WO2022014345A1 - Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2022014345A1
WO2022014345A1 PCT/JP2021/024966 JP2021024966W WO2022014345A1 WO 2022014345 A1 WO2022014345 A1 WO 2022014345A1 JP 2021024966 W JP2021024966 W JP 2021024966W WO 2022014345 A1 WO2022014345 A1 WO 2022014345A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
carbon atoms
crystal alignment
diamine
Prior art date
Application number
PCT/JP2021/024966
Other languages
French (fr)
Japanese (ja)
Inventor
美希 豊田
佳和 原田
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2022536246A priority Critical patent/JP7315106B2/en
Priority to KR1020237003948A priority patent/KR20230038504A/en
Priority to CN202180062698.8A priority patent/CN116615689B/en
Publication of WO2022014345A1 publication Critical patent/WO2022014345A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal display element having the liquid crystal alignment film.
  • liquid crystal display element As a liquid crystal display element, various drive methods having different electrode structures and physical properties of liquid crystal molecules used have been developed. For example, TN (Twisted Nematic) type, STN (Super Twisted Nematic) type, VA (Vertical).
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • VA Very
  • Element Element
  • IPS In-Plane Switching
  • FFS Frringe Field Switching
  • the VA type liquid crystal display element has a wide viewing angle, a fast response speed, a large contrast, and can eliminate the need for rubbing processing in the production process. Widely used mainly for monitors.
  • a photopolymerizable compound is added to the liquid crystal composition in advance, and the liquid crystal cell is irradiated with ultraviolet rays while applying a voltage to increase the response speed of the liquid crystal.
  • Method see, for example, Patent Document 1 and Non-Patent Document 1 is the mainstream.
  • the liquid crystal display element generally has a liquid crystal alignment film for orienting liquid crystal molecules.
  • a material for the liquid crystal alignment film for example, polyamic acid, polyamic acid ester, polyimide, polyamide and the like are known.
  • the liquid crystal alignment film is required to have various properties in addition to the liquid crystal alignment. For example, in the PSA type liquid crystal display element, when static electricity is accumulated in the liquid crystal cell, or when electric charge is accumulated in the liquid crystal cell by applying a positive / negative asymmetric voltage generated by driving, these accumulated charges are accumulated.
  • Patent Document 2 proposes a polyimide-based liquid crystal alignment film having a pyrrole structure.
  • Patent Document 3 proposes a polyimide-based liquid crystal alignment film having a diphenylamine structure.
  • an object of the present invention is a liquid crystal alignment agent capable of obtaining a liquid crystal alignment film having a high voltage retention rate and a high light transmittance, quick relaxation of accumulated charges, and excellent afterimage characteristics.
  • the present invention is to provide the liquid crystal alignment film and a liquid crystal display element using the same.
  • the present invention is at least one selected from the group consisting of a polyimide precursor obtained by using a diamine component containing a diamine (1) represented by the following formula (1) and a polyimide which is an imidized product of the polyimide precursor. It is in a liquid crystal alignment agent characterized by containing a polymer (P), a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal display element having the liquid crystal alignment film.
  • R represents a monovalent organic group
  • R 1 and R 2 represent a saturated or unsaturated monovalent hydrocarbon group having 1 to 6 carbon atoms or an alicyclic hydrocarbon group having 3 to 6 carbon atoms. A part of the hydrogen atom of the hydrocarbon group in R 1 and R 2 may be substituted.
  • the liquid crystal alignment agent of the present invention it is possible to obtain a liquid crystal alignment film having a high voltage retention and a high light transmittance, quick relaxation of accumulated charges, and excellent afterimage characteristics.
  • the mechanism by which the above effects of the present invention are obtained is not always clear, but it is considered that the following is one of the causes. That is, the diamine, which is the raw material of the polymer component used in the liquid crystal alignment agent of the present invention, is high because the presence of a substituent at the ortho position of the amino group causes steric hindrance and suppresses the formation of charge transfer.
  • a liquid crystal alignment film having a light transmittance can be obtained, and since the polymer obtained from the above diamine has a conjugated structure, the accumulated charge can be quickly relaxed and a liquid crystal alignment film having excellent afterimage characteristics can be obtained. it is conceivable that.
  • the liquid crystal alignment agent of the present invention is selected from the group consisting of a polyimide precursor obtained by using a diamine component containing a diamine (1) represented by the following formula (1) and a polyimide which is an imidized product of the polyimide precursor. It contains at least one polymer (P).
  • R, R 1 and R 2 are as defined above, respectively.
  • the monovalent organic group in R includes a monovalent organic group having an aromatic ring structure, a monovalent chain hydrocarbon group having 1 to 30 carbon atoms, or a monovalent alicyclic hydrocarbon having 3 to 30 carbon atoms. Hydrocarbon groups are preferred. A part of the hydrogen atom of the chain hydrocarbon group or the alicyclic hydrocarbon group may be substituted, and a part of the methylene group thereof is substituted with an oxygen atom, a carbonyl group or -COO-. May be.
  • Examples of the monovalent chain hydrocarbon group having 1 to 30 carbon atoms include an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, and an alkynyl group having 2 to 30 carbon atoms.
  • R is a chain hydrocarbon group or an alicyclic hydrocarbon group
  • the substituent may be a halogen atom (fluorine atom, Chlorine atom, bromine atom, iodine atom), hydroxyl group, cyano group, alkyl group having 1 to 9 carbon atoms, alkoxy group having 1 to 9 carbon atoms, fluoroalkyl group having 1 to 9 carbon atoms and the like can be mentioned.
  • halogen atom fluorine atom, Chlorine atom, bromine atom, iodine atom
  • hydroxyl group cyano group
  • alkyl group having 1 to 9 carbon atoms alkoxy group having 1 to 9 carbon atoms
  • fluoroalkyl group having 1 to 9 carbon atoms and the like can be mentioned.
  • an alkyl group having 1 to 6 carbon atoms or a fluoroalkyl group having 1 to 6 carbon atoms is more preferable, and an alkyl group having 1 to 6
  • the monovalent alicyclic hydrocarbon group having 3 to 30 carbon atoms may be composed of only an alicyclic structure, or may contain a chain structure as a part thereof.
  • Examples of the alicyclic structure include cyclopentane, cyclohexane, cycloheptane, cyclooctane, norbornane, and adamantane.
  • the monovalent organic group having the aromatic ring structure may be composed of only the aromatic ring structure, or may contain at least one of the chain structure and the alicyclic structure as a part thereof.
  • the aromatic ring structure may be a benzene ring, a condensed benzene ring such as a naphthalene ring or an anthracene ring, and a complex such as a thiophene ring, a pyrrole ring, a furan ring, a pyridine ring, a pyrimidine ring, and a triazine ring. It may be an aromatic ring.
  • the monovalent group having the aromatic ring structure may have only one aromatic ring structure or may have a plurality of aromatic ring structures.
  • the plurality of aromatic ring structures may be bonded by a single bond, and in this case, specific examples thereof include biphenyl and terphenyl.
  • a chain structure or an alicyclic structure may exist so as to connect a plurality of aromatic ring structures. At least one of these aromatic ring structures, chain structures and alicyclic structures may have a substituent.
  • the substituents include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), a hydroxyl group, a cyano group, an alkyl group having 1 to 9 carbon atoms, an alkoxy group having 1 to 9 carbon atoms, and 1 to 9 carbon atoms. Fluoroalkyl groups and the like can be mentioned.
  • a preferred example of the monovalent organic group having the aromatic ring structure in R is a structure represented by the following formula (Ar).
  • Ra is a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), hydroxyl group, cyano group, alkyl group having 1 to 9 carbon atoms, alkoxy group having 1 to 9 carbon atoms, or 1 to 9 carbon atoms.
  • the .m representing the fluoroalkyl group is an integer from 0 to 5, when m is 2 to 5, with.
  • * is the definition plurality of R a independently represents a bond.
  • Saturated or unsaturated monovalent hydrocarbon groups having 1 to 6 carbon atoms in R 1 and R 2 include alkyl groups having 1 to 6 carbon atoms, alkenyl groups having 2 to 6 carbon atoms, and 2 to 6 carbon atoms. Examples include an alkynyl group. Examples of the alicyclic hydrocarbon group having 3 to 6 carbon atoms in R 1 and R 2 include a cyclopentyl group and a cyclohexyl group. A part of the hydrogen atom of the hydrocarbon group in R 1 and R 2 may be substituted, and examples of the substituent include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and a hydroxyl group.
  • R, R 1 and R 2 are preferably alkyl groups having 1 to 5 carbon atoms independently of each other.
  • Specific examples of the alkyl groups having 1 to 5 carbon atoms in R, R 1 and R 2 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group and tert.
  • -Butyl group, n-pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group can be mentioned.
  • an alkyl group having 1 to 3 carbon atoms is preferable.
  • Preferred specific examples of the diamine (1) represented by the above formula (1) include the following formulas (d-1) to (d-4).
  • the polymer (P) contained in the liquid crystal aligning agent of the present invention is particularly applicable to the liquid crystal aligning agent for the liquid crystal display element of the TN method, STN method, VA method, PSA method, and SC-PVA mode.
  • a diamine component containing a diamine (s) having at least one structure selected from the group consisting of the following formulas (S1), (S2) and (S3) is used. It is preferable that the polymer is at least one selected from the group consisting of the polyimide precursor thus obtained and the polyimide which is an imidized product of the polyimide precursor.
  • X 1 and X 2 are independently single-bonded,-(CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-, -CON. (CH 3 )-, -N (CH 3 ) CO-, -NH-, -O-, -COO-, -OCO-, or-((CH 2 ) a1- A 1 ) m1- (a1 is 1-) It is an integer of 15, A 1 represents an oxygen atom or -COO-, m 1 is 1 to 2, and a plurality of a 1 and A 1 when m 1 is 2 may be the same or different. It may be.).
  • G 1 and G 2 each independently represent a divalent cyclic group selected from a divalent aromatic group having 6 to 12 carbon atoms and a divalent alicyclic group having 3 to 8 carbon atoms.
  • the arbitrary hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, and a fluorine-containing alkoxy group having 1 to 3 carbon atoms. And may be substituted with at least one selected from the group consisting of fluorine atoms.
  • m and n are independently integers of 0 to 3, and the sum of m and n is 1 to 4.
  • R 1 represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkoxy alkyl group having 2 to 20 carbon atoms, and any hydrogen atom forming R 1 is substituted with a fluorine atom. May be.
  • Examples of the divalent cyclic group in G 1 and G 2 include a cyclohexylene group and a phenylene group. Any hydrogen atom on these cyclic groups may be an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. It may be substituted with a group or a fluorine atom.
  • m and n are independently integers of 0 to 3, and the total of m and n is 1 to 4. From the viewpoint of enhancing the liquid crystal orientation, the total of m and n is more preferably 2 to 4.
  • X 3 is a single bond, -CONH-, -NHCO-, -CON (CH 3 )-, -N (CH 3 ) CO-, -NH-, -O-, -CH 2 O. -, -COO- or -OCO-.
  • R 2 represents an alkyl group having 1 to 20 carbon atoms or an alkoxy alkyl group having 2 to 20 carbon atoms, and any hydrogen atom forming R 2 may be substituted with a fluorine atom. Further, R 2 is preferably an alkyl group having 3 to 20 carbon atoms or an alkoxyalkyl group having 2 to 20 carbon atoms from the viewpoint of enhancing the liquid crystal orientation.
  • X 4 represents -CONH-, -NHCO-, -O-, -CH 2 O-, -OCH 2-, -COO- or -OCO-.
  • R 3 represents a structure having a steroid skeleton. Further, R 3 preferably has a structure containing a cholestanyl group, a cholesteryl group or a lanostannyl group.
  • Preferred specific examples of the formula (S1) include the following formulas (S1-x1) to (S1-x7).
  • R 1 is as defined above.
  • X p is-(CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-, -CON (CH 3 )-, -N (CH 3 ) CO-, -NH. -, -O-, -CH 2 O-, -CH 2 OCO-, -COO-, or -OCO-.
  • a 1 represents an oxygen atom or -COO- * (where a bond with an "*" binds to (CH 2 ) a2 ), and
  • a 2 is an oxygen atom or * -COO- (where *).
  • the bond with (CH 2 ) represents (CH 2) a2 ).
  • a 1 and a 3 are independently integers of 0 or 1
  • a 2 is an integer of 1 to 10
  • Cy represents a 1,4-cyclohexylene group or a 1,4-phenylene group. ..
  • X 3 is any of -O-, -CH 2 O-, -COO- or -OCO-, and R 2 is an alkyl group having 3 to 20 carbon atoms or an alkyl number of carbon atoms. preferably represents an alkoxyalkyl group of 2 to 20, more preferably when R 2 is an alkyl group having 3 to 20 carbon atoms, any hydrogen atoms that form the R 2 may be substituted by fluorine atoms ..
  • a preferable diamine (s) having a structure represented by any of the above formulas (S1) to (S3) a preferable diamine (s) having a structure represented by the above formulas (S1) to (S3) and at least one benzene.
  • a diamine having a ring is preferable.
  • Preferred examples of the diamine (s) include diamines represented by the following formula (d1) or formula (d2).
  • Y represents the side chain structure represented by the above formulas (S1) to (S3).
  • X is a single bond, -O-, -C (CH 3 ) 2- , -NH-, -CO-, -COO-, -CONH-,-(CH 2 ) m- , -SO 2- , -O- (CH 2 ) m- O-, -OC (CH 3 ) 2- , -CO- (CH 2 ) m- , -CO- (CH 2 ) m , -CO- (CH 2 ) m -CO-, -NH- (CH) 2) m -, - NH- ( CH 2) m -NH -, - SO 2 - (CH 2) m -, - SO 2 - (CH 2) m -SO 2 -, - CONH- (CH 2) m -, -CONH- (CH 2 ) m -NHCO-, or -COO- (
  • Preferred specific examples of the diamine represented by the above formula (d1) include the following formulas (d1-1) to (d1-18). (N is an integer from 1 to 20.)
  • Preferred specific examples of the diamine represented by the above formula (d2) include the following formulas (d2-1) to (d2-6).
  • X p1 to X p8 are independently synonymous with X p in the above formulas (S1-x1) to (S1-x6), and are X s1.
  • ⁇ X s4 independently represent -O-, -CH 2 O-, -COO- or -OCO-.
  • X a to X f represent a single bond, -O-, -NH-, or -O- (CH 2 ) m- O- (m is an integer of 1 to 8), and R 1a to R 1h.
  • the polymer (P) contained in the liquid crystal alignment agent of the present invention may be composed of one component or two or more components of a polyimide precursor and / or a polyimide which is an imidized product of the polyimide precursor.
  • the polyimide precursor is a polymer from which polyimide can be obtained by imidization of a polyamic acid, a polyamic acid ester, or the like.
  • Preferred specific embodiments of the polymer (P) include, but are not limited to, the following two types.
  • polymer which is an imidized product of the polyimide precursor
  • the above-mentioned copolymer or polymer blend may be used alone or in combination of both.
  • the polyamic acid (P), which is a polyimide precursor of the polymer (P), is a diamine component containing the diamine (1), preferably a diamine component containing a diamine (s) in addition to the diamine (1). It can be obtained by a polymerization reaction with a tetracarboxylic acid component.
  • the amount of the diamine (1) used is preferably 1 to 100 mol%, more preferably 1 to 99 mol%, still more preferably 5 to 95 mol% with respect to the diamine component to be reacted with the tetracarboxylic acid component. ..
  • the amount of diamine (s) used is preferably 1 to 99 mol% with respect to the diamine component to be reacted with the tetracarboxylic acid component, and 1 to 95. More preferably mol%.
  • the diamine component used in the production of the polyamic acid (P) may contain a diamine other than the diamine (1) and the diamine (s) (hereinafter, also referred to as other diamines). Examples of other diamines are given below, but the present invention is not limited thereto.
  • a 1 is a single bond, -CH 2 -, - C 2 H 4 -, - C (CH 3) 2 -, - CF 2 -, - C (CF 3) 2 -, -O-, -CO-, -NH-, -N (CH 3 )-, -CONH-, -NHCO-, -CH 2 O-, -OCH 2- , -COO-, -OCO-, -CON ( CH 3 )-or -N (CH 3 ) CO- is indicated, m1 and m2 independently indicate an integer of 0 to 4, and m1 + m2 indicates an integer of 1 to 4. Equation (3b-2).
  • a 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms
  • m5 represents 1 to 5 in the formula (3b-3).
  • a 3 and a 4 are each independently a single bond, -CH 2 -, - C 2 H 4 -, - C (CH 3) 2 -, - CF 2- , -C (CF 3 ) 2- , -O-, -CO-, -NH-, -N (CH 3 )-, -CONH-, -NHCO-, -CH 2 O-, -OCH 2- , -COO -, - OCO -, - CON (CH 3) - or -N (CH 3) CO- indicates, m6 is an integer of 1 to 4).
  • n is an integer of 1 to 6.
  • diamines p-phenylenediamine, 3,5-diaminobenzoic acid, 4,4'-diaminodiphenylmethane, 4,4'-diaminobenzophenone, among others, from the viewpoint of preferably obtaining the effects of the present invention.
  • the amount of the other diamines used is preferably 1 to 99 mol%, more preferably 5 to 95, based on the total diamine components used. It is mol%.
  • the amount of the diamines (s) used is preferably 98 mol% or less with respect to the diamine component to be reacted with the tetracarboxylic acid component. More preferably, it is 94 mol% or less.
  • the amount of the diamine represented by the above formulas (5-1) to (5-10) is preferably 5 to 40 mol% with respect to the total diamine component used in the production of the polyamic acid (P). , More preferably 10-40 mol%.
  • a diamine having a photopolymerizable group at the end 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, a diamine having a photopolymerizable group at the end, and the above formula
  • the diamine represented by any of R1) to (R5) and the diamine represented by the above formulas (z-1) to (z-18) are used at least one in the case of producing the polyamic acid (P).
  • the amount used can be preferably 1 to 40 mol%, more preferably 5 to 40 mol%, based on the total diamine component used in the production of the polyamic acid (P).
  • the tetracarboxylic acid component to be reacted with the diamine component is not only tetracarboxylic acid dianhydride, but also tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, or tetracarboxylic acid.
  • tetracarboxylic acid dianhydride such as acid dialkyl ester dihalide can also be used.
  • the tetracarboxylic dianhydride or a derivative thereof examples include aromatic, aliphatic or alicyclic tetracarboxylic dianhydride, or derivatives thereof.
  • the aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to the aromatic ring.
  • Aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure. However, it does not have to be composed only of a chain hydrocarbon structure, and may have an alicyclic structure or an aromatic ring structure as a part thereof.
  • the alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to the alicyclic structure. However, none of these four carboxy groups are bonded to the aromatic ring. Further, it does not have to be composed only of an alicyclic structure, and may have a chain hydrocarbon structure or an aromatic ring structure as a part thereof.
  • the tetracarboxylic dianhydride or a derivative thereof is preferably represented by the following formula (T) or a derivative thereof.
  • X represents a structure selected from the group consisting of the following formulas (x-1) to (x-13).
  • R 1 to R 4 are independent hydrogen atoms, halogen atoms, alkyl groups having 1 to 6 carbon atoms, and alkenyl groups having 2 to 6 carbon atoms, respectively.
  • R 5 and R 6 each independently represent a hydrogen atom or a methyl group.
  • j and k are integers of 0 or 1
  • a 1 and A 2 are independent, single bond, ether (-O-), carbonyl (-CO-), ester (-COO-), and phenylene, respectively.
  • * 1 is a bond that binds to one acid anhydride group
  • * 2 is a bond that binds to the other acid anhydride group.
  • 2 pieces of A 2 may being the same or different.
  • X is the above formulas (x-1) to (x-7) and (x-11) to (x).
  • the one selected from -13) can be mentioned.
  • the ratio of the tetracarboxylic dianhydride or its derivative represented by the above formula (T) is preferably 1 mol% or more, more preferably 5 mol% or more, based on 1 mol of the total tetracarboxylic acid component used. It is preferable, 10 mol% or more is more preferable.
  • the tetracarboxylic dianhydride and its derivative used for producing the polyamic acid (P) may contain a tetracarboxylic dianhydride other than the above formula (T) or a derivative thereof.
  • the polyamic acid (P) is produced by reacting the diamine component and the tetracarboxylic acid component in a solvent (condensation polypolymerization).
  • the solvent is not particularly limited as long as it dissolves the produced polymer.
  • Specific examples of the above solvent include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, and 1,3-dimethyl.
  • -2-Imidazolidinone can be mentioned.
  • the polymer When the polymer has high solvent solubility, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3].
  • a solvent can be used.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D-3 represents an alkyl group having 1 to 4 carbon atoms.
  • the reaction can be carried out at any concentration, but the concentration of the diamine component and the tetracarboxylic acid component with respect to the above solvent is preferably 1 to 50 mass by mass. %, More preferably 5 to 30% by mass.
  • the initial reaction can be carried out at a high concentration and then the solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component shall be 0.8 to 1.2. Is preferable. Similar to a normal polycondensation reaction, the closer the molar ratio is to 1.0, the larger the molecular weight of the produced polymer.
  • the polyamic acid ester which is a polyimide precursor is, for example, [I] a method of reacting a polyamic acid obtained by the above synthetic reaction with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine, [II]. III] It can be obtained by a known method such as a method of reacting a tetracarboxylic acid diester dihalide with a diamine.
  • the polyimide contained in the liquid crystal alignment agent of the present invention is a polyimide obtained by ring-closing the above-mentioned polyimide precursor.
  • the ring closure rate (also referred to as imidization rate) of the amic acid group does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
  • Examples of the method for imidizing the polyimide precursor to obtain polyimide include thermal imidization in which the solution of the polyimide precursor is heated as it is, or catalytic imidization in which a catalyst is added to the solution of the polyimide precursor.
  • the temperature at which the polyimide precursor is thermally imidized in the solution is 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to remove the water generated by the imidization reaction from the system.
  • the catalytic imidization of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to the solution of the polyimide precursor and stirring at ⁇ 20 to 250 ° C., preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amount of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amic acid group. It is double.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, and tributylamine trioctylamine. Among them, pyridine is preferable because it has an appropriate basicity for advancing the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride and pyromellitic anhydride, and among them, acetic anhydride is preferable because it facilitates purification after the reaction is completed.
  • the imidization rate by catalytic imidization can be controlled by adjusting the amount of catalyst, the reaction temperature, and the reaction time.
  • the reaction solution may be added to a solvent for precipitation.
  • the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellsolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, water and the like.
  • the polymer put into a solvent and precipitated can be collected by filtration and then dried at room temperature or by heating under normal pressure or reduced pressure.
  • impurities in the polymer can be reduced.
  • the solvent at this time include alcohols, ketones and hydrocarbons. It is preferable to use three or more kinds of solvents selected from these because the efficiency of purification is further improved.
  • the polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the polyimide precursor and the polyimide is preferably 5,000 to 1,000,000, more preferably 10,000 to 150. It is 000.
  • the molecular weight distribution (Mw / Mn) represented by the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less. Within such a molecular weight range, good orientation of the liquid crystal display element can be ensured.
  • the polymer (P) in the present invention may be a terminal-sealed polymer by using an appropriate terminal-sealing agent together with the above-mentioned tetracarboxylic acid component and diamine component in the production thereof.
  • the end-sealed polymer has the effects of improving the film hardness of the liquid crystal alignment film obtained by the coating film and improving the adhesion characteristics between the sealant and the liquid crystal alignment film.
  • Examples of the terminal of the polymer (P) in the present invention include an amino group, a carboxy group, an acid anhydride group or a derivative thereof.
  • An amino group, a carboxy group, an acid anhydride group, or a derivative thereof can be obtained by a usual condensation reaction or the following terminal encapsulant, and the derivative can be obtained, for example, by using the following terminal encapsulant. Obtainable.
  • terminal encapsulant examples include acetic anhydride, maleic anhydride, nagic anhydride, phthalic anhydride, itaconic anhydride, cyclohexanedicarboxylic acid anhydride, 3-hydroxyphthalic anhydride, trimellitic anhydride, and the following formulas.
  • Dicarbonate diester compounds such as di-tert-butyl dicarbonate and diallyl dicarbonate; chlorocarbonyl compounds such as acryloyl chloride, methacryloyl chloride and nicotinic acid chloride; aniline, 2-aminophenol, 3-aminophenol, 4-aminosalicylic acid, 5-Aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, cyclohexylamine, n-butylamine, n-pentylamine, n-hexylamine, n-heptylamine, Monoamine compounds such as n-octylamine; monoisocyanate compounds such as ethyl isocyanate, phenylisocyanate and naphthylisocyanate can be mentioned.
  • chlorocarbonyl compounds such as acryloyl chloride, methacryloyl chlor
  • the ratio of the terminal encapsulant to be used is preferably 0.01 to 20 mol parts, more preferably 0.01 to 10 mol parts, based on 100 mol parts of the total diamine component used.
  • the liquid crystal alignment agent of the present invention is a liquid composition in which the polymer (P) and other components used as needed are preferably dispersed or dissolved in a suitable solvent.
  • the liquid crystal alignment agent of the present invention in addition to the polymer (P), other weights are used for the purpose of improving, for example, electrical characteristics (eg, high voltage retention characteristics), vertical orientation, and solution characteristics.
  • a coalescence hereinafter, also referred to as another polymer
  • the content ratio of the other polymers is preferably 90 parts by mass or less, more preferably 10 to 90 parts by mass, and further 20 to 80 parts by mass with respect to 100 parts by mass of the total amount of the polymers contained in the liquid crystal alignment agent. preferable.
  • the other polymer is not particularly limited, and is, for example, a group consisting of a polyimide precursor obtained by using the diamine component not containing the diamine (1) and the tetracarboxylic acid component, and a polyimide which is an imidized product of the polyimide precursor.
  • the main skeleton is mentioned.
  • At least one selected from the group consisting of the polymer (B), polyamide, polyurea, polyorganosiloxane, poly (meth) acrylate and polyester is preferable.
  • other polymers may be used in combination of 2 or more types.
  • Polymer (B) As the polymer (B), at least one selected from the group consisting of a polyimide precursor obtained by using the diamine component containing the diamine (s) and an imidized product of the polyimide precursor from the viewpoint of enhancing electrical characteristics.
  • the polymer of is more preferable.
  • the preferred embodiment of the diamine (s) used to obtain the polymer (B) is the same as the diamine (s) exemplified in the polymer (P). Further, as the diamine component used to obtain the polymer (B), in addition to the above diamine (s), other diamines exemplified by the above polymer (P) can also be used.
  • a diamine having the radical initiation function a diamine having a photosensitizing function showing a sensitizing effect by light irradiation, and a diamine having the group "-N (D)-" are preferably used.
  • One or more diamines (s) used for producing the polymer (B) can be used when producing the polymer (B), and the amount used thereof is used for producing the polymer (B). It is preferably 5 to 90 mol%, more preferably 10 to 90 mol%, based on the total diamine component to be obtained.
  • Examples of the tetracarboxylic acid component used for producing the polymer (B) include compounds exemplified as the tetracarboxylic acid component used for producing the polyamic acid (P). Of these, the tetracarboxylic dianhydride represented by the above formula (T) or a derivative thereof is preferable.
  • One or more of the one represented by the above formula (T) or a derivative thereof used for producing the polymer (B) can be used in the case of producing the polymer (B), and the amount used thereof is determined. It is preferably 10 mol% or more, more preferably 20 mol% or more, based on the total tetracarboxylic acid component used in the production of the polymer (B).
  • the liquid crystal alignment agent of the present invention may contain other components other than the above, if necessary.
  • Such components include, for example, a crosslinkable compound having at least one substituent selected from an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a blocked isocyanate group, a hydroxy group and an alkoxy group, and a polymerizable unsaturated group.
  • crosslinkable compound examples include compounds represented by any of the following formulas (CL-1) to (CL-11).
  • Examples of the compound for adjusting the dielectric constant and the electric resistance of the liquid crystal alignment film include monoamines having a nitrogen-containing aromatic heterocycle such as 3-picorylamine.
  • a monoamine having a nitrogen-containing aromatic heterocycle is used, it is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal alignment agent. It is 20 parts by mass.
  • Preferred specific examples of the functional silane compound are 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, and 2-aminopropyltriethoxysilane.
  • the organic solvent contained in the liquid crystal alignment agent is not particularly limited as long as the polymer component is uniformly dissolved. Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethyllactamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethylsulfonate, and ⁇ -butyrolactone.
  • ⁇ -Valerolactone 1,3-dimethyl-2-imidazolidinone, methylethylketone, cyclohexanone, cyclopentanone, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropaneamide, N- (n-propyl) -2-pyrrolidone, N-isopropyl-2-pyrrolidone, N- (n-butyl) -2-pyrrolidone, N- (tert-butyl) -2-pyrrolidone, N- (n-pentyl) ) -2-Pyrrolidone, N-methoxypropyl-2-pyrrolidone, N-ethoxyethyl-2-pyrrolidone, N-methoxybutyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone (collectively "good solvent”) Also known as).
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide or ⁇ -butyrolactone are preferable.
  • the content of the good solvent is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass based on the total amount of the solvent contained in the liquid crystal alignment agent.
  • the organic solvent contained in the liquid crystal alignment agent is a mixture in which a solvent (also referred to as a poor solvent) for improving the coatability when applying the liquid crystal alignment agent and the surface smoothness of the coating film is used in combination with the above solvent.
  • a solvent also referred to as a poor solvent
  • the use of solvent is preferred. Specific examples of the poor solvent used in combination are described below, but the present invention is not limited thereto.
  • diisopropyl ether diisobutyl ether, diisobutylcarbinol (2,6-dimethyl-4-heptanol)
  • ethylene glycol dimethyl ether ethylene glycol diethyl ether
  • ethylene glycol dibutyl ether 1,2-butoxyetan
  • diethylene glycol dimethyl ether diethylene glycol diethyl ether.
  • diisobutylcarbinol diisobutylcarbinol, propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monobutyl ether, ethylene.
  • Glycol monobutyl ether acetate or diisobutyl ketone is preferred.
  • the content of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass, based on the total amount of the solvent contained in the liquid crystal alignment agent.
  • the type and content of the poor solvent are appropriately selected according to the liquid crystal alignment agent coating device, coating conditions, coating environment, and the like.
  • Preferred combinations of good and poor solvents include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone and ⁇ -butyrolactone and ethylene glycol monobutyl ether, and N-methyl-2-.
  • Examples thereof include diisobutylketone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone and diisobutylketone, N-ethyl-2-pyrrolidone and N, N-dimethyllactamide and diisobutylketone.
  • the solid content concentration in the liquid crystal alignment agent (the ratio of the total mass of the components other than the solvent of the liquid crystal alignment agent to the total mass of the liquid crystal alignment agent) is appropriately selected in consideration of viscosity, volatility, etc., but is preferable. It is 1 to 10% by mass.
  • a particularly preferable solid content concentration depends on the method used when applying the liquid crystal alignment agent to the substrate. For example, in the case of the spin coating method, the solid content concentration is particularly preferably 1.5 to 4.5% by mass. In the case of the printing method, it is particularly preferable that the solid content concentration is 3 to 9% by mass and the solution viscosity is 12 to 50 mPa ⁇ s. In the case of the inkjet method, it is particularly preferable to set the solid content concentration to 1 to 5% by mass and thereby the solution viscosity to 3 to 15 mPa ⁇ s.
  • the liquid crystal alignment film of the present invention is obtained from the above liquid crystal alignment agent.
  • the liquid crystal alignment film of the present invention can be used for a horizontally oriented type or a vertically oriented type liquid crystal alignment film, and is particularly suitable for a vertically oriented type liquid crystal display element such as a VA method or a PSA mode described later.
  • the liquid crystal display element of the present invention includes the liquid crystal alignment film.
  • the liquid crystal display element of the present invention can be manufactured, for example, by a method including the following steps (1) to (3) or steps (1) to (4).
  • Step (1) Step of applying the liquid crystal alignment agent on the substrate
  • the liquid crystal alignment agent of the present invention can be applied to one surface of a substrate provided with a patterned transparent conductive film, for example, by a roll coater method, a spin coating method, or a printing method.
  • the substrate is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with the glass substrate and the silicon nitride substrate.
  • an opaque object such as a silicon wafer can be used, and in this case, a material that reflects light such as aluminum can also be used for the electrode.
  • Step (2) Step of firing the coating film After the liquid crystal alignment agent is applied, preheating is preferably performed first for the purpose of preventing the applied alignment agent from dripping.
  • the prebake temperature is preferably 30 to 200 ° C, more preferably 40 to 150 ° C, and particularly preferably 40 to 100 ° C.
  • the prebake time is preferably 0.25 to 10 minutes, more preferably 0.5 to 5 minutes. Further, it is preferable that a heating (post-baking) step is carried out.
  • the post-bake temperature is preferably 80 to 300 ° C, more preferably 120 to 250 ° C.
  • the post-baking time is preferably 5 to 200 minutes, more preferably 10 to 100 minutes.
  • the film thickness of the film thus formed is preferably 5 to 300 nm, more preferably 10 to 200 nm.
  • the coating film formed in the above step (1) can be used as it is as a liquid crystal alignment film, but the coating film may be subjected to an alignment ability imparting treatment.
  • the alignment ability-imparting treatment includes a rubbing treatment in which the coating film is rubbed in a certain direction with a roll wrapped with a cloth made of fibers such as nylon, rayon, and cotton, and photoalignment in which polarized or unpolarized radiation is applied to the coating film. Processing etc. can be mentioned.
  • the radiation to irradiate the coating film for example, ultraviolet rays including light having a wavelength of 150 to 800 nm and visible light can be used.
  • the radiation when the radiation is polarized, it may be linearly polarized or partially polarized.
  • the irradiation may be performed from a direction perpendicular to the substrate surface, may be performed from an oblique direction, or may be performed in combination thereof.
  • the direction of irradiation is diagonal.
  • a liquid crystal layer (3-1) In the case of a VA type liquid crystal display element
  • Two substrates on which a liquid crystal alignment film is formed as described above are prepared, and between the two substrates arranged opposite to each other. Place the liquid crystal display in.
  • the first method is a conventionally known method. First, two substrates are arranged facing each other through a gap (cell gap) so that the liquid crystal alignment films face each other. Next, the peripheral portions of the two substrates are bonded together using a sealing agent, and the liquid crystal composition is injected and filled into the surface of the substrate and the cell gap partitioned by the sealing agent to contact the film surface, and then the injection holes are formed. Seal.
  • the second method is a method called the ODF (One Drop Fill) method.
  • ODF One Drop Fill
  • an ultraviolet light-curable sealant is applied to a predetermined place on one of the two substrates on which the liquid crystal alignment film is formed, and the liquid crystal composition is further applied to a predetermined number of places on the liquid crystal alignment film surface. Is dropped. Then, the other substrate is bonded so that the liquid crystal alignment film faces each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface. Next, the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant. Regardless of which method is used, it is desirable to remove the flow orientation during liquid crystal filling by further heating the liquid crystal composition used to a temperature at which an isotropic phase is obtained and then slowly cooling the liquid crystal composition to room temperature.
  • the liquid crystal alignment agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and contains a polymerizable compound that is polymerized by at least one of active energy rays and heat between the pair of substrates.
  • a liquid crystal display element PSA type liquid crystal display element
  • the liquid crystal alignment agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a polymerizable group polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferably used for a liquid crystal display element (SC-PVA mode type liquid crystal display element) manufactured through a step of arranging a liquid crystal alignment film containing the liquid crystal alignment film and applying a voltage between the electrodes.
  • a method of manufacturing a liquid crystal display element may be adopted in the same manner as in (3-1) above and then through a step of irradiating ultraviolet rays described later. .. According to this method, a liquid crystal display element having an excellent response speed can be obtained with a small amount of light irradiation, as in the case of manufacturing the PSA type liquid crystal display element.
  • the compound having a polymerizable group is a compound having one or more polymerizable unsaturated groups in the molecule such as an acrylate group and a methacrylate group represented by the above formulas (M-1) to (M-7).
  • the content thereof is preferably 0.1 to 30 parts by mass, and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of all the polymer components.
  • the polymerizable group may be contained in the polymer used for the liquid crystal aligning agent, and as such a polymer, for example, a diamine component containing a diamine having the photopolymerizable group at the end is used in the reaction. Examples thereof include the obtained polymer.
  • Step (4) Step of irradiating ultraviolet rays
  • the liquid crystal cell is irradiated with light in a state where a voltage is applied between the conductive films of the pair of substrates obtained in the above (3-2) or (3-3).
  • the voltage applied here can be, for example, a direct current or an alternating current of 5 to 50 V.
  • the light to be irradiated for example, ultraviolet rays containing light having a wavelength of 150 to 800 nm and visible light can be used, but ultraviolet rays containing light having a wavelength of 300 to 400 nm are preferable.
  • the light source of the irradiation light for example, a low pressure mercury lamp, a high pressure mercury lamp, a deuterium hydrogen lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excima laser and the like can be used.
  • the irradiation amount of light is preferably 1,000 to 200,000 J / m 2 , and more preferably 1,000 to 100,000 J / m 2 .
  • a liquid crystal display element can be obtained by attaching a polarizing plate to the outer surface of the liquid crystal cell.
  • a polarizing plate attached to the outer surface of the liquid crystal cell a polarizing plate called an "H film" in which polyvinyl alcohol is stretched and oriented to absorb iodine is sandwiched between a cellulose acetate protective film or the H film itself.
  • a polarizing plate made of the above can be mentioned.
  • NMP N-methyl-2-pyrrolidone
  • BCS butyl cellosolve
  • THF tetrahydrofuran
  • DMF N, N-dimethylformamide
  • DMAc N, N-dimethylacetamide
  • Measuring device GPC (LC-20 series) manufactured by Shimadzu Corporation, column temperature: 50 ° C., eluent: N, N-dimethylformamide (as an additive, lithium bromide monohydrate (LiBr ⁇ H2O) is 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, tetrahydrofuran (THF) is 10 mL / L), flow velocity: 1.0 mL / min, standard sample for preparing calibration lines: TSK standard polyethylene oxide manufactured by Toso Co., Ltd. (Molecular weight of about 900,000, 150,000, 100,000, 30,000) and Polyethylene glycol manufactured by Polymer Laboratory (molecular weight of about 12,000, 4,000, 1,000).
  • FT-NMR Fourier transform type superconducting nuclear magnetic resonance apparatus
  • the (chemical) imidization rate is determined by using a proton derived from a structure that does not change before and after imidization as a reference proton, and is derived from the peak integrated value of this proton and the NH group of the amic acid that appears in the vicinity of 9.5 to 10.0 ppm. It was calculated by the following formula using the integrated proton peak value.
  • x is the integrated proton peak value derived from the NH group of the amic acid
  • y is the integrated peak value of the reference proton
  • is the integrated value of the amic acid in the case of polyamic acid (imidization rate is 0%).
  • Imidization rate (%) (1- ⁇ ⁇ x / y) ⁇ 100
  • Example 1 The liquid crystal alignment agent (A-1) was prepared by adding NMP (6.0 g) and BCS (8.0 g) to the polyamic acid solution (1) (6.0 g) obtained in Synthesis Example 1 and stirring at room temperature for 2 hours.
  • NMP (6.0 g) and BCS (8.0 g) were added to the polyamic acid solution (1) (1.8 g) obtained in Synthesis Example 1 and the polyamic acid solution (4) (4.2 g) obtained in Synthesis Example 4. ) was added and stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent (A-2).
  • the liquid crystal alignment agents (A-1), (A-2), (B-1) to (B-4) obtained above are uniform solutions with no abnormalities such as turbidity or precipitation. It was confirmed that. Using the obtained liquid crystal alignment agent, the transmittance, the voltage retention rate, the residual DC voltage, and the afterimage characteristics were evaluated.
  • the liquid crystal alignment agents (A-1), (A-2), (B-1) to (B-4) obtained above are spin-coated on a quartz substrate and dried on a hot plate at 70 ° C. for 90 seconds. I let you. Then, it was fired in an IR oven at 230 ° C. for 20 minutes to form a coating film having a film thickness of 100 nm, and a substrate with a liquid crystal alignment film was obtained. This substrate with a liquid crystal alignment film was placed inside, and another quartz substrate was used to sandwich a contact liquid (manufactured by Shimadzu Device Manufacturing Co., Ltd.) for the purpose of preventing light interference.
  • a contact liquid manufactured by Shimadzu Device Manufacturing Co., Ltd.
  • UV-3600 manufactured by Shimadzu Corporation
  • the temperature was 25 ° C. and the scan wavelength was 380 to 800 nm.
  • a reference liquid was used in which a contact liquid was sandwiched between two uncoated quartz substrates. The evaluation is based on the transmittance of the wavelength of 590 nm, and the values are shown in Table 3 below.
  • liquid crystal alignment agent (A-1), (A-2), (B-1) to (B-4) obtained above, a liquid crystal cell was produced by the procedure as shown below.
  • the liquid crystal alignment agent was spin-coated on a glass substrate with an ITO electrode, dried on a hot plate at 70 ° C. for 90 seconds, and then baked in an IR oven at 230 ° C. for 20 minutes to form a liquid crystal alignment film having a film thickness of 100 nm. ..
  • thermosetting sealant (XN-1500T manufactured by Kyoritsu Kagaku Sangyo Co., Ltd.) was printed on the periphery.
  • the surface of the other substrate on which the liquid crystal alignment film was formed was turned inside, and the cells were bonded to the previous substrate, and then the sealant was cured to prepare an empty cell.
  • a liquid crystal MLC-3023 (manufactured by Merck Group) was injected into this empty cell by a vacuum injection method to prepare a liquid crystal cell.
  • UV was irradiated from the outside of the liquid crystal cell through a cut filter having a wavelength of 325 nm or less at 10 J / cm 2.
  • the illuminance of UV was measured using UV-MO3A manufactured by ORC.
  • UV UV lamp: FLR40SUV32 /
  • UV-FL irradiation device manufactured by Toshiba Lighting & Technology Corporation in a state where no voltage was applied.
  • A-1) was irradiated for 30 minutes.
  • the voltage retention rate was measured using a liquid crystal cell for evaluating the voltage retention rate after UV irradiation. A voltage of 1 V was applied for 60 ⁇ sec in a hot air circulation oven at 60 ° C., and then the voltage after 16.67 msec was measured, and how much the voltage could be maintained was calculated as the voltage retention rate. VHR-1 manufactured by Toyo Corporation was used for measuring the voltage holding ratio. The values are shown in Table 3 below. The higher the value, the better.
  • the liquid crystal alignment agent has an ITO electrode substrate (length: 35 mm, width: 30 mm, thickness: 0.7 mm) on which an ITO electrode pattern having a pixel size of 200 ⁇ m ⁇ 600 ⁇ m and a line / space of 3 ⁇ m is formed, and a height of 3.
  • a sealant (XN-1500T manufactured by Kyoritsu Kagaku Sangyo Co., Ltd.) was placed around the ITO electrode substrate on which an ITO electrode pattern having an ITO electrode pattern having a line / space of 3 ⁇ m coated with a liquid crystal alignment film was formed, leaving a liquid crystal injection port. ) was printed.
  • the surface of the other substrate on which the liquid crystal alignment film was formed was turned inside, and the cells were bonded to the previous substrate, and then the sealant was cured to prepare an empty cell.
  • a liquid crystal MLC-3023 manufactured by Merck Group
  • UV was irradiated from the outside of the liquid crystal cell through a cut filter of 325 nm or less at 10 J / cm 2.
  • the illuminance of UV was measured using UV-MO3A manufactured by ORC.
  • UV UV lamp: FLR40SUV32 /
  • UV-FL irradiation device manufactured by Toshiba Lighting & Technology Corporation in a state where no voltage was applied.
  • A-1) was irradiated for 30 minutes.
  • the liquid crystal alignment film obtained by using the liquid crystal alignment agent (A-1) of Example 1 corresponds to the liquid crystal alignment agents (B-1) and (B-2) of Comparative Examples 1 and 2.
  • High transmittance was obtained as compared with the liquid crystal alignment film obtained by using.
  • the liquid crystal alignment film obtained by using the liquid crystal alignment agent (A-2) of Example 2 can be obtained by using the corresponding liquid crystal alignment agents (B-3) and (B-4) of Comparative Examples 3 and 4. Higher transmittance was obtained as compared with the liquid crystal alignment film.
  • the difference of 0.5% in the transmittance is a remarkable difference in the art.
  • liquid crystal alignment agent obtained in the examples when used, a liquid crystal alignment film having a high voltage retention rate can be obtained even in the voltage retention evaluation. Further, it can be seen that a liquid crystal alignment film showing good characteristics can be obtained in the evaluation of the residual DC voltage and the evaluation of the afterimage characteristics.
  • the liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention is, for example, a watch, a portable game, a word processor, a notebook computer, a car navigation system, a camcoder, a PDA, a digital camera, a mobile phone, a smartphone, various monitors, a liquid crystal television, and the like. It can be widely applied to information displays and the like, especially to ultra-high-definition liquid crystal displays such as 4K and 8K.

Abstract

Provided are: a liquid crystal aligning agent whereby a liquid crystal alignment film can be obtained that has a high voltage retention rate, has a high optical transmittance, can relax accumulated charge quickly, and has excellent afterimage characteristics; said liquid crystal alignment film; and a liquid crystal display element. This liquid crystal aligning agent is characterized by containing at least one type of polymer (P) selected from the group consisting of: a polyimide precursor obtained by using a diamine component including a diamine (1) indicated by formula (1); and a polyimide, which is the polyimide precursor that has been imidized. (R indicates a monovalent organic group and R1 and R2 indicate a saturated or unsaturated C1–6 monovalent hydrocarbon group or a C3–6 alicyclic hydrocarbon group. Some of the hydrogen atoms in the hydrocarbon groups in R1 and R2 may be substituted.

Description

液晶配向剤、液晶配向膜及び液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
 本発明は、液晶配向剤、該液晶配向剤から得られた液晶配向膜、及び該液晶配向膜を有する液晶表示素子に関する。 The present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal display element having the liquid crystal alignment film.
 従来、液晶表示素子としては、電極構造や使用する液晶分子の物性等が異なる種々の駆動方式が開発されており、例えば、TN(Twisted Nematic)型、STN(Super Twisted Nematic)型、VA(Vertical Alignment)型、IPS(In-Plane Switching)型、FFS(Fringe Field Switching)型等の各種表示素子が知られている。 Conventionally, as a liquid crystal display element, various drive methods having different electrode structures and physical properties of liquid crystal molecules used have been developed. For example, TN (Twisted Nematic) type, STN (Super Twisted Nematic) type, VA (Vertical). Various display elements such as an Element) type, an IPS (In-Plane Switching) type, and an FFS (Fringe Field Switching) type are known.
 なかでも、VA型の液晶表示素子は、視野角が広く、応答速度が速く、コントラストが大きく、また、生産プロセス上もラビング処理が不要にできることから、特に、大型化のニーズが高いテレビ用やモニター用を中心に広く使用されている。該VA方式の液晶表示素子では、予め液晶組成物中に光重合性化合物を添加し、液晶セルに電圧を印加しながら紫外線を照射することで、液晶の応答速度を速くするPSA(Polymer Sustained Alignment)方式(例えば、特許文献1、非特許文献1参照。)が主流となっている。 Among them, the VA type liquid crystal display element has a wide viewing angle, a fast response speed, a large contrast, and can eliminate the need for rubbing processing in the production process. Widely used mainly for monitors. In the VA type liquid crystal display element, a photopolymerizable compound is added to the liquid crystal composition in advance, and the liquid crystal cell is irradiated with ultraviolet rays while applying a voltage to increase the response speed of the liquid crystal. ) Method (see, for example, Patent Document 1 and Non-Patent Document 1) is the mainstream.
 一方、液晶表示素子は、一般的に液晶分子を配向させるための液晶配向膜を有する。液晶配向膜の材料としては、例えば、ポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリアミドなどが知られている。
 液晶配向膜には液晶配向性に加えて、様々な特性が要求される。例えば、上記PSA方式の液晶表示素子では、静電気が液晶セル内に蓄積されたり、また、駆動によって生じる正負非対称電圧の印加によって液晶セル内に電荷が蓄積されたりすると、これらの蓄積された電荷が液晶配向の乱れや残像として表示に影響を与え、液晶素子の表示品位を著しく低下させることから、静電気の蓄積が抑制され、且つ、残像の少ない液晶配向膜が求められる。このような課題を解決する液晶配向膜として、特許文献2にはピロール構造を有するポリイミド系液晶配向膜が提案されている。
On the other hand, the liquid crystal display element generally has a liquid crystal alignment film for orienting liquid crystal molecules. As a material for the liquid crystal alignment film, for example, polyamic acid, polyamic acid ester, polyimide, polyamide and the like are known.
The liquid crystal alignment film is required to have various properties in addition to the liquid crystal alignment. For example, in the PSA type liquid crystal display element, when static electricity is accumulated in the liquid crystal cell, or when electric charge is accumulated in the liquid crystal cell by applying a positive / negative asymmetric voltage generated by driving, these accumulated charges are accumulated. A liquid crystal alignment film that suppresses the accumulation of static electricity and has little afterimage is required because it affects the display as a disorder of the liquid crystal alignment or an afterimage and significantly deteriorates the display quality of the liquid crystal element. As a liquid crystal alignment film that solves such a problem, Patent Document 2 proposes a polyimide-based liquid crystal alignment film having a pyrrole structure.
 また、近年では、大画面で高精細の液晶テレビが広く実用化されており、このような用途に使用される液晶配向膜は従来よりも信頼性の高いものが必要となっている。特に、液晶配向膜の基本特性である電気特性に関してより高い初期特性を示すことが求められている。この課題を解決する液晶配向膜として、特許文献3にはジフェニルアミン構造を有するポリイミド系液晶配向膜が提案されている。 In recent years, large-screen, high-definition LCD televisions have been widely put into practical use, and liquid crystal alignment films used for such applications are required to be more reliable than before. In particular, it is required to exhibit higher initial characteristics with respect to the electrical characteristics which are the basic characteristics of the liquid crystal alignment film. As a liquid crystal alignment film that solves this problem, Patent Document 3 proposes a polyimide-based liquid crystal alignment film having a diphenylamine structure.
日本特開2003-307720号公報Japanese Patent Application Laid-Open No. 2003-307720 国際公開2019/013339号公報International Publication No. 2019/0133339 国際公開2009/093709号公報International Publication No. 2009/093709
 上記に加えて、近年、4Kや8Kといった超高精細な液晶表示素子では、ブラックマトリクス(BM)やTFTなどの占有率が大きくなり、パネルの開口率が低下してしまうため、表示部の光透過率の向上が重要視されている。 In addition to the above, in recent years, in ultra-high-definition liquid crystal display elements such as 4K and 8K, the occupancy ratio of black matrix (BM) and TFT becomes large, and the aperture ratio of the panel decreases, so the light of the display unit The improvement of transmittance is emphasized.
 本発明の目的は、上記事情に鑑み、高い電圧保持率及び高い光透過率を有し、また、蓄積された電荷の緩和が早く、残像特性に優れる液晶配向膜を得ることができる液晶配向剤、該液晶配向膜及びそれを用いた液晶表示素子を提供することにある。 In view of the above circumstances, an object of the present invention is a liquid crystal alignment agent capable of obtaining a liquid crystal alignment film having a high voltage retention rate and a high light transmittance, quick relaxation of accumulated charges, and excellent afterimage characteristics. The present invention is to provide the liquid crystal alignment film and a liquid crystal display element using the same.
 本発明者は、上記課題を達成するために鋭意研究を行った結果、特定の成分を含有する液晶配向剤が、上記の目的を達成するために有効であることを見出し、本発明を完成するに至った。
 本発明は、下記式(1)で表されるジアミン(1)を含むジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)を含有することを特徴とする液晶配向剤、該液晶配向剤から得られた液晶配向膜、及び該液晶配向膜を有する液晶表示素子にある。
Figure JPOXMLDOC01-appb-C000013
(Rは1価の有機基を表し、R、Rは飽和若しくは不飽和の炭素数1~6の1価の炭化水素基、又は炭素数3~6の脂環式炭化水素基を表す。上記R、Rにおける炭化水素基が有する水素原子の一部は置換されていても良い。)
As a result of diligent research to achieve the above-mentioned problems, the present inventor has found that a liquid crystal aligning agent containing a specific component is effective for achieving the above-mentioned object, and completes the present invention. It came to.
The present invention is at least one selected from the group consisting of a polyimide precursor obtained by using a diamine component containing a diamine (1) represented by the following formula (1) and a polyimide which is an imidized product of the polyimide precursor. It is in a liquid crystal alignment agent characterized by containing a polymer (P), a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal display element having the liquid crystal alignment film.
Figure JPOXMLDOC01-appb-C000013
(R represents a monovalent organic group, and R 1 and R 2 represent a saturated or unsaturated monovalent hydrocarbon group having 1 to 6 carbon atoms or an alicyclic hydrocarbon group having 3 to 6 carbon atoms. A part of the hydrogen atom of the hydrocarbon group in R 1 and R 2 may be substituted.)
 本発明の液晶配向剤によれば、高い電圧保持率、及び高い光透過率を有し、また、蓄積された電荷の緩和が早く、残像特性に優れる液晶配向膜を得ることができる。
 本発明の上記効果が得られるメカニズムは必ずしも明らかではないが、以下に述べることが一因と考えられる。すなわち、本発明の液晶配向剤に用いる重合体成分の原料であるジアミンは、アミノ基のオルト位に置換基があることで、立体障害が発生し電荷移動の形成が抑制されることから、高い光透過率を有する液晶配向膜が得られ、また、上記ジアミンから得られる重合体は共役構造を有するため、蓄積された電荷の緩和が早く、残像特性に優れた液晶配向膜を得ることができると考えられる。
According to the liquid crystal alignment agent of the present invention, it is possible to obtain a liquid crystal alignment film having a high voltage retention and a high light transmittance, quick relaxation of accumulated charges, and excellent afterimage characteristics.
The mechanism by which the above effects of the present invention are obtained is not always clear, but it is considered that the following is one of the causes. That is, the diamine, which is the raw material of the polymer component used in the liquid crystal alignment agent of the present invention, is high because the presence of a substituent at the ortho position of the amino group causes steric hindrance and suppresses the formation of charge transfer. A liquid crystal alignment film having a light transmittance can be obtained, and since the polymer obtained from the above diamine has a conjugated structure, the accumulated charge can be quickly relaxed and a liquid crystal alignment film having excellent afterimage characteristics can be obtained. it is conceivable that.
(重合体(P))
 本発明の液晶配向剤は、下記式(1)で表されるジアミン(1)を含むジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)を含有する。
(Polymer (P))
The liquid crystal alignment agent of the present invention is selected from the group consisting of a polyimide precursor obtained by using a diamine component containing a diamine (1) represented by the following formula (1) and a polyimide which is an imidized product of the polyimide precursor. It contains at least one polymer (P).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記式(1)において、R、R及びRは、それぞれ上記で定義したとおりである。
 Rにおける1価の有機基としては、芳香環構造を有する1価の有機基、炭素数1~30の1価の鎖状炭化水素基、又は炭素数3~30の1価の脂環式炭化水素基が好ましい。かかる鎖状炭化水素基又は脂環式炭化水素基が有する水素原子の一部は置換されていてもよく、その有するメチレン基の一部が、酸素原子、カルボニル基又は-COO-で置換されていてもよい。
 上記炭素数1~30の1価の鎖状炭化水素基としては、炭素数1~30のアルキル基、炭素数2~30のアルケニル基、炭素数2~30のアルキニル基等が挙げられる。Rが鎖状炭化水素基又は脂環式炭化水素基である場合、これらの炭化水素基が有する水素原子の一部は置換されていてもよく、該置換基としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、水酸基、シアノ基、炭素数1~9のアルキル基、炭素数1~9のアルコキシ基、炭素数1~9のフルオロアルキル基等が挙げられる。中でも炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基がより好ましく、炭素数1~6のアルキル基が特に好ましい。
In the above formula (1), R, R 1 and R 2 are as defined above, respectively.
The monovalent organic group in R includes a monovalent organic group having an aromatic ring structure, a monovalent chain hydrocarbon group having 1 to 30 carbon atoms, or a monovalent alicyclic hydrocarbon having 3 to 30 carbon atoms. Hydrocarbon groups are preferred. A part of the hydrogen atom of the chain hydrocarbon group or the alicyclic hydrocarbon group may be substituted, and a part of the methylene group thereof is substituted with an oxygen atom, a carbonyl group or -COO-. May be.
Examples of the monovalent chain hydrocarbon group having 1 to 30 carbon atoms include an alkyl group having 1 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, and an alkynyl group having 2 to 30 carbon atoms. When R is a chain hydrocarbon group or an alicyclic hydrocarbon group, a part of the hydrogen atom contained in these hydrocarbon groups may be substituted, and the substituent may be a halogen atom (fluorine atom, Chlorine atom, bromine atom, iodine atom), hydroxyl group, cyano group, alkyl group having 1 to 9 carbon atoms, alkoxy group having 1 to 9 carbon atoms, fluoroalkyl group having 1 to 9 carbon atoms and the like can be mentioned. Of these, an alkyl group having 1 to 6 carbon atoms or a fluoroalkyl group having 1 to 6 carbon atoms is more preferable, and an alkyl group having 1 to 6 carbon atoms is particularly preferable.
 上記炭素数3~30の1価の脂環式炭化水素基は、脂環式構造のみで構成されていてもよく、その一部に鎖状構造を含んでいてもよい。脂環式構造としては、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、ノルボルナン、アダマンタン等が挙げられる。
 上記芳香環構造を有する1価の有機基は、芳香環構造のみで構成されていてもよく、その一部に鎖状構造及び上記脂環式構造の少なくとも一方を含んでいてもよい。芳香環構造としては、ベンゼン環であってもよく、ナフタレン環、アントラセン環等の縮合ベンゼン環であってもよく、チオフェン環、ピロール環、フラン環、ピリジン環、ピリミジン環、トリアジン環等の複素芳香環であってもよい。上記芳香環構造を有する1価の基は、芳香環構造を1個のみ有していてもよく、複数個有していてもよい。複数個有している場合、それら複数個の芳香環構造が単結合により結合されていてもよく、この場合、具体的にはビフェニルやテルフェニル等が挙げられる。また、複数個の芳香環構造を連結するように鎖状構造又は脂環式構造が存在していてもよい。これら芳香環構造、鎖状構造及び脂環式構造のうち少なくとも1つの構造は、置換基を有していてもよい。該置換基としてはハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、水酸基、シアノ基、炭素数1~9のアルキル基、炭素数1~9のアルコキシ基、炭素数1~9のフルオロアルキル基等が挙げられる。
The monovalent alicyclic hydrocarbon group having 3 to 30 carbon atoms may be composed of only an alicyclic structure, or may contain a chain structure as a part thereof. Examples of the alicyclic structure include cyclopentane, cyclohexane, cycloheptane, cyclooctane, norbornane, and adamantane.
The monovalent organic group having the aromatic ring structure may be composed of only the aromatic ring structure, or may contain at least one of the chain structure and the alicyclic structure as a part thereof. The aromatic ring structure may be a benzene ring, a condensed benzene ring such as a naphthalene ring or an anthracene ring, and a complex such as a thiophene ring, a pyrrole ring, a furan ring, a pyridine ring, a pyrimidine ring, and a triazine ring. It may be an aromatic ring. The monovalent group having the aromatic ring structure may have only one aromatic ring structure or may have a plurality of aromatic ring structures. When a plurality of aromatic ring structures are present, the plurality of aromatic ring structures may be bonded by a single bond, and in this case, specific examples thereof include biphenyl and terphenyl. Further, a chain structure or an alicyclic structure may exist so as to connect a plurality of aromatic ring structures. At least one of these aromatic ring structures, chain structures and alicyclic structures may have a substituent. The substituents include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), a hydroxyl group, a cyano group, an alkyl group having 1 to 9 carbon atoms, an alkoxy group having 1 to 9 carbon atoms, and 1 to 9 carbon atoms. Fluoroalkyl groups and the like can be mentioned.
 Rにおける上記芳香環構造を有する1価の有機基の好ましい例として、下記式(Ar)で表される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000015
(Rは、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、水酸基、シアノ基、炭素数1~9のアルキル基、炭素数1~9のアルコキシ基、又は炭素数1~9のフルオロアルキル基を表す。mは0~5の整数であり、mが2~5の場合、複数のRはそれぞれ独立して上記定義を有する。*は、結合手を表す。)
A preferred example of the monovalent organic group having the aromatic ring structure in R is a structure represented by the following formula (Ar).
Figure JPOXMLDOC01-appb-C000015
( Ra is a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), hydroxyl group, cyano group, alkyl group having 1 to 9 carbon atoms, alkoxy group having 1 to 9 carbon atoms, or 1 to 9 carbon atoms. the .m representing the fluoroalkyl group is an integer from 0 to 5, when m is 2 to 5, with. * is the definition plurality of R a independently represents a bond.)
 R、Rにおける飽和若しくは不飽和の炭素数1~6の1価の炭化水素基としては、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基等が挙げられる。また、R、Rにおける炭素数3~6の脂環式炭化水素基としては、シクロペンチル基、シクロヘキシル基等が挙げられる。尚、上記R、Rにおける炭化水素基が有する水素原子の一部は置換されていても良く、該置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子、水酸基が挙げられる。
 本発明の効果を効率的に得る観点から、R、R及びRは、それぞれ独立して、炭素数1~5のアルキル基が好ましい。
 R、R、Rにおける炭素数1~5のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基が挙げられる。なかでも、炭素数1~3のアルキル基が好ましい。
Saturated or unsaturated monovalent hydrocarbon groups having 1 to 6 carbon atoms in R 1 and R 2 include alkyl groups having 1 to 6 carbon atoms, alkenyl groups having 2 to 6 carbon atoms, and 2 to 6 carbon atoms. Examples include an alkynyl group. Examples of the alicyclic hydrocarbon group having 3 to 6 carbon atoms in R 1 and R 2 include a cyclopentyl group and a cyclohexyl group. A part of the hydrogen atom of the hydrocarbon group in R 1 and R 2 may be substituted, and examples of the substituent include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and a hydroxyl group.
From the viewpoint of efficiently obtaining the effects of the present invention, R, R 1 and R 2 are preferably alkyl groups having 1 to 5 carbon atoms independently of each other.
Specific examples of the alkyl groups having 1 to 5 carbon atoms in R, R 1 and R 2 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group and tert. -Butyl group, n-pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group can be mentioned. Of these, an alkyl group having 1 to 3 carbon atoms is preferable.
 上記式(1)で表されるジアミン(1)の好ましい具体例としては、下記式(d-1)~(d-4)が挙げられる。
Figure JPOXMLDOC01-appb-C000016
Preferred specific examples of the diamine (1) represented by the above formula (1) include the following formulas (d-1) to (d-4).
Figure JPOXMLDOC01-appb-C000016
 本発明の液晶配向剤に含有される重合体(P)は、特に、TN方式、STN方式、VA方式、PSA方式、SC-PVAモードの液晶表示素子用の液晶配向剤に適用する場合、上記式(1)で表されるジアミンに加えて、下記式(S1)、(S2)及び(S3)からなる群より選ばれる少なくとも1種の構造を有するジアミン(s)を含有するジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体であるのが好ましい。
Figure JPOXMLDOC01-appb-C000017
The polymer (P) contained in the liquid crystal aligning agent of the present invention is particularly applicable to the liquid crystal aligning agent for the liquid crystal display element of the TN method, STN method, VA method, PSA method, and SC-PVA mode. In addition to the diamine represented by the formula (1), a diamine component containing a diamine (s) having at least one structure selected from the group consisting of the following formulas (S1), (S2) and (S3) is used. It is preferable that the polymer is at least one selected from the group consisting of the polyimide precursor thus obtained and the polyimide which is an imidized product of the polyimide precursor.
Figure JPOXMLDOC01-appb-C000017
 式(S1)において、X及びXは、それぞれ独立して、単結合、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-NH-、-O-、-COO-、-OCO-、又は-((CHa1-Am1-(a1は1~15の整数であり、Aは酸素原子又は-COO-を表し、mは1~2であり、mが2である場合の複数のa1及びAは同一であってもよく、異なっていてもよい。)を表す。G及びGは、それぞれ独立して、炭素数6~12の2価の芳香族基及び炭素数3~8の2価の脂環式基から選ばれる2価の環状基を表す。前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基及びフッ素原子からなる群から選ばれる少なくとも1種で置換されていてもよい。m及びnは、それぞれ独立して、0~3の整数であり、m及びnの合計は1~4である。m及びnが複数の場合、複数のX、X、G及びGはそれぞれ同一であってもよく、異なっていてもよい。Rは炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、又は炭素数2~20のアルコキシアルキル基を表し、Rを形成する任意の水素原子はフッ素原子で置換されていてもよい。 In formula (S1), X 1 and X 2 are independently single-bonded,-(CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-, -CON. (CH 3 )-, -N (CH 3 ) CO-, -NH-, -O-, -COO-, -OCO-, or-((CH 2 ) a1- A 1 ) m1- (a1 is 1-) It is an integer of 15, A 1 represents an oxygen atom or -COO-, m 1 is 1 to 2, and a plurality of a 1 and A 1 when m 1 is 2 may be the same or different. It may be.). G 1 and G 2 each independently represent a divalent cyclic group selected from a divalent aromatic group having 6 to 12 carbon atoms and a divalent alicyclic group having 3 to 8 carbon atoms. The arbitrary hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, and a fluorine-containing alkoxy group having 1 to 3 carbon atoms. And may be substituted with at least one selected from the group consisting of fluorine atoms. m and n are independently integers of 0 to 3, and the sum of m and n is 1 to 4. When there are a plurality of m and n, the plurality of X 1 , X 2 , G 1 and G 2 may be the same or different. R 1 represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkoxy alkyl group having 2 to 20 carbon atoms, and any hydrogen atom forming R 1 is substituted with a fluorine atom. May be.
 また、G、Gにおける2価の環状基としては、シクロヘキシレン基、フェニレン基等が挙げられる。これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されてもよい。m、nは、それぞれ独立して、0~3の整数であって、m及びnの合計は1~4である。液晶配向性を高める観点から、m及びnの合計は、2~4がより好ましい。 Examples of the divalent cyclic group in G 1 and G 2 include a cyclohexylene group and a phenylene group. Any hydrogen atom on these cyclic groups may be an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. It may be substituted with a group or a fluorine atom. m and n are independently integers of 0 to 3, and the total of m and n is 1 to 4. From the viewpoint of enhancing the liquid crystal orientation, the total of m and n is more preferably 2 to 4.
Figure JPOXMLDOC01-appb-C000018
 式(S2)において、Xは、単結合、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-NH-、-O-、-CHO-、-COO-又は-OCO-を表す。Rは炭素数1~20のアルキル基又は炭素数2~20のアルコキシアルキル基を表し、Rを形成する任意の水素原子はフッ素原子で置換されていてもよい。
 また、Rは、液晶配向性を高める観点から、炭素数3~20のアルキル基又は炭素数2~20のアルコキシアルキル基が好ましい。
Figure JPOXMLDOC01-appb-C000018
In formula (S2), X 3 is a single bond, -CONH-, -NHCO-, -CON (CH 3 )-, -N (CH 3 ) CO-, -NH-, -O-, -CH 2 O. -, -COO- or -OCO-. R 2 represents an alkyl group having 1 to 20 carbon atoms or an alkoxy alkyl group having 2 to 20 carbon atoms, and any hydrogen atom forming R 2 may be substituted with a fluorine atom.
Further, R 2 is preferably an alkyl group having 3 to 20 carbon atoms or an alkoxyalkyl group having 2 to 20 carbon atoms from the viewpoint of enhancing the liquid crystal orientation.
Figure JPOXMLDOC01-appb-C000019
 式(S3)において、Xは、-CONH-、-NHCO-、-O-、-CHO-、-OCH-、-COO-又は-OCO-を表す。Rはステロイド骨格を有する構造を表す。また、Rはコレスタニル基、コレステリル基又はラノスタニル基を含む構造が好ましい。
Figure JPOXMLDOC01-appb-C000019
In formula (S3), X 4 represents -CONH-, -NHCO-, -O-, -CH 2 O-, -OCH 2-, -COO- or -OCO-. R 3 represents a structure having a steroid skeleton. Further, R 3 preferably has a structure containing a cholestanyl group, a cholesteryl group or a lanostannyl group.
 式(S1)の好ましい具体例としては、下記式(S1-x1)~(S1-x7)を挙げることができる。
Figure JPOXMLDOC01-appb-C000020
Preferred specific examples of the formula (S1) include the following formulas (S1-x1) to (S1-x7).
Figure JPOXMLDOC01-appb-C000020
 上記式(S1-x1)~(S1-x7)中、Rは、上記で定義したとおりである。Xは、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-NH-、-O-、-CHO-、-CHOCO-、-COO-、又は-OCO-を表す。Aは、酸素原子又は-COO-*(但し、「*」を付した結合手が(CHa2と結合する)を表し、Aは、酸素原子又は*-COO-(但し、*を付した結合手が(CHa2と結合する)を表す。a、aは、それぞれ独立して、0又は1の整数であり、aは1~10の整数であり、Cyは1,4-シクロへキシレン基又は1,4-フェニレン基を表す。 In the formula (S1-x1) ~ (S1 -x7), R 1 is as defined above. X p is-(CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-, -CON (CH 3 )-, -N (CH 3 ) CO-, -NH. -, -O-, -CH 2 O-, -CH 2 OCO-, -COO-, or -OCO-. A 1 represents an oxygen atom or -COO- * (where a bond with an "*" binds to (CH 2 ) a2 ), and A 2 is an oxygen atom or * -COO- (where *). The bond with (CH 2 ) represents (CH 2) a2 ). a 1 and a 3 are independently integers of 0 or 1, a 2 is an integer of 1 to 10, and Cy represents a 1,4-cyclohexylene group or a 1,4-phenylene group. ..
 式[S2]の好ましい態様として、Xが、-O-、-CHO-、-COO-又は-OCO-のいずれかであり、Rが炭素数3~20のアルキル基又は炭素数2~20のアルコキシアルキル基である場合が好ましく、Rが炭素数3~20のアルキル基である場合が更に好ましく、Rを形成する任意の水素原子はフッ素原子で置換されていてもよい。 As a preferred embodiment of the formula [S2], X 3 is any of -O-, -CH 2 O-, -COO- or -OCO-, and R 2 is an alkyl group having 3 to 20 carbon atoms or an alkyl number of carbon atoms. preferably represents an alkoxyalkyl group of 2 to 20, more preferably when R 2 is an alkyl group having 3 to 20 carbon atoms, any hydrogen atoms that form the R 2 may be substituted by fluorine atoms ..
 上記式(S3)の好ましい具体例として、下記式(S3-x)が挙げられる。なお、式(S3-x)中、Xは、式(X1)、式(X2)、又は-CHO-を表し、Colは、式(Col1)、式(Col2)又は式(Col3)を表し、Gは、式(G1)、式(G2)、式(G3)又は式(G4)を表す。式中、Meはメチル基を表し、*は結合手を表す。 The following formula (S3-x) is given as a preferable specific example of the above formula (S3). In the formula (S3-x), X represents the formula (X1), the formula (X2), or −CH 2 O—, and Col represents the formula (Col1), the formula (Col2), or the formula (Col3). Representing, G represents the formula (G1), the formula (G2), the formula (G3) or the formula (G4). In the formula, Me represents a methyl group and * represents a bond.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 上記式(S1)~(S3)のいずれかで表される構造を有する好ましいジアミン(s)としては、上記式(S1)~(S3)で表される構造を有し、且つ少なくとも一つのベンゼン環を有するジアミンが好ましい。ジアミン(s)の好ましい例として、下記式(d1)又は式(d2)で表されるジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000022
As a preferable diamine (s) having a structure represented by any of the above formulas (S1) to (S3), a preferable diamine (s) having a structure represented by the above formulas (S1) to (S3) and at least one benzene. A diamine having a ring is preferable. Preferred examples of the diamine (s) include diamines represented by the following formula (d1) or formula (d2).
Figure JPOXMLDOC01-appb-C000022
 式(d1)、(d2)において、Yは、上記式(S1)~(S3)で表される側鎖構造を表す。また、Xは、単結合、-O-、-C(CH-、-NH-、-CO-、-COO-、-CONH-、-(CH-、-SO-、-O-(CH-O-、-O-C(CH-、-CO-(CH-、-CO-(CH-CO-、-NH-(CH-、-NH-(CH-NH-、-SO-(CH-、-SO-(CH-SO-、-CONH-(CH-、-CONH-(CH-NHCO-、又は-COO-(CH-OCO-を表す。mは1~8の整数である。上記式(d2)において、2個のYは、互いに同一であっても異なっていてもよい。 In the formulas (d1) and (d2), Y represents the side chain structure represented by the above formulas (S1) to (S3). In addition, X is a single bond, -O-, -C (CH 3 ) 2- , -NH-, -CO-, -COO-, -CONH-,-(CH 2 ) m- , -SO 2- , -O- (CH 2 ) m- O-, -OC (CH 3 ) 2- , -CO- (CH 2 ) m- , -CO- (CH 2 ) m -CO-, -NH- (CH) 2) m -, - NH- ( CH 2) m -NH -, - SO 2 - (CH 2) m -, - SO 2 - (CH 2) m -SO 2 -, - CONH- (CH 2) m -, -CONH- (CH 2 ) m -NHCO-, or -COO- (CH 2 ) m- OCO-. m is an integer from 1 to 8. In the above formula (d2), the two Ys may be the same as or different from each other.
 上記式(d1)で表されるジアミンの好ましい具体例としては、下記式(d1-1)~(d1-18)が挙げられる。
Figure JPOXMLDOC01-appb-C000023
(nは1~20の整数である。)
Preferred specific examples of the diamine represented by the above formula (d1) include the following formulas (d1-1) to (d1-18).
Figure JPOXMLDOC01-appb-C000023
(N is an integer from 1 to 20.)
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 上記式(d2)で表されるジアミンの好ましい具体例としては、下記式(d2-1)~(d2-6)が挙げられる。
Figure JPOXMLDOC01-appb-C000025
Preferred specific examples of the diamine represented by the above formula (d2) include the following formulas (d2-1) to (d2-6).
Figure JPOXMLDOC01-appb-C000025
 上記式(d2-1)~(d2-6)中、Xp1~Xp8は、それぞれ独立して、上記式(S1-x1)~(S1-x6)におけるXと同義であり、Xs1~Xs4はそれぞれ独立して、-O-、-CHO-、-COO-又は-OCO-を表す。X~Xは、単結合、-O-、-NH-、又は-O-(CH-O-(mは1~8の整数である。)を表し、R1a~R1hはそれぞれ独立して、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、又は炭素数2~20のアルコキシアルキル基を表す。 In the above formulas (d2-1) to (d2-6), X p1 to X p8 are independently synonymous with X p in the above formulas (S1-x1) to (S1-x6), and are X s1. ~ X s4 independently represent -O-, -CH 2 O-, -COO- or -OCO-. X a to X f represent a single bond, -O-, -NH-, or -O- (CH 2 ) m- O- (m is an integer of 1 to 8), and R 1a to R 1h. Independently represent an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkoxyalkyl group having 2 to 20 carbon atoms.
(重合体(P)の製造)
 本発明の液晶配向剤に含有される重合体(P)は、1成分又は2成分以上のポリイミド前駆体及び/又は該ポリイミド前駆体のイミド化物であるポリイミドで構成されてもよい。ここにおいて、ポリイミド前駆体は、ポリアミック酸、ポリアミック酸エステルなどのイミド化にすることによりポリイミドを得ることができる重合体である。重合体(P)の好ましい具体的な態様として、以下の2つのタイプが挙げられるが、本発明はこれらに限定されるものではない。
(Manufacturing of polymer (P))
The polymer (P) contained in the liquid crystal alignment agent of the present invention may be composed of one component or two or more components of a polyimide precursor and / or a polyimide which is an imidized product of the polyimide precursor. Here, the polyimide precursor is a polymer from which polyimide can be obtained by imidization of a polyamic acid, a polyamic acid ester, or the like. Preferred specific embodiments of the polymer (P) include, but are not limited to, the following two types.
 上記ジアミン(1)と上記ジアミン(s)とを含むジアミン成分を用いて得られるポリイミド前駆体、及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(以下、共重合体ともいう)。
 上記ジアミン(1)を含むジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(p-1)と、上記ジアミン(s)を含むジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(p-2)との混合物(以下、重合体ブレンドともいう。)。
 上記共重合体又は重合体ブレンドは単独で使用してもよく、両者を組み合わせて使用してもよい。
At least one polymer selected from the group consisting of a polyimide precursor obtained by using a diamine component containing the diamine (1) and the diamine (s), and a polyimide which is an imidized product of the polyimide precursor (hereinafter,). , Also called a copolymer).
At least one polymer (p-1) selected from the group consisting of a polyimide precursor obtained by using a diamine component containing the diamine (1) and a polyimide which is an imidized product of the polyimide precursor, and the diamine (p-1). A mixture with at least one polymer (p-2) selected from the group consisting of a polyimide precursor obtained by using a diamine component containing s) and polyimide which is an imidized product of the polyimide precursor (hereinafter, polymer). Also called a blend.).
The above-mentioned copolymer or polymer blend may be used alone or in combination of both.
 <ジアミン成分>
 上記重合体(P)のポリイミド前駆体であるポリアミック酸(P)は、上記ジアミン(1)を含有するジアミン成分、好ましくは上記ジアミン(1)に加えてジアミン(s)を含有するジアミン成分とテトラカルボン酸成分との重合反応により得ることができる。
 この場合、ジアミン(1)の使用量は、テトラカルボン酸成分と反応させるジアミン成分に対して、1~100モル%が好ましく、1~99モル%がより好ましく、5~95モル%がさらに好ましい。
<Diamine component>
The polyamic acid (P), which is a polyimide precursor of the polymer (P), is a diamine component containing the diamine (1), preferably a diamine component containing a diamine (s) in addition to the diamine (1). It can be obtained by a polymerization reaction with a tetracarboxylic acid component.
In this case, the amount of the diamine (1) used is preferably 1 to 100 mol%, more preferably 1 to 99 mol%, still more preferably 5 to 95 mol% with respect to the diamine component to be reacted with the tetracarboxylic acid component. ..
 上記ジアミン(1)に加えてジアミン(s)を使用する場合、ジアミン(s)の使用量は、テトラカルボン酸成分と反応させるジアミン成分に対して、1~99モル%が好ましく、1~95モル%がより好ましい。 When diamine (s) is used in addition to the above diamine (1), the amount of diamine (s) used is preferably 1 to 99 mol% with respect to the diamine component to be reacted with the tetracarboxylic acid component, and 1 to 95. More preferably mol%.
 上記ポリアミック酸(P)の製造に用いられるジアミン成分は、ジアミン(1)及びジアミン(s)以外のジアミン(以下、その他のジアミンともいう。)を含んでいてもよい。以下にその他のジアミンの例を挙げるが、本発明はこれらに限定されるものではない。 The diamine component used in the production of the polyamic acid (P) may contain a diamine other than the diamine (1) and the diamine (s) (hereinafter, also referred to as other diamines). Examples of other diamines are given below, but the present invention is not limited thereto.
 p-フェニレンジアミン、m-フェニレンジアミン、4-(2-(メチルアミノ)エチル)アニリン、2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸、下記式(3b-1)~式(3b-4)などのカルボキシ基を有するジアミン、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル;1,2-ビス(4-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,2-ビス(4-アミノフェノキシ)エタン、1,2-ビス(4-アミノ-2-メチルフェノキシ)エタン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、4-(2-(4-アミノフェノキシ)エトキシ)-3-フルオロアニリン、ジ(2-(4-アミノフェノキシ)エチル)エーテル、4-アミノ-4’-(2-(4-アミノフェノキシ)エトキシ)ビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、1,4-ジアミノナフタレン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、下記式(nh-1)~(nh-6)で表されるジアミン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、1,3-ビス(4-アミノフェネチル)ウレアなどのウレア結合を有するジアミン、メタクリル酸2-(2,4-ジアミノフェノキシ)エチル、2,4-ジアミノ-N,N-ジアリルアニリンなどの光重合性基を末端に有するジアミン、下記式(R1)~(R5)などのラジカル開始機能を有するジアミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、9,9-ビス(4-アミノフェニル)フルオレンなどの光照射により増感作用を示す光増感機能を有するジアミン、2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、下記式(z-1)~(z-18)などの複素環を有するジアミン、下記式(Dp-1)~(Dp-9)などのジフェニルアミン骨格を有するジアミン、下記式(5-1)~(5-10)などの基「-N(D)-」(Dは加熱によって脱離し水素原子に置き換わる保護基を表し、好ましくはt-ブトキシカルボニル基である。)を有するジアミン、下記式(Ox-1)~(Ox-2)などのオキサゾリン構造を有するジアミン、国際公開第2016/125870号に記載のジアミンなど。 p-phenylenediamine, m-phenylenediamine, 4- (2- (methylamino) ethyl) aniline, 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid, the following formula ( 3b-1) to diamines having a carboxy group of the formula (3b-4), 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether 1,2-bis (4-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,4-bis (4-aminophenyl) butane, 1,4-bis (4-aminophenoxy) ) Diamine, 1,3-bis (4-aminophenoxy) benzene, 1,2-bis (4-aminophenoxy) ethane, 1,2-bis (4-amino-2-methylphenoxy) ethane, 1,3- Bis (4-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, 4 -(2- (4-Aminophenoxy) ethoxy) -3-fluoroaniline, di (2- (4-aminophenoxy) ethyl) ether, 4-amino-4'-(2- (4-aminophenoxy) ethoxy) Biphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 4,4'-diamino-2,2'-bis (trifluoromethyl) Biphenyl, 1,4-diaminonaphthalene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,7-diaminonaphthalene, diamines represented by the following formulas (nh-1) to (nh-6), 2 , 2'-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2'-bis (4-aminophenyl) ) Propane, diamine having a urea bond such as 1,3-bis (4-aminophenethyl) urea, 2- (2,4-diaminophenoxy) ethyl methacrylate, 2,4-diamino-N, N-diallyl aniline, etc. Diamine having a photopolymerizable group at the end, diamine having a radical initiation function such as the following formulas (R1) to (R5), 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 9,9-bis Light irradiation such as (4-aminophenyl) fluorene Diamine, 2,6-diaminopyridine, 3,4-diaminopyridine, 2,4-diaminopyrimidine, 3,6-diaminocarbazole, N-methyl-3,6- Diaminocarbazole, diamine having a heterocycle such as the following formulas (z-1) to (z-18), diamine having a diphenylamine skeleton such as the following formulas (Dp-1) to (Dp-9), the following formula (5-) Groups such as 1) to (5-10) "-N (D)-" (D represents a protective group that is desorbed by heating and replaced with a hydrogen atom, and is preferably a t-butoxycarbonyl group. ), Diamines having an oxazoline structure such as the following formulas (Ox-1) to (Ox-2), diamines according to International Publication No. 2016/125870, and the like.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(式(3b-1)中、Aは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-を示し、m1及びm2はそれぞれ独立して、0~4の整数を示し、かつm1+m2は1~4の整数を示す。式(3b-2)中、m3及びm4はそれぞれ独立して、1~5の整数を示す。式(3b-3)中、Aは炭素数1~5の直鎖若しくは分岐アルキル基を示し、m5は1~5の整数を示す。式(3b-4)中、A及びAはそれぞれ独立して、単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-を示し、m6は1~4の整数を示す。) (In the formula (3b-1), A 1 is a single bond, -CH 2 -, - C 2 H 4 -, - C (CH 3) 2 -, - CF 2 -, - C (CF 3) 2 -, -O-, -CO-, -NH-, -N (CH 3 )-, -CONH-, -NHCO-, -CH 2 O-, -OCH 2- , -COO-, -OCO-, -CON ( CH 3 )-or -N (CH 3 ) CO- is indicated, m1 and m2 independently indicate an integer of 0 to 4, and m1 + m2 indicates an integer of 1 to 4. Equation (3b-2). In the formula (3b-3), A 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms, and m5 represents 1 to 5 in the formula (3b-3). . of an integer expression in (3b-4), a 3 and a 4 are each independently a single bond, -CH 2 -, - C 2 H 4 -, - C (CH 3) 2 -, - CF 2- , -C (CF 3 ) 2- , -O-, -CO-, -NH-, -N (CH 3 )-, -CONH-, -NHCO-, -CH 2 O-, -OCH 2- , -COO -, - OCO -, - CON (CH 3) - or -N (CH 3) CO- indicates, m6 is an integer of 1 to 4).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
(式(R3)~(R5)中、nは1~6の整数である。)
Figure JPOXMLDOC01-appb-C000030
(In equations (R3) to (R5), n is an integer of 1 to 6.)
Figure JPOXMLDOC01-appb-C000031
(Bocは、tert-ブトキシカルボニル基である。本発明では、以下でも同じである。)
Figure JPOXMLDOC01-appb-C000031
(Boc is a tert-butoxycarbonyl group. In the present invention, the same applies to the following.)
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 上記その他のジアミンとしては、なかでも、本発明の効果を好適に得る観点から,p-フェニレンジアミン、3,5-ジアミノ安息香酸、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノベンゾフェノン、2,2’-ジメチル-4,4’-ジアミノビフェニル、メタクリル酸2-(2,4-ジアミノフェノキシ)エチル、2,4-ジアミノ-N,N-ジアリルアニリン、上記式(R1)~(R5)で表されるジアミン、上記式(z-1)~(z-18)で表されるジアミン、上記式(5-1)~(5-10)で表されるジアミン、上記式(Ox-1)~(Ox-2)で表されるジアミンが好ましい。 Among the above other diamines, p-phenylenediamine, 3,5-diaminobenzoic acid, 4,4'-diaminodiphenylmethane, 4,4'-diaminobenzophenone, among others, from the viewpoint of preferably obtaining the effects of the present invention. 2,2'-dimethyl-4,4'-diaminobiphenyl, 2- (2,4-diaminophenoxy) ethyl methacrylate, 2,4-diamino-N, N-diallylaniline, the above formulas (R1) to (R5). ), Diamines represented by the above formulas (z-1) to (z-18), diamines represented by the above formulas (5-1) to (5-10), and the above formula (Ox-). Diamines represented by 1) to (Ox-2) are preferable.
 上記ジアミン(1)に加えてその他のジアミンを使用する場合、その他のジアミンの使用量は、使用される全ジアミン成分に対して、好ましくは1~99モル%であり、より好ましくは5~95モル%である。
 上記ジアミン(1)及びジアミン(s)に加えてその他のジアミンを使用する場合、ジアミン(s)の使用量は、テトラカルボン酸成分と反応させるジアミン成分に対して、98モル%以下が好ましく、94モル%以下がより好ましい。
When other diamines are used in addition to the above diamine (1), the amount of the other diamines used is preferably 1 to 99 mol%, more preferably 5 to 95, based on the total diamine components used. It is mol%.
When other diamines are used in addition to the above diamines (1) and diamines (s), the amount of the diamines (s) used is preferably 98 mol% or less with respect to the diamine component to be reacted with the tetracarboxylic acid component. More preferably, it is 94 mol% or less.
 上記式(5-1)~(5-10)で表されるジアミンの使用量は、ポリアミック酸(P)の製造に使用される全ジアミン成分に対して、好ましくは5~40モル%であり、より好ましくは10~40モル%である。 The amount of the diamine represented by the above formulas (5-1) to (5-10) is preferably 5 to 40 mol% with respect to the total diamine component used in the production of the polyamic acid (P). , More preferably 10-40 mol%.
 PSA方式やSC-PVAモードを用いる液晶表示素子では、応答速度を高める点から、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、光重合性基を末端に有するジアミン、上記式(R1)~(R5)のいずれかで表されるジアミン、及び上記式(z-1)~(z-18)で表されるジアミンは、ポリアミック酸(P)を製造する場合に1種以上用いることができ、その使用量は、ポリアミック酸(P)の製造に使用される全ジアミン成分に対して、好ましくは1~40モル%であり、より好ましくは5~40モル%である。 In a liquid crystal display element using the PSA method or SC-PVA mode, from the viewpoint of increasing the response speed, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, a diamine having a photopolymerizable group at the end, and the above formula ( The diamine represented by any of R1) to (R5) and the diamine represented by the above formulas (z-1) to (z-18) are used at least one in the case of producing the polyamic acid (P). The amount used can be preferably 1 to 40 mol%, more preferably 5 to 40 mol%, based on the total diamine component used in the production of the polyamic acid (P).
<テトラカルボン酸成分>
 上記ポリアミック酸(P)を製造する場合、ジアミン成分と反応させるテトラカルボン酸成分は、テトラカルボン酸二無水物だけでなく、テトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライドなどのテトラカルボン酸二無水物の誘導体を用いることもできる。
<Tetracarboxylic acid component>
When the polyamic acid (P) is produced, the tetracarboxylic acid component to be reacted with the diamine component is not only tetracarboxylic acid dianhydride, but also tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, or tetracarboxylic acid. Derivatives of tetracarboxylic acid dianhydride such as acid dialkyl ester dihalide can also be used.
 上記テトラカルボン酸二無水物又はその誘導体は、芳香族、脂肪族若しくは脂環式テトラカルボン酸二無水物、又はこれらの誘導体が挙げられる。ここで、芳香族テトラカルボン酸二無水物は、芳香環に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。脂肪族テトラカルボン酸二無水物は、鎖状炭化水素構造に結合する4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、鎖状炭化水素構造のみで構成されている必要はなく、その一部に脂環式構造や芳香環構造を有していてもよい。 Examples of the tetracarboxylic dianhydride or a derivative thereof include aromatic, aliphatic or alicyclic tetracarboxylic dianhydride, or derivatives thereof. Here, the aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to the aromatic ring. Aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure. However, it does not have to be composed only of a chain hydrocarbon structure, and may have an alicyclic structure or an aromatic ring structure as a part thereof.
 また、脂環式テトラカルボン酸二無水物は、脂環式構造に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、これら4つのカルボキシ基はいずれも芳香環には結合していない。また、脂環式構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や芳香環構造を有していてもよい。 The alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to the alicyclic structure. However, none of these four carboxy groups are bonded to the aromatic ring. Further, it does not have to be composed only of an alicyclic structure, and may have a chain hydrocarbon structure or an aromatic ring structure as a part thereof.
 なかでも、上記テトラカルボン酸二無水物又はその誘導体は、下記式(T)で表されるもの又はその誘導体が好ましい。
Figure JPOXMLDOC01-appb-C000034
 但し、式(T)中、Xは、下記式(x-1)~(x-13)からなる群から選ばれる構造を表す。
Among them, the tetracarboxylic dianhydride or a derivative thereof is preferably represented by the following formula (T) or a derivative thereof.
Figure JPOXMLDOC01-appb-C000034
However, in the formula (T), X represents a structure selected from the group consisting of the following formulas (x-1) to (x-13).
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 上記式(x-1)~(x-13)中、R~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基を表す。R及びRは、それぞれ独立して、水素原子又はメチル基を表す。j及びkは、0又は1の整数であり、A及びAは、それぞれ独立して、単結合、エーテル(-O-)、カルボニル(-CO-)、エステル(-COO-)、フェニレン基、スルホニル基(-SO-)又はアミド基(-CONH-)を表す。*1は一方の酸無水物基に結合する結合手であり、*2は他方の酸無水物基に結合する結合手である。前記式(x-13)において、2個のAは、互いに同一であっても異なっていてもよい。 In the above formulas (x-1) to (x-13), R 1 to R 4 are independent hydrogen atoms, halogen atoms, alkyl groups having 1 to 6 carbon atoms, and alkenyl groups having 2 to 6 carbon atoms, respectively. , An alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group. R 5 and R 6 each independently represent a hydrogen atom or a methyl group. j and k are integers of 0 or 1, and A 1 and A 2 are independent, single bond, ether (-O-), carbonyl (-CO-), ester (-COO-), and phenylene, respectively. Represents a group, a sulfonyl group (-SO 2- ) or an amide group (-CONH-). * 1 is a bond that binds to one acid anhydride group, and * 2 is a bond that binds to the other acid anhydride group. In the formula (x-13), 2 pieces of A 2 may being the same or different.
 上記式(x-1)のより好ましい具体例として、下記式(X1-1)~(X1-6)が挙げられる。式中、*は結合手を表す。
Figure JPOXMLDOC01-appb-C000036
More preferable specific examples of the above formula (x-1) include the following formulas (X1-1) to (X1-6). In the formula, * represents a bond.
Figure JPOXMLDOC01-appb-C000036
 上記式(x-12)、(x-13)の好ましい具体例としては、下記式(x-14)~(x-29)が挙げられる。*は結合手を表す。
Figure JPOXMLDOC01-appb-C000037
Preferred specific examples of the above formulas (x-12) and (x-13) include the following formulas (x-14) to (x-29). * Represents a bond.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 上記式(T)で表されるテトラカルボン酸二無水物又はその誘導体の好ましい具体例としては、Xが、上記式(x-1)~(x-7)、(x-11)~(x-13)から選ばれるものが挙げられる。 As a preferable specific example of the tetracarboxylic dianhydride represented by the above formula (T) or a derivative thereof, X is the above formulas (x-1) to (x-7) and (x-11) to (x). The one selected from -13) can be mentioned.
 上記式(T)で表されるテトラカルボン酸二無水物又はその誘導体の使用割合は、使用される全テトラカルボン酸成分1モルに対して、1モル%以上が好ましく、5モル%以上がより好ましく、10モル%以上がさらに好ましい。
 ポリアミック酸(P)の製造に用いられるテトラカルボン酸二無水物及びその誘導体は、上記式(T)以外のテトラカルボン酸二無水物又はその誘導体を含有していてもよい。
The ratio of the tetracarboxylic dianhydride or its derivative represented by the above formula (T) is preferably 1 mol% or more, more preferably 5 mol% or more, based on 1 mol of the total tetracarboxylic acid component used. It is preferable, 10 mol% or more is more preferable.
The tetracarboxylic dianhydride and its derivative used for producing the polyamic acid (P) may contain a tetracarboxylic dianhydride other than the above formula (T) or a derivative thereof.
 ポリアミック酸(P)の製造は、上記ジアミン成分と、テトラカルボン酸成分と、を溶媒中で(縮重合)反応させることにより行われる。溶媒としては、生成した重合体が溶解するものであれば特に限定されない。
 上記溶媒の具体例としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノンが挙げられる。また、重合体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、又は下記式[D-1]~[D-3]で示される溶媒を用いることができる。
The polyamic acid (P) is produced by reacting the diamine component and the tetracarboxylic acid component in a solvent (condensation polypolymerization). The solvent is not particularly limited as long as it dissolves the produced polymer.
Specific examples of the above solvent include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, and 1,3-dimethyl. -2-Imidazolidinone can be mentioned. When the polymer has high solvent solubility, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3]. A solvent can be used.
Figure JPOXMLDOC01-appb-C000039
(式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を表す。)。
Figure JPOXMLDOC01-appb-C000039
(In the formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms, and in the formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms, and the formula [D-3]. ], D 3 represents an alkyl group having 1 to 4 carbon atoms.)
 上記のこれら溶媒は単独で使用しても、混合して使用してもよい。さらに、重合体を溶解させない溶媒であっても、生成した重合体が析出しない範囲で、上記溶媒に混合して使用してもよい。
 ジアミン成分とテトラカルボン酸成分とを溶媒中で反応させる際には、反応は任意の濃度で行うことができるが、上記溶媒に対するジアミン成分とテトラカルボン酸成分の濃度は、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することができる。
 反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数との比(ジアミン成分の合計モル数/テトラカルボン酸成分の合計モル数)は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成する重合体の分子量は大きくなる。
These above solvents may be used alone or in combination. Further, even if the solvent does not dissolve the polymer, it may be mixed with the above solvent and used as long as the produced polymer does not precipitate.
When the diamine component and the tetracarboxylic acid component are reacted in a solvent, the reaction can be carried out at any concentration, but the concentration of the diamine component and the tetracarboxylic acid component with respect to the above solvent is preferably 1 to 50 mass by mass. %, More preferably 5 to 30% by mass. The initial reaction can be carried out at a high concentration and then the solvent can be added.
In the reaction, the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component (total number of moles of the diamine component / total number of moles of the tetracarboxylic acid component) shall be 0.8 to 1.2. Is preferable. Similar to a normal polycondensation reaction, the closer the molar ratio is to 1.0, the larger the molecular weight of the produced polymer.
 ポリイミド前駆体であるポリアミック酸エステルは、例えば、[I]上記合成反応により得られたポリアミック酸とエステル化剤とを反応させる方法、[II]テトラカルボン酸ジエステルとジアミンとを反応させる方法、[III]テトラカルボン酸ジエステルジハロゲン化物とジアミンとを反応させる方法、などの既知の方法によって得ることができる。 The polyamic acid ester which is a polyimide precursor is, for example, [I] a method of reacting a polyamic acid obtained by the above synthetic reaction with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine, [II]. III] It can be obtained by a known method such as a method of reacting a tetracarboxylic acid diester dihalide with a diamine.
[ポリイミド]
 本発明の液晶配向剤に含有されるポリイミドは上記ポリイミド前駆体を閉環させて得られるポリイミドである。ポリイミドにおいては、アミック酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
[Polyimide]
The polyimide contained in the liquid crystal alignment agent of the present invention is a polyimide obtained by ring-closing the above-mentioned polyimide precursor. In polyimide, the ring closure rate (also referred to as imidization rate) of the amic acid group does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
 ポリイミド前駆体をイミド化してポリイミドを得る方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化、又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。 Examples of the method for imidizing the polyimide precursor to obtain polyimide include thermal imidization in which the solution of the polyimide precursor is heated as it is, or catalytic imidization in which a catalyst is added to the solution of the polyimide precursor. The temperature at which the polyimide precursor is thermally imidized in the solution is 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to remove the water generated by the imidization reaction from the system.
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で撹拌することにより行うことができる。塩基性触媒の量はアミック酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミック酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミントリオクチルアミンなどを挙げることができ、なかでも、ピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸無水ピロメリット酸などを挙げることができ、なかでも、無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。 The catalytic imidization of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to the solution of the polyimide precursor and stirring at −20 to 250 ° C., preferably 0 to 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amount of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amic acid group. It is double. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, and tributylamine trioctylamine. Among them, pyridine is preferable because it has an appropriate basicity for advancing the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride and pyromellitic anhydride, and among them, acetic anhydride is preferable because it facilitates purification after the reaction is completed. The imidization rate by catalytic imidization can be controlled by adjusting the amount of catalyst, the reaction temperature, and the reaction time.
 ポリイミド前駆体のイミド化の反応溶液から、生成したポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類炭化水素などが挙げられる。これらの内から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the produced polyimide from the reaction solution for imidization of the polyimide precursor, the reaction solution may be added to a solvent for precipitation. Examples of the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellsolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, water and the like. The polymer put into a solvent and precipitated can be collected by filtration and then dried at room temperature or by heating under normal pressure or reduced pressure. Further, by repeating the operation of re-dissolving the polymer recovered by precipitation in a solvent and re-precipitating and recovering it 2 to 10 times, impurities in the polymer can be reduced. Examples of the solvent at this time include alcohols, ketones and hydrocarbons. It is preferable to use three or more kinds of solvents selected from these because the efficiency of purification is further improved.
 ポリイミド前駆体及びポリイミドのゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは5,000~1,000,000であり、より好ましくは10,000~150,000である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは15以下であり、より好ましくは10以下である。かかる分子量範囲にあることで、液晶表示素子の良好な配向性を確保することができる。 The polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the polyimide precursor and the polyimide is preferably 5,000 to 1,000,000, more preferably 10,000 to 150. It is 000. The molecular weight distribution (Mw / Mn) represented by the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less. Within such a molecular weight range, good orientation of the liquid crystal display element can be ensured.
<末端封止剤>
 本発明における重合体(P)は、その製造に際して、上記テトラカルボン酸成分、及びジアミン成分とともに、適当な末端封止剤を用いて末端封止型の重合体としてもよい。末端封止型の重合体は、塗膜によって得られる液晶配向膜の膜硬度の向上や、シール剤と液晶配向膜の密着特性の向上という効果を有する。
 本発明における重合体(P)の末端の例としては、アミノ基、カルボキシ基、酸無水物基又はこれらの誘導体が挙げられる。アミノ基、カルボキシ基、酸無水物基、又はこれらの誘導体は通常の縮合反応或いは以下の末端封止剤を用いて得ることができ、前記誘導体は、例えば、以下の末端封止剤を用いて得ることができる。
<Terminal sealant>
The polymer (P) in the present invention may be a terminal-sealed polymer by using an appropriate terminal-sealing agent together with the above-mentioned tetracarboxylic acid component and diamine component in the production thereof. The end-sealed polymer has the effects of improving the film hardness of the liquid crystal alignment film obtained by the coating film and improving the adhesion characteristics between the sealant and the liquid crystal alignment film.
Examples of the terminal of the polymer (P) in the present invention include an amino group, a carboxy group, an acid anhydride group or a derivative thereof. An amino group, a carboxy group, an acid anhydride group, or a derivative thereof can be obtained by a usual condensation reaction or the following terminal encapsulant, and the derivative can be obtained, for example, by using the following terminal encapsulant. Obtainable.
 末端封止剤としては、例えば、無水酢酸、無水マレイン酸、無水ナジック酸、無水フタル酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物、トリメリット酸無水物、下記式(m-1)~(m-6)のいずれかで表される化合物、3-[3-(トリメトキシシリル)プロピル]-3,4-ジヒドロフラン-2,5-ジオン、4,5,6,7-テトラフルオロイソベンゾフラン-1,3-ジオン、4-エチニルフタル酸無水物などの酸無水物; Examples of the terminal encapsulant include acetic anhydride, maleic anhydride, nagic anhydride, phthalic anhydride, itaconic anhydride, cyclohexanedicarboxylic acid anhydride, 3-hydroxyphthalic anhydride, trimellitic anhydride, and the following formulas. Compound represented by any of (m-1) to (m-6), 3- [3- (trimethoxysilyl) propyl] -3,4-dihydrofuran-2,5-dione, 4,5, Acid anhydrides such as 6,7-tetrafluoroisobenzofuran-1,3-dione, 4-ethynylphthalic anhydride;
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 二炭酸ジ-tert-ブチル、二炭酸ジアリルなどの二炭酸ジエステル化合物;アクリロイルクロリド、メタクリロイルクロリド、ニコチン酸クロリドなどのクロロカルボニル化合物;アニリン、2-アミノフェノール、3-アミノフェノール、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、シクロヘキシルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミンなどのモノアミン化合物;エチルイソシアネート、フェニルイソシアネート、ナフチルイソシアネートなどのモノイソシアネート化合物などを挙げることができる。 Dicarbonate diester compounds such as di-tert-butyl dicarbonate and diallyl dicarbonate; chlorocarbonyl compounds such as acryloyl chloride, methacryloyl chloride and nicotinic acid chloride; aniline, 2-aminophenol, 3-aminophenol, 4-aminosalicylic acid, 5-Aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, cyclohexylamine, n-butylamine, n-pentylamine, n-hexylamine, n-heptylamine, Monoamine compounds such as n-octylamine; monoisocyanate compounds such as ethyl isocyanate, phenylisocyanate and naphthylisocyanate can be mentioned.
 末端封止剤の使用割合は、使用するジアミン成分の合計100モル部に対して、0.01~20モル部とすることが好ましく、0.01~10モル部とすることがより好ましい。 The ratio of the terminal encapsulant to be used is preferably 0.01 to 20 mol parts, more preferably 0.01 to 10 mol parts, based on 100 mol parts of the total diamine component used.
(液晶配向剤)
 本発明の液晶配向剤は、重合体(P)、及び必要に応じて使用されるその他の成分が、好ましくは適当な溶媒中に分散又は溶解してなる液状の組成物である。
 本発明の液晶配向剤においては、例えば電気特性(例:高い電圧保持率特性)、垂直配向性や溶液特性を改善することなどを目的として、重合体(P)のほかに、それ以外の重合体(以下、その他の重合体ともいう。)を含有させてもよい。
 その他の重合体の含有割合は、液晶配向剤中に含まれる重合体の合計100質量部に対して、90質量部以下が好ましく、10~90質量部がより好ましく、20~80質量部が更に好ましい。
(Liquid crystal alignment agent)
The liquid crystal alignment agent of the present invention is a liquid composition in which the polymer (P) and other components used as needed are preferably dispersed or dissolved in a suitable solvent.
In the liquid crystal alignment agent of the present invention, in addition to the polymer (P), other weights are used for the purpose of improving, for example, electrical characteristics (eg, high voltage retention characteristics), vertical orientation, and solution characteristics. A coalescence (hereinafter, also referred to as another polymer) may be contained.
The content ratio of the other polymers is preferably 90 parts by mass or less, more preferably 10 to 90 parts by mass, and further 20 to 80 parts by mass with respect to 100 parts by mass of the total amount of the polymers contained in the liquid crystal alignment agent. preferable.
 その他の重合体は特に限定されず、例えば、上記ジアミン(1)を含まないジアミン成分とテトラカルボン酸成分とを用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(B)、ポリシロキサン、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどの主骨格が挙げられる。なかでも、上記重合体(B)、ポリアミド、ポリウレア、ポリオルガノシロキサン、ポリ(メタ)アクリレート及びポリエステルよりなる群から選ばれる少なくとも一種であることが好ましい。なお、その他の重合体は2種以上を組み合わせて使用してもよい。 The other polymer is not particularly limited, and is, for example, a group consisting of a polyimide precursor obtained by using the diamine component not containing the diamine (1) and the tetracarboxylic acid component, and a polyimide which is an imidized product of the polyimide precursor. At least one polymer (B) selected from, polysiloxane, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene derivative, poly (styrene-phenylmaleimide) derivative, poly (meth) acrylate and the like. The main skeleton is mentioned. Among them, at least one selected from the group consisting of the polymer (B), polyamide, polyurea, polyorganosiloxane, poly (meth) acrylate and polyester is preferable. In addition, other polymers may be used in combination of 2 or more types.
(重合体(B))
 上記重合体(B)として、電気特性を高める観点から、上記ジアミン(s)を含有するジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物からなる群から選ばれる少なくとも1種の重合体が、より好ましい。上記重合体(B)を得るために用いられるジアミン(s)の好ましい態様は、重合体(P)で例示したジアミン(s)と同様である。また、重合体(B)を得るために用いられるジアミン成分として、上記ジアミン(s)の他、上記重合体(P)で例示したその他のジアミンを用いることもできる。その他のジアミンは、中でも、上記ラジカル開始機能を有するジアミン、上記光照射により増感作用を示す光増感機能を有するジアミン、上記基「-N(D)-」を有するジアミン、を好ましく用いることができる。
 重合体(B)を製造するために用いられるジアミン(s)は、重合体(B)を製造する場合に1種以上用いることができ、その使用量は、重合体(B)の製造に使用される全ジアミン成分に対して、好ましくは5~90モル%であり、より好ましくは10~90モル%である。
 重合体(B)を製造するために用いられるテトラカルボン酸成分は、ポリアミック酸(P)を製造するために用いられるテトラカルボン酸成分として例示した化合物を挙げることができる。中でも、上記式(T)で表されるテトラカルボン酸二無水物又はその誘導体が好ましい。
 重合体(B)を製造するために用いられる上記式(T)で表されるもの又はその誘導体は、重合体(B)を製造する場合に1種以上用いることができ、その使用量は、重合体(B)の製造に使用される全テトラカルボン酸成分に対して、好ましくは10モル以上%であり、より好ましくは20モル%以上である。
(Polymer (B))
As the polymer (B), at least one selected from the group consisting of a polyimide precursor obtained by using the diamine component containing the diamine (s) and an imidized product of the polyimide precursor from the viewpoint of enhancing electrical characteristics. The polymer of is more preferable. The preferred embodiment of the diamine (s) used to obtain the polymer (B) is the same as the diamine (s) exemplified in the polymer (P). Further, as the diamine component used to obtain the polymer (B), in addition to the above diamine (s), other diamines exemplified by the above polymer (P) can also be used. As the other diamines, among them, a diamine having the radical initiation function, a diamine having a photosensitizing function showing a sensitizing effect by light irradiation, and a diamine having the group "-N (D)-" are preferably used. Can be done.
One or more diamines (s) used for producing the polymer (B) can be used when producing the polymer (B), and the amount used thereof is used for producing the polymer (B). It is preferably 5 to 90 mol%, more preferably 10 to 90 mol%, based on the total diamine component to be obtained.
Examples of the tetracarboxylic acid component used for producing the polymer (B) include compounds exemplified as the tetracarboxylic acid component used for producing the polyamic acid (P). Of these, the tetracarboxylic dianhydride represented by the above formula (T) or a derivative thereof is preferable.
One or more of the one represented by the above formula (T) or a derivative thereof used for producing the polymer (B) can be used in the case of producing the polymer (B), and the amount used thereof is determined. It is preferably 10 mol% or more, more preferably 20 mol% or more, based on the total tetracarboxylic acid component used in the production of the polymer (B).
 本発明の液晶配向剤は、その他、必要に応じて上記以外の成分を含有していてもよい。かかる成分としては、例えば、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、ブロックイソシアネート基、ヒドロキシ基及びアルコキシ基から選ばれる少なくとも1種の置換基を有する架橋性化合物、並びに重合性不飽和基を有する架橋性化合物からなる群から選ばれる少なくとも1種の化合物、官能性シラン化合物、金属キレート化合物、硬化促進剤、界面活性剤、酸化防止剤、増感剤、防腐剤、液晶配向膜の誘電率や電気抵抗を調整するための化合物などが挙げられる。 The liquid crystal alignment agent of the present invention may contain other components other than the above, if necessary. Such components include, for example, a crosslinkable compound having at least one substituent selected from an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a blocked isocyanate group, a hydroxy group and an alkoxy group, and a polymerizable unsaturated group. At least one compound selected from the group consisting of crosslinkable compounds having a, functional silane compound, metal chelate compound, curing accelerator, surfactant, antioxidant, sensitizer, preservative, dielectric of liquid crystal alignment film. Examples include compounds for adjusting the rate and electrical resistance.
 架橋性化合物の好ましい具体例としては、下記式(CL-1)~(CL-11)のいずれかで表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000041
Preferred specific examples of the crosslinkable compound include compounds represented by any of the following formulas (CL-1) to (CL-11).
Figure JPOXMLDOC01-appb-C000041
 上記液晶配向膜の誘電率や電気抵抗を調整するための化合物としては、3-ピコリルアミンなどの窒素含有芳香族複素環を有するモノアミンが挙げられる。窒素含有芳香族複素環を有するモノアミンを使用する場合は、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。 Examples of the compound for adjusting the dielectric constant and the electric resistance of the liquid crystal alignment film include monoamines having a nitrogen-containing aromatic heterocycle such as 3-picorylamine. When a monoamine having a nitrogen-containing aromatic heterocycle is used, it is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal alignment agent. It is 20 parts by mass.
 官能性シラン化合物の好ましい具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、トリス(3-トリメトキシシリルプロピル)イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。官能性シラン化合物を使用する場合、その使用量は、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。 Preferred specific examples of the functional silane compound are 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, and 2-aminopropyltriethoxysilane. Silane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxy Silane, Vinyl Trimethoxysilane, Vinyl Triethoxysilane, 2- (3,4-Epoxycyclohexyl) Ethyltrimethoxysilane, 3-Glysidoxypropylmethyldimethoxysilane, 3-Glysidoxypropyltrimethoxysilane, 3-Gly Sidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldi Ethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, tris (3-trimethoxysilylpropyl) isocyanurate, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3 -Isocyanate propyltriethoxysilane and the like can be mentioned. When a functional silane compound is used, the amount used is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. It is a mass part.
 液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルラクトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、γ-バレロラクトン、1,3-ジメチル-2-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N-(n-プロピル)-2-ピロリドン、N-イソプロピル-2-ピロリドン、N-(n-ブチル)-2-ピロリドン、N-(tert-ブチル)-2-ピロリドン、N-(n-ペンチル)-2-ピロリドン、N-メトキシプロピル-2-ピロリドン、N-エトキシエチル-2-ピロリドン、N-メトキシブチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン(これらを総称して「良溶媒」ともいう)などを挙げられる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド又はγ-ブチロラクトンが好ましい。良溶媒の含有量は、液晶配向剤に含まれる溶媒全体の20~99質量%であることが好ましく、20~90質量%がより好ましく、特に好ましいのは、30~80質量%である。 The organic solvent contained in the liquid crystal alignment agent is not particularly limited as long as the polymer component is uniformly dissolved. Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethyllactamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethylsulfonate, and γ-butyrolactone. , Γ-Valerolactone, 1,3-dimethyl-2-imidazolidinone, methylethylketone, cyclohexanone, cyclopentanone, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropaneamide, N- (n-propyl) -2-pyrrolidone, N-isopropyl-2-pyrrolidone, N- (n-butyl) -2-pyrrolidone, N- (tert-butyl) -2-pyrrolidone, N- (n-pentyl) ) -2-Pyrrolidone, N-methoxypropyl-2-pyrrolidone, N-ethoxyethyl-2-pyrrolidone, N-methoxybutyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone (collectively "good solvent") Also known as). Of these, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide or γ-butyrolactone are preferable. The content of the good solvent is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass based on the total amount of the solvent contained in the liquid crystal alignment agent.
 また、液晶配向剤に含有される有機溶媒は、上記溶媒に加えて液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒(貧溶媒ともいう。)を併用した混合溶媒の使用が好ましい。併用する貧溶媒の具体例を下記するが、これらに限定されない。 Further, the organic solvent contained in the liquid crystal alignment agent is a mixture in which a solvent (also referred to as a poor solvent) for improving the coatability when applying the liquid crystal alignment agent and the surface smoothness of the coating film is used in combination with the above solvent. The use of solvent is preferred. Specific examples of the poor solvent used in combination are described below, but the present invention is not limited thereto.
 例えば、ジイソプロピルエーテル、ジイソブチルエーテル、ジイソブチルカルビノール(2,6-ジメチル-4-ヘプタノール)、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、プロピレングリコールモノブチルエーテル、1-(2-ブトキシエトキシ)-2-プロパノール、2-(2-ブトキシエトキシ)-1-プロパノール、プロピレングリコールモノメチルエーテルアセタート、プロピレングリコールジアセテート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、プロピレングリコールジアセテート、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸n-ブチル、乳酸イソアミル、ジエチレングリコールモノエチルエーテル、ジイソブチルケトン(2,6-ジメチル-4-ヘプタノン)などを挙げることができる。 For example, diisopropyl ether, diisobutyl ether, diisobutylcarbinol (2,6-dimethyl-4-heptanol), ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyetan, diethylene glycol dimethyl ether, diethylene glycol diethyl ether. , 4-Hydroxy-4-methyl-2-pentanone, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene Glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate, ethylene glycol monobutyl ether (butyl cellosolve), ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, propylene glycol monobutyl ether, 1- (2-butoxyethoxy) -2-propanol, 2- (2-butoxyethoxy) -1-propanol, propylene glycol monomethyl ether acetate, propylene glycol diacetate, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether, ethylene glycol Monobutyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, propylene glycol diacetate, n-butyl acetate, propylene glycol monoethyl ether acetate. , Methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, butyl 3-methoxypropionate, n-butyl lactate, isoamyl lactate, diethylene glycol monoethyl ether, diisobutyl Examples thereof include ketone (2,6-dimethyl-4-heptanone).
 なかでも、ジイソブチルカルビノール、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセタート、又はジイソブチルケトンが好ましい。貧溶媒の含有量は、液晶配向剤に含まれる溶媒全体の1~80質量%が好ましく、10~80質量%がより好ましく、20~70質量%が特に好ましい。貧溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。 Among them, diisobutylcarbinol, propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monobutyl ether, ethylene. Glycol monobutyl ether acetate or diisobutyl ketone is preferred. The content of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass, based on the total amount of the solvent contained in the liquid crystal alignment agent. The type and content of the poor solvent are appropriately selected according to the liquid crystal alignment agent coating device, coating conditions, coating environment, and the like.
 良溶媒と貧溶媒との好ましい溶媒の組み合わせとしては、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノン、N-エチル-2-ピロリドンとプロピレングリコールジアセテート、N,N-ジメチルラクトアミドとジイソブチルケトン、N-メチル-2-ピロリドンと3-エトキシプロピオン酸エチル、N-エチル-2-ピロリドンと3-エトキシプロピオン酸エチル、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテルアセタート、N-エチル-2-ピロリドンとジプロピレングリコールジメチルエーテル、N,N-ジメチルラクトアミドとエチレングリコールモノブチルエーテル、N,N-ジメチルラクトアミドとプロピレングリコールジアセテート、N-エチル-2-ピロリドンとジエチレングリコールジエチルエーテル、N,N-ジメチルラクトアミドとジエチレングリコールジエチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-エチル-2-ピロリドンとN-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノン、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジイソブチルケトン、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジプロピレングリコールモノメチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセテート、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジイソブチルケトン、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセテート、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルケトン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルカルビノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールジメチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとプロピレングリコールジアセテート、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジイソブチルケトン、N-エチル-2-ピロリドンとγ-ブチロラクトンとジイソブチルケトン、N-エチル-2-ピロリドンとN,N-ジメチルラクトアミドとジイソブチルケトンなどを挙げることができる。 Preferred combinations of good and poor solvents include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone and γ-butyrolactone and ethylene glycol monobutyl ether, and N-methyl-2-. Pyrrolidone and γ-butyrolactone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone, N-ethyl-2- Pyrrolidone and Propylene Glycol Diacetate, N, N-Dimethyllactoamide and Diisobutylketone, N-Methyl-2-pyrrolidone and Ethyl 3-ethoxypropionate, N-ethyl-2-pyrrolidone and Ethyl 3-ethoxypropionate, N- Methyl-2-pyrrolidone and ethylene glycol monobutyl ether acetate, N-ethyl-2-pyrrolidone and dipropylene glycol dimethyl ether, N, N-dimethyllactoamide and ethylene glycol monobutyl ether, N, N-dimethyllactoamide and propylene glycol di Acetate, N-ethyl-2-pyrrolidone and diethylene glycol diethyl ether, N, N-dimethyllactoamide and diethylene glycol diethyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone and 4-hydroxy-4-methyl-2-pentanone. Diethylene glycol diethyl ether, N-ethyl-2-pyrrolidone and N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone, N-ethyl-2-pyrrolidone and 4-hydroxy-4-methyl-2- Pentanone and Propylene Glycol Monobutyl Ether, N-Methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and Diisobutylketone, N-Methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone Dipropylene glycol monomethyl ether, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone and 4-hydroxy-4-methyl-2-pentanone And Propylene Glycol Diacetate, γ-Buchirolactone and 4-Hydroxy-4-methyl-2-pentanone and Diisobutylketone, γ-Buchirolactone and 4-hydroxy-4-methyl-2-pentanone and Propylene Glycoldiacetate, N-methyl-2-pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether and diisobutylketone, N-methyl-2-pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether and diisopropyl ether, N-methyl-2- Pyrrolidone and γ-butyrolactone and propylene glycol monobutyl ether and diisobutylcarbinol, N-methyl-2-pyrrolidone and γ-butyrolactone and dipropylene glycol dimethyl ether, N-methyl-2-pyrrolidone and propylene glycol monobutyl ether and dipropylene glycol dimethyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether and dipropylene glycol monomethyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether and propylene glycol diacetate, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether. Examples thereof include diisobutylketone, N-ethyl-2-pyrrolidone, γ-butyrolactone and diisobutylketone, N-ethyl-2-pyrrolidone and N, N-dimethyllactamide and diisobutylketone.
 液晶配向剤における固形分濃度(液晶配向剤の溶媒以外の成分の合計質量が液晶配向剤の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%である。特に好ましい固形分濃度は、基板に液晶配向剤を塗布する際に用いる方法によって異なる。例えばスピンコート法による場合、固形分濃度は1.5~4.5質量%が特に好ましい。印刷法による場合には、固形分濃度を3~9質量%とし、それにより溶液粘度を12~50mPa・sとすることが特に好ましい。インクジェット法による場合には、固形分濃度を1~5質量%とし、それにより、溶液粘度を3~15mPa・sとすることが特に好ましい。 The solid content concentration in the liquid crystal alignment agent (the ratio of the total mass of the components other than the solvent of the liquid crystal alignment agent to the total mass of the liquid crystal alignment agent) is appropriately selected in consideration of viscosity, volatility, etc., but is preferable. It is 1 to 10% by mass. A particularly preferable solid content concentration depends on the method used when applying the liquid crystal alignment agent to the substrate. For example, in the case of the spin coating method, the solid content concentration is particularly preferably 1.5 to 4.5% by mass. In the case of the printing method, it is particularly preferable that the solid content concentration is 3 to 9% by mass and the solution viscosity is 12 to 50 mPa · s. In the case of the inkjet method, it is particularly preferable to set the solid content concentration to 1 to 5% by mass and thereby the solution viscosity to 3 to 15 mPa · s.
<液晶配向膜・液晶表示素子>
 本発明の液晶配向膜は、上記液晶配向剤から得られる。本発明の液晶配向膜は、水平配向型若しくは垂直配向型の液晶配向膜に用いることができるが、中でもVA方式又は後述するPSAモード等の垂直配向型の液晶表示素子に好適である。本発明の液晶表示素子は、上記液晶配向膜を具備するものである。
 本発明の液晶表示素子は、例えば、以下の工程(1)~(3)又は工程(1)~(4)を含む方法により製造することができる。
<Liquid crystal alignment film / liquid crystal display element>
The liquid crystal alignment film of the present invention is obtained from the above liquid crystal alignment agent. The liquid crystal alignment film of the present invention can be used for a horizontally oriented type or a vertically oriented type liquid crystal alignment film, and is particularly suitable for a vertically oriented type liquid crystal display element such as a VA method or a PSA mode described later. The liquid crystal display element of the present invention includes the liquid crystal alignment film.
The liquid crystal display element of the present invention can be manufactured, for example, by a method including the following steps (1) to (3) or steps (1) to (4).
工程(1):液晶配向剤を基板上に塗布する工程
 パターニングされた透明導電膜が設けられている基板の一面に、本発明の液晶配向剤を、例えばロールコーター法、スピンコート法、印刷法、インクジェット法などの適宜の塗布方法により塗布する。ここで基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることもできる。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハー等の不透明な物でも使用でき、この場合の電極にはアルミニウム等の光を反射する材料も使用できる。
Step (1): Step of applying the liquid crystal alignment agent on the substrate The liquid crystal alignment agent of the present invention can be applied to one surface of a substrate provided with a patterned transparent conductive film, for example, by a roll coater method, a spin coating method, or a printing method. , Apply by an appropriate coating method such as an inkjet method. Here, the substrate is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with the glass substrate and the silicon nitride substrate. Further, in the reflective liquid crystal display element, if only one side of the substrate is used, an opaque object such as a silicon wafer can be used, and in this case, a material that reflects light such as aluminum can also be used for the electrode.
工程(2):塗膜を焼成する工程
 液晶配向剤塗布後、塗布した配向剤の液垂れ防止等の目的で、好ましくは先ず予備加熱(プレベーク)が実施される。プレベーク温度は、好ましくは30~200℃であり、より好ましくは40~150℃であり、特に好ましくは40~100℃である。プレベーク時間は好ましくは0.25~10分であり、より好ましくは0.5~5分である。そしてさらに加熱(ポストベーク)工程が実施されることが好ましい。このポストベーク温度は好ましくは80~300℃であり、より好ましくは120~250℃である。ポストベーク時間は好ましくは5~200分であり、より好ましくは10~100分である。このようにして形成される膜の膜厚は、5~300nmが好ましく、10~200nmがより好ましい。
Step (2): Step of firing the coating film After the liquid crystal alignment agent is applied, preheating is preferably performed first for the purpose of preventing the applied alignment agent from dripping. The prebake temperature is preferably 30 to 200 ° C, more preferably 40 to 150 ° C, and particularly preferably 40 to 100 ° C. The prebake time is preferably 0.25 to 10 minutes, more preferably 0.5 to 5 minutes. Further, it is preferable that a heating (post-baking) step is carried out. The post-bake temperature is preferably 80 to 300 ° C, more preferably 120 to 250 ° C. The post-baking time is preferably 5 to 200 minutes, more preferably 10 to 100 minutes. The film thickness of the film thus formed is preferably 5 to 300 nm, more preferably 10 to 200 nm.
 上記工程(1)で形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向能付与処理を施してもよい。配向能付与処理としては、塗膜を例えばナイロン、レーヨン、コットンなどの繊維からなる布を巻き付けたロールで一定方向に擦るラビング処理、塗膜に対して偏光又は非偏光の放射線を照射する光配向処理などが挙げられる。 The coating film formed in the above step (1) can be used as it is as a liquid crystal alignment film, but the coating film may be subjected to an alignment ability imparting treatment. The alignment ability-imparting treatment includes a rubbing treatment in which the coating film is rubbed in a certain direction with a roll wrapped with a cloth made of fibers such as nylon, rayon, and cotton, and photoalignment in which polarized or unpolarized radiation is applied to the coating film. Processing etc. can be mentioned.
 光配向処理において、塗膜に照射する放射線としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができる。放射線が偏光である場合、直線偏光であっても部分偏光であってもよい。また、用いる放射線が直線偏光又は部分偏光である場合には、照射は基板面に垂直の方向から行ってもよく、斜め方向から行ってもよく、又はこれらを組み合わせて行ってもよい。非偏光の放射線を照射する場合には、照射の方向は斜め方向とする。 In the photo-alignment treatment, as the radiation to irradiate the coating film, for example, ultraviolet rays including light having a wavelength of 150 to 800 nm and visible light can be used. When the radiation is polarized, it may be linearly polarized or partially polarized. When the radiation to be used is linearly polarized light or partially polarized light, the irradiation may be performed from a direction perpendicular to the substrate surface, may be performed from an oblique direction, or may be performed in combination thereof. When irradiating unpolarized radiation, the direction of irradiation is diagonal.
工程(3);液晶層を形成する工程
(3-1)VA型液晶表示素子の場合
 上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置する。具体的には以下の2つの方法が挙げられる。
 第一の方法は、従来から知られている方法である。先ず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置する。次いで、2枚の基板の周辺部を、シール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶組成物を注入充填して膜面に接触した後、注入孔を封止する。
Step (3); Step of forming a liquid crystal layer (3-1) In the case of a VA type liquid crystal display element Two substrates on which a liquid crystal alignment film is formed as described above are prepared, and between the two substrates arranged opposite to each other. Place the liquid crystal display in. Specifically, the following two methods can be mentioned.
The first method is a conventionally known method. First, two substrates are arranged facing each other through a gap (cell gap) so that the liquid crystal alignment films face each other. Next, the peripheral portions of the two substrates are bonded together using a sealing agent, and the liquid crystal composition is injected and filled into the surface of the substrate and the cell gap partitioned by the sealing agent to contact the film surface, and then the injection holes are formed. Seal.
 また、第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に、例えば紫外光硬化性のシール剤を塗布し、更に液晶配向膜面上の所定の数箇所に液晶組成物を滴下する。その後、液晶配向膜が対向するように他方の基板を貼り合わせて液晶組成物を基板の全面に押し広げて膜面に接触させる。次いで、基板の全面に紫外光を照射してシール剤を硬化する。いずれの方法による場合でも、更に、用いた液晶組成物が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。 The second method is a method called the ODF (One Drop Fill) method. For example, an ultraviolet light-curable sealant is applied to a predetermined place on one of the two substrates on which the liquid crystal alignment film is formed, and the liquid crystal composition is further applied to a predetermined number of places on the liquid crystal alignment film surface. Is dropped. Then, the other substrate is bonded so that the liquid crystal alignment film faces each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface. Next, the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant. Regardless of which method is used, it is desirable to remove the flow orientation during liquid crystal filling by further heating the liquid crystal composition used to a temperature at which an isotropic phase is obtained and then slowly cooling the liquid crystal composition to room temperature.
 本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、電極間に電圧を印加しつつ、活性エネルギー線の照射及び加熱の少なくとも一方により、重合性化合物を重合させる工程を経て製造される液晶表示素子(PSA型液晶表示素子)にも好ましく用いられる。
 また、本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、上記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、電極間に電圧を印加する工程を経て製造される液晶表示素子(SC-PVAモード型の液晶表示素子)にも好ましく用いられる。
The liquid crystal alignment agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and contains a polymerizable compound that is polymerized by at least one of active energy rays and heat between the pair of substrates. Also on a liquid crystal display element (PSA type liquid crystal display element) manufactured through a step of arranging an object and polymerizing a polymerizable compound by at least one of irradiation and heating of active energy rays while applying a voltage between the electrodes. It is preferably used.
Further, the liquid crystal alignment agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a polymerizable group polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferably used for a liquid crystal display element (SC-PVA mode type liquid crystal display element) manufactured through a step of arranging a liquid crystal alignment film containing the liquid crystal alignment film and applying a voltage between the electrodes.
(3-2)PSA型液晶表示素子の場合
 重合性化合物を含有する液晶組成物を注入又は滴下する点以外は上記(3-1)と同様にする。重合性化合物としては、例えば下記式(M-1)~(M-7)で表されるような重合性化合物を挙げることができる。
(3-2) In the case of a PSA type liquid crystal display element The same procedure as in (3-1) above is applied except that the liquid crystal composition containing the polymerizable compound is injected or dropped. Examples of the polymerizable compound include polymerizable compounds represented by the following formulas (M-1) to (M-7).
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
(3-3)SC-PVAモード型の液晶表示素子の場合
 上記(3-1)と同様にした後、後述する紫外線を照射する工程を経て液晶表示素子を製造する方法を採用してもよい。この方法によれば、前記PSA型液晶表示素子を製造する場合と同様に、少ない光照射量で応答速度に優れた液晶表示素子を得ることができる。重合性基を有する化合物は、上記式(M-1)~(M-7)で表されるようなアクリレート基やメタクリレート基などの重合性不飽和基を分子内に1個以上有する化合物であってもよく、その含有量は、全ての重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。また、前記重合性基は液晶配向剤に用いる重合体が有していてもよく、このような重合体としては、例えば前記光重合性基を末端に有するジアミンを含むジアミン成分を反応に用いて得られる重合体が挙げられる。
(3-3) In the case of SC-PVA mode type liquid crystal display element A method of manufacturing a liquid crystal display element may be adopted in the same manner as in (3-1) above and then through a step of irradiating ultraviolet rays described later. .. According to this method, a liquid crystal display element having an excellent response speed can be obtained with a small amount of light irradiation, as in the case of manufacturing the PSA type liquid crystal display element. The compound having a polymerizable group is a compound having one or more polymerizable unsaturated groups in the molecule such as an acrylate group and a methacrylate group represented by the above formulas (M-1) to (M-7). The content thereof is preferably 0.1 to 30 parts by mass, and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of all the polymer components. Further, the polymerizable group may be contained in the polymer used for the liquid crystal aligning agent, and as such a polymer, for example, a diamine component containing a diamine having the photopolymerizable group at the end is used in the reaction. Examples thereof include the obtained polymer.
工程(4):紫外線を照射する工程
 上記(3-2)又は(3-3)で得られた一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する。ここで印加する電圧は、例えば5~50Vの直流又は交流とすることができる。また、照射する光としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができるが、300~400nmの波長の光を含む紫外線が好ましい。照射光の光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザーなどを使用することができる。光の照射量としては、好ましくは1,000~200,000J/mであり、より好ましくは1,000~100,000J/mである。
Step (4): Step of irradiating ultraviolet rays The liquid crystal cell is irradiated with light in a state where a voltage is applied between the conductive films of the pair of substrates obtained in the above (3-2) or (3-3). The voltage applied here can be, for example, a direct current or an alternating current of 5 to 50 V. Further, as the light to be irradiated, for example, ultraviolet rays containing light having a wavelength of 150 to 800 nm and visible light can be used, but ultraviolet rays containing light having a wavelength of 300 to 400 nm are preferable. As the light source of the irradiation light, for example, a low pressure mercury lamp, a high pressure mercury lamp, a deuterium hydrogen lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excima laser and the like can be used. The irradiation amount of light is preferably 1,000 to 200,000 J / m 2 , and more preferably 1,000 to 100,000 J / m 2 .
 そして、液晶セルの外側表面に偏光板を貼り合わせることにより液晶表示素子を得ることができる。液晶セルの外側表面に貼り合わされる偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板を挙げることができる。 Then, a liquid crystal display element can be obtained by attaching a polarizing plate to the outer surface of the liquid crystal cell. As the polarizing plate attached to the outer surface of the liquid crystal cell, a polarizing plate called an "H film" in which polyvinyl alcohol is stretched and oriented to absorb iodine is sandwiched between a cellulose acetate protective film or the H film itself. A polarizing plate made of the above can be mentioned.
 以下に実施例を挙げ、本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。以下における化合物の略号及び各特性の測定方法は、次のとおりである。また、「Me」は、メチル基を表す。 The present invention will be described in more detail with reference to examples below, but the present invention is not limited thereto. The abbreviations of the compounds and the measurement method of each characteristic in the following are as follows. Further, "Me" represents a methyl group.
(テトラカルボン酸二無水物)
BODA:ビシクロ[3.3.0]オクタン-2,4,6,8-テトラカルボン酸二無水物
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
(Tetracarboxylic dianhydride)
BODA: Bicyclo [3.3.0] Octane-2,4,6,8-tetracarboxylic dianhydride CBDA: 1,2,3,4-cyclobutanetetracarboxylic dianhydride
(ジアミン)
Figure JPOXMLDOC01-appb-C000043
(Diamine)
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
(有機溶媒)
NMP:N-メチル-2-ピロリドン、  BCS:ブチルセロソルブ
THF:テトラヒドロフラン、  DMF:N,N-ジメチルホルムアミド
DMAc:N,N-ジメチルアセトアミド
(Organic solvent)
NMP: N-methyl-2-pyrrolidone, BCS: butyl cellosolve THF: tetrahydrofuran, DMF: N, N-dimethylformamide DMAc: N, N-dimethylacetamide
H-NMRの測定>
 装置:フーリエ変換型超伝導核磁気共鳴装置(FT-NMR)「AVANCE III」(BRUKER社製)500MHz。
 溶媒:重水素化ジメチルスルホキシド([D]-DMSO)。標準物質:テトラメチルシラン(TMS)。
< 1 1 H-NMR measurement>
Device: Fourier transform type superconducting nuclear magnetic resonance device (FT-NMR) "AVANCE III" (manufactured by BRUKER) 500 MHz.
Solvent: Deuterated dimethyl sulfoxide ([D 6 ] -DMSO). Standard substance: Tetramethylsilane (TMS).
<分子量の測定>
 測定装置:島津製作所社製GPC(LC-20シリーズ)、カラム温度:50℃、溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム一水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10mL/L)、流速:1.0mL/分、検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)。
<Measurement of molecular weight>
Measuring device: GPC (LC-20 series) manufactured by Shimadzu Corporation, column temperature: 50 ° C., eluent: N, N-dimethylformamide (as an additive, lithium bromide monohydrate (LiBr · H2O) is 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, tetrahydrofuran (THF) is 10 mL / L), flow velocity: 1.0 mL / min, standard sample for preparing calibration lines: TSK standard polyethylene oxide manufactured by Toso Co., Ltd. (Molecular weight of about 900,000, 150,000, 100,000, 30,000) and Polyethylene glycol manufactured by Polymer Laboratory (molecular weight of about 12,000, 4,000, 1,000).
<イミド化率の測定>
 ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d、0.05%テトラメチルシラン(TMS)混合品)1.0mLを添加し、超音波をかけて完全に溶解させた。この溶液をフーリエ変換型超伝導核磁気共鳴装置(FT-NMR)「AVANCE III」(BRUKER社製)にて500MHzのプロトンNMRを測定した。
<Measurement of imidization rate>
20 mg of polyimide powder is placed in an NMR sample tube (NMR sampling tube standard φ5 manufactured by Kusano Kagaku Co., Ltd. ), and 1.0 mL of deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% tetramethylsilane (TMS) mixture) is added. Then, ultrasonic waves were applied to completely dissolve it. This solution was measured by proton NMR at 500 MHz with a Fourier transform type superconducting nuclear magnetic resonance apparatus (FT-NMR) “AVANCE III” (manufactured by BRUKER).
 (化学)イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。なお、式中、xはアミック酸のNH基由来のプロトンピーク積算値であり、yは基準プロトンのピーク積算値であり、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基のプロトン1個に対する基準プロトンの個数割合である。
   イミド化率(%)=(1-α・x/y)×100
The (chemical) imidization rate is determined by using a proton derived from a structure that does not change before and after imidization as a reference proton, and is derived from the peak integrated value of this proton and the NH group of the amic acid that appears in the vicinity of 9.5 to 10.0 ppm. It was calculated by the following formula using the integrated proton peak value. In the formula, x is the integrated proton peak value derived from the NH group of the amic acid, y is the integrated peak value of the reference proton, and α is the integrated value of the amic acid in the case of polyamic acid (imidization rate is 0%). The number ratio of the reference protons to one proton of the NH group.
Imidization rate (%) = (1-α · x / y) × 100
<化合物(DA-1)の合成>
 下記に示す経路に従って化合物(DA-1)を合成した。
(化合物1の合成)
Figure JPOXMLDOC01-appb-C000045
<Synthesis of compound (DA-1)>
Compound (DA-1) was synthesized according to the route shown below.
(Synthesis of Compound 1)
Figure JPOXMLDOC01-appb-C000045
 5-フルオロ-2-ニトロアニソール(15.0g、87.6mmol)に対し、メタノール(45.0g)を加え、室温にてメチルアミン(9.8mol/L メタノール溶液、89.4mL、876mmol)を加えた。24時間撹拌後、水(270g)を加えて結晶を析出させた。結晶を濾別した後、水(45g)で2回結晶を洗浄し、乾燥させて化合物1を得た(15.3g、84.0mmol、収率95.9%)。 Methanol (45.0 g) was added to 5-fluoro-2-nitroanisole (15.0 g, 87.6 mmol), and methylamine (9.8 mol / L methanol solution, 89.4 mL, 876 mmol) was added at room temperature. added. After stirring for 24 hours, water (270 g) was added to precipitate crystals. After the crystals were filtered off, the crystals were washed twice with water (45 g) and dried to give compound 1 (15.3 g, 84.0 mmol, yield 95.9%).
(化合物2の合成)
Figure JPOXMLDOC01-appb-C000046
(Synthesis of compound 2)
Figure JPOXMLDOC01-appb-C000046
 化合物1(8.40g、46.1mmol)、DMAc(84.0g)、及び水酸化カリウム(3.88g、69.2mmol)を加えた溶液に、5-フルオロ-2-ニトロアニソール(7.89g、46.1mmol)とDMAc(42.0g)の混合液を加えた後、60℃に加温し1時間加熱撹拌を行った。反応終了後に水(378g)を加えて結晶を析出させた。結晶を濾別した後、水(50.0g)で2回、メタノール(50.0g)で2回の順で洗浄し、乾燥させて粗物(17.0g)を得た。この粗物をDMF(136g)に加熱溶解させた後に冷却して、析出した結晶を濾過により回収し、化合物2を得た(14.3g、42.9mmol、収率93.0%)。 5-Fluoro-2-nitroanisole (7.89 g) was added to a solution containing compound 1 (8.40 g, 46.1 mmol), DMAc (84.0 g), and potassium hydroxide (3.88 g, 69.2 mmol). , 46.1 mmol) and DMAc (42.0 g) were added, and then the mixture was heated to 60 ° C. and heated and stirred for 1 hour. After completion of the reaction, water (378 g) was added to precipitate crystals. The crystals were separated by filtration, washed twice with water (50.0 g) and twice with methanol (50.0 g), and dried to obtain a crude product (17.0 g). This crude product was heated and dissolved in DMF (136 g) and then cooled, and the precipitated crystals were recovered by filtration to obtain Compound 2 (14.3 g, 42.9 mmol, yield 93.0%).
(DA-1の合成)
Figure JPOXMLDOC01-appb-C000047
(Synthesis of DA-1)
Figure JPOXMLDOC01-appb-C000047
 化合物2(14.3g、42.9mmol)に対し、THF(420g)及びカーボン担持パラジウム(5%Pdカーボン粉末(含水品)Kタイプ、エヌ・イー・ケムキャット社製、1.43g)を加え、水素雰囲気下でニトロ還元を行った。還元終了後、メンブレンフィルターにてカーボン担持パラジウムを濾過し、得られた溶液を濃縮した後にイソプロパノール(70g)を加えたところ結晶が析出した。0℃に冷却した後に結晶をろ過にて回収し、イソプロパノール(30.0g)で2回ケーキ洗浄後に乾燥させて固体DA-1を得た(9.6g、35.1mmol、収率82.0%)。なお、以下に示すH-NMRの結果から、上記固体がDA-1であることを確認した。
H-NMR(500MHz,[D]-DMSO):δ=6.52(d,2H,J=8.3Hz),6.43(d,2H,J=2.4Hz),6.30(dd,2H,J=8.3,2.3Hz),4.29(s,4H),3.66(s,6H),3.07(s,3H)
THF (420 g) and carbon-supported palladium (5% Pd carbon powder (hydrous) K type, manufactured by NE Chemcat, 1.43 g) were added to Compound 2 (14.3 g, 42.9 mmol). Nitro reduction was performed in a hydrogen atmosphere. After completion of the reduction, the carbon-supported palladium was filtered through a membrane filter, the obtained solution was concentrated, and then isopropanol (70 g) was added to precipitate crystals. After cooling to 0 ° C., the crystals were collected by filtration, washed twice with isopropanol (30.0 g) and then dried to obtain solid DA-1 (9.6 g, 35.1 mmol, yield 82.0). %). From the results of 1 H-NMR shown below, it was confirmed that the solid was DA-1.
1 1 H-NMR (500 MHz, [D 6 ] -DMSO): δ = 6.52 (d, 2H, J = 8.3 Hz), 6.43 (d, 2H, J = 2.4 Hz), 6.30 (Dd, 2H, J = 8.3, 2.3 Hz), 4.29 (s, 4H), 3.66 (s, 6H), 3.07 (s, 3H)
<ポリアミック酸の合成>
(合成例1)
 BODA(2.50g、10.0mmol)、DA-1(2.19g、8.0mmol)、DA-4(1.94g、8.0mmol)及びDA-5(1.58g、4.0mmol)をNMP(32.8g)中で混合し、60℃で3時間反応させたのち、CBDA(1.90g、9.7mmol)とNMP(7.6g)を加え、40℃で4時間反応させポリアミック酸溶液(1)を得た。このポリアミック酸の数平均分子量(Mn)は、12,100、重量平均分子量(Mw)は39,700であった。
<Synthesis of polyamic acid>
(Synthesis Example 1)
BODA (2.50 g, 10.0 mmol), DA-1 (2.19 g, 8.0 mmol), DA-4 (1.94 g, 8.0 mmol) and DA-5 (1.58 g, 4.0 mmol) Mix in NMP (32.8 g) and react at 60 ° C. for 3 hours, then add CBDA (1.90 g, 9.7 mmol) and NMP (7.6 g) and react at 40 ° C. for 4 hours to polyamic acid. The solution (1) was obtained. The number average molecular weight (Mn) of this polyamic acid was 12,100, and the weight average molecular weight (Mw) was 39,700.
(合成例2)
 BODA(2.50g、10.0mmol)、DA-2(1.59g、8.0mmol)、DA-4(1.94g、8.0mmol)及びDA-5(1.58g、4.0mmol)をNMP(30.4g)中で混合し、60℃で3時間反応させたのち、CBDA(1.90g、9.7mmol)とNMP(7.6g)を加え、40℃で4時間反応させポリアミック酸溶液(2)を得た。このポリアミック酸のMnは10,700、Mwは26,600であった。
(Synthesis Example 2)
BODA (2.50 g, 10.0 mmol), DA-2 (1.59 g, 8.0 mmol), DA-4 (1.94 g, 8.0 mmol) and DA-5 (1.58 g, 4.0 mmol) After mixing in NMP (30.4 g) and reacting at 60 ° C. for 3 hours, CBDA (1.90 g, 9.7 mmol) and NMP (7.6 g) are added and reacted at 40 ° C. for 4 hours to form a polyamic acid. The solution (2) was obtained. The Mn of this polyamic acid was 10,700 and the Mw was 26,600.
(合成例3)
 BODA(2.50g、10.0mmol)、DA-3(1.71g、8.0mmol)、DA-4(1.94g、8.0mmol)及びDA-5(1.58g、4.0mmol)をNMP(30.9g)中で混合し、60℃で3時間反応させたのち、CBDA(1.90g、9.7mmol)とNMP(7.6g)を加え、40℃で4時間反応させポリアミック酸溶液(3)を得た。このポリアミック酸のMnは10,500、Mwは31,600であった。
(合成例4)
 BODA(2.50g、10.0mmol)、DA-6(0.99g、3.0mmol)、DA-7(1.19g、5.0mmol)、DA-8(1.19g、6.0mmol)及びDA-9(2.61g、6.0mmol)をNMP(33.9g)中で混合し、60℃で3時間反応させたのち、CBDA(1.90g、9.7mmol)とNMP(7.6g)を加え、40℃で4時間反応させポリアミック酸溶液(4)を得た。このポリアミック酸のMnは11,400、Mwは29,300であった。
(Synthesis Example 3)
BODA (2.50 g, 10.0 mmol), DA-3 (1.71 g, 8.0 mmol), DA-4 (1.94 g, 8.0 mmol) and DA-5 (1.58 g, 4.0 mmol). After mixing in NMP (30.9 g) and reacting at 60 ° C. for 3 hours, CBDA (1.90 g, 9.7 mmol) and NMP (7.6 g) were added and reacted at 40 ° C. for 4 hours to form a polyamic acid. The solution (3) was obtained. The Mn of this polyamic acid was 10,500 and the Mw was 31,600.
(Synthesis Example 4)
BODA (2.50 g, 10.0 mmol), DA-6 (0.99 g, 3.0 mmol), DA-7 (1.19 g, 5.0 mmol), DA-8 (1.19 g, 6.0 mmol) and DA-9 (2.61 g, 6.0 mmol) was mixed in NMP (33.9 g), reacted at 60 ° C. for 3 hours, then CBDA (1.90 g, 9.7 mmol) and NMP (7.6 g). ) Was added and reacted at 40 ° C. for 4 hours to obtain a polyamic acid solution (4). The Mn of this polyamic acid was 11,400 and the Mw was 29,300.
 上記合成例で得られた各重合体の仕様は、下記の表1に示すとおりである。
Figure JPOXMLDOC01-appb-T000048
The specifications of each polymer obtained in the above synthesis example are as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000048
<液晶配向剤の調製>
(実施例1)
 合成例1で得られたポリアミック酸溶液(1)(6.0g)にNMP(6.0g)とBCS(8.0g)を加え室温で2時間撹拌することにより液晶配向剤(A-1)を得た。
(実施例2)
 合成例1で得られたポリアミック酸溶液(1)(1.8g)および合成例4で得られたポリアミック酸溶液(4)(4.2g)にNMP(6.0g)とBCS(8.0g)を加え室温で2時間撹拌することにより液晶配向剤(A-2)を得た。
<Preparation of liquid crystal alignment agent>
(Example 1)
The liquid crystal alignment agent (A-1) was prepared by adding NMP (6.0 g) and BCS (8.0 g) to the polyamic acid solution (1) (6.0 g) obtained in Synthesis Example 1 and stirring at room temperature for 2 hours. Got
(Example 2)
NMP (6.0 g) and BCS (8.0 g) were added to the polyamic acid solution (1) (1.8 g) obtained in Synthesis Example 1 and the polyamic acid solution (4) (4.2 g) obtained in Synthesis Example 4. ) Was added and stirred at room temperature for 2 hours to obtain a liquid crystal alignment agent (A-2).
(比較例1、2)
 ポリアミック酸溶液(1)の代わりにそれぞれポリアミック酸溶液(2)、(3)を用いた以外は、実施例1と同様にして、比較例1、2の液晶配向剤(B-1)、(B-2)を得た。
(比較例3、4)
 ポリアミック酸溶液(1)の代わりにそれぞれポリアミック酸溶液(2)、(3)を用いた以外は、実施例2と同様にして、比較例3、4の液晶配向剤(B-3)、(B-4)を得た。
(Comparative Examples 1 and 2)
The liquid crystal alignment agents (B-1) and (B-1) of Comparative Examples 1 and 2 were used in the same manner as in Example 1 except that the polyamic acid solutions (2) and (3) were used instead of the polyamic acid solution (1), respectively. B-2) was obtained.
(Comparative Examples 3 and 4)
The liquid crystal alignment agents (B-3) and (B-3) of Comparative Examples 3 and 4 were used in the same manner as in Example 2 except that the polyamic acid solutions (2) and (3) were used instead of the polyamic acid solution (1), respectively. B-4) was obtained.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
 上記で得られた液晶配向剤(A-1)、(A-2)、(B-1)~(B-4)には、濁りや析出などの異常は見られず、均一な溶液であることが確認された。得られた液晶配向剤を用いて、透過率、電圧保持率、残留DC電圧、及び残像特性の評価を行った。 The liquid crystal alignment agents (A-1), (A-2), (B-1) to (B-4) obtained above are uniform solutions with no abnormalities such as turbidity or precipitation. It was confirmed that. Using the obtained liquid crystal alignment agent, the transmittance, the voltage retention rate, the residual DC voltage, and the afterimage characteristics were evaluated.
<(光)透過率の評価>
 上記で得られた液晶配向剤(A-1)、(A-2)、(B-1)~(B-4)をそれぞれ石英基板にスピンコートし、70℃のホットプレート上で90秒間乾燥させた。その後、230℃のIR式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させて、液晶配向膜付き基板を得た。この液晶配向膜付き基板を内側にし、もう一枚石英基板を用いて光の干渉を防ぐ目的で接触液(島津デバイス製造社製)を挟んだ。透過率の評価には、測定装置にUV-3600(島津製作所社製)を用い、温度25℃、スキャン波長を380~800nmで測定した。その際、リファレンスには塗膜していない2枚の石英基板で接触液を挟んだものを用いた。評価は、590nmの波長の透過率を基準とし、その値を下記の表3に示す。
<Evaluation of (light) transmittance>
The liquid crystal alignment agents (A-1), (A-2), (B-1) to (B-4) obtained above are spin-coated on a quartz substrate and dried on a hot plate at 70 ° C. for 90 seconds. I let you. Then, it was fired in an IR oven at 230 ° C. for 20 minutes to form a coating film having a film thickness of 100 nm, and a substrate with a liquid crystal alignment film was obtained. This substrate with a liquid crystal alignment film was placed inside, and another quartz substrate was used to sandwich a contact liquid (manufactured by Shimadzu Device Manufacturing Co., Ltd.) for the purpose of preventing light interference. For the evaluation of the transmittance, UV-3600 (manufactured by Shimadzu Corporation) was used as a measuring device, and the temperature was 25 ° C. and the scan wavelength was 380 to 800 nm. At that time, a reference liquid was used in which a contact liquid was sandwiched between two uncoated quartz substrates. The evaluation is based on the transmittance of the wavelength of 590 nm, and the values are shown in Table 3 below.
<電圧保持率・残留DC電圧評価用の液晶表示素子の作製>
 上記で得られた液晶配向剤(A-1)、(A-2)、(B-1)~(B-4)を用いて下記に示すような手順で液晶セルの作製を行った。液晶配向剤をITO電極付きガラス基板にスピンコートし、70℃のホットプレート上で90秒間乾燥した後、230℃のIR式オーブンで20分間焼成を行い、膜厚100nmの液晶配向膜を形成した。この液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜上に直径4μmのビーズスペーサー(日揮触媒化成社製、真絲球、SW-D1)を塗布し、液晶注入口を残して周囲に熱硬化性シール剤(協立化学産業社製 XN-1500T)を印刷した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と貼り合せた後、シール剤を硬化させて空セルを作製した。
<Manufacturing of liquid crystal display element for voltage retention / residual DC voltage evaluation>
Using the liquid crystal alignment agents (A-1), (A-2), (B-1) to (B-4) obtained above, a liquid crystal cell was produced by the procedure as shown below. The liquid crystal alignment agent was spin-coated on a glass substrate with an ITO electrode, dried on a hot plate at 70 ° C. for 90 seconds, and then baked in an IR oven at 230 ° C. for 20 minutes to form a liquid crystal alignment film having a film thickness of 100 nm. .. Two substrates with this liquid crystal alignment film are prepared, and a bead spacer with a diameter of 4 μm (manufactured by JGC Catalysts and Chemicals Co., Ltd., Shinjuku, SW-D1) is applied on the one liquid crystal alignment film, leaving the liquid crystal injection port. A thermosetting sealant (XN-1500T manufactured by Kyoritsu Kagaku Sangyo Co., Ltd.) was printed on the periphery. Next, the surface of the other substrate on which the liquid crystal alignment film was formed was turned inside, and the cells were bonded to the previous substrate, and then the sealant was cured to prepare an empty cell.
 この空セルに液晶MLC-3023(メルク社製)を減圧注入法によって注入し、液晶セルを作製した。次に、この液晶セルに15VのDC電圧を印加した状態で、液晶セルの外側から波長325nm以下のカットフィルターを通したUVを10J/cm照射した。なお、UVの照度は、ORC社製UV-MO3Aを用いて測定した。その後、液晶セル中に残存している未反応の重合性化合物を失活させる目的で、電圧を印加していない状態で東芝ライテック社製UV-FL照射装置を用いてUV(UVランプ:FLR40SUV32/A-1)を30分間照射した。 A liquid crystal MLC-3023 (manufactured by Merck Group) was injected into this empty cell by a vacuum injection method to prepare a liquid crystal cell. Next, with a DC voltage of 15 V applied to the liquid crystal cell, UV was irradiated from the outside of the liquid crystal cell through a cut filter having a wavelength of 325 nm or less at 10 J / cm 2. The illuminance of UV was measured using UV-MO3A manufactured by ORC. After that, for the purpose of inactivating the unreacted polymerizable compound remaining in the liquid crystal cell, UV (UV lamp: FLR40SUV32 /) was used using a UV-FL irradiation device manufactured by Toshiba Lighting & Technology Corporation in a state where no voltage was applied. A-1) was irradiated for 30 minutes.
<電圧保持率の評価>
 UV照射後の電圧保持率評価用の液晶セルを用いて電圧保持率を測定した。60℃の熱風循環オーブン中で1Vの電圧を60μsec間印加し、その後16.67msec後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率として計算した。電圧保持率の測定には、東陽テクニカ社製のVHR-1を使用した。その値を下記の表3に示す。値が高いほど良好である。
<Evaluation of voltage retention rate>
The voltage retention rate was measured using a liquid crystal cell for evaluating the voltage retention rate after UV irradiation. A voltage of 1 V was applied for 60 μsec in a hot air circulation oven at 60 ° C., and then the voltage after 16.67 msec was measured, and how much the voltage could be maintained was calculated as the voltage retention rate. VHR-1 manufactured by Toyo Corporation was used for measuring the voltage holding ratio. The values are shown in Table 3 below. The higher the value, the better.
<残留DC電圧の評価>
 上記で作製した残留DC電圧評価用の液晶セルに対し、直流2Vを重畳した30Hz、7.8Vppの矩形波を25℃で100時間印加し、直流電圧を切って1時間後の液晶セル内に残留した電圧(残留DC電圧)をフリッカー消去法により求めた。この値はDC蓄積により発生する残像の指標となり、この値が50mV以下であるとき、残像特性に優れている、即ち「良好」とし、50mVよりも大きい場合は「不良」と定義して評価を行った。結果を下記の表3に示す。
<Evaluation of residual DC voltage>
A 30 Hz, 7.8 Vpp square wave with 2 V DC superimposed was applied to the liquid crystal cell for evaluating the residual DC voltage produced above at 25 ° C. for 100 hours, and the DC voltage was turned off in the liquid crystal cell 1 hour later. The residual voltage (residual DC voltage) was determined by the flicker elimination method. This value is an index of the afterimage generated by DC accumulation, and when this value is 50 mV or less, the afterimage characteristic is excellent, that is, "good", and when it is larger than 50 mV, it is defined as "bad" and evaluated. gone. The results are shown in Table 3 below.
<残像特性評価用液晶表示素子の作製>
 上記で得られた液晶配向剤(A-1)、(A-2)、(B-1)~(B-4)を用いて下記に示すような手順で液晶セルの作製を行った。液晶配向剤を画素サイズが200μm×600μmでライン/スペースがそれぞれ3μmのITO電極パターンが形成されているITO電極基板(縦:35mm、横:30mm、厚さ:0.7mm)と、高さ3.2μmのフォトスペーサーがパターニングされているITO電極付きガラス基板(縦:35mm、横:30mm、厚さ:0.7mm)のITO面上にそれぞれスピンコートし、ホットプレート上にて70℃で90秒間乾燥した後、230℃のIR式オーブンで20分間焼成を行い、膜厚100nmの液晶配向膜を形成した。なお、このITO電極パターンが形成されているITO電極基板は、クロスチェッカー(市松)模様に4分割されており4つのエリアごとで別々に駆動ができるようになっている。
<Manufacturing of liquid crystal display element for afterimage characteristic evaluation>
Using the liquid crystal alignment agents (A-1), (A-2), (B-1) to (B-4) obtained above, a liquid crystal cell was produced by the procedure as shown below. The liquid crystal alignment agent has an ITO electrode substrate (length: 35 mm, width: 30 mm, thickness: 0.7 mm) on which an ITO electrode pattern having a pixel size of 200 μm × 600 μm and a line / space of 3 μm is formed, and a height of 3. Spin-coat each on the ITO surface of a glass substrate with an ITO electrode (length: 35 mm, width: 30 mm, thickness: 0.7 mm) in which a 2 μm photo spacer is patterned, and 90 at 70 ° C. on a hot plate. After drying for 2 seconds, it was baked in an IR oven at 230 ° C. for 20 minutes to form a liquid crystal alignment film having a film thickness of 100 nm. The ITO electrode substrate on which this ITO electrode pattern is formed is divided into four in a cross checker (checkerboard) pattern, and can be driven separately in each of the four areas.
 次に、液晶配向膜が塗布されたライン/スペースがそれぞれ3μmのITO電極パターンが形成されているITO電極基板に、液晶注入口を残して周囲にシール剤(協立化学産業社製 XN-1500T)を印刷した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに液晶MLC-3023(メルク社製)を減圧注入法によって注入し、液晶セルを作製した。この液晶セルに15VのDC電圧を印加した状態で、この液晶セルの外側から325nm以下カットフィルターを通したUVを10J/cm照射した。なお、UVの照度は、ORC社製UV-MO3Aを用いて測定した。その後、液晶セル中に残存している未反応の重合性化合物を失活させる目的で、電圧を印加していない状態で東芝ライテック社製UV-FL照射装置を用いてUV(UVランプ:FLR40SUV32/A-1)を30分間照射した。 Next, a sealant (XN-1500T manufactured by Kyoritsu Kagaku Sangyo Co., Ltd.) was placed around the ITO electrode substrate on which an ITO electrode pattern having an ITO electrode pattern having a line / space of 3 μm coated with a liquid crystal alignment film was formed, leaving a liquid crystal injection port. ) Was printed. Next, the surface of the other substrate on which the liquid crystal alignment film was formed was turned inside, and the cells were bonded to the previous substrate, and then the sealant was cured to prepare an empty cell. A liquid crystal MLC-3023 (manufactured by Merck Group) was injected into this empty cell by a vacuum injection method to prepare a liquid crystal cell. With a DC voltage of 15 V applied to the liquid crystal cell, UV was irradiated from the outside of the liquid crystal cell through a cut filter of 325 nm or less at 10 J / cm 2. The illuminance of UV was measured using UV-MO3A manufactured by ORC. After that, for the purpose of inactivating the unreacted polymerizable compound remaining in the liquid crystal cell, UV (UV lamp: FLR40SUV32 /) was used using a UV-FL irradiation device manufactured by Toshiba Lighting & Technology Corporation in a state where no voltage was applied. A-1) was irradiated for 30 minutes.
<残像特性の評価>
 上記で作製した残像特性評価用の液晶セルを用いて、4つの画素エリアのうち対角線の2つのエリアに60Hz、20Vp-pの交流電圧を印加し、25℃の温度下で168時間駆動させた。その後、4つの画素エリアすべてを5Vp-pの交流電圧で駆動させ、画素の輝度差を目視で観察した。輝度差がほぼ確認できない状態を「良好」とし、輝度差が容易に確認できる状態を「不良」と定義して評価を行った。結果を下記の表3に示す。
<Evaluation of afterimage characteristics>
Using the liquid crystal cell for evaluating afterimage characteristics prepared above, an AC voltage of 60 Hz and 20 Vp-p was applied to two diagonal areas out of the four pixel areas, and the product was driven at a temperature of 25 ° C. for 168 hours. .. After that, all four pixel areas were driven by an AC voltage of 5 Vp-p, and the difference in the brightness of the pixels was visually observed. The state in which the difference in luminance could hardly be confirmed was defined as "good", and the state in which the difference in luminance could be easily confirmed was defined as "poor" and evaluated. The results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
 表3に示されるように、実施例1の液晶配向剤(A-1)を用いて得られる液晶配向膜は対応する比較例1、2の液晶配向剤(B-1)、(B-2)を用いて得られる液晶配向膜と比較し、高い透過率が得られた。さらに、実施例2の液晶配向剤(A-2)を用いて得られる液晶配向膜は、対応する比較例3、4の液晶配向剤(B-3)、(B-4)を用いて得られる液晶配向膜と比較し、高い透過率が得られた。なお、透過率における0.5%の差は当技術分野においては顕著な差である。
 また、実施例で得られる液晶配向剤を用いると、電圧保持率評価においても高い電圧保持率を有する液晶配向膜が得られることが分かる。また、残留DC電圧の評価及び残像特性評価においても、良好な特性を示す液晶配向膜が得られることが分かる。
As shown in Table 3, the liquid crystal alignment film obtained by using the liquid crystal alignment agent (A-1) of Example 1 corresponds to the liquid crystal alignment agents (B-1) and (B-2) of Comparative Examples 1 and 2. ), High transmittance was obtained as compared with the liquid crystal alignment film obtained by using. Further, the liquid crystal alignment film obtained by using the liquid crystal alignment agent (A-2) of Example 2 can be obtained by using the corresponding liquid crystal alignment agents (B-3) and (B-4) of Comparative Examples 3 and 4. Higher transmittance was obtained as compared with the liquid crystal alignment film. The difference of 0.5% in the transmittance is a remarkable difference in the art.
Further, it can be seen that when the liquid crystal alignment agent obtained in the examples is used, a liquid crystal alignment film having a high voltage retention rate can be obtained even in the voltage retention evaluation. Further, it can be seen that a liquid crystal alignment film showing good characteristics can be obtained in the evaluation of the residual DC voltage and the evaluation of the afterimage characteristics.
 本発明の液晶配向剤から得られる液晶配向膜は、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなど、特に、4K、8Kなどの超高精細の液晶表示装置に広く適用できる。 The liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention is, for example, a watch, a portable game, a word processor, a notebook computer, a car navigation system, a camcoder, a PDA, a digital camera, a mobile phone, a smartphone, various monitors, a liquid crystal television, and the like. It can be widely applied to information displays and the like, especially to ultra-high-definition liquid crystal displays such as 4K and 8K.
 なお、2020年7月14日に出願された日本特許出願2020-120867号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The entire contents of the specification, claims and abstract of Japanese Patent Application No. 2020-12086 filed on July 14, 2020 are cited here and incorporated as the disclosure of the specification of the present invention. Is.

Claims (17)

  1.  下記式(1)で表されるジアミン(1)を含むジアミン成分を用いて得られるポリイミド前駆体及びそのイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(P)を含有することを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (Rは1価の有機基を表し、R、Rは、それぞれ独立して、飽和若しくは不飽和の炭素数1~6の1価の炭化水素基、又は炭素数3~6の脂環式炭化水素基を表す。前記R、Rにおける炭化水素基が有する水素原子の一部は置換されていても良い。)
    It contains at least one polymer (P) selected from the group consisting of a polyimide precursor obtained by using a diamine component containing a diamine (1) represented by the following formula (1) and a polyimide which is an imidized product thereof. A liquid crystal alignment agent characterized by that.
    Figure JPOXMLDOC01-appb-C000001
    (R represents a monovalent organic group, and R 1 and R 2 are each saturated or unsaturated monovalent hydrocarbon group having 1 to 6 carbon atoms or an alicyclic having 3 to 6 carbon atoms. The formula represents a hydrocarbon group. A part of the hydrogen atom of the hydrocarbon group in R 1 and R 2 may be substituted.)
  2.  前記式(1)において、Rが芳香環構造を有する1価の有機基、炭素数1~30の1価の鎖状炭化水素基、又は炭素数3~30の1価の脂環式炭化水素基であり、前記鎖状炭化水素基又は脂環式炭化水素基が有する水素原子の一部は置換されていてもよく、また、その有するメチレン基の一部が酸素原子、カルボニル基又は-COO-で置換されていてもよい請求項1に記載の液晶配向剤。 In the formula (1), R is a monovalent organic group having an aromatic ring structure, a monovalent chain hydrocarbon group having 1 to 30 carbon atoms, or a monovalent alicyclic hydrocarbon having 3 to 30 carbon atoms. It is a group, and a part of the hydrogen atom of the chain hydrocarbon group or the alicyclic hydrocarbon group may be substituted, and a part of the methylene group having the group may be an oxygen atom, a carbonyl group or -COO. The liquid crystal alignment agent according to claim 1, which may be substituted with-.
  3.  前記Rにおける芳香環構造を有する1価の有機基が、下記式(Ar)で表される構造を有する請求項2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    (Rは、ハロゲン原子、水酸基、シアノ基、炭素数1~9のアルキル基、炭素数1~9のアルコキシ基、又は炭素数1~9のフルオロアルキル基を表す。mは0~5の整数であり、mが2~5の場合、複数のRはそれぞれ独立して上記定義を有する。*は、結合手を表す。)
    The liquid crystal alignment agent according to claim 2, wherein the monovalent organic group having an aromatic ring structure in R has a structure represented by the following formula (Ar).
    Figure JPOXMLDOC01-appb-C000002
    ( Ra represents a halogen atom, a hydroxyl group, a cyano group, an alkyl group having 1 to 9 carbon atoms, an alkoxy group having 1 to 9 carbon atoms, or a fluoroalkyl group having 1 to 9 carbon atoms. M is 0 to 5 is an integer, when m is 2 to 5, with. * is the definition plurality of R a independently represents a bond.)
  4.  前記式(1)において、R、R及びRが、それぞれ独立して、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基又はtert-ペンチル基である請求項1~3のいずれか1項に記載の液晶配向剤。 In the formula (1), R, R 1 and R 2 are independently methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group and tert-. The liquid crystal alignment agent according to any one of claims 1 to 3, which is a butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group or a tert-pentyl group.
  5.  前記ジアミン(1)が、下記式(d-1)~(d-4)からなる群から選ばれるいずれかのジアミンである請求項1~4のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    The liquid crystal alignment agent according to any one of claims 1 to 4, wherein the diamine (1) is any diamine selected from the group consisting of the following formulas (d-1) to (d-4).
    Figure JPOXMLDOC01-appb-C000003
  6.  前記重合体(P)が、更に、下記式(S1)、(S2)及び(S3)からなる群より選ばれる少なくとも1種の構造を有するジアミン(s)を含むジアミン成分を用いて得られる請求項1~5のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
    (X及びXは、それぞれ独立して、単結合、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-NH-、-O-、-COO-、-OCO-又は-((CHa1-Am1-(a1は1~15の整数であり、Aは、酸素原子又は-COO-を表し、mは1又は2の整数であり、mが2である場合の複数のa1及びAは同一であってもよく、異なっていてもよい。)を表す。G及びGは、それぞれ独立して、炭素数6~12の2価の芳香族基及び炭素数3~8の2価の脂環式基から選ばれる2価の環状基を表す。前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基及びフッ素原子からなる群から選ばれる少なくとも1種で置換されていてもよい。m及びnは、それぞれ独立して、0~3の整数であり、m及びnの合計は1~4である。m及びnが複数の場合、複数のX、X、G及びGはそれぞれ同一であってもよく、異なっていてもよい。Rは炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、又は炭素数2~20のアルコキシアルキル基を表し、Rを形成する任意の水素原子はフッ素原子で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000005
    (Xは、単結合、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-NH-、-O-、-CHO-、-COO-又は-OCO-を表す。Rは炭素数1~20のアルキル基又は炭素数2~20のアルコキシアルキル基を表し、Rを形成する任意の水素原子はフッ素原子で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000006
    (Xは、-CONH-、-NHCO-、-O-、-CHO-、-OCH-、-COO-又は-OCO-を表す。Rはステロイド骨格を有する構造を表す。)
    A claim obtained by using a diamine component containing a diamine (s) having at least one structure selected from the group consisting of the following formulas (S1), (S2) and (S3). Item 6. The liquid crystal alignment agent according to any one of Items 1 to 5.
    Figure JPOXMLDOC01-appb-C000004
    (X 1 and X 2 are independent, single bond,-(CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-, -CON (CH 3 )- , -N (CH 3 ) CO-, -NH-, -O-, -COO-, -OCO- or-((CH 2 ) a1- A 1 ) m1- (a1 is an integer of 1 to 15 and A 1 represents an oxygen atom or -COO-, m 1 is an integer of 1 or 2, and a plurality of a 1 and A 1 when m 1 is 2 may be the same or different. Good). G 1 and G 2 are divalent, independently selected from a divalent aromatic group having 6 to 12 carbon atoms and a divalent alicyclic group having 3 to 8 carbon atoms. Represents a cyclic group. Any hydrogen atom on the cyclic group may be an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or 1 to 3 carbon atoms. May be substituted with at least one selected from the group consisting of a fluorine-containing alkoxy group and a fluorine atom. M and n are independently integers of 0 to 3, and the sum of m and n is 1. When there are a plurality of m and n, the plurality of X 1 , X 2 , G 1 and G 2 may be the same or different. R 1 has 1 to 20 carbon atoms. Any hydrogen atom representing an alkyl group, an alkoxy group having 1 to 20 carbon atoms, or an alkoxyalkyl group having 2 to 20 carbon atoms and forming R 1 may be substituted with a fluorine atom.)
    Figure JPOXMLDOC01-appb-C000005
    (X 3 is a single bond, -CONH-, -NHCO-, -CON (CH 3 )-, -N (CH 3 ) CO-, -NH-, -O-, -CH 2 O-, -COO- Alternatively, it represents —OCO—, where R 2 represents an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group having 2 to 20 carbon atoms, and any hydrogen atom forming R 2 may be substituted with a fluorine atom. .)
    Figure JPOXMLDOC01-appb-C000006
    (X 4 represents -CONH-, -NHCO-, -O-, -CH 2 O-, -OCH 2- , -COO- or -OCO-. R 3 represents a structure having a steroid skeleton.)
  7.  前記ジアミン(s)が、下記式(d1)又は式(d2)で表されるジアミンである請求項6に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000007
    (Xは、単結合、-O-、-C(CH-、-NH-、-CO-、-COO-、-CONH-、-(CH-、-SO-、-O-(CH-O-、-O-C(CH-、-CO-(CH-、-CO-(CH-CO-、-NH-(CH-、-NH-(CH-NH-、-SO-(CH-、-SO-(CH-SO-、-CONH-(CH-、-CONH-(CH-NHCO-、又は-COO-(CH-OCO-の2価の有機基を表す。mは1~8の整数である。Yは、前記式(S1)~(S3)のいずれかの構造を表す。前記式(d2)において、2個のYは、互いに同一であっても異なっていてもよい。)
    The liquid crystal alignment agent according to claim 6, wherein the diamine (s) is a diamine represented by the following formula (d1) or formula (d2).
    Figure JPOXMLDOC01-appb-C000007
    (X is a single bond, -O-, -C (CH 3 ) 2- , -NH-, -CO-, -COO-, -CONH-,-(CH 2 ) m- , -SO 2 -,- O- (CH 2) m -O - , - O-C (CH 3) 2 -, - CO- (CH 2) m -, - CO- (CH 2) m -CO -, - NH- (CH 2 ) m -, - NH- (CH 2) m -NH -, - SO 2 - (CH 2) m -, - SO 2 - (CH 2) m -SO 2 -, - CONH- (CH 2) m - , -CONH- (CH 2 ) m -NHCO-, or -COO- (CH 2 ) m- OCO- represents a divalent organic group. M is an integer of 1-8. Y is the above formula ( Represents any of the structures S1) to (S3). In the formula (d2), the two Ys may be the same or different from each other.)
  8.  前記式(d1)で表されるジアミンが、下記の式(d1-1)~(d1-18)からなる群から選ばれるいずれかのジアミンである請求項7に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000008
    (nは1~20の整数である。)
    Figure JPOXMLDOC01-appb-C000009
    The liquid crystal alignment agent according to claim 7, wherein the diamine represented by the formula (d1) is any diamine selected from the group consisting of the following formulas (d1-1) to (d1-18).
    Figure JPOXMLDOC01-appb-C000008
    (N is an integer from 1 to 20.)
    Figure JPOXMLDOC01-appb-C000009
  9.  前記式(d2)で表されるジアミンが、下記の式(d2-1)~(d2-6)からなる群から選ばれるいずれかのジアミンである請求項7に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000010
    (Xp1~Xp8は、それぞれ独立して、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CON(CH)-、-N(CH)CO-、-NH-、-O-、-CHO-、-CHOCO-、-COO-、又は-OCO-を表す。Xs1~Xs4はそれぞれ独立して、-O-、-CHO-、-COO-又は-OCO-を表す。X~Xは、単結合、-O-、-NH-、又は-O-(CH-O-(mは1~8の整数である。)を表す。R1a~R1hはそれぞれ独立して、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、又は炭素数2~20のアルコキシアルキル基を表す。)
    The liquid crystal alignment agent according to claim 7, wherein the diamine represented by the formula (d2) is any diamine selected from the group consisting of the following formulas (d2-1) to (d2-6).
    Figure JPOXMLDOC01-appb-C000010
    (X p1 to X p8 are independently each of-(CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-, -CON (CH 3 )-,-. N (CH 3 ) represents CO-, -NH-, -O-, -CH 2 O-, -CH 2 OCO-, -COO-, or -OCO-. X s1 to X s4 are independent of each other. -O-, -CH 2 O-, -COO- or -OCO-. X a to X f are single bonds, -O-, -NH-, or -O- (CH 2 ) m- O- (M is an integer of 1 to 8). R 1a to R 1h independently represent an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or 2 to 20 carbon atoms. Represents the alkoxyalkyl group of.)
  10.  前記重合体(P)が、前記ジアミン成分と、下記式(T)で表されるテトラカルボン酸二無水物又はその誘導体を含有するテトラカルボン酸成分と、の重合反応により得られる請求項1~9のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000011
    (Xは、下記式(x-1)~(x-13)からなる群から選ばれるいずれかの構造を表す。)
    Figure JPOXMLDOC01-appb-C000012
    (R~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基を表す。R及びRは、それぞれ独立して、水素原子又はメチル基を表す。j及びkは、0又は1の整数であり、A及びAは、それぞれ独立して、単結合、エーテル(-O-)、カルボニル(-CO-)、エステル(-COO-)、フェニレン基、スルホニル基(-SO-)又はアミド基(-CONH-)を表し、2個のAは同一であっても良く、異なっていても良い。*1は一方の酸無水物基に結合する結合手であり、*2は他方の酸無水物基に結合する結合手である。)
    Claims 1 to 1 obtained by a polymerization reaction of the polymer (P) with the diamine component and a tetracarboxylic acid component containing a tetracarboxylic dianhydride represented by the following formula (T) or a derivative thereof. 9. The liquid crystal aligning agent according to any one of 9.
    Figure JPOXMLDOC01-appb-C000011
    (X represents any structure selected from the group consisting of the following formulas (x-1) to (x-13).)
    Figure JPOXMLDOC01-appb-C000012
    (R 1 to R 4 each independently contain a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, and a fluorine atom. Represents a monovalent organic group or phenyl group having 1 to 6 carbon atoms. R 5 and R 6 independently represent a hydrogen atom or a methyl group. J and k are integers of 0 or 1. There, A 1 and A 2 are each independently a single bond, ether (-O-), carbonyl (-CO-), ester (-COO-), a phenylene group, a sulfonyl group (-SO 2 -) or an amide group (-CONH-), 2 pieces of a 2 may be the same or may be different. * 1 is a bond that binds to one of the anhydride groups, * 2 and the other It is a bond that binds to the acid anhydride group of.)
  11.  前記式(T)のXが、(x-1)~(x-7)、(x-11)~(x-13)のいずれかである請求項10に記載の液晶配向剤。 The liquid crystal alignment agent according to claim 10, wherein X in the formula (T) is any one of (x-1) to (x-7) and (x-11) to (x-13).
  12.  前記ジアミン(1)が、全ジアミン成分中、1~100モル%含有される請求項1~11のいずれか1項に記載の液晶配向剤。 The liquid crystal alignment agent according to any one of claims 1 to 11, wherein the diamine (1) is contained in an amount of 1 to 100 mol% in the total diamine component.
  13.  前記ジアミン(s)が、全ジアミン成分中、1~99モル%含有される請求項6~12のいずれか1項に記載の液晶配向剤。 The liquid crystal alignment agent according to any one of claims 6 to 12, wherein the diamine (s) is contained in an amount of 1 to 99 mol% in the total diamine component.
  14.  前記液晶配向剤が、さらに前記ジアミン(1)を含まないジアミン成分とテトラカルボン酸成分とを用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(B)を含有する、請求項1~13のいずれか一項に記載の液晶配向剤。 The liquid crystal alignment agent is at least one selected from the group consisting of a polyimide precursor obtained by further using a diamine component containing no diamine (1) and a tetracarboxylic acid component, and a polyimide which is an imidized product of the polyimide precursor. The liquid crystal alignment agent according to any one of claims 1 to 13, which contains the polymer (B) of the species.
  15.  請求項1~14のいずれか1項に記載の液晶配向剤を用いて形成されてなる垂直配向用の液晶配向膜。 A liquid crystal alignment film for vertical alignment formed by using the liquid crystal alignment agent according to any one of claims 1 to 14.
  16.  請求項13に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display element provided with the liquid crystal alignment film according to claim 13.
  17.  請求項1~14のいずれか1項に記載の液晶配向剤を、導電膜を有する一対の基板上に塗布して塗膜を形成し、液晶分子の層を介して前記塗膜が相対するように対向配置して液晶セルを形成し、前記一対の基板の有する導電膜間に電圧を印加した状態で前記液晶セルに光照射する液晶表示素子の製造方法。 The liquid crystal alignment agent according to any one of claims 1 to 14 is applied onto a pair of substrates having a conductive film to form a coating film, so that the coating films face each other via a layer of liquid crystal molecules. A method for manufacturing a liquid crystal display element, which forms a liquid crystal cell so as to face each other and irradiates the liquid crystal cell with light in a state where a voltage is applied between the conductive films of the pair of substrates.
PCT/JP2021/024966 2020-07-14 2021-07-01 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element WO2022014345A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022536246A JP7315106B2 (en) 2020-07-14 2021-07-01 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR1020237003948A KR20230038504A (en) 2020-07-14 2021-07-01 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
CN202180062698.8A CN116615689B (en) 2020-07-14 2021-07-01 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-120867 2020-07-14
JP2020120867 2020-07-14

Publications (1)

Publication Number Publication Date
WO2022014345A1 true WO2022014345A1 (en) 2022-01-20

Family

ID=79554617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024966 WO2022014345A1 (en) 2020-07-14 2021-07-01 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP7315106B2 (en)
KR (1) KR20230038504A (en)
CN (1) CN116615689B (en)
TW (1) TW202214828A (en)
WO (1) WO2022014345A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004206091A (en) * 2002-12-09 2004-07-22 Hitachi Ltd Liquid crystal display and its manufacturing method
WO2009093709A1 (en) * 2008-01-25 2009-07-30 Nissan Chemical Industries, Ltd. Liquid-crystal alignment material, liquid-crystal alignment film, and liquid-crystal display element
JP2010106091A (en) * 2008-10-29 2010-05-13 Chisso Corp Liquid crystal aligning agent, liquid crystal aligned film and liquid crystal display element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4175826B2 (en) 2002-04-16 2008-11-05 シャープ株式会社 Liquid crystal display
CN105980357B (en) * 2014-02-13 2018-09-28 日产化学工业株式会社 Aligning agent for liquid crystal, diamines and polyimide precursor
JP6492509B2 (en) * 2014-07-28 2019-04-03 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element
JP7067472B2 (en) * 2016-06-14 2022-05-16 日産化学株式会社 Liquid crystal alignment agent and liquid crystal display element for coating BOA substrate or substrate with BCS
CN110869842B (en) * 2017-07-14 2022-06-03 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
KR20200079315A (en) * 2017-11-21 2020-07-02 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004206091A (en) * 2002-12-09 2004-07-22 Hitachi Ltd Liquid crystal display and its manufacturing method
WO2009093709A1 (en) * 2008-01-25 2009-07-30 Nissan Chemical Industries, Ltd. Liquid-crystal alignment material, liquid-crystal alignment film, and liquid-crystal display element
JP2010106091A (en) * 2008-10-29 2010-05-13 Chisso Corp Liquid crystal aligning agent, liquid crystal aligned film and liquid crystal display element

Also Published As

Publication number Publication date
JPWO2022014345A1 (en) 2022-01-20
CN116615689A (en) 2023-08-18
JP7315106B2 (en) 2023-07-26
TW202214828A (en) 2022-04-16
CN116615689B (en) 2024-03-19
KR20230038504A (en) 2023-03-20

Similar Documents

Publication Publication Date Title
WO2022176680A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2021200291A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7315106B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP7302744B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022107640A1 (en) Polymer composition, liquid crystal aligning agent, resin film, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element
WO2022270287A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2021261281A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022190896A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
TWI830451B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2022220199A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2023210532A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022181311A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2022168722A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element
WO2022234820A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023068085A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, and compound
WO2023008203A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, compound and polymer
WO2023074570A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022250007A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, diamine, and polymer
WO2023074392A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023074390A1 (en) Liquid crystal aligning agent, liquid crystal aligned film, liquid crystal display element, and compound
WO2023219112A1 (en) Novel diamine compound, polymer obtained using diamine, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2022154000A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023074569A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2022190692A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, diamine, and polymer
WO2021246431A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21843070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536246

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237003948

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 202180062698.8

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 21843070

Country of ref document: EP

Kind code of ref document: A1