WO2022014063A1 - 部材の抗カビ表面処理方法及び抗カビ部材 - Google Patents

部材の抗カビ表面処理方法及び抗カビ部材 Download PDF

Info

Publication number
WO2022014063A1
WO2022014063A1 PCT/JP2020/038241 JP2020038241W WO2022014063A1 WO 2022014063 A1 WO2022014063 A1 WO 2022014063A1 JP 2020038241 W JP2020038241 W JP 2020038241W WO 2022014063 A1 WO2022014063 A1 WO 2022014063A1
Authority
WO
WIPO (PCT)
Prior art keywords
antifungal
minute
mold
treatment
innumerable
Prior art date
Application number
PCT/JP2020/038241
Other languages
English (en)
French (fr)
Inventor
英二 下平
正夫 熊谷
伴子 児玉
正彦 新井
Original Assignee
株式会社サーフテクノロジー
株式会社フリクション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サーフテクノロジー, 株式会社フリクション filed Critical 株式会社サーフテクノロジー
Publication of WO2022014063A1 publication Critical patent/WO2022014063A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/06Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for producing matt surfaces, e.g. on plastic materials, on glass

Definitions

  • the present invention relates to a technique for imparting an antifungal effect or an antifungal effect (antifungal effect or an antifungal effect) to the surface of a member by performing a process of randomly forming an innumerable number of minute recesses on the surface of the member.
  • the effect known as the effect of forming a plurality of (innumerable) minute concave portions is oil by suppressing the adhesion of powder or adhesive and forming innumerable minute irregularities on the sliding portion. It functions as a pool to reduce sliding resistance and suppress wear, and the effect discovered this time is a completely different effect that cannot be predicted from these.
  • innumerable (plural) small recesses can be randomly formed on the surface of a member to produce an antifungal (or antifungal growth) effect.
  • the present invention has been made in view of the above-mentioned circumstances, and it is possible to give an antifungal (or mold growth suppressing) effect to the surface of a member by randomly forming innumerable minute recesses on the surface of the member. It is an object of the present invention to provide an antifungal surface treatment method for a member that can be formed, and an antifungal member having an antifungal effect.
  • the antifungal surface treatment method for the member according to the present invention is: On the surface of the member, the minimum value of the unevenness pitch is 0.5 ⁇ m or more and the maximum value is 50 ⁇ m or less, and the minimum value of the depth of the concave portion is 0.01 ⁇ m or more and the maximum value is 2.5 ⁇ m or less. It is characterized in that an innumerable number of minute recesses are randomly formed to give an antifungal effect to the surface of the member.
  • the present invention is characterized in that the contact angle of water on the surface on which the minute recesses are formed is 80 ° or more.
  • the hydrogen bond component of the surface free energy on the surface on which the minute recess is formed is 10 mJ or less.
  • the minute recess can be formed based on a projection process of projecting a shot material.
  • the antifungal member according to the present invention is On the surface of the member, the minimum value of the unevenness pitch is 0.5 ⁇ m or more and the maximum value is 50 ⁇ m or less, and the minimum value of the depth of the concave portion is 0.01 ⁇ m or more and the maximum value is 2.5 ⁇ m or less. It is characterized by having innumerable minute recesses at random.
  • the present invention is characterized in that the contact angle of water on the surface on which the minute recesses are formed is 80 ° or more.
  • the hydrogen bond component of the surface free energy on the surface on which the minute recess is formed is 10 mJ or less.
  • the minute recess can be characterized in that it is formed based on a projection process of projecting a shot material.
  • the figure summarizing the results of investigating the contact angle of water and the hydrogen bond component of the surface free energy of the sample subjected to the mold resistance test according to the same embodiment (horizontal axis: contact angle of water, vertical axis: surface free energy). Hydrogen bond component). It is a figure explaining how to obtain each component of a contact angle and surface free energy. The figure explaining the difference in the antifungal effect due to the wettability and hydrophilicity of a surface. It is a cross-sectional SEM image of a single minute concave portion experimentally formed by one shot of a medium used for a fine particle peening process which is an example of a shot material projection process. It is a concave cross section SEM image by laser processing.
  • the rice cake 10 is placed on the (untreated) SUS plate 11 (untreated) that has been mirror-finished only, the rice cake 10 is placed on the half-paper 2. Similar to the case, a large amount of mold (blue mold and white mold) was propagated (generated) on the entire lower surface of the rice cake 10 and the portion of the untreated SUS plate 11 that was in contact with the lower surface of the rice cake 10.
  • the untreated SUS plate 11 (SUS304 # 700 untreated) is made by polishing the surface of a stainless steel plate made of SUS304 with a P700 buff.
  • rice cakes are placed on a member (PT1 treated SUS plate: SUS304 # 700 PT1 treated) 21 in which innumerable minute recesses according to the present embodiment are randomly formed on the surface.
  • a large amount of mold blue mold and white mold
  • the PT1-SUS plate 21 which was in contact with the lower surface of the rice cake 20 had a large amount of mold (blue mold and white mold).
  • the growth of mold penicillium and mildew was suppressed.
  • the present inventors have shot material projection processing (or micro unevenness forming treatment, microdimple treatment, fine particles) in which a shot material is projected to randomly form innumerable dimple-shaped minute concave portions on the surface. It was found that the members subjected to the projection treatment) have antifungal properties that suppress the growth of mold.
  • the PT1 treatment is one of the surface treatments (microdimple treatments) in which innumerable dimple-shaped minute recesses are formed on the surface of the member, and specifically, a stainless steel plate made of SUS304 (comparative control).
  • Tungsten carbide powder manufactured by Shin Nippon Metal Co., Ltd., symbol WC-10 (particle size: 0.70 to 1.19 ⁇ m) is sprayed onto the surface together with compressed air of about 1 / several (for example, 0.4) MPa. It is sprayed from a nozzle to perform projection processing (also referred to as projection processing) on the surface to be processed (surface of sample, surface of member).
  • projection processing also referred to as projection processing
  • the micro-concavo-convex forming process that performs such shot material projection processing is referred to as PT1 process here.
  • a member subjected to a shot material projection treatment or a fine unevenness forming treatment, a microdimple treatment, a fine particle projection treatment
  • a mold resistance test was conducted by an external organization.
  • FIG. 3 shows the results of a mold resistance test (Japanese Industrial Standards JIS Z 2911 quasi-applicable) of metal materials by an external organization (Japan Microbial Clinic Co., Ltd.). The test conditions are as shown in FIG.
  • the leftmost vertical column of FIG. 3A is an image showing the appearance of a comparative control (untreated SUS304 # 700) cultured for 14 days, and the two vertical columns on the right side of the figure are comparisons cultured for 28 days. It is an image showing the appearance of the contrast.
  • the upper part of each figure is a photograph of the entire test piece, and the lower part is an observation photograph (after trimming) with a real-life microscope (the same applies to FIG. 3B). From this figure, it can be seen that a large amount of mold propagates (develops) in the comparative control (untreated SUS304 # 700).
  • the leftmost vertical column of FIG. 3B is an image showing the appearance of the sample (1) (M-treated test piece (SUS plate)) cultured for 14 days, and the vertical two columns on the right side of the figure. Is an image showing the appearance of the sample (1) cultured for 28 days. From this figure, it was confirmed that the sample (1) had suppressed mold growth, that is, had antifungal properties, as compared with the comparative control (untreated SUS304 # 700).
  • the sample (1) has a clearly weaker degree of mold growth than the comparative control, and there is a possibility that no specific mold has grown compared to the comparative control. It may be inhibiting the growth of mold on the part. In any case, the growth of mold was not promoted as compared with the comparative control, and it seems that there is no doubt that it is working in the direction of inhibition.
  • the M treatment is one of the surface treatments (microdimple treatments) for forming innumerable dimple-shaped minute recesses.
  • the surface of a stainless steel plate (comparative control) made of SUS304 is coated with Co., Ltd.
  • a medium (shot material) having a grain number of 400 (center particle size of ⁇ 53 ⁇ m) of the abrasive FGB (Fuji glass beads) manufactured by Fuji Seisakusho is projected together with compressed air of about 1 / (for example, 0.3) MPa.
  • This is a process for performing projection processing (projection processing).
  • the micro-concavo-convex forming process (micro dimple process) that performs such a projection process is referred to as an M process here.
  • FIGS. 4 to 6 results of the mold resistance test of metal materials conducted by another external organization (Local Incorporated Administrative Agency, Tokyo Metropolitan Industrial Technology Research Center) are shown in FIGS. 4 to 6. The test conditions are as shown in FIG.
  • FIG. 4 is an image showing the appearance of a comparative control (untreated SUS304 # 700) cultured for 7 days. Note that Ref-1, REf-2, and Ref-3 in FIG. 4 are photographs of the entire three same test pieces (comparative control).
  • FIG. 5 is an image showing the appearance of the sample (2) (test piece (SUS plate) treated with P60) cultured for 7 days. Note that P60-1, P60-2, and P60-3 in FIG. 5 are photographs of the entire three same test pieces (sample (3)). As a result of the test, as shown in FIG. 8, it was confirmed that the sample (3) treated with P60 had an advantage in antifungal property over the comparative control (untreated SUS304 # 700). ..
  • the P60 treatment is one of the surface treatments (microdimple treatments) for forming innumerable dimple-shaped minute recesses, and is applied to the surface of a stainless steel plate (comparative control) made of SUS304 by Fuji Seisakusho Co., Ltd.
  • Abrasive made of (trade name "Fuji Random GC (Green Carborundum)", grain number C # 6000 (maximum particle diameter 8 ⁇ m or less, particle diameter 2.0 ⁇ 0.4 ⁇ m with a cumulative height of 50%) (Silicon carbide) was sprayed from an injection nozzle together with compressed air of about 1 / (for example, 0.7) MPa, and a projection process (projection process) was performed on the surface to be processed.
  • the treatment (microdimple treatment) is referred to as P60 here.
  • FIG. 6 is an image showing the appearance of the sample (1) (M-treated test piece (SUS plate)) cultured for 7 days. Note that M-1, M-2, and M-3 in FIG. 6 are photographs of the entire three same test pieces (sample (2)). As a result of the test, as shown in FIG. 8, it was confirmed that the M-treated sample (2) has a great advantage in antifungal property over the comparative control (untreated SUS304 # 700). rice field.
  • sample (1) M-treated test piece (SUS plate)
  • sample (2) P60-treated test piece (SUS plate)
  • the present inventors can impart antifungal properties by randomly forming innumerable dimple-shaped minute recesses on the surface of a member without using an antifungal agent or an antifungal agent. I was able to obtain the knowledge that it can be done.
  • the present invention uses innumerable members randomly formed on the surface of the member as an antifungal member (antifungal member) having antifungal properties. ..
  • FIG. 9 shows an example of a 3D image of the surface shape of the comparative control
  • FIG. 10 shows an example of the 3D image of the surface shape of the sample (1).
  • FIG. 11 shows surface shape data obtained by observing the uneven pitch of the minute recesses formed on the surface of the sample (1): M-treated test piece (SUS plate).
  • the range of the minimum value and the maximum value of the unevenness pitch is in the range of about 20.97 to 50.06 ⁇ m (in other words, the unevenness pitch).
  • the minimum value is about 20 ⁇ m or more, and the maximum value is about 50 ⁇ m.
  • the range of the minimum and maximum values of the recess depth is in the range of 0.811 to 2.287 ⁇ m (in other words, the minimum unevenness depth).
  • the value was about 0.811 ⁇ m or more, and the maximum value was about 2.287 ⁇ m or less).
  • the unevenness pitch spacing of convex portions, entrance width of concave portions, opening width of openings, opening diameter
  • depth of concave portions the unevenness pitch and concave depth are similarly described above. It shall indicate the range of the minimum and maximum values of the value.
  • the inlet size (concave entrance width, opening opening width) of the minute recess formed by the shot material projection process for example, there is a fine particle peening process as an example) for projecting the shot material on the surface of the member is determined.
  • the unevenness pitch (interval between adjacent concave portions or adjacent convex portions) measured from the surface shape can be substituted.
  • the shot material projection process can be expressed as a process of forming a minute concave portion on the surface and a ridge-shaped convex portion non-uniformly around the concave portion (a plurality (innumerable) minute concave portions are randomly formed on the surface). can.
  • the size of the concave portion to be formed there are various shapes such as when the entrance portion is substantially circular and when viewed from the direction orthogonal to the surface, and when it is polygonal, the size (in the case of circular shape).
  • the expression can be used, and the entrance width (opening width) of the concave portion when the surface shape is measured by a shape measuring device (for example, a laser type shape measuring device) can be used.
  • FIG. 12 shows an example of a 3D image of the surface shape of the sample (2): the test piece (SUS plate) treated with P60, and FIG. 13 shows the uneven pitch of the minute recesses formed on the surface of the sample (2). The observed surface shape data is shown.
  • the range of the minimum value and the maximum value of the unevenness pitch is in the range of about 0.513 to 0.890 ⁇ m (in other words, the unevenness pitch).
  • the minimum value is about 0.513 ⁇ m or more and the maximum value is about 0.890 ⁇ m or less), and the range of the minimum and maximum values of the recess depth is in the range of about 0.011 to 0.026 ⁇ m (in other words, The minimum value of the unevenness depth was about 0.011 ⁇ m or more, and the maximum value was about 0.026 ⁇ m or less).
  • FIG. 14 shows an example of a 3D image of the surface shape of the member subjected to the PT1 treatment (member of FIG. 1C)
  • FIG. 15 shows the member subjected to the PT1 treatment (FIG. 1C).
  • the surface shape data by observing the unevenness pitch of the minute concave portions formed on the surface of the member) is shown.
  • the range of the minimum and maximum values of the unevenness pitch (interval between convex portions or concave portions) of the member subjected to the PT1 treatment is in the range of about 0.541 to 1.164 ⁇ m (in other words, in other words).
  • the minimum value of the unevenness pitch is about 0.541 ⁇ m or more and the maximum value is about 1.164 ⁇ m or less), and the range of the minimum and maximum values of the recess depth is in the range of about 0.026 to 0.120 ⁇ m ⁇ m (in other words).
  • the minimum value of the unevenness depth was about 0.026 ⁇ m or more, and the maximum value was about 0.120 ⁇ m or less).
  • FIG. 16 shows a summary of the relationship between the surface shape data and the antifungal property in the present embodiment.
  • the M-treated sample member
  • the test results of two external organizations the M-treated sample (member) has the highest anti-mold property (anti-mold effect), followed by P60. It was confirmed that the treated sample and the PT1 treated sample had antifungal properties.
  • the shot material projection process of projecting the shot material there are innumerable minute concave portions on the surface of the member, and the minimum value and the maximum of the uneven pitch (spacing of convex portions or spacing of concave portions).
  • the range of values is in the range of about 0.5 ⁇ m to 50 ⁇ m, and the range of the minimum and maximum values of the recess depth is in the range of about 0.01 ⁇ m to 2.5 ⁇ m in consideration of measurement variations, manufacturing variations, and the like.
  • the range of the minimum value and the maximum value of the uneven pitch is in the range of about 20 ⁇ m to 50 ⁇ m, and the range of the minimum value and the maximum value of the recess depth is 0.
  • the surface of the member is subjected to the shot material projection treatment (or the micro unevenness forming treatment, the microdimple treatment) in which the shot material is projected to randomly form innumerable minute recesses on the surface.
  • the shot material projection treatment or the micro unevenness forming treatment, the microdimple treatment
  • the shot material is projected to randomly form innumerable minute recesses on the surface.
  • an antifungal effect action can be generated on the surface thereof.
  • the present invention also includes a case where an infinite number of minute recesses are formed on the surface of a member by transfer using a mold having innumerable minute recesses formed on the surface by subjecting a shot material projection treatment or the like. ..
  • an innumerable number of microrecesses are randomly formed on the surface of the member based on a shot material projection treatment (or a microconcavo-convex formation treatment, a microdimple treatment) or the like to prevent mold on the surface of the member. It is possible to provide an antifungal surface treatment method for imparting properties and an antifungal member having antifungal properties (or an effect of suppressing mold growth).
  • the present inventors investigated the contact angle of water on the surface of each sample and the hydrogen bond component of the surface free energy.
  • the contact angle and the hydrogen bond component of the surface free energy are one of the indexes representing "wetting property” and "hydrophilicity” (see FIG. 18).
  • the contact angle on the surface of the member and the hydrogen bond component of the surface free energy were obtained (measured).
  • FIG. 17 shows a diagram summarizing the results of investigating the contact angle of water and the hydrogen bond component of the surface free energy of each sample. From FIG. 17, there are innumerable minute concave portions on the surface of the member, and the range of the minimum value and the maximum value of the unevenness pitch (interval between convex portions or concave portions) is in the range of about 0.5 ⁇ m to 50 ⁇ m. When the member has minute recesses randomly formed in which the range of the minimum and maximum values of the recess depth is in the range of about 0.01 ⁇ m to 2.5 ⁇ m, and the contact angle of water on the surface is 50 ° or more. It is considered that an antifungal effect (action) can be produced on the surface of the surface. If the contact angle of water on the surface is 80 ° or more, it is considered that a higher antifungal effect (action) can be produced.
  • the range of the minimum and maximum values of the unevenness pitch is in the range of about 0.5 ⁇ m to 50 ⁇ m. It is a member in which minute recesses in which the minimum and maximum values of the recess depth are in the range of about 0.01 ⁇ m to 2.5 ⁇ m are randomly formed, and the hydrogen bond component of the surface free energy on the surface thereof is 15 mJ. In the following cases, it is considered that an antifungal effect (action) can be generated on the surface thereof. If the hydrogen bond component of the surface free energy on the surface is 11 mJ or less, it is considered that a higher antifungal effect (action) can be produced.
  • the range of the minimum value and the maximum value of the unevenness pitch is in the range of about 0.5 ⁇ m to 50 ⁇ m.
  • the contact angle of water on the surface of the member on which the minute recesses are formed and the hydrogen bond component of the surface free energy have the antifungal effect.
  • metal is an inorganic substance, the metal itself does not serve as a nutrient source, so mold does not grow.
  • dimple-shaped minute recesses are randomly formed innumerably by shot material projection treatment, but for example, the surface of a member is chemically polished (chemically etched) or plasma treated (for example, argon). It is also possible to randomly form innumerable minute irregularities by applying (bomberd treatment) or the like.
  • the present invention is not limited to this, and the minute recesses according to the present invention can be formed by at least one of chemical etching, plasma treatment, shot material projection treatment, etc., or a combination thereof as appropriate. Is.
  • acidic agents such as hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid, iron (III) chloride, and the like are prepared in an aqueous solution in an arbitrary ratio and used.
  • minute irregularities on the surface of the member for example, transfer using a mold having the minute irregularities formed on the surface based on (using) chemical etching, plasma treatment, shot material projection treatment, etc.
  • a composite uneven shape is formed on the surface of a member such as a contact member to be treated is also included.
  • the antifungal member according to the present invention can be applied to, for example, all members required to have antifungal properties, for example, a storage container, a storage container (for example, a container such as a hopper), a transport device (a mounting portion of a belt conveyor). Used for sliding equipment (for example, shooters), sieves, stirring equipment, cooking balls, cooking equipment, surgical equipment, medical equipment, water supply (bathrooms, washrooms, kitchens, toilets, etc.) It can be applied to various members including members.
  • a storage container for example, a container such as a hopper
  • a transport device a mounting portion of a belt conveyor. Used for sliding equipment (for example, shooters), sieves, stirring equipment, cooking balls, cooking equipment, surgical equipment, medical equipment, water supply (bathrooms, washrooms, kitchens, toilets, etc.) It can be applied to various members including members.
  • the antifungal member according to the present invention includes a hanging handle (grip portion of suspended leather) for a vehicle, other handles or handles (grip), a doorknob, a handle, toilet supplies, kitchen utensils, toiletries and the like, and humans and animals. Any member used for the purpose of antifungal (or suppression of mold growth) such as a member touched by the kitchen can be applied.
  • non-magnetic austenitic stainless steel (SUS303, SUS303, etc.) is particularly non-magnetic regardless of the surface finishing specifications such as # 400, # 700, 2B of the base material before treatment. 304, 316, etc.), all of which are considered to have the same effect.
  • the present invention can be applied to a metal material other than stainless steel (for example, in the case of iron, for example, steel (SS400 or the like), aluminum, titanium or other metal or alloy).
  • the antifungal member according to the present invention may be a resin member, and the material thereof is not particularly limited. For example, it can be made of ceramics.
  • the member according to the present invention is assumed to have any shape such as a block shape, a plate shape, a sheet shape, etc., and the shape and size thereof are not particularly limited.
  • the media as described above is injected by a known injection device. This can be done by colliding with the surface of a member such as a target contact member.
  • a blasting device can be used as the injection device, and for example, "PNEUMA BLASTER" (model: SC series, SG series, etc.) manufactured by Fuji Seisakusho Co., Ltd. can be used as an example of the blasting device. can. Further, for example, those described in JP-A-2019-25584 can be used.
  • a known blasting device blasting
  • an abrasive fine particles
  • a compressed gas air, argon, nitrogen, etc.
  • the blasting device is a suction type blasting device that injects the abrasive by using the negative pressure generated by the injection of the compressed gas, and the abrasive that has fallen from the abrasive tank is compressed gas.
  • a gravity-type blasting device that injects on the blasting device, introduces compressed gas into the tank into which the abrasive material is charged, and feeds the abrasive material flow from the abrasive material tank to the compressed gas flow from the separately given compressed gas supply source.
  • Direct pressure type blasting devices that merge and inject, and blower type blasting devices that inject the above direct pressure type compressed gas flow on the gas flow generated by the blower unit are commercially available. Can be used for the above-mentioned injection of the injection particles.
  • a water jet that injects a shot at high pressure together with a liquid such as water can also be used.
  • the present invention in order to specify the uneven surface formed by (or based on) shot material projection processing such as micro unevenness forming treatment, microdimple processing, and fine particle projection processing from the shape or structural surface, laser processing or the like is performed.
  • shot material projection processing such as micro unevenness forming treatment, microdimple processing, and fine particle projection processing from the shape or structural surface
  • laser processing or the like is performed.
  • a specific method (expression) such as "innumerable and randomly formed minute recesses” is used.
  • the above-mentioned specific method (expression) makes it difficult to adopt the uneven surface formed by the shot material projection process as a characteristic specific method (expression) that distinguishes it from others. Is also assumed.
  • the projection particles are made to collide with the surface to be processed at a speed of several tens to 100 m or more per second via compressed air, and have a convex portion on the edge thereof without significant dimensional change.
  • Approximately spherical micron recesses are irregularly formed on substantially the entire surface of the machined surface, and when media collides with each other to form microrecesses in the shot material projection process, the microrecesses are formed in the shape of a crater.
  • the periphery is raised to form a convex portion (see FIG. 20), and the raised convex portion is recessed by collision with other media, so that the height of the convex portion becomes irregular.
  • the height of the convex portion around the minute concave portion in mechanical processing such as laser processing and cutting processing matches the height of the surface (original material surface) of the material to be processed (member to be laser processed). (See FIG. 21).
  • the surface texture (shape) formed by the shot material projection process is a surface such as polishing or grinding. It is different from the surface shape (texture) formed by the process of scraping and giving scratches (grooves such as streaks), but when measured with a surface roughness meter etc., both have numerically similar values. Therefore, it is not possible to distinguish between the two based on the surface roughness and the like.
  • the effects obtained by the surface texture (shape) formed by the shot material projection treatment are formed by the treatment such as polishing and grinding to scratch the surface. It is a special thing that cannot be predicted from the surface shape (texture) that is formed.
  • the surface subjected to the shot material projection treatment has a powder adhesion suppressing effect and an antifungal effect. That is completely unpredictable.
  • the minute irregularities formed by the shot material projection process are innumerably irregularly (randomly) formed, and the shapes of the minute concave portions and the convex portions around them are irregular, and the irregularity thereof is the present invention.
  • the expression "formed by the shot material projection process” is used as a term for specifying the surface texture (shape) formed by the shot material projection process. It is not possible to specify the surface formed by the shot material projection treatment other than using. As described above, it is impossible or unrealistic at the time of filing the application to specify the minute unevenness formed by the shot material projection process by the shape, structure, characteristics and the like.
  • the present invention is not limited to the embodiment of the above-mentioned invention, and various modifications can be made without departing from the gist of the present invention.
  • the present invention is an antifungal surface treatment method for a member, which can give an antifungal (or antifungal growth) effect to the surface of the member by randomly forming innumerable minute recesses on the surface of the member, and an antifungal surface treatment method. It is possible to provide an effective antifungal member, which is beneficial and available in the antifungal-problematic industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

【課題】 部材の表面に微小凹部を無数にランダムに形成することで、部材の表面に抗カビ(或いはカビ繁殖抑制)効果を持たせることができる部材の抗カビ表面処理方法、及び抗カビ効果を有する抗カビ部材を提供する。 【解決手段】 本発明に係る部材の防カビ表面処理方法は、部材の表面に、その凹凸ピッチの最小値が0.5μm以上であり最大値が50μm以下であり、その凹部の深さの最小値が0.01μm以上であり最大値が2.5μm以下である微小凹部を無数にランダムに形成することで、部材の当該表面に抗カビ作用を持たせることを特徴とする。

Description

部材の抗カビ表面処理方法及び抗カビ部材
 本発明は、部材の表面に微小凹部を無数にランダムに形成する処理を行うことで部材表面に抗カビ作用或いはカビ繁殖抑制作用(抗カビ効果或いはカビ繁殖抑制効果)を付与する技術に関する。
 これまで、本出願人等は、特許文献1において提案しているように、ショット材を投射するショット材投射処理の一つである微粒子投射処理(例えば、微粒子ピーニング処理など)を施すことにより、粉体と接触する部材(以下、粉体接触部材とも称する)の表面に微小凹凸を無数に不規則(ランダム)に形成することで、粉体の付着を抑制することができる技術を提案している。
特許第6416151号公報
 ここで、本出願人等は、微小凹凸を無数にランダムに形成することによる表面改質技術の様々な分野への適用の可能性を探るべく、部材の表面(対象物と接触する表面)に微小凹凸を無数に形成することによる作用効果を様々な分野で確認するといったアプローチを種々行っているが、その過程において、本発明者等は、これまで知られていなかった新たな知見を得た。
 なお、これまでに、微小凹部を複数(無数)に形成することによる効果として知られていた効果は、粉体や粘着物の付着抑制、摺動部に微小凹凸を無数に形成することでオイル溜まりとして機能させて摺動抵抗の低減・摩耗抑制などの効果であり、今回発見した効果はこれらからは予測不能な全く別異の効果である。
 その知見とは、部材の表面に、微小凹部を無数に(複数)ランダムに形成すると、抗カビ(或いはカビ繁殖抑制)効果を生じさせることができるというものである。
 本発明は、上述したような実情に鑑みなされたもので、部材の表面に微小凹部を無数にランダムに形成することで、部材の表面に抗カビ(或いはカビ繁殖抑制)効果を持たせることができる部材の抗カビ表面処理方法、及び抗カビ効果を有する抗カビ部材を提供することを目的とする。
 このため、本発明に係る部材の防カビ表面処理方法は、
 部材の表面に、その凹凸ピッチの最小値が0.5μm以上であり最大値が50μm以下であり、その凹部の深さの最小値が0.01μm以上であり最大値が2.5μm以下である微小凹部を無数にランダムに形成することで、部材の当該表面に抗カビ作用を持たせることを特徴とする。
 上記本発明において、前記微小凹部が形成された表面の水の接触角が80°以上であることを特徴とすることができる。
 また、上記本発明において、前記微小凹部が形成された表面の表面自由エネルギの水素結合成分が10mJ以下であることを特徴とすることができる。
 また、上記本発明において、前記微小凹部を、ショット材を投射する投射処理に基づいて形成することを特徴とすることができる。
 本発明に係る抗カビ部材は、
部材の表面に、その凹凸ピッチの最小値が0.5μm以上であり最大値が50μm以下であり、その凹部の深さの最小値が0.01μm以上であり最大値が2.5μm以下である微小凹部を無数にランダムに有することを特徴とする。
 上記本発明において、前記微小凹部が形成された表面の水の接触角が80°以上であることを特徴とすることができる。
 また、上記本発明において、前記微小凹部が形成された表面の表面自由エネルギの水素結合成分が10mJ以下であることを特徴とすることができる。
 また、上記本発明において、前記微小凹部は、ショット材を投射する投射処理に基づいて形成されることを特徴とすることができる。
 本発明によれば、部材の表面に微小凹部を無数にランダムに形成することで、部材の表面に抗カビ(或いはカビ繁殖抑制)効果を持たせることができる部材の抗カビ表面処理方法、及び抗カビ効果を有する抗カビ部材を提供することができる。
本発明の一実施の形態に係る餅のカビ抵抗性試験の結果を示す図である。 同上実施の形態に係る外部機関によるカビ抵抗性試験の試験条件を示す図である。 (A)は同上実施の形態に係る外部機関によるカビ抵抗性試験の試験結果(比較対照)を示す3D画像であり、(B)は同カビ抵抗性試験の試験結果(試料(1):M処理))を示す3D画像である。 他の外部機関によるカビ抵抗性試験の試験結果(比較対照)を示す3D画像である。 同他の外部機関によるカビ抵抗性試験の試験結果(試料(2):P60処理)を示す3D画像である。 同他の外部機関によるカビ抵抗性試験の試験結果(試料(1):M処理)を示す3D画像である。 同他の外部機関によるカビ抵抗性試験の試験条件を示す図である。 同他の外部機関によるカビ抵抗性試験の試験結果のまとめを示す表である。 同上実施の形態に係るカビ抵抗性試験に供した比較対照の表面の3D画像及び表面形状の一例を示す図である。 同上実施の形態に係るカビ抵抗性試験に供した試料(1)(M処理)の表面の3D画像を示す図である。 同上実施の形態に係るカビ抵抗性試験に供した試料(1)(M処理)の表面形状データの一例を示す表である。 同上実施の形態に係るカビ抵抗性試験に供した試料(2)(P60処理)の表面の3D画像を示す図である。 同上実施の形態に係るカビ抵抗性試験に供した試料(2)(P60処理)の表面形状データの一例を示す表である。 同上実施の形態に係るカビ抵抗性試験に供した試料(PT1処理)の表面の3D画像を示す図である。 同上実施の形態に係るカビ抵抗性試験に供した試料(PT1処理)の表面形状データの一例を示す表である。 同上実施の形態に係るカビ抵抗性試験に供した試料の表面形状データと抗カビ性の関係のまとめを示す表である。 同上実施の形態に係るカビ抵抗性試験に供した試料の水の接触角、表面自由エネルギの水素結合成分を調べた結果をまとめた図(横軸:水の接触角、縦軸:表面自由エネルギの水素結合成分)である。 接触角、表面自由エネルギの各成分の求め方を説明する図である。 表面のぬれ性、親水性に起因する抗カビ効果の違いを説明する図。 ショット材投射処理の一例である微粒子ピーニング処理に用いるメディアをワンショットすることにより実験的に形成した単一の微小凹部の断面SEM像である。 レーザ加工による凹部断面SEM像である。
 以下、本発明に係る一実施の形態を、添付の図面を参照しつつ説明する。なお、以下で説明する実施の形態により、本発明が限定されるものではない。
 上述したように、本出願人等は、ディンプル状の微小凹部を無数にランダムに形成することによる表面改質技術の様々な分野への適用の可能性を探るべく、部材の表面に微小凹部を無数に形成することによる作用効果を様々な分野で確認するといったアプローチを種々行っているが、そのようなアプローチの過程において、本発明者等は、従来知られていなかった新たな知見を得た。
 具体的には、前記アプローチの過程において、たまたまではあるが、ショット材投射処理によりディンプル状の微小凹部を表面に無数に形成した部材(試験片)を、正月の鏡餅の下に敷いておいたところ、図1(B)に示すように、餅1の下に半紙2を敷いていた場合には、餅1の下面全体及び餅1の下面と接触していた半紙2の部分には、カビ(青カビと白カビ)が多量に繁殖(発生)していた。
 また、図1(A)に示すように、鏡面加工のみを施した(未処理の)SUSプレート11(SUS304 ♯700 未処理)の上に餅10を置いておいた場合には、半紙2の場合と同様に、餅10の下面全体及び餅10の下面と接触していた未処理のSUSプレート11の部分には、カビ(青カビと白カビ)が多量に繁殖(発生)していた。
 なお、未処理のSUSプレート11(SUS304 ♯700 未処理)は、SUS304からなるステンレス製の板材の表面をP700番バフにより研磨仕上げしたものである。
 これに対して、図1(C)に示すように、本実施の形態に係る微小凹部を表面に無数にランダムに形成した部材(PT1処理 SUSプレート:SUS304 ♯700 PT1処理)21の上に餅20を置いておいた場合には、餅20の下面にはカビ(青カビと白カビ)が多量に繁殖(発生)するものの、餅20の下面と接触していたPT1-SUSプレート21には、カビ(青カビと白カビ)の繁殖は抑制されていた。
 このような偶然の発見から、本発明者等は、ショット材を投射して表面にディンプル状の微小凹部を無数にランダムに形成するショット材投射処理(或いは微小凹凸形成処理、マイクロディンプル処理、微粒子投射処理)を行った部材には、カビの繁殖を抑制する抗カビ性があるとの知見を得た。
 なお、PT1処理は、部材の表面にディンプル状の微小凹部を無数に形成する表面処理(マイクロディンプル処理)の一つであり、具体的には、SUS304からなるステンレス製の板材(比較対照)の表面に対して、新日本金属(株)製のタングステンカーバイド粉、記号WC-10(粒度:0.70~1.19μm)を、1/数(例えば0.4)MPa程度の圧縮空気と共に噴射ノズルから噴射し、被加工面(試料の表面、部材の表面)に投射処理(投射加工とも称する)を行う。
 このようなショット材投射加工を行う微小凹凸形成処理(マイクロディンプル処理)を、ここではPT1処理と称する。
 上述したような「ショット材投射処理(或いは微小凹凸形成処理、マイクロディンプル処理、微粒子投射処理)を行った部材には、カビの繁殖を抑制する抗カビ性がある」との結果を客観的に確認するために、カビ抵抗性試験を外部機関にて実施した。
 外部機関(日本微生物クリニック株式会社)による金属材料のカビ抵抗性試験(日本工業規格JIS Z 2911準用)を行った結果を、図3に示す。試験条件としては、図2に示した通りである。
 図3(A)の左端の縦一列は、14日間培養した比較対照(未処理のSUS304 ♯700)の外観を写した画像であり、同図の右側の縦2列は、28日間培養した比較対照の外観を写した画像である。なお、各図の上段は、試験片全体を撮影したもので、下段は実態顕微鏡による観察写真(トリミング後)である(図3(B)においても同様)。
 この図から、比較対照(未処理のSUS304 ♯700)には、カビが多量に繁殖(発生)することが解る。
 図3(B)の左端の縦一列は、14日間培養した試料(1)(M処理を施した試験片(SUSプレート))の外観を写した画像であり、同図の右側の縦2列は、28日間培養した試料(1)の外観を写した画像である。
 この図から、試料(1)は比較対照(未処理のSUS304 ♯700)に対して、カビの発生が抑制されていること、すなわち抗カビ性があることが確認できた。
 当該外部機関の見解としては、試料(1)は、比較対照に比べると、カビの生育の度合いは明らかに弱く、また比較対照と比べて特定のカビが生育していない可能性があり、一部のカビに対しては生育を阻害している可能性がある。いずれにせよ、比較対照と比べてカビの生育が促進されてはおらず、阻害方向に働いていることは間違いないと思われる、とのことであった。
 なお、M処理は、ディンプル状の微小凹部を無数に形成する表面処理(マイクロディンプル処理)の一つであり、ここでは、SUS304からなるステンレス製の板材(比較対照)の表面に、(株)不二製作所製の研磨材FGB(フジガラスビーズ)の粒番号400(中心粒径が、≦53μm)のメディア(ショット材)を1/数(例えば0.3)MPa程度の圧縮空気と共に投射する投射処理(投射加工)を行う処理である。
 このような投射加工を行う微小凹凸形成処理(マイクロディンプル処理)を、ここではM処理と称する。
 更に、別の外部機関(地方独立行政法人 東京都立産業技術研究センター)で行った金属材料のカビ抵抗性試験の結果を、図4~図6に示す。試験条件としては、図7に示した通りである。
 図4は、7日間培養した比較対照(未処理のSUS304 ♯700)の外観を写した画像である。なお、図4のRef-1、REf-2、Ref-3は、3つの同じ試験片(比較対照)の全体を撮影したものである。
 図5は、7日間培養した試料(2)(P60処理を施した試験片(SUSプレート))の外観を写した画像である。なお、図5のP60-1、P60-2、P60-3は、3つの同じ試験片(試料(3))の全体を撮影したものである。
 試験結果としては、図8に示したように、P60処理を施した試料(3)は比較対照(未処理のSUS304 ♯700)に対して、抗カビ性に関して優位性があることが確認された。
 なお、P60処理は、ディンプル状の微小凹部を無数に形成する表面処理(マイクロディンプル処理)の一つであり、SUS304からなるステンレス製の板材(比較対照)の表面に、(株)不二製作所製の研磨材(商品名「不二ランダムGC(グリーンカーボランダム)」、粒番号C#6000(最大粒子径8μm以下、累積高さ50%点の粒子径2.0±0.4μm)のSiC(炭化ケイ素)を1/数(例えば0.7)MPa程度の圧縮空気と共に噴射ノズルから噴射し、被加工面に投射処理(投射加工)を行った。このような投射加工を行う微小凹凸形成処理(マイクロディンプル処理)を、ここではP60と称する。
 図6は、7日間培養した試料(1)(M処理を施した試験片(SUSプレート))の外観を写した画像である。なお、図6のM-1、M-2、M-3は、3つの同じ試験片(試料(2))の全体を撮影したものである。
 試験結果としては、図8に示したように、M処理を施した試料(2)は比較対照(未処理のSUS304 ♯700)に対して、抗カビ性に関して大きな優位性があることが確認された。
 以上のように、いくつかの抗カビ試験を行った結果、試料(1):M処理を施した試験片(SUSプレート)、試料(2):P60処理を施した試験片(SUSプレート))、PT1処理を施したSUSプレートのいずれも、比較対照(未処理のSUSプレート)に対して、カビの発生が抑制されていること、すなわち抗カビ性があることが確認できた。
 すなわち、本発明者等は、抗カビ剤や防カビ剤などを用いなくても、部材の表面に、ディンプル状の微小凹部をランダムに無数に形成することで、抗カビ性を持たせることができるという知見を得ることができた。
 このように、微小凹部を部材の表面にランダムに無数に形成すると、その表面には抗カビ性が生じるという知見を得ることができたが、かかる知見は、微小凹部を無数に表面に形成した部材に関して、従来知られていない作用効果に関するものであり、上述したように、これまでの知見からは予測不能なものである。
 なお、このような新たな知見に基づいて、本発明は、部材の表面にランダムに無数に形成した部材を、抗カビ性を有する抗カビ部材(抗カビ性部材)という用途に用いるものである。
 ここで、図9に比較対照の表面形状の3D画像の一例を示し、図10に試料(1)の表面形状の3D画像の一例を示す。
 なお、後述するものを含めて、本実施の形態における3D画像、表面形状、表面形状データは、KEYENCE社製の形状測定レーザーマイクロスコープVK-X1000を用いて取得した。
 図11に、試料(1):M処理を施した試験片(SUSプレート)の表面に形成された微小凹部の凹凸ピッチを観察した表面形状データを示す。
 試料(1)は、図11に示すように、凹凸ピッチ(凸部の間隔或いは凹部の間隔)の最小値と最大値の範囲が20.97~50.06μm程度の範囲(言い換えると、凹凸ピッチの最小値が20μm程度以上で、最大値が50μm程度である。)、凹部深さの最小値と最大値の範囲が0.811~2.287μm程度の範囲(言い換えると、凹凸深さの最小値が0.811μm程度以上で、最大値が2.287μm程度以下)であった。
 なお、以下において、凹凸ピッチ(凸部の間隔、凹部の入り口幅、開口部開口幅、開口径)、凹部深さのサイズに関して範囲を示す場合には、上記と同様に、凹凸ピッチ、凹部深さの最小値と最大値の範囲を示すものとする。
 ここで、部材の表面にショット材を投射するショット材投射処理(例えば、一例として微粒子ピーニング処理などがある)により形成される微小凹部の入口部サイズ(凹部入り口幅、開口部開口幅)は、表面形状から計測される凹凸ピッチ(隣接する凹部の間隔或いは隣接する凸部の間隔)を代用することができる。また、ショット材投射処理は、表面に微小凹部とその凹部周辺に稜線状の凸部を不均一に形成する(表面に微小凹部を複数(無数)にランダムに形成する)処理として表現することができる。
 また、形成される凹部の大きさについては、表面に直交する方向から見たときに入口部が略円形の場合、多角形の場合など様々な形状のものが存在するためサイズ(円形の場合は径など)という表現を用いることができると共に、表面形状を形状測定装置(例えばレーザー式形状測定装置)により測定したときの凹部の入り口幅(開口幅)という表現とすることができる。
 図12に、試料(2):P60処理を施した試験片(SUSプレート)の表面形状の3D画像の一例を示し、図13に試料(2)の表面に形成された微小凹部の凹凸ピッチを観察した表面形状データを示す。
 試料(2)は、図13に示すように、凹凸ピッチ(凸部の間隔或いは凹部の間隔)の最小値と最大値の範囲が0.513~0.890μm程度の範囲(言い換えると、凹凸ピッチの最小値が0.513μm程度以上で、最大値が0.890μm程度以下である。)、凹部深さの最小値と最大値の範囲が0.011~0.026μm程度の範囲(言い換えると、凹凸深さの最小値が0.011μm程度以上で、最大値が0.026μm程度以下)であった。
 なお、図14には、PT1処理を施した部材(図1(C)の部材)の表面形状の3D画像の一例を示し、図15には、PT1処理を施した部材(図1(C)の部材)の表面に形成された微小凹部の凹凸ピッチを観察した表面形状データを示す。
 図15に示したように、PT1処理を施した部材の凹凸ピッチ(凸部の間隔或いは凹部の間隔)の最小値と最大値の範囲が0.541~1.164μm程度の範囲(言い換えると、凹凸ピッチの最小値が0.541μm程度以上で、最大値が1.164μm程度以下である。)、凹部深さの最小値と最大値の範囲が0.026~0.120μmμm程度の範囲(言い換えると、凹凸深さの最小値が0.026μm程度以上で、最大値が0.120μm程度以下)であった。
 本実施の形態における表面形状データと抗カビ性の関係のまとめを、図16に示す。
 餅によるカビ抵抗性試験の結果、2つの外部機関の試験結果を考慮すると、抗カビ性(抗カビ効果)については、M処理を施した試料(部材)が最も抗カビ性が高く、次いでP60処理を施した試料,PT1処理を施した試料の抗カビ性があることが確認できた。
 すなわち、本発明によれば、ショット材を投射するショット材投射処理により、部材の表面に、無数の微小凹部であって、その凹凸ピッチ(凸部の間隔或いは凹部の間隔)の最小値と最大値の範囲が0.5μm~50μm程度の範囲であり、凹部深さの最小値と最大値の範囲が、測定バラツキ、製造バラツキなどを考慮すると、0.01μm~2.5μm程度の範囲である微小凹部をランダムに形成することで、その表面に抗カビ性を付与することができる。
 また、本発明において、前記凹凸ピッチ(凸部の間隔或いは凹部の間隔)の最小値と最大値の範囲が20μm~50μm程度の範囲であり、凹部深さの最小値と最大値の範囲が0.8μm~2.3μm程度の範囲である微小凹部をランダムに形成することで、その表面により一層高い抗カビ性を付与することができる。
 このように、本発明によれば、ショット材を投射して表面に微小凹部を無数にランダムに形成するショット材投射処理(或いは微小凹凸形成処理、マイクロディンプル処理)を施すことにより、部材の表面に、微小凹部を無数にランダムに形成することで、その表面に、抗カビ効果(作用)を生じさせることができる。
 なお、本発明には、ショット材投射処理などを施すことにより無数にランダムに形成した微小凹部を表面に有する型を用いた転写により、部材の表面に微小凹部を無数に形成する場合も含まれる。
 すなわち、本発明によれば、ショット材投射処理(或いは微小凹凸形成処理、マイクロディンプル処理)などに基づいて、部材の表面に微小凹部を無数にランダムに形成することで、部材の表面に抗カビ性を持たせる抗カビ表面処理方法、及び抗カビ性(或いはカビ増殖抑制効果)を有する抗カビ部材を提供することができる。
 ここで、本発明者等は、付随的ではあるが、各試料の表面の水の接触角、表面自由エネルギの水素結合成分について調べてみた。
 なお、接触角、表面自由エネルギの水素結合成分は、「ぬれ性」、「親水性」を表す指標の一つである(図18参照)。
 ここでは、協和界面科学株式会社のポータブル接触角計PCA-11を用いて、部材の表面の接触角と表面自由エネルギの水素結合成分を取得(測定)した。
 各試料の水の接触角、表面自由エネルギの水素結合成分を調べた結果をまとめた図を、図17に示す。
 図17から、部材の表面に、無数の微小凹部であって、その凹凸ピッチ(凸部の間隔或いは凹部の間隔)の最小値と最大値の範囲が0.5μm~50μm程度の範囲であり、凹部深さの最小値と最大値の範囲が0.01μm~2.5μm程度の範囲である微小凹部をランダムに形成した部材であって、その表面の水の接触角が50°以上である場合には、その表面に抗カビ効果(作用)を生じさせることができるものと考えられる。なお、表面の水の接触角が80°以上であれば、より高い抗カビ効果(作用)を生じさせることができるものと考えられる。
 また、図17から、部材の表面に、無数の微小凹部であって、その凹凸ピッチ(凸部の間隔或いは凹部の間隔)の最小値と最大値の範囲が0.5μm~50μm程度の範囲であり、凹部深さの最小値と最大値の範囲が0.01μm~2.5μm程度の範囲である微小凹部をランダムに形成した部材であって、その表面の表面自由エネルギの水素結合成分が15mJ以下である場合には、その表面に抗カビ効果(作用)を生じさせることができるものと考えられる。なお、表面の表面自由エネルギの水素結合成分が11mJ以下であれば、より高い抗カビ効果(作用)を生じさせることができるものと考えられる。
 また、図17から、部材の表面に、無数の微小凹部であって、その凹凸ピッチ(凸部の間隔或いは凹部の間隔)の最小値と最大値の範囲が0.5μm~50μm程度の範囲であり、凹部深さの最小値と最大値の範囲が0.01μm~2.5μm程度の範囲である微小凹部をランダムに形成した部材であって、その表面の水の接触角が50°以上であり、かつ、その表面の表面自由エネルギの水素結合成分が15mJ以下である場合には、その表面に抗カビ効果(作用)を生じさせることができるものと考えられる。なお、表面の水の接触角が80°以上であり、かつ、表面の表面自由エネルギの水素結合成分が11mJ以下であれば、より高い抗カビ効果(作用)を生じさせることができるものと考えられる。
 なお、本発明者等は、微小凹部のサイズが抗カビ効果に影響することとは別に、微小凹部が形成された部材表面の水の接触角、表面自由エネルギの水素結合成分が抗カビ効果に影響しているとの知見を得ているが、それは以下の通りである。
 カビの胞子の大きさは、一般的なもので2~10μm程度であるが、カビが発育する条件(カビが発育する=カビの胞子から菌糸が成長する)は、湿度と温度が高く、栄養源があることである。ここで、大前提として金属は無機物なので金属自体は栄養源にならないためカビは発育しない。金属表面についたキズに手垢などの汚れが溜まり、それを栄養源としてカビが発育する。今回実施したカビ抵抗性試験について簡単に説明すると、ステンレス表面にカビ胞子を噴霧し乾燥させた後、栄養源となる液体培地を噴霧して、26°C/95%の環境下で7日間の試験をしている。つまり、カビ胞子の上部に栄養源となる水分が存在している状態であり、抗カビのイメージとしては、抗カビ効果の違いで微小凹部の形状を理解し易いように大げさに異ならせて表示しているが、図19で示したようなイメージである。
 すなわち、図19に示した抗カビ効果のない面(図17において、水の接触角が50°(或いは80°)より小さい場合や表面の表面自由エネルギの水素結合成分が15mJ(或いは10mJ)より大きい場合)では、微小凹部の内部に水分が存在するので、発育条件が整い、菌糸が成長する。
 一方、図19に示した抗カビ効果のある面(図17において、水の接触角が50°(或いは80°)以上の場合や表面の表面自由エネルギの水素結合成分が15mJ(或いは10mJ)以下の場合)においては、微小凹部の内部に水分がないため、カビの発育条件が整わず、菌糸の成長が阻害されるものと考えられる。
 ところで、本実施の形態では、ディンプル状の微小凹部をショット材投射処理により、無数にランダムに形成することとして説明したが、例えば、部材の表面に化学研磨(化学エッチング)或いはプラズマ処理(例えばアルゴンボンバード処理)などを施して微小凹凸を無数にランダムに形成することもできる。但し、本発明はこれに限定されるものではなく、本発明に係る微小凹部は、化学エッチング、プラズマ処理、ショット材投射処理などの少なくとも一つ或いはこれらを適宜に組み合わせることによって形成することも可能である。
 なお、化学研磨(化学エッチング)としては、例えば、塩酸・硝酸・硫酸・リン酸などの酸性薬剤や塩化鉄(III)などを任意の割合で水溶液に調製し使用することが想定される。
 また、部材の表面に微小凹凸を形成することには、化学エッチング、プラズマ処理、ショット材投射処理などに基づいて(利用して)形成した微小凹凸をその表面に有する型を用いて、例えば転写等により、処理対象接触部材等の部材の表面に複合凹凸形状(複合ディンプル)を形成する場合なども含まれるものである。
 なお、本発明に係る抗カビ部材は、例えば、抗カビ性が求められる部材全般に適用でき、例えば、保管容器、収容容器(例えば、ホッパー等の容器)、運搬器具(ベルトコンベアの載置部など)、滑落器具(例えば、シューターなど)、ふるい、撹拌器具、調理用ボール、調理用器具、手術用器具、医療用器具、水回り(風呂場、洗面所、台所、トイレなど)に用いられる部材などを含む各種の部材に適用可能である。
 また、本発明に係る抗カビ部材は、車両用の吊手(つり革のグリップ部分)、その他の取っ手或いは持ち手(グリップ)、ドアノブ、ハンドル、トイレ用品、台所用品、洗面用品など人や動物が触れる部材など、抗カビ(或いはカビ増殖抑制)等の目的のために用いられる部材であれば適用可能である。
 また、本実施の形態は、例えばステンレス材であれば、処理前のベース材の♯400、♯700、2B等、表面の仕上げ仕様には拘らず、特に非磁性のオーステナイト系のステンレス(SUS303、304、316など)、どれでも同等の効果が得られると考えられる。また、ステンレス材以外の金属材料(例えば、鉄の場合には、例えばスチール(SS400など)、アルミニウム、チタン等の金属製或いは合金製など)であっても本発明は適用可能である。
 なお、本発明に係る抗カビ部材は、樹脂製部材とすることも可能であり、その材料は特に限定されるものではない。例えばセラミックスとすることも可能である。
 また、本発明に係る部材は、ブロック状、プレート状、シート状などあらゆる形が想定され、その形状・サイズなどは特に限定されるものではない。
 ここで、本実施の形態に係るショット材投射処理(或いは微小凹凸形成処理、マイクロディンプル処理)は、既知の噴射装置により、上述したようなメディア(ショット材、研磨材粒子)を噴射して処理対象接触部材等の部材の表面に衝突させることで行うことができる。
 例えば、噴射装置としては、ブラスト装置を用いることができ、ブラスト装置の一例としては、例えば、株式会社不二製作所製の「PNEUMA BLASTER」(型式:SCシリーズ、SGシリーズなど)などを用いることができる。また、例えば、特開2019-25584号公報などに記載されているものを用いることができる。
 より具体的には、噴射粒体を部材の表面に向けて噴射する噴射装置としては、圧縮気体(空気、アルゴン、窒素等)と共に研磨材(微粒子)の噴射を行う既知のブラスト加工装置(ブラスト処理装置)を使用することができる。
 そして、ブラスト加工装置(ブラスト処理装置)としては、圧縮気体の噴射により生じた負圧を利用して研磨材を噴射するサクション式のブラスト加工装置,研磨材タンクから落下した研磨材を圧 縮気体に乗せて噴射する重力式のブラスト加工装置,研磨材が投入されたタンク内に圧縮気体を導入し、別途与えられた圧縮気体供給源からの圧縮気体流に研磨材タンクからの研磨材流を合流させて噴射する直圧式のブラスト加工装置、及び、上記直圧式の圧縮気体流を、ブロワーユニットで発生させた気体流に乗せて噴射するブロワー式ブラスト加工装置等が市販されているが,これらはいずれも前述した噴射粒体の噴射に使用可能である。
 また、水などの液体と共にショットを高圧で噴射するウォータージェットも使用することができる。
 ここで、本発明では、微小凹凸形成処理、マイクロディンプル処理、微粒子投射処理などのショット材投射処理により(或いは基づいて)形成された凹凸表面を形状或いは構造面から特定するために、レーザ加工等で予め設計された図面に従って形成される幾何学的かつ規則的な凹凸形状とは全く異なり、ディンプル状の微小凹部と凹部周辺に稜線状の凸部が、それぞれの形状、ピッチ、深さが無数にランダムに形成されているという特定方法を用いている。
 すなわち、「ショット材投射処理により(或いは基づいて)、その表面に微小凹部を形成した」という表現を用いる代わりに、「部材の表面に、ディンプル状の凹部とその周辺に稜線状の凸部からなる微小凹部を無数にランダムに形成した」などの特定方法(表現)を用いている。
 しかしながら、先行技術などとの対比において、上記特定方法(表現)では、ショット材投射処理により形成された凹凸表面を、他と区別した特徴的な特定方法(表現)として採用することが難しくなる場合も想定される。
 このため、「ショット材投射処理により(或いは基づいて)表面に微小凹凸を形成する」という特定方法(表現)により、ショット材投射処理により(或いは基づいて)形成された凹凸表面を特定せざるを得ない状況が想定される。
 従って、ショット材投射処理により形成された微小凹凸を形状、構造、特性等により特定することには、本願出願時において不可能・非現実的事情が存在しており、「ショット材投射処理により(或いは基づいて(転写などの場合を考慮))表面に微小凹凸を形成することで」という表現を用いざるを得ない場合があることについて、以下に説明しておく。
 ショット材投射処理は、投射粒(メディア)を、圧縮空気を介し秒速数十から百m以上の速度で加工対象表面に衝突させ、有意な寸法変化を伴わずに、その縁に凸部を有する略球面状のミクロンサイズの微小凹部を不規則に加工面の略全面に形成するものであり、ショット材投射処理においてメディアが衝突して微小凹部が形成される際には、クレーター状に、その周囲が隆起して凸部が形成され(図20参照)、この隆起した凸部は、他のメディアが衝突することで、凹まされるため凸部の高さは不規則となる。
 これに対して、レーザ加工や切削加工等の機械的加工は規則正しい凹部が形成されると共に、除去加工であるため凸部は形成されない(凹部の形成に伴って凸部が隆起されることはない)。このため、レーザ加工や切削加工等の機械的加工における微小凹部の周囲の凸部の高さは被加工材(レーザ加工されている部材)の表面(元々の素材表面)の高さに一致している(図21参照)。
 また、ショット材投射処理により形成される微小凹凸は無数に不規則に(ランダムに)形成されるため、当該ショット材投射処理により形成される表面テクスチャ(形状)は、研磨や研削処理などの表面を削って傷(すじ状などの溝)を付与する処理により形成される表面形状(テクスチャ)とは異なるが、表面粗さ計などにより測定すると、両者は数値的には似た値となってしまうため、表面粗さなどにより両者を区別することはできない。
 しかし、ショット材投射処理により形成される表面テクスチャ(形状)によって得られる効果(粉体付着抑制効果や抗カビ効果など)は、研磨や研削処理などの表面を削って傷を付与する処理により形成される表面形状(テクスチャ)からは予想できない格別なものである。
 また、数ミリオーダーのメディアを衝突させて残留応力を付与して疲労限を改善するショットピーニング処理からは、ショット材投射処理を施した表面が粉体付着抑制効果や抗カビ効果などを有するといったことは到底予測できないものである。
 このように、ショット材投射処理により形成される微小凹凸は無数に不規則に(ランダムに)形成され、微小凹部及びその周囲の凸部の形状は不規則であり、その不規則性が本発明により奏される作用効果の源になっていることに鑑みれば、ショット材投射処理により形成された表面テクスチャ(形状)を特定するための用語として、「ショット材投射処理により形成された」という表現を用いる以外には、ショット材投射処理により形成された表面を特定することはできない。
 以上のように、ショット材投射処理により形成された微小凹凸を形状、構造、特性等により特定することには、本願出願時において不可能・非現実的事情が存在している。
 ところで、本発明は、上述した発明の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々変更を加え得ることは可能である。
 本発明は、部材の表面に微小凹部を無数にランダムに形成することで、部材の表面に抗カビ(或いはカビ繁殖抑制)効果を持たせることができる部材の抗カビ表面処理方法、及び抗カビ効果を有する抗カビ部材を提供することができ、抗カビを問題とする産業界において有益で利用可能である。
  1  餅
  2  半紙
 10  餅
 11  比較対照(未処理のSUS304プレート)
 20  餅
 21  PT1処理を施したSUS304プレート

Claims (8)

  1.  部材の表面に、その凹凸ピッチの最小値が0.5μm以上であり最大値が50μm以下であり、その凹部の深さの最小値が0.01μm以上であり最大値が2.5μm以下である微小凹部を無数にランダムに形成することで、部材の当該表面に抗カビ作用を持たせることを特徴とする部材の抗カビ表面処理方法。
  2.  前記微小凹部が形成された表面の水の接触角が80°以上であることを特徴とする請求項1に記載の部材の抗カビ表面処理方法。
  3.  前記微小凹部が形成された表面の表面自由エネルギの水素結合成分が10mJ以下であることを特徴とする請求項1又は請求項2に記載の部材の抗カビ表面処理方法。
  4.  前記微小凹部を、ショット材を投射する投射処理に基づいて形成することを特徴とする請求項1~請求項3の何れか1つに記載の部材の抗カビ表面処理方法。
  5.  部材の表面に、その凹凸ピッチの最小値が0.5μm以上であり最大値が50μm以下であり、その凹部の深さの最小値が0.01μm以上であり最大値が2.5μm以下である微小凹部を無数にランダムに有することを特徴とする抗カビ部材。
  6.  前記微小凹部が形成された表面の水の接触角が80°以上であることを特徴とする請求項5に記載の抗カビ部材。
  7.  前記微小凹部が形成された表面の表面自由エネルギの水素結合成分が10mJ以下であることを特徴とする請求項5又は請求項6に記載の抗カビ部材。
  8.  前記微小凹部は、ショット材を投射する投射処理に基づいて形成されることを特徴とする請求項5~請求項7の何れか1つに記載の抗カビ部材。
PCT/JP2020/038241 2020-07-16 2020-10-09 部材の抗カビ表面処理方法及び抗カビ部材 WO2022014063A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020122426A JP6916495B1 (ja) 2020-07-16 2020-07-16 部材の抗カビ表面処理方法及び抗カビ部材
JP2020-122426 2020-07-16

Publications (1)

Publication Number Publication Date
WO2022014063A1 true WO2022014063A1 (ja) 2022-01-20

Family

ID=77172632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038241 WO2022014063A1 (ja) 2020-07-16 2020-10-09 部材の抗カビ表面処理方法及び抗カビ部材

Country Status (2)

Country Link
JP (1) JP6916495B1 (ja)
WO (1) WO2022014063A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016215622A (ja) * 2015-05-14 2016-12-22 大日本印刷株式会社 抗菌・抗カビ性物品、及び農業用抗菌・抗カビ性物品
JP2017001166A (ja) * 2015-06-15 2017-01-05 学校法人関東学院 撥水性面の形成方法及びその方法を用いて形成された撥水性面を備えた撥水性物品
JP2017209735A (ja) * 2016-05-23 2017-11-30 株式会社不二Wpc 処理器具

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016210164A (ja) * 2015-05-01 2016-12-15 大日本印刷株式会社 カビ繁殖抑制部材、及び農業用カビ繁殖抑制物品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016215622A (ja) * 2015-05-14 2016-12-22 大日本印刷株式会社 抗菌・抗カビ性物品、及び農業用抗菌・抗カビ性物品
JP2017001166A (ja) * 2015-06-15 2017-01-05 学校法人関東学院 撥水性面の形成方法及びその方法を用いて形成された撥水性面を備えた撥水性物品
JP2017209735A (ja) * 2016-05-23 2017-11-30 株式会社不二Wpc 処理器具

Also Published As

Publication number Publication date
JP2022018957A (ja) 2022-01-27
JP6916495B1 (ja) 2021-08-11

Similar Documents

Publication Publication Date Title
Barriuso et al. Roughening of metallic biomaterials by abrasiveless waterjet peening: Characterization and viability
US7005080B2 (en) Nonabrasive media with accellerated chemistry
US20190217336A1 (en) Methods for forming stainless steel parts
Azhari et al. Influence of waterjet peening and smoothing on the material surface and properties of stainless steel 304
JP6695558B1 (ja) 抗菌表面処理方法、及び抗菌部材
CN104451079B (zh) 一种齿轮齿面喷丸强化精整方法
AU2002234216A1 (en) Nonabrasive media with accelerated chemistry
Wang et al. Experimental investigation into the effect of process parameters on the Inconel 718 surface integrity for abrasive waterjet peening
KR102173928B1 (ko) 금속 제품의 표면 처리 방법 및 금속 제품
WO2022014063A1 (ja) 部材の抗カビ表面処理方法及び抗カビ部材
JP2021037228A (ja) 医療機器用部品もしくは部材
WO2022030028A1 (ja) 部材の抗ウイルス表面処理方法及び抗ウイルス部材
JP2021037226A (ja) 機能性部材
EP2801443B1 (en) Processing medium for processing stainless steel or other metallic surfaces, method for processing stainless steel or other metallic surfaces using such a processing medium and nozzle arranged to be fitted on a process gun
Brezinová et al. Surface mechanical (physical) treatments prior to bonding
JP2023183145A (ja) 抗菌部材、その製造方法及び評価方法
JP2021194758A (ja) 粉体付着抑制部材及び部材の表面処理方法
JP7045043B2 (ja) 洗浄性改善表面処理方法及び洗浄性改善部材
Rajesh et al. Empirical Modelling of Water-jet Peening of 60-63-T6 Aluminium Alloy
JP2023023927A (ja) 液体或いは粘性液体の滑り改善表面処理方法、部材及び評価方法
JP2023003120A (ja) 部材の粘着性物質の付着抑制表面処理方法及び部材
Stotsko et al. Strengthening surfaces of machine components by treatment with using loose solid balls
JP2022135273A (ja) 微小凹凸表面形状保護方法、耐摩耗性改善部材、機械器具、理容、美容、或いは医療用の器具若しくはハサミ、カッター及び機械の摺動部品
Harada et al. Effect of microshot peening on residual stress of high-toughness spring steel
Brezinová et al. 2 Surface Mechanical (Physical)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945224

Country of ref document: EP

Kind code of ref document: A1