板及显示装置
WO2022000706A1 (zh) 触控显示装置
WO2022016621A1 (zh) Oled 显示面板及电子设备
WO2022062879A1 (zh) 触控基板及显示面板
CN111276520A (zh) Oled显示面板
US20230367439A1 (en) Touch structure, display panel and electronic device
US20210357052A1 (en) Touch screen and display device
WO2017054381A1 (zh) 阵列基板、制造方法以及相应的显示面板和电子装置
TW201743118A (zh) 顯示面板
TW201740545A (zh) 顯示裝置
CN109584728B (zh) 柔性显示器
US20200075685A1 (en) Display panel and manufacturing method thereof, and display device
WO2022047763A1 (zh) 触控显示面板、触控显示装置和制造方法
CN112071890B (zh) 一种阵列基板、显示面板和电子设备
CN114284324A (zh) 显示面板及显示装置
CN107861303A (zh) 一种阵列基板、显示面板及显示装置
CN218831219U (zh) 显示装置
WO2022222615A1 (zh) 触控基板、显示面板及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946453

Country of ref document: EP

Kind code of ref document: A1