WO2022016456A1 - 光学系统、取像模组及电子设备 - Google Patents

光学系统、取像模组及电子设备 Download PDF

Info

Publication number
WO2022016456A1
WO2022016456A1 PCT/CN2020/103812 CN2020103812W WO2022016456A1 WO 2022016456 A1 WO2022016456 A1 WO 2022016456A1 CN 2020103812 W CN2020103812 W CN 2020103812W WO 2022016456 A1 WO2022016456 A1 WO 2022016456A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
object side
image side
optical axis
Prior art date
Application number
PCT/CN2020/103812
Other languages
English (en)
French (fr)
Inventor
邹金华
李明
张金巨
Original Assignee
欧菲光集团股份有限公司
南昌欧菲精密光学制品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 南昌欧菲精密光学制品有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2020/103812 priority Critical patent/WO2022016456A1/zh
Publication of WO2022016456A1 publication Critical patent/WO2022016456A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the invention relates to the field of imaging, in particular to an optical system, an imaging module and an electronic device.
  • the inventor found that the conventional technology has at least the following problems: in the process of assembling the camera lens, multiple lenses are easily collided with each other, resulting in damage to the lens during the assembly process, reducing the assembly of the camera lens. yield, which in turn leads to an increase in the manufacturing cost of the camera lens.
  • an optical system an imaging module, and an electronic device are provided.
  • An optical system comprising in order from the object side to the image side:
  • a fourth lens having a positive refractive power, the object side and the image side of the fourth lens are both aspherical, and at least one of the object side and the image side of the fourth lens has an inflection point;
  • ET8 is the edge thickness of the air lens composed of the image side of the fourth lens and the object side of the fifth lens
  • CT8 is the distance between the image side of the fourth lens and the object side of the fifth lens in the light distance on the axis.
  • An imaging module includes a photosensitive element and the optical system according to any one of the above embodiments, wherein the photosensitive element is arranged on the image side of the optical system.
  • An electronic device includes a casing and the above-mentioned imaging module, wherein the imaging module is arranged on the casing.
  • FIG. 1 is a schematic diagram of an optical system in a first embodiment of the application
  • FIG. 2 is a spherical aberration diagram, an astigmatism diagram and a distortion diagram of the optical system in the first embodiment of the application;
  • FIG. 3 is a schematic diagram of an optical system in a second embodiment of the present application.
  • FIG. 4 is a spherical aberration diagram, an astigmatism diagram and a distortion diagram of the optical system in the second embodiment of the application;
  • FIG. 5 is a schematic diagram of an optical system in a third embodiment of the present application.
  • FIG. 6 is a spherical aberration diagram, an astigmatism diagram and a distortion diagram of the optical system in the third embodiment of the present application;
  • FIG. 7 is a schematic diagram of an optical system in a fourth embodiment of the present application.
  • FIG. 9 is a schematic diagram of an optical system in a fifth embodiment of the present application.
  • FIG. 10 is a spherical aberration diagram, an astigmatism diagram and a distortion diagram of the optical system in the fifth embodiment of the application;
  • FIG. 11 is a schematic diagram of an optical system in a sixth embodiment of the application.
  • FIG. 13 is a schematic diagram of a lens assembly in an embodiment of the application.
  • FIG. 14 is a schematic diagram of an imaging module in an embodiment of the application.
  • FIG. 15 is a schematic diagram of an electronic device in an embodiment of the application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • a first feature "on” or “under” a second feature may be in direct contact between the first and second features, or the first and second features indirectly through an intermediary get in touch with.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the optical system 100 sequentially includes a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 and a fifth lens L5 from the object side to the image side.
  • the first lens L1 includes an object side S1 and an image side S2
  • the second lens L2 includes an object side S3 and an image side S4
  • the third lens L3 includes an object side S5 and an image side S6
  • the fourth lens L4 includes an object side S7
  • the fifth lens L5 includes an object side S9 and an image side S10.
  • the first lens L1 has a positive refractive power.
  • the second lens L2 has negative refractive power.
  • the third lens L3 has refractive power.
  • the fourth lens L4 has positive refractive power, the object side S7 and the image side S8 of the fourth lens L4 are both aspherical, and at least one of the object side S7 and the image side S8 of the fourth lens L4 has an inflection point.
  • the fifth lens L5 has negative refractive power.
  • the optical system 100 is provided with a stop STO, and the stop STO may be arranged on the object side of the first lens L1 or between the first lens L1 and the second lens L2.
  • the optical system 100 further includes an infrared filter L6 disposed on the image side of the fifth lens L5, and the infrared filter L6 includes an object side S11 and an image side S12.
  • the optical system 100 further includes an image plane S13 located on the image side of the fifth lens L5, the image plane S13 is the imaging plane of the optical system 100, and the incident light passes through the first lens L1, the second lens L2, the third lens L3,
  • the fourth lens L4 and the fifth lens L5 can form an image on the image plane S13 after adjustment.
  • the infrared filter L6 may be an infrared cut-off filter, which is used to filter out interference light and prevent the interference light from reaching the image plane S13 of the optical system 100 to affect normal imaging.
  • the object side and the image side of each lens of the optical system 100 are aspherical.
  • the adoption of the aspherical structure can improve the flexibility of lens design, effectively correct spherical aberration, and improve image quality.
  • the object side surface and the image side surface of the other lenses of the optical system 100 may also be spherical surfaces. It should be noted that the above embodiments are only examples of some embodiments of the present application. In some embodiments, except for the fourth lens L4, the surfaces of the other lenses in the optical system 100 may be aspherical or any combination of spherical surfaces.
  • the material of each lens in the optical system 100 may be glass or plastic. Using plastic lenses can reduce the weight of the optical system 100 and reduce the production cost. The lens made of glass enables the optical system 100 to have excellent optical performance and high temperature resistance. It should be noted that the material of each lens in the optical system 100 can also be any combination of glass and plastic, and not necessarily all of glass or all of plastic.
  • the first lens L1 does not mean that there is only one lens.
  • the surface of the cemented lens closest to the object side can be regarded as the object side S1, and the surface closest to the image side can be regarded as the image side S2.
  • a cemented lens is not formed between the lenses in the first lens L1, but the distance between the lenses is relatively fixed.
  • the object side of the lens closest to the object side is the object side S1
  • the lens closest to the image side The image side is the image side S2.
  • the number of lenses in the second lens L2, the third lens L3, the fourth lens L4 or the fifth lens L5 in some embodiments may also be greater than or equal to two, and a cemented lens may be formed between any adjacent lenses, A non-cemented lens may also be used.
  • the optical system 100 satisfies the conditional formula: 0.5 ⁇ ET8/CT8 ⁇ 1.2; wherein, ET8 is the air lens composed of the image side S8 of the fourth lens L4 and the object side S9 of the fifth lens L5.
  • the edge thickness, CT8 is the distance on the optical axis from the image side S8 of the fourth lens L4 to the object side S9 of the fifth lens L5.
  • ET8/CT8 may be: 0.556, 0.578, 0.631, 0.684, 0.712, 0.754, 0.893, 0.902, 0.955 or 1.034.
  • the image side S8 of the fourth lens L4 and the object side S9 of the fifth lens L5 can be reasonably arranged, so that the air interval between the fourth lens L4 and the fifth lens L5 on the optical axis is moderate, which is beneficial to The connecting elements between the fourth lens L4 and the fifth lens L5 are saved, and the manufacturing cost of the optical system 100 is reduced.
  • the air space between the fourth lens L4 and the fifth lens L5 on the optical axis can not be too small, so that the fourth lens L4 and the fifth lens L5 are not easily collided with each other during the assembly process.
  • the optical system 100 is too sensitive to the air gap between the fourth lens L4 and the fifth lens L5 , which easily reduces the imaging quality of the optical system 100 and is not conducive to improving the assembly yield of the optical system 100 . Furthermore, when the above-mentioned conditional expression is satisfied, it is also possible to prevent an increase in the decentering sensitivity due to an excessively large air space between the fourth lens L4 and the fifth lens L5 on the optical axis.
  • the optical system satisfies the conditional formula: 0.3 ⁇ f/f45 ⁇ 0.8; wherein, f is the total effective focal length of the optical system 100, and f45 is the combined focal length of the fourth lens L4 and the fifth lens L5.
  • f/f45 may be: 0.434, 0.439, 0.445, 0.467, 0.471, 0.496, 0.521, 0.539, 0.552 or 0.599.
  • the total effective focal length of the optical system 100 and the combined focal length of the fourth lens L4 and the fifth lens L5 can be reasonably configured to improve the ability of the optical system 100 to converge light, thereby shortening the system of the optical system 100 total length.
  • the positive refractive power provided by the fourth lens L4 and the negative refractive power provided by the fifth lens L5 can also correct the spherical aberration of the optical system 100 and improve the imaging quality of the optical system 100 .
  • the optical system satisfies the conditional formula: 3.0 ⁇ R2/R1 ⁇ 4.0; wherein, R2 is the radius of curvature of the image side S2 of the first lens L1 at the optical axis, and R1 is the object side S1 of the first lens L1 The radius of curvature at the optical axis.
  • R2/R1 may be: 3.286, 3.325, 3.374, 3.416, 3.495, 3.528, 3.580, 3.610, 3.684 or 3.791.
  • the first lens L1 can be reasonably configured, so that the object side S1 of the first lens L1 is convex, so as to enhance the positive refractive power of the first lens L1, thereby shortening the overall system length of the optical system 100, which is beneficial to Realize miniaturized design.
  • the curvature of the object side S1 and the image side S2 of the first lens L1 at the optical axis is too large to generate serious aberrations, resulting in the degradation of the imaging quality of the optical system 100.
  • the optical system satisfies the conditional formula: 1.0 ⁇ (CT1+CT2)/(T12+T23) ⁇ 1.9; wherein CT1 is the thickness of the first lens L1 on the optical axis, CT2 is the thickness of the second lens L2 on the optical axis Thickness on the optical axis, T12 is the distance from the image side S2 of the first lens L1 to the object side S3 of the second lens L2 on the optical axis, T23 is the image side S4 of the second lens L2 to the object side of the third lens L3 The distance of S5 on the optical axis.
  • (CT1+CT2)/(T12+T23) may be: 1.197, 1.202, 1.237, 1.298, 1.354, 1.381, 1.437, 1.512, 1.567 or 1.67.
  • the central thicknesses of the first lens L1 and the second lens L2 can also be increased, so that the arrangement of the lenses in the optical system 100 is more reasonable, and the sensitivity of the optical system 100 is reduced.
  • the optical system satisfies the conditional formula: 1 ⁇ CT4/
  • may be: 2.623, 10.547, 27.856, 60.735, 90.221, 115.412, 130.632, 165.331, 192.856 or 208.333.
  • the fourth lens L4 can be reasonably configured, which is beneficial to the manufacture and molding of the fourth lens L4 and improves the molding yield of the fourth lens L4. At the same time, the fourth lens L4 can better correct the field curvature generated by each lens located on the object side of the fourth lens L4 , thereby better balancing the field curvature of the optical system 100 and improving the imaging quality of the optical system 100 .
  • the optical system satisfies the conditional formula: 0.4 ⁇ BFL ⁇ 0.8; wherein, BFL is the shortest distance from the image side S10 of the fifth lens L5 to the imaging plane of the optical system 100 in a direction parallel to the optical axis.
  • the BFL may be: 0.425, 0.456, 0.487, 0.501, 0.528, 0.594, 0.655, 0.681, 0.723, or 0.771.
  • the value of the BFL can be appropriately configured, so as to shorten the total system length of the optical system 100 , which is beneficial to realize miniaturized design.
  • a sufficient focusing range can be provided between the image side surface S10 of the fifth lens L5 and the imaging surface of the optical system 100 .
  • the optical system satisfies the conditional formula: 0 ⁇ Vd3-Vd2 ⁇ 40; wherein, Vd2 is the Abbe number of the second lens L2 under the d line, and Vd3 is the Abbe number of the third lens L3 under the d line number.
  • Vd3-Vd2 may be: 0, 2.64, 9.58, 15.64, 17.31, 20.23, 25.93, 28.25, 31.99 or 35.37.
  • the Abbe numbers of the second lens L2 and the third lens L3 under the d-line can be reasonably configured, so that the second lens L2 and the third lens L3 can effectively correct the chromatic aberration of the optical system 100 and improve the The imaging clarity of the optical system 100 further improves the imaging quality of the optical system 100 .
  • the optical system satisfies the conditional formula: 5.5 ⁇ f3/f1 ⁇ 45; wherein, f1 is the effective focal length of the first lens L1, and f3 is the effective focal length of the third lens L3.
  • f3/f1 can be: 7.492, 13.584, 19.335, 21.502, 25.387, 29.368, 31.228, 34.647, 38.984 or 41.412.
  • the effective focal lengths of the first lens L1 and the third lens L3 can be reasonably configured to better correct the spherical aberration of the optical system 100 and improve the imaging quality of the optical system 100 .
  • the positive refractive power of the third lens L3 is too large, which leads to excessive correction of the aberrations of the third lens L3, and further causes the image quality of the optical system 100 to decrease.
  • f3/f1>45 the positive refractive power provided by the third lens L3 for the optical system 100 is insufficient, resulting in difficulty in correcting spherical aberration of the optical system 100 .
  • the optical system satisfies the conditional formula: -9 ⁇ R3/R4 ⁇ -2; wherein, R3 is the radius of curvature of the object side surface S3 of the second lens L2 at the optical axis, and R4 is the image of the second lens L2 The curvature radius of the side surface S4 at the optical axis.
  • R3/R4 may be: -7.23, -6.95, -6.24, -5.32, -4.99, -4.65, -4.33, -4.01, -3.96 or -3.81.
  • the surface shape of the second lens L2 can be reasonably configured to reduce the tolerance sensitivity of the second lens L2 and improve the molding yield of the second lens L2.
  • the image side S4 of the second lens L2 can be concave at the paraxial position, so as to effectively expand the maximum field of view of the optical system 100 , and help correct aberrations of the optical system 100 , thereby improving the imaging quality of the optical system 100 .
  • FIG. 1 is a schematic diagram of the optical system 100 in the first embodiment.
  • the optical system 100 sequentially includes a first lens L1 with a positive refractive power, an aperture STO, a negative
  • 2 shows graphs of spherical aberration, astigmatism and distortion of the optical system 100 in the first embodiment from left to right, wherein the reference wavelength of the astigmatism graph and the distortion graph is 587.5618 nm, and the other embodiments are the same.
  • the object side surface S1 of the first lens L1 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S2 of the first lens L1 is concave at the paraxial position, and is concave at the circumference;
  • the object side surface S3 of the second lens L2 is concave at the paraxial position, and is concave at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the paraxial position and convex at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the paraxial position and a concave surface at the circumference;
  • the image side surface S6 of the third lens L3 is concave at the paraxial position and convex at the circumference;
  • the object side surface S7 of the fourth lens L4 is a convex surface at the paraxial position and a concave surface at the circumference;
  • the image side surface S8 of the fourth lens L4 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is concave at the paraxial position and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all plastic.
  • the image side S8 of the fourth lens L4 and the object side S9 of the fifth lens L5 can be reasonably arranged, so that the air interval between the fourth lens L4 and the fifth lens L5 on the optical axis is moderate, which is beneficial to The connecting elements between the fourth lens L4 and the fifth lens L5 are saved, and the manufacturing cost of the optical system 100 is reduced.
  • the air space between the fourth lens L4 and the fifth lens L5 on the optical axis can not be too small, so that the fourth lens L4 and the fifth lens L5 are not easily collided with each other during the assembly process.
  • the optical system 100 is too sensitive to the air gap between the fourth lens L4 and the fifth lens L5 , which easily reduces the imaging quality of the optical system 100 and is not conducive to improving the assembly yield of the optical system 100 . Furthermore, when the above-mentioned conditional expression is satisfied, it is also possible to prevent an increase in the decentering sensitivity due to an excessively large air space between the fourth lens L4 and the fifth lens L5 on the optical axis.
  • the total effective focal length of the optical system 100 and the combined focal length of the fourth lens L4 and the fifth lens L5 can be reasonably configured to improve the ability of the optical system 100 to converge light, thereby shortening the system of the optical system 100 total length.
  • the positive refractive power provided by the fourth lens L4 and the negative refractive power provided by the fifth lens L5 can also correct the spherical aberration of the optical system 100 and improve the imaging quality of the optical system 100 .
  • R2 is the radius of curvature of the image side S2 of the first lens L1 at the optical axis
  • R1 is the radius of curvature of the object side S1 of the first lens L1 at the optical axis.
  • CT1 is the thickness of the first lens L1 on the optical axis
  • CT2 is the thickness of the second lens L2 on the optical axis
  • T12 is The distance from the image side S2 of the first lens L1 to the object side S3 of the second lens L2 on the optical axis
  • T23 is the distance on the optical axis from the image side S4 of the second lens L2 to the object side S5 of the third lens L3.
  • the optical system satisfies the conditional formula: CT4/
  • 22.583; among them, CT4 is the thickness of the fourth lens L4 on the optical axis, and SAG41 is the intersection of the object side S9 of the fourth lens L4 and the optical axis to the fourth lens L4 The maximum effective aperture of the object side S9 is located at a distance parallel to the optical axis.
  • CT4 is the thickness of the fourth lens L4 on the optical axis
  • SAG41 is the intersection of the object side S9 of the fourth lens L4 and the optical axis to the fourth lens L4
  • the maximum effective aperture of the object side S9 is located at a distance parallel to the optical axis.
  • the fourth lens L4 can better correct the field curvature generated by each lens located on the object side of the fourth lens L4, thereby better balancing the field curvature of the optical system 100 and improving the imaging quality of the optical system 100.
  • ⁇ 1 the surface shape change of the object side S9 of the fourth lens L4 at the circumference is too gentle, so that the fourth lens L4 has insufficient deflection ability for off-axis field of view light, which is not conducive to the optical system 100 Correction of aberrations such as distortion and field curvature.
  • BFL is the shortest distance from the image side S10 of the fifth lens L5 to the imaging plane of the optical system 100 in a direction parallel to the optical axis.
  • Vd3 is the Abbe number of the third lens L3 under the d line.
  • the effective focal lengths of the first lens L1 and the third lens L3 can be reasonably configured to better correct the spherical aberration of the optical system 100 and improve the imaging quality of the optical system 100 .
  • f3/f1 ⁇ 5.5 the positive refractive power of the third lens L3 is too large, which leads to excessive correction of the aberrations of the third lens L3, and further causes the image quality of the optical system 100 to decrease.
  • f3/f1>45 the positive refractive power provided by the third lens L3 for the optical system 100 is insufficient, resulting in difficulty in correcting spherical aberration of the optical system 100 .
  • R3 is the radius of curvature of the object side S3 of the second lens L2 at the optical axis
  • R4 is the radius of curvature of the image side S4 of the second lens L2 at the optical axis .
  • the image side S4 of the second lens L2 can be concave, so as to effectively expand the maximum field of view of the optical system 100 , and help correct aberrations of the optical system 100 , thereby improving the imaging quality of the optical system 100 .
  • the image plane S13 in Table 1 can be understood as the imaging plane of the optical system 100 .
  • the elements from the object plane (not shown) to the image plane S13 are sequentially arranged in the order of the elements in Table 1 from top to bottom.
  • the Y radius in Table 1 is the curvature radius of the object side or image side of the corresponding surface number at the optical axis.
  • Surface number 1 and surface number 2 are the object side S1 and the image side S2 of the first lens L1 respectively, that is, in the same lens, the surface with the smaller surface number is the object side, and the surface with the larger surface number is the image side.
  • the first value in the "thickness" parameter column of the first lens L1 is the thickness of the lens on the optical axis
  • the second value is the object side of the next lens from the image side to the image side of the lens on the optical axis. on the distance.
  • the optical system 100 may not be provided with the infrared filter L6, but at this time, the distance from the image side S10 to the image plane S13 of the fifth lens L5 remains unchanged.
  • the focal length, refractive index, and Abbe number of each lens are values in the d-line (587.56 nm), and the same is true for other embodiments.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 2.
  • the surface numbers from 1-10 represent the image side or the object side S1-S10 respectively.
  • K-A10 represent the types of aspheric coefficients, where K represents the conic coefficient, A4 represents the fourth-order aspheric coefficient, A6 represents the sixth-order aspheric coefficient, and A8 represents the eight-order aspheric coefficient. analogy.
  • the aspheric coefficient formula is as follows:
  • Z is the distance from the corresponding point on the aspheric surface to the plane tangent to the surface vertex
  • r is the distance from the corresponding point on the aspheric surface to the optical axis
  • c is the curvature of the aspheric vertex
  • k is the conic coefficient
  • Ai is the aspheric surface The coefficient corresponding to the i-th higher-order term in the face formula.
  • FIG. 3 is a schematic diagram of the optical system 100 in the second embodiment.
  • the optical system 100 sequentially includes a first lens L1 with positive refractive power, a diaphragm STO, a negative
  • the second lens L2 of refractive power the third lens L3 of positive refractive power
  • the fourth lens L4 of positive refractive power and the fifth lens L5 of negative refractive power.
  • FIG. 4 is a graph of spherical aberration, astigmatism and distortion of the optical system 100 in the second embodiment from left to right.
  • the object side surface S1 of the first lens L1 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S2 of the first lens L1 is concave at the paraxial position, and is concave at the circumference;
  • the object side surface S3 of the second lens L2 is concave at the paraxial position, and is concave at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the paraxial position and convex at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S6 of the third lens L3 is concave at the paraxial position, and is concave at the circumference;
  • the object side surface S7 of the fourth lens L4 is a convex surface at the paraxial position and a concave surface at the circumference;
  • the image side surface S8 of the fourth lens L4 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is concave at the paraxial position and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all plastic.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 4, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • FIG. 5 is a schematic diagram of the optical system 100 in the third embodiment.
  • the optical system 100 sequentially includes a first lens L1 with positive refractive power, a diaphragm STO, a negative
  • the second lens L2 of refractive power the third lens L3 of positive refractive power
  • the fourth lens L4 of positive refractive power and the fifth lens L5 of negative refractive power.
  • FIG. 6 is a graph of spherical aberration, astigmatism and distortion of the optical system 100 in the third embodiment from left to right.
  • the object side surface S1 of the first lens L1 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S2 of the first lens L1 is concave at the paraxial position, and is concave at the circumference;
  • the object side surface S3 of the second lens L2 is concave at the paraxial position, and is concave at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the paraxial position and convex at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the paraxial position and a concave surface at the circumference;
  • the image side surface S6 of the third lens L3 is concave at the paraxial position and convex at the circumference;
  • the object side surface S7 of the fourth lens L4 is a convex surface at the paraxial position and a concave surface at the circumference;
  • the image side surface S8 of the fourth lens L4 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is concave at the paraxial position and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all plastic.
  • the parameters of the optical system 100 are given in Table 5, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 6, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • FIG. 7 is a schematic diagram of the optical system 100 in the fourth embodiment.
  • the optical system 100 sequentially includes a first lens L1 with a positive refractive power, a diaphragm STO, a negative
  • the second lens L2 of refractive power the third lens L3 of positive refractive power
  • the fourth lens L4 of positive refractive power and the fifth lens L5 of negative refractive power.
  • FIG. 8 is a graph of spherical aberration, astigmatism and distortion of the optical system 100 in the fourth embodiment from left to right.
  • the object side surface S1 of the first lens L1 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S2 of the first lens L1 is concave at the paraxial position, and is concave at the circumference;
  • the object side surface S3 of the second lens L2 is concave at the paraxial position, and is concave at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the paraxial position and convex at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the paraxial position and a concave surface at the circumference;
  • the image side surface S6 of the third lens L3 is concave at the paraxial position and convex at the circumference;
  • the object side surface S7 of the fourth lens L4 is a convex surface at the paraxial position and a concave surface at the circumference;
  • the image side surface S8 of the fourth lens L4 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is concave at the paraxial position and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all plastic.
  • the parameters of the optical system 100 are given in Table 7, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 8, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • FIG. 9 is a schematic diagram of the optical system 100 in the fifth embodiment.
  • the optical system 100 sequentially includes a first lens L1 with positive refractive power, a diaphragm STO, a negative
  • the second lens L2 of refractive power the third lens L3 of positive refractive power
  • the fourth lens L4 of positive refractive power and the fifth lens L5 of negative refractive power.
  • FIG. 10 is a graph of spherical aberration, astigmatism and distortion of the optical system 100 in the fifth embodiment from left to right.
  • the object side surface S1 of the first lens L1 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S2 of the first lens L1 is concave at the paraxial position, and is concave at the circumference;
  • the object side surface S3 of the second lens L2 is concave at the paraxial position, and is concave at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the paraxial position and convex at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the paraxial position and a concave surface at the circumference;
  • the image side surface S6 of the third lens L3 is concave at the paraxial position and convex at the circumference;
  • the object side surface S7 of the fourth lens L4 is a convex surface at the paraxial position and a concave surface at the circumference;
  • the image side surface S8 of the fourth lens L4 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is concave at the paraxial position and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all plastic.
  • the parameters of the optical system 100 are given in Table 9, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 10, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • FIG. 11 is a schematic diagram of the optical system 100 in the sixth embodiment.
  • the optical system 100 sequentially includes a diaphragm STO, a first lens L1 with a positive refractive power, a negative The second lens L2 of refractive power, the third lens L3 of positive refractive power, the fourth lens L4 of positive refractive power, and the fifth lens L5 of negative refractive power.
  • FIG. 12 is a graph of spherical aberration, astigmatism and distortion of the optical system 100 in the sixth embodiment from left to right.
  • the object side surface S1 of the first lens L1 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S2 of the first lens L1 is concave at the paraxial position, and is concave at the circumference;
  • the object side surface S3 of the second lens L2 is concave at the paraxial position, and is concave at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the paraxial position and convex at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S6 of the third lens L3 is concave at the paraxial position and convex at the circumference;
  • the object side surface S7 of the fourth lens L4 is a convex surface at the paraxial position and a concave surface at the circumference;
  • the image side surface S8 of the fourth lens L4 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the paraxial position, and is a convex surface at the circumference;
  • the image side surface S10 of the fifth lens L5 is concave at the paraxial position and convex at the circumference.
  • the object side surface and the image side surface of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all plastic.
  • the parameters of the optical system 100 are given in Table 11, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 12, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the optical system 100 can be assembled with the lens barrel 120 to form the lens assembly 110 , and the optical system 100 is disposed in the lens barrel 120 .
  • the lens barrel 120 is provided with a light-passing hole 140, and in the axial direction of the lens barrel 120, the first lens L1, the second lens L2, the third lens L3, the fourth lens L4 and the fifth lens L5 are arranged in sequence, wherein the first lens L1, the second lens L2, the third lens L3, the fourth lens L4 and the fifth lens L5 A lens L1 is closest to the light-passing hole 140 , and light enters the optical system 100 from the light-passing hole 140 .
  • the lenses are fixed to the lens barrel 120 by means of gluing or the like, and the lenses are separated by spacers 130 .
  • the optical system 100 can be assembled with the photosensitive element 210 to form the imaging module 200 .
  • the photosensitive surface of the photosensitive element 210 can be regarded as the image surface S13 of the optical system 100 .
  • the imaging module 200 may also be provided with an infrared filter L6, and the infrared filter L6 is disposed between the image side S10 and the image surface S13 of the fifth lens L5.
  • the photosensitive element 210 may be a Charge Coupled Device (CCD) or a Complementary Metal-Oxide Semiconductor (Complementary Metal-Oxide Semiconductor Sensor, CMOS Sensor).
  • the use of the above-mentioned optical system 100 in the image capturing module 200 can prevent the air space between the fourth lens L4 and the fifth lens L5 on the optical axis from being too small, so that the fourth lens L4 and the fifth lens L5 are not too small during the assembly process.
  • the lenses L5 are less likely to collide with each other, thereby improving the assembly yield of the image capturing module 200 .
  • the imaging module 200 can be applied to an electronic device 300 , the electronic device includes a casing 310 , and the imaging module 200 is disposed in the casing 310 .
  • the electronic device 300 may be, but is not limited to, a mobile phone, a video phone, a smart phone, an electronic book reader, a vehicle-mounted camera device such as a driving recorder, or a wearable device such as a smart watch.
  • the fourth lens L4 and the fifth lens L5 are not easily collided with each other during the assembly process, thereby improving the assembly yield of the image capturing module 200 in the electronic device 300 .
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
  • a first feature "on” or “under” a second feature may be in direct contact between the first and second features, or the first and second features indirectly through an intermediary get in touch with.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学系统(100),由物侧至像侧依次包括:具有正屈折力的第一透镜(L1);具有负屈折力的第二透镜(L2);具有屈折力的第三透镜(L3);具有正屈折力的第四透镜(L4),物侧面(S7)及像侧面(S8)均为非球面,且物侧面(S7)及像侧面(S8)中至少一个存在反曲点;具有负屈折力的第五透镜(L5);光学系统(100)满足条件式:0.5≤ET8/CT8≤1.2;ET8为第四透镜(L4)的像侧面(S8)及第五透镜(L5)的物侧面(S9)组成的空气透镜的边缘厚度,CT8为第四透镜(L4)的像侧面(S8)至第五透镜(L5)的物侧面S9于光轴上的距离。

Description

光学系统、取像模组及电子设备 技术领域
本发明涉及摄像领域,特别是涉及一种光学系统、取像模组及电子设备。
背景技术
在摄像领域中,需要通过注塑成型的方式形成透镜,并通过控制多个透镜之间的相对位置,将多个透镜与镜筒组装形成摄像镜头。
但是,在实现本发明的过程中,发明人发现传统技术至少存在如下问题:摄像镜头在组装的过程中,多个透镜之间容易相互碰撞,导致组装过程中透镜的损坏,降低摄像镜头的组装良率,进而导致摄像镜头的制造成本增加。
发明内容
根据本申请的各种实施例,提供一种光学系统、取像模组及电子设备。
一种光学系统,由物侧至像侧依次包括:
具有正屈折力的第一透镜;
具有负屈折力的第二透镜;
具有屈折力的第三透镜;
具有正屈折力的第四透镜,所述第四透镜的物侧面及像侧面均为非球面,且所述第四透镜的物侧面及像侧面中至少一个存在反曲点;
具有负屈折力的第五透镜;
且所述光学系统满足以下条件式:
0.5≤ET8/CT8≤1.2;
其中,ET8为所述第四透镜的像侧面及所述第五透镜的物侧面组成的空气透镜的边缘厚度,CT8为所述第四透镜的像侧面至所述第五透镜的物侧面于光轴上的距离。
一种取像模组,包括感光元件以及上述任一实施例所述的光学系统,所述感光元件设置于所述光学系统的像侧。
一种电子设备,包括壳体以及上述的取像模组,所述取像模组设置于壳体。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请第一实施例中的光学系统的示意图;
图2为本申请第一实施例中的光学系统的球差图、像散图及畸变图;
图3为本申请第二实施例中的光学系统的示意图;
图4为本申请第二实施例中的光学系统的球差图、像散图及畸变图;
图5为本申请第三实施例中的光学系统的示意图;
图6为本申请第三实施例中的光学系统的球差图、像散图及畸变图;
图7为本申请第四实施例中的光学系统的示意图;
图8为本申请第四实施例中的光学系统的球差图、像散图及畸变图;
图9为本申请第五实施例中的光学系统的示意图;
图10为本申请第五实施例中的光学系统的球差图、像散图及畸变图;
图11为本申请第六实施例中的光学系统的示意图;
图12为本申请第六实施例中的光学系统的球差图、像散图及畸变图;
图13为本申请一实施例中的镜头组件的示意图;
图14为本申请一实施例中的取像模组的示意图;
图15为本申请一实施例中的电子设备的示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参见图1,在本申请的一些实施例中,光学系统100由物侧到像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5。具体地,第一透镜L1包括物侧面S1及像侧面S2,第二透镜L2包括物侧面S3及像侧面S4,第三透镜L3包括物侧面S5及像侧面S6,第四透镜L4包括物侧面S7及像侧面S8,第五透镜L5包括物侧面S9及像侧面S10。
其中,第一透镜L1具有正屈折力。第二透镜L2具有负屈折力。第三透镜L3具有屈折力。第四透镜L4具有正屈折力,第四透镜L4的物侧面S7及像侧面S8均为非球面,且第四透镜L4的物侧面S7及像侧面S8中至少一个存在反曲点。第五透镜L5具有负屈折力。
另外,在一些实施例中,光学系统100设置有光阑STO,光阑STO可设置于第一透镜L1的物侧或设置于第一透镜L1与第二透镜L2之间。在一些实施例中,光学系统100还包括设 置于第五透镜L5像侧的红外滤光片L6,红外滤光片L6包括物侧面S11及像侧面S12。进一步地,光学系统100还包括位于第五透镜L5像侧的像面S13,像面S13即为光学系统100的成像面,入射光经第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5调节后能够成像于像面S13。值得注意的是,红外滤光片L6可为红外截止滤光片,用于滤除干扰光,防止干扰光到达光学系统100的像面S13而影响正常成像。
在一些实施例中,光学系统100的各透镜的物侧面和像侧面均为非球面。非球面结构的采用能够提高透镜设计的灵活性,并有效地校正球差,改善成像质量。在另一些实施例中,除第四透镜L4外,光学系统100的其余各透镜的物侧面和像侧面也可以均为球面。需要注意的是,上述实施例仅是对本申请的一些实施例的举例,在一些实施例中,除第四透镜L4外,光学系统100中其余各透镜的表面可以是非球面或球面的任意组合。
在一些实施例中,光学系统100中的各透镜的材质可以均为玻璃或均为塑料。采用塑料材质的透镜能够减少光学系统100的重量并降低生产成本。而采用玻璃材质的透镜使光学系统100具备优良的光学性能以及较高的耐温性能。需要注意的是,光学系统100中各透镜的材质也可以为玻璃和塑料的任意组合,并不一定要是均为玻璃或均为塑料。
需要注意的是,第一透镜L1并不意味着只存在一片透镜,在一些实施例中,第一透镜L1中也可以存在两片或多片透镜,两片或多片透镜能够形成胶合透镜,胶合透镜最靠近物侧的表面可视为物侧面S1,最靠近像侧的表面可视为像侧面S2。或者,第一透镜L1中的各透镜之间并不形成胶合透镜,但各透镜之间的距离相对固定,此时最靠近物侧的透镜的物侧面为物侧面S1,最靠近像侧的透镜的像侧面为像侧面S2。另外,一些实施例中的第二透镜L2、第三透镜L3、第四透镜L4或第五透镜L5中的透镜数量也可大于或等于两片,且任意相邻透镜之间可以形成胶合透镜,也可以为非胶合透镜。
进一步地,在一些实施例中,光学系统100满足条件式:0.5≤ET8/CT8≤1.2;其中,ET8为第四透镜L4的像侧面S8及第五透镜L5的物侧面S9组成的空气透镜的边缘厚度,CT8为第四透镜L4的像侧面S8至第五透镜L5的物侧面S9于光轴上的距离。具体地,ET8/CT8可以为:0.556、0.578、0.631、0.684、0.712、0.754、0.893、0.902、0.955或1.034。满足上述条件式时,能够对第四透镜L4的像侧面S8及第五透镜L5的物侧面S9进行合理配置,使第四透镜L4及第五透镜L5于光轴上的空气间隔适中,有利于节省第四透镜L4及第五透镜L5之间的连接元件,降低光学系统100的制造成本。另外,也能够使第四透镜L4及第五透镜L5之间于光轴上的空气间隔不会过小,进而使组装过程中第四透镜L4及第五透镜L5之间不易相互碰撞,同时能够避免光学系统100对第四透镜L4与第五透镜L5之间的空气间隔的敏感度过大,从而容易降低光学系统100的成像质量,且不利于提升光学系统100的组装良率。并且,满足上述条件式时,也能够防止第四透镜L4及第五透镜L5之间于光轴上的空气间隔过大而导致偏心敏感度的增大。
在一些实施例中,光学系统满足条件式:0.3≤f/f45≤0.8;其中,f为光学系统100的总有效焦距,f45为第四透镜L4及第五透镜L5的组合焦距。具体地,f/f45可以为:0.434、0.439、0.445、0.467、0.471、0.496、0.521、0.539、0.552或0.599。满足上述条件式时,能够对光学系统100的总有效焦距以及第四透镜L4与第五透镜L5的组合焦距进行合理配置,以提升光学系统100对光线的会聚能力,进而缩短光学系统100的系统总长。同时,第四透镜L4提供的正屈折力以及第五透镜L5提供的负屈折力也能够校正光学系统100的球差,提升光学系统100的成像质量。
在一些实施例中,光学系统满足条件式:3.0≤R2/R1≤4.0;其中,R2为第一透镜L1的像侧面S2于光轴处的曲率半径,R1为第一透镜L1的物侧面S1于光轴处的曲率半径。具体地,R2/R1可以为:3.286、3.325、3.374、3.416、3.495、3.528、3.580、3.610、3.684或3.791。满足上述条件式时,能够对第一透镜L1进行合理配置,使第一透镜L1的物侧面S1为凸面,以增强第一透镜L1的正屈折力,进而缩短光学系统100的系统总长,有利于实现小型化设计。同时也能够避免第一透镜L1的物侧面S1及像侧面S2于光轴处的曲率过大而产生 较严重的像差,导致光学系统100的成像质量降低。
在一些实施例中,光学系统满足条件式:1.0≤(CT1+CT2)/(T12+T23)≤1.9;其中,CT1为第一透镜L1于光轴上的厚度,CT2为第二透镜L2于光轴上的厚度,T12为第一透镜L1的像侧面S2至第二透镜L2的物侧面S3于光轴上的距离,T23为第二透镜L2的像侧面S4至第三透镜L3的物侧面S5于光轴上的距离。具体地,(CT1+CT2)/(T12+T23)可以为:1.197、1.202、1.237、1.298、1.354、1.381、1.437、1.512、1.567或1.67。满足上述条件式时,能够使第一透镜L1、第二透镜L2及第三透镜L3中相邻两透镜之间于光轴上有足够的空气间隔,避免在组装过程中第一透镜L1、第二透镜L2及第三透镜L3中相邻两透镜之间相互碰撞,进而提高光学系统100的组装良率。同时,也能够增大第一透镜L1及第二透镜L2的中心厚度,使光学系统100中各透镜的排布更合理,且有利于降低光学系统100的敏感度。另外,也能够防止组装时第一透镜L1、第二透镜L2及第三透镜L3的偏心及倾斜敏感度的增加。
在一些实施例中,光学系统满足条件式:1≤CT4/|SAG41|≤220;其中,CT4为第四透镜L4于光轴上的厚度,SAG41为第四透镜L4的物侧面S9与光轴的交点至第四透镜L4的物侧面S9的最大有效孔径位置于平行于光轴方向上的距离。具体地,CT4/|SAG41|可以为:2.623、10.547、27.856、60.735、90.221、115.412、130.632、165.331、192.856或208.333。满足上述条件式时,能够对第四透镜L4进行合理配置,有利于第四透镜L4的制造与成型,提升第四透镜L4的成型良率。同时使第四透镜L4能够更好地修正位于第四透镜L4的物侧各透镜产生的场曲,进而更好地平衡光学系统100的场曲,提升光学系统100的成像质量。当CT4/|SAG41|<1时,第四透镜L4的物侧面S9于圆周处的面型变化过于平缓,使第四透镜L4对轴外视场光线的偏折能力不足,不利于光学系统100的畸变和场曲等像差的校正。当CT4/|SAG41|>220时,第四透镜L4的物侧面S9于圆周处的面型过度弯曲,不利于第四透镜L4的成型,导致第四透镜L4成型良率下降。
在一些实施例中,光学系统满足条件式:0.4≤BFL≤0.8;其中,BFL为第五透镜L5的像侧面S10至光学系统100的成像面于平行于光轴方向上的最短距离。具体地,BFL可以为:0.425、0.456、0.487、0.501、0.528、0.594、0.655、0.681、0.723或0.771。满足上述条件式时,能够对BFL的数值进行合理配置,以缩短光学系统100的系统总长,有利于实现小型化设计。同时也能够使第五透镜L5的像侧面S10至光学系统100的成像面之间具有足够的调焦范围。
在一些实施例中,光学系统满足条件式:0≤Vd3-Vd2≤40;其中,Vd2为第二透镜L2在d线下的阿贝数,Vd3为第三透镜L3在d线下的阿贝数。具体地,Vd3-Vd2可以为:0、2.64、9.58、15.64、17.31、20.23、25.93、28.25、31.99或35.37。满足上述条件式时,能够对第二透镜L2以及第三透镜L3在d线下的阿贝数进行合理配置,以使第二透镜L2及第三透镜L3能够有效修正光学系统100的色差,提高光学系统100的成像清晰度,进而提升光学系统100的成像质量。
在一些实施例中,光学系统满足条件式:5.5≤f3/f1≤45;其中,f1为第一透镜L1的有效焦距,f3为第三透镜L3的有效焦距。具体地,f3/f1可以为:7.492、13.584、19.335、21.502、25.387、29.368、31.228、34.647、38.984或41.412。满足上述条件式时,能够对第一透镜L1以及第三透镜L3的有效焦距进行合理配置,以更好地校正光学系统100的球差,提升光学系统100的成像质量。当f3/f1<5.5时,第三透镜L3的正屈折力过大,导致第三透镜L3的像差校正过度,进而导致光学系统100的成像质量下降。当f3/f1>45时,第三透镜L3为光学系统100提供的正屈折力不足,导致光学系统100的球差校正困难。
在一些实施例中,光学系统满足条件式:-9≤R3/R4≤-2;其中,R3为第二透镜L2的物侧面S3于光轴处的曲率半径,R4为第二透镜L2的像侧面S4于光轴处的曲率半径。具体地,R3/R4可以为:-7.23、-6.95、-6.24、-5.32、-4.99、-4.65、-4.33、-4.01、-3.96或-3.81。满足上述条件式时,能够对第二透镜L2的面型进行合理配置,以降低第二透镜L2的公差敏感度,提升第二透镜L2的成型良率。同时能够使第二透镜L2的像侧面S4于近轴处为凹面, 以有效扩大光学系统100的最大视场角,且有利于校正光学系统100的像差,进而提升光学系统100的成像质量。
根据上述各实施例的描述,以下提出更为具体的实施例及附图予以详细说明。
第一实施例
请参见图1和图2,图1为第一实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括具有正屈折力的第一透镜L1、光阑STO、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有负屈折力的第五透镜L5。图2由左至右依次为第一实施例中光学系统100的球差、像散及畸变的曲线图,其中像散图和畸变图的参考波长为587.5618nm,其他实施例相同。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近轴处为凹面,于圆周处为凹面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凸面;
第三透镜L3的物侧面S5于近轴处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近轴处为凹面,于圆周处为凸面;
第四透镜L4的物侧面S7于近轴处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凸面,于圆周处为凸面;
第五透镜L5的像侧面S10于近轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
需要注意的是,在本申请中,当描述透镜的一个表面于近轴处(该侧面的中心区域)为凸面时,可理解为该透镜的该表面于光轴附近的区域为凸面。当描述透镜的一个表面于圆周处为凹面时,可理解为该表面在靠近最大有效半径处的区域为凹面。举例而言,当该表面于光轴处为凸面,且于圆周处也为凸面时,该表面由中心(光轴)至边缘方向的形状可以为纯粹的凸面;或者是先由中心的凸面形状过渡到凹面形状,随后在靠近最大有效半径处时变为凸面。此处仅为说明光轴处与圆周处的关系而做出的示例,表面的多种形状结构(凹凸关系)并未完全体现,但其他情况可根据以上示例推导得出。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
进一步地,光学系统100满足条件式:ET8/CT8=0.700;其中,ET8为第四透镜L4的像侧面S8及第五透镜L5的物侧面S9组成的空气透镜的边缘厚度,CT8为第四透镜L4的像侧面S8至第五透镜L5的物侧面S9于光轴上的距离。满足上述条件式时,能够对第四透镜L4的像侧面S8及第五透镜L5的物侧面S9进行合理配置,使第四透镜L4及第五透镜L5于光轴上的空气间隔适中,有利于节省第四透镜L4及第五透镜L5之间的连接元件,降低光学系统100的制造成本。另外,也能够使第四透镜L4及第五透镜L5之间于光轴上的空气间隔不会过小,进而使组装过程中第四透镜L4及第五透镜L5之间不易相互碰撞,同时能够避免光学系统100对第四透镜L4与第五透镜L5之间的空气间隔的敏感度过大,从而容易降低光学系统100的成像质量,且不利于提升光学系统100的组装良率。并且,满足上述条件式时,也能够防止第四透镜L4及第五透镜L5之间于光轴上的空气间隔过大而导致偏心敏感度的增大。
光学系统满足条件式:f/f45=0.434;其中,f为光学系统100的总有效焦距,f45为第四透镜L4及第五透镜L5的组合焦距。满足上述条件式时,能够对光学系统100的总有效焦距以及第四透镜L4与第五透镜L5的组合焦距进行合理配置,以提升光学系统100对光线的会聚能力,进而缩短光学系统100的系统总长。同时,第四透镜L4提供的正屈折力以及第五透镜L5提供的负屈折力也能够校正光学系统100的球差,提升光学系统100的成像质量。
光学系统满足条件式:R2/R1=3.791;其中,R2为第一透镜L1的像侧面S2于光轴处的 曲率半径,R1为第一透镜L1的物侧面S1于光轴处的曲率半径。满足上述条件式时,能够对第一透镜L1进行合理配置,使第一透镜L1的物侧面S1为凸面,以增强第一透镜L1的正屈折力,进而缩短光学系统100的系统总长,有利于实现小型化设计。同时也能够避免第一透镜L1的物侧面S1及像侧面S2于光轴处的曲率过大而产生较严重的像差,导致光学系统100的成像质量降低。
光学系统满足条件式:(CT1+CT2)/(T12+T23)=1.67;其中,CT1为第一透镜L1于光轴上的厚度,CT2为第二透镜L2于光轴上的厚度,T12为第一透镜L1的像侧面S2至第二透镜L2的物侧面S3于光轴上的距离,T23为第二透镜L2的像侧面S4至第三透镜L3的物侧面S5于光轴上的距离。满足上述条件式时,能够使第一透镜L1、第二透镜L2及第三透镜L3中相邻两透镜之间于光轴上有足够的空气间隔,避免在组装过程中第一透镜L1、第二透镜L2及第三透镜L3中相邻两透镜之间相互碰撞,进而提高光学系统100的组装良率。同时,也能够增大第一透镜L1及第二透镜L2的中心厚度,使光学系统100中各透镜的排布更合理,且有利于降低光学系统100的敏感度。另外,也能够防止组装时第一透镜L1、第二透镜L2及第三透镜L3的偏心及倾斜敏感度的增加。
光学系统满足条件式:CT4/|SAG41|=22.583;其中,CT4为第四透镜L4于光轴上的厚度,SAG41为第四透镜L4的物侧面S9与光轴的交点至第四透镜L4的物侧面S9的最大有效孔径位置于平行于光轴方向上的距离。满足上述条件式时,能够对第四透镜L4进行合理配置,有利于第四透镜L4的制造与成型,提升第四透镜L4的成型良率。同时使第四透镜L4能够更好地修正位于第四透镜L4的物侧各透镜产生的场曲,进而更好地平衡光学系统100的场曲,提升光学系统100的成像质量。当CT4/|SAG41|<1时,第四透镜L4的物侧面S9于圆周处的面型变化过于平缓,使第四透镜L4对轴外视场光线的偏折能力不足,不利于光学系统100的畸变和场曲等像差的校正。当CT4/|SAG41|>220时,第四透镜L4的物侧面S9于圆周处的面型过度弯曲,不利于第四透镜L4的成型,导致第四透镜L4成型良率下降。
光学系统满足条件式:BFL=0.556;其中,BFL为第五透镜L5的像侧面S10至光学系统100的成像面于平行于光轴方向上的最短距离。满足上述条件式时,能够对BFL的数值进行合理配置,以缩短光学系统100的系统总长,有利于实现小型化设计。同时也能够使第五透镜L5的像侧面S10至光学系统100的成像面之间具有足够的调焦范围。
光学系统满足条件式:Vd3-Vd2=32.23;其中,Vd2为第二透镜L2在d线下的阿贝数,Vd3为第三透镜L3在d线下的阿贝数。满足上述条件式时,能够对第二透镜L2以及第三透镜L3在d线下的阿贝数进行合理配置,以使第二透镜L2及第三透镜L3能够有效修正光学系统100的色差,提高光学系统100的成像清晰度,进而提升光学系统100的成像质量。
光学系统满足条件式:f3/f1=9.167;其中,f1为第一透镜L1的有效焦距,f3为第三透镜L3的有效焦距。满足上述条件式时,能够对第一透镜L1以及第三透镜L3的有效焦距进行合理配置,以更好地校正光学系统100的球差,提升光学系统100的成像质量。当f3/f1<5.5时,第三透镜L3的正屈折力过大,导致第三透镜L3的像差校正过度,进而导致光学系统100的成像质量下降。当f3/f1>45时,第三透镜L3为光学系统100提供的正屈折力不足,导致光学系统100的球差校正困难。
光学系统满足条件式:R3/R4=-4.83;其中,R3为第二透镜L2的物侧面S3于光轴处的曲率半径,R4为第二透镜L2的像侧面S4于光轴处的曲率半径。满足上述条件式时,能够对第二透镜L2的面型进行合理配置,以降低第二透镜L2的公差敏感度,提升第二透镜L2的成型良率。同时能够使第二透镜L2的像侧面S4为凹面,以有效扩大光学系统100的最大视场角,且有利于校正光学系统100的像差,进而提升光学系统100的成像质量。
另外,光学系统100的各项参数由表1给出。其中,表1中的像面S13可理解为光学系统100的成像面。由物面(图未示出)至像面S13的各元件依次按照表1从上至下的各元件的顺序排列。表1中的Y半径为相应面序号的物侧面或像侧面于光轴处的曲率半径。面序号1和面序号2分别为第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表 面为物侧面,面序号较大的表面为像侧面。第一透镜L1的“厚度”参数列中的第一个数值为该透镜于光轴上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一透镜的物侧面于光轴上的距离。
需要注意的是,在该实施例及以下各实施例中,光学系统100也可不设置红外滤光片L6,但此时第五透镜L5的像侧面S10至像面S13的距离保持不变。
在第一实施例中,光学系统100的总有效焦距f=2.79mm,光圈数FNO=2.07,最大视场角的一半HFOV=39.4°,光学系统100的系统总长TTL=3.678mm。
且各透镜的焦距、折射率和阿贝数为d线(587.56nm)下的数值,其他实施例也相同。
表1
Figure PCTCN2020103812-appb-000001
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表2给出。其中,面序号从1-10分别表示像侧面或物侧面S1-S10。而从上到下的K-A10分别表示非球面系数的类型,其中,K表示圆锥系数,A4表示四次非球面系数,A6表示六次非球面系数,A8表示八次非球面系数,以此类推。另外,非球面系数公式如下:
Figure PCTCN2020103812-appb-000002
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴的距离,c为非球面顶点的曲率,k为圆锥系数,Ai为非球面面型公式中与第i项高次项相对应的系数。
表2
Figure PCTCN2020103812-appb-000003
Figure PCTCN2020103812-appb-000004
第二实施例
请参见图3和图4,图3为第二实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括具有正屈折力的第一透镜L1、光阑STO、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有负屈折力的第五透镜L5。图4由左至右依次为第二实施例中光学系统100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近轴处为凹面,于圆周处为凹面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凸面;
第三透镜L3的物侧面S5于近轴处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近轴处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于近轴处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凸面,于圆周处为凸面;
第五透镜L5的像侧面S10于近轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表3给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表3
Figure PCTCN2020103812-appb-000005
Figure PCTCN2020103812-appb-000006
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表4给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表4
Figure PCTCN2020103812-appb-000007
并且,根据上述所提供的各参数信息,可推得以下数据:
ET8/CT8 0.897 BFL 0.567
f/f45 0.581 Vd3-Vd2 35.37
R2/R1 3.286 f3/f1 7.492
(CT1+CT2)/(T12+T23) 1.657 R3/R4 -3.81
CT4/|SAG41| 208.333    
第三实施例
请参见图5和图6,图5为第三实施例中的光学系统100的示意图,光学系统100由物 侧至像侧依次包括具有正屈折力的第一透镜L1、光阑STO、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有负屈折力的第五透镜L5。图6由左至右依次为第三实施例中光学系统100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近轴处为凹面,于圆周处为凹面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凸面;
第三透镜L3的物侧面S5于近轴处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近轴处为凹面,于圆周处为凸面;
第四透镜L4的物侧面S7于近轴处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凸面,于圆周处为凸面;
第五透镜L5的像侧面S10于近轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表5给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表5
Figure PCTCN2020103812-appb-000008
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表6给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表6
Figure PCTCN2020103812-appb-000009
Figure PCTCN2020103812-appb-000010
并且,根据上述所提供的各参数信息,可推得以下数据:
ET8/CT8 1.034 BFL 0.523
f/f45 0.509 Vd3-Vd2 34.22
R2/R1 3.342 f3/f1 21.946
(CT1+CT2)/(T12+T23) 1.215 R3/R4 -6.7
CT4/|SAG41| 109.000    
第四实施例
请参见图7和图8,图7为第四实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括具有正屈折力的第一透镜L1、光阑STO、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有负屈折力的第五透镜L5。图8由左至右依次为第四实施例中光学系统100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近轴处为凹面,于圆周处为凹面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凸面;
第三透镜L3的物侧面S5于近轴处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近轴处为凹面,于圆周处为凸面;
第四透镜L4的物侧面S7于近轴处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凸面,于圆周处为凸面;
第五透镜L5的像侧面S10于近轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表7给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表7
Figure PCTCN2020103812-appb-000011
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表8给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表8
Figure PCTCN2020103812-appb-000012
并且,根据上述所提供的各参数信息,可推得以下数据:
ET8/CT8 0.556 BFL 0.658
f/f45 0.530 Vd3-Vd2 1.99
R2/R1 3.376 f3/f1 41.412
(CT1+CT2)/(T12+T23) 1.221 R3/R4 -5.86
CT4/|SAG41| 8.235    
第五实施例
请参见图9和图10,图9为第五实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括具有正屈折力的第一透镜L1、光阑STO、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有负屈折力的第五透镜L5。图10由左至右依次为第五实施例中光学系统100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近轴处为凹面,于圆周处为凹面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凸面;
第三透镜L3的物侧面S5于近轴处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近轴处为凹面,于圆周处为凸面;
第四透镜L4的物侧面S7于近轴处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凸面,于圆周处为凸面;
第五透镜L5的像侧面S10于近轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表9给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表9
Figure PCTCN2020103812-appb-000013
Figure PCTCN2020103812-appb-000014
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表10给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表10
Figure PCTCN2020103812-appb-000015
并且,根据上述所提供的各参数信息,可推得以下数据:
ET8/CT8 0.925 BFL 0.771
f/f45 0.599 Vd3-Vd2 0.00
R2/R1 3.300 f3/f1 19.515
(CT1+CT2)/(T12+T23) 1.197 R3/R4 -7.23
CT4/|SAG41| 9.319    
第六实施例
请参见图11和图12,图11为第六实施例中的光学系统100的示意图,光学系统100由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有负屈折力的第五透镜L5。图12由左至右依次为第六实施例中光学系统100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近轴处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近轴处为凹面,于圆周处为凹面;
第二透镜L2的像侧面S4于近轴处为凹面,于圆周处为凸面;
第三透镜L3的物侧面S5于近轴处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近轴处为凹面,于圆周处为凸面;
第四透镜L4的物侧面S7于近轴处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近轴处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近轴处为凸面,于圆周处为凸面;
第五透镜L5的像侧面S10于近轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表11给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表11
Figure PCTCN2020103812-appb-000016
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表12给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表12
Figure PCTCN2020103812-appb-000017
Figure PCTCN2020103812-appb-000018
并且,根据上述所提供的各参数信息,可推得以下数据:
ET8/CT8 0.967 BFL 0.425
f/f45 0.506 Vd3-Vd2 32.33
R2/R1 3.547 f3/f1 9.184
(CT1+CT2)/(T12+T23) 1.571 R3/R4 -3.89
CT4/|SAG41| 2.623    
请参见图13,在一些实施例中,光学系统100可与镜筒120组装形成镜头组件110,光学系统100设置于镜筒120内。镜筒120开设有通光孔140,且在镜筒120的轴向上,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5依次排列,其中,第一透镜L1最靠近通光孔140,光线从通光孔140处进入光学系统100内。各透镜采用胶粘等方式与镜筒120固定,且各透镜之间通过隔片130隔开。
请参见图14,在一些实施例中,光学系统100可与感光元件210组装形成取像模组200。此时,感光元件210的感光面可视为光学系统100的像面S13。取像模组200还可设置有红外滤光片L6,红外滤光片L6设置于第五透镜L5的像侧面S10与像面S13之间。具体地,感光元件210可以为电荷耦合元件(Charge Coupled Device,CCD)或互补金属氧化物半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)。在取像模组200中采用上述光学系统100,能够使第四透镜L4及第五透镜L5之间于光轴上的空气间隔不会过小,进而使组装过程中第四透镜L4与第五透镜L5之间不易相互碰撞,提升取像模组200的组装良率。
请参见图14和图15,在一些实施例中,取像模组200可运用于电子设备300中,电子设备包括壳体310,取像模组200设置于壳体310。具体地,电子设备300可以为但不限于便携电话机、视频电话、智能手机、电子书籍阅读器、行车记录仪等车载摄像设备或智能手表等可穿戴装置。在电子设备300中采用取像模组200,在组装过程中第四透镜L4与第五透镜L5之间不易相互碰撞,提升电子设备300中的取像模组200的组装良率。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连 接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种光学系统,由物侧至像侧依次包括:
    具有正屈折力的第一透镜;
    具有负屈折力的第二透镜;
    具有屈折力的第三透镜;
    具有正屈折力的第四透镜,所述第四透镜的物侧面及像侧面均为非球面,且所述第四透镜的物侧面及像侧面中至少一个存在反曲点;
    具有负屈折力的第五透镜;
    且所述光学系统满足以下条件式:
    0.5≤ET8/CT8≤1.2;
    其中,ET8为所述第四透镜的像侧面及所述第五透镜的物侧面组成的空气透镜的边缘厚度,CT8为所述第四透镜的像侧面至所述第五透镜的物侧面于光轴上的距离。
  2. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    0.3≤f/f45≤0.8;
    其中,f为所述光学系统的总有效焦距,f45为所述第四透镜及所述第五透镜的组合焦距。
  3. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜的物侧面为凸面,且所述光学系统满足以下条件式:
    3.0≤R2/R1≤4.0;
    其中,R2为所述第一透镜的像侧面于光轴处的曲率半径,R1为所述第一透镜的物侧面于光轴处的曲率半径。
  4. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    1.0≤(CT1+CT2)/(T12+T23)≤1.9;
    其中,CT1为所述第一透镜于光轴上的厚度,CT2为所述第二透镜于光轴上的厚度,T12为所述第一透镜的像侧面至所述第二透镜的物侧面于光轴上的距离,T23为所述第二透镜的像侧面至所述第三透镜的物侧面于光轴上的距离。
  5. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    1≤CT4/|SAG41|≤220;
    其中,CT4为所述第四透镜于光轴上的厚度,SAG41为所述第四透镜的物侧面与光轴的交点至所述第四透镜的物侧面的最大有效孔径位置于平行于光轴方向上的距离。
  6. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    0.4≤BFL≤0.8;
    其中,BFL为所述第五透镜的像侧面至所述光学系统的成像面于平行于光轴方向上的最短距离。
  7. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    0≤Vd3-Vd2≤40;
    其中,Vd2为所述第二透镜在d线下的阿贝数,Vd3为所述第三透镜在d线下的阿贝数。
  8. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    5.5≤f3/f1≤45;
    其中,f1为所述第一透镜的有效焦距,f3为所述第三透镜的有效焦距。
  9. 根据权利要求1所述的光学系统,其特征在于,所述第二透镜的像侧面于近轴处为凹面,且所述光学系统满足以下条件式:
    -9≤R3/R4≤-2;
    其中,R3为所述第二透镜的物侧面于光轴处的曲率半径,R4为所述第二透镜的像侧面于光轴处的曲率半径。
  10. 根据权利要求1所述的光学系统,其特征在于,还包括光阑,所述光阑设置于所述第一透镜的物侧或设置于所述第一透镜及所述第二透镜之间。
  11. 根据权利要求1所述的光学系统,其特征在于,还包括红外截止滤光片,所述红外截止滤光片设置于所述第五透镜的像侧。
  12. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜以及所述第五透镜的物侧面及像侧面均为非球面。
  13. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜以及所述第五透镜的物侧面及像侧面均为球面。
  14. 根据权利要求1所述的光学系统,其特征在于,所述光学系统中的各透镜的材质均为玻璃。
  15. 根据权利要求1所述的光学系统,其特征在于,所述光学系统中的各透镜的材质均为塑料。
  16. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜包括多片透镜,多片所述透镜形成胶合透镜。
  17. 一种镜头组件,其特征在于,包括镜筒以及权利要求1-16任一项所述的光学系统,所述光学系统设置于所述镜筒内。
  18. 一种取像模组,包括感光元件以及权利要求1-16任一项所述的光学系统,所述感光元件设置于所述光学系统的像侧。
  19. 根据权利要求18所述的取像模组,其特征在于,所述感光元件为电荷耦合元件或互补金属氧化物半导体器件。
  20. 一种电子设备,包括壳体以及权利要求18或19所述的取像模组,所述取像模组设置于壳体。
PCT/CN2020/103812 2020-07-23 2020-07-23 光学系统、取像模组及电子设备 WO2022016456A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/103812 WO2022016456A1 (zh) 2020-07-23 2020-07-23 光学系统、取像模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/103812 WO2022016456A1 (zh) 2020-07-23 2020-07-23 光学系统、取像模组及电子设备

Publications (1)

Publication Number Publication Date
WO2022016456A1 true WO2022016456A1 (zh) 2022-01-27

Family

ID=79729941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103812 WO2022016456A1 (zh) 2020-07-23 2020-07-23 光学系统、取像模组及电子设备

Country Status (1)

Country Link
WO (1) WO2022016456A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008033365A (ja) * 1995-12-27 2008-02-14 Carl Zeiss Smt Ag マイクロリソグラフィ用投影露光装置のrema対物レンズ
CN201562070U (zh) * 2009-11-25 2010-08-25 华晶科技股份有限公司 透镜组
CN108398769A (zh) * 2018-05-30 2018-08-14 广东旭业光电科技股份有限公司 光学成像镜头
CN109445071A (zh) * 2018-12-24 2019-03-08 贵州旭业光电有限公司 一种光学成像系统及电子设备
CN209911627U (zh) * 2018-05-29 2020-01-07 三星电机株式会社 光学成像系统
CN111413783A (zh) * 2020-05-12 2020-07-14 广东旭业光电科技股份有限公司 光学成像镜头及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008033365A (ja) * 1995-12-27 2008-02-14 Carl Zeiss Smt Ag マイクロリソグラフィ用投影露光装置のrema対物レンズ
CN201562070U (zh) * 2009-11-25 2010-08-25 华晶科技股份有限公司 透镜组
CN209911627U (zh) * 2018-05-29 2020-01-07 三星电机株式会社 光学成像系统
CN108398769A (zh) * 2018-05-30 2018-08-14 广东旭业光电科技股份有限公司 光学成像镜头
CN109445071A (zh) * 2018-12-24 2019-03-08 贵州旭业光电有限公司 一种光学成像系统及电子设备
CN111413783A (zh) * 2020-05-12 2020-07-14 广东旭业光电科技股份有限公司 光学成像镜头及电子设备

Similar Documents

Publication Publication Date Title
CN109491051B (zh) 摄像光学镜头
JP4071819B1 (ja) 撮像レンズ
CN109683294B (zh) 摄像光学镜头
WO2021184165A1 (zh) 光学系统、摄像模组及电子装置
CN113552696B (zh) 光学系统、取像模组及电子设备
WO2020134027A1 (zh) 光学成像镜头
WO2014119402A1 (ja) 撮像装置および電子機器
CN113219628B (zh) 光学系统、取像模组及电子设备
CN111929824B (zh) 摄像光学镜头
WO2022061676A1 (zh) 光学镜头、取像模组及电子装置
CN113433656A (zh) 一种成像系统、镜头模组及电子设备
CN111736307A (zh) 光学系统、取像模组及电子设备
WO2021184164A1 (zh) 光学系统、摄像模组及电子装置
WO2021087669A1 (zh) 光学系统、取像装置及电子装置
CN108681046B (zh) 摄像光学镜头
WO2022120678A1 (zh) 光学系统、取像模组及电子设备
TWI793570B (zh) 光學成像系統、取像模組及電子裝置
WO2022016451A1 (zh) 光学系统、取像模组及电子设备
WO2022016456A1 (zh) 光学系统、取像模组及电子设备
CN115857146A (zh) 光学系统、摄像模组及终端设备
WO2022151157A1 (zh) 光学系统、取像模组及电子设备
CN214845997U (zh) 光学系统、摄像模组及电子设备
WO2021203277A1 (zh) 光学系统、取像模组及电子设备
WO2022160121A1 (zh) 光学成像镜头、取像装置及电子设备
CN112505889A (zh) 光学系统、取像模组和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946051

Country of ref document: EP

Kind code of ref document: A1