WO2022013905A1 - ノイズフィルタ - Google Patents

ノイズフィルタ Download PDF

Info

Publication number
WO2022013905A1
WO2022013905A1 PCT/JP2020/027197 JP2020027197W WO2022013905A1 WO 2022013905 A1 WO2022013905 A1 WO 2022013905A1 JP 2020027197 W JP2020027197 W JP 2020027197W WO 2022013905 A1 WO2022013905 A1 WO 2022013905A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
unit
noise
temperature
common mode
Prior art date
Application number
PCT/JP2020/027197
Other languages
English (en)
French (fr)
Inventor
泰章 古庄
良太 朝倉
亮祐 小林
護 神蔵
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/027197 priority Critical patent/WO2022013905A1/ja
Priority to EP20945364.6A priority patent/EP4181371A4/en
Priority to JP2022535985A priority patent/JP7321377B2/ja
Priority to CN202080101267.3A priority patent/CN115702545A/zh
Priority to US17/917,628 priority patent/US11990833B2/en
Publication of WO2022013905A1 publication Critical patent/WO2022013905A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/06Frequency selective two-port networks including resistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/06Frequency selective two-port networks including resistors
    • H03H7/065Parallel T-filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/17Structural details of sub-circuits of frequency selective networks
    • H03H7/1741Comprising typical LC combinations, irrespective of presence and location of additional resistors
    • H03H7/1758Series LC in shunt or branch path

Definitions

  • This application relates to a noise filter.
  • a power conversion device that converts input power from a power source into arbitrary DC power or AC power and supplies it to a load is known.
  • This power converter generates high frequency noise due to the switching operation.
  • This high frequency noise causes common mode noise that flows to the power supply or load via the ground potential via parasitic capacitance or the like.
  • a noise filter is installed in the electric circuit between the power supply and the power converter or the electric circuit between the power converter and the load.
  • This active noise filter has a noise detection unit that detects common mode noise in the electric circuit, a cancellation signal output unit that generates and outputs a cancellation signal from the detected common mode noise, and an injection unit that injects the cancellation signal into the electric circuit.
  • a choke coil is used as a noise detection unit and an injection unit, resonance occurs due to the inductance component of the choke coil and the capacitance component of the electric circuit. Therefore, the cancel signal output unit includes a filter unit for adjusting the amplification factor at the resonance frequency.
  • a conventional noise filter includes a temperature detector that detects the temperature of a choke coil and a controller that adjusts the frequency characteristics of the filter to the resonance frequency according to the temperature detected by the temperature detector (for example, Patent Documents). 1).
  • the conventional noise filter is equipped with a temperature detector that detects the temperature of the choke coil and a controller that adjusts the frequency characteristics of the filter unit to the resonance frequency according to the temperature detected by this temperature detector. , There is a problem of high cost.
  • the present application has been made to solve the above-mentioned problems, and an object thereof is to provide a low-cost noise filter in which the noise suppression effect does not decrease even if the resonance frequency changes due to a temperature change.
  • the noise filter of the present application includes a noise detection unit that detects common mode noise in an electric circuit, a cancellation signal output unit that generates and outputs a cancellation signal from the detected common mode noise, and an injection unit that injects the cancellation signal into the electric circuit.
  • the cancel signal output unit has a filter unit that filters the detected common mode noise to generate a cancel signal and an amplification unit that amplifies the cancel signal, and has a noise detection unit, an injection unit, and a grounding capacitor.
  • the temperature dependence of the product of the inductance value and the capacitance value of the main circuit unit including the above is the same as the temperature dependence of the product of the inductance value and the capacitance value of the filter unit.
  • the temperature dependence of the product of the inductance value and the capacitance value of the main circuit section and the temperature dependence of the product of the inductance value and the capacitance value of the filter section are set to be the same.
  • the noise suppression effect does not decrease even if the resonance frequency changes due to temperature changes.
  • this noise filter is low in cost because it does not require a temperature detector for detecting the temperature of the noise detection unit or the like and a controller for adjusting the frequency characteristic of the filter unit to the resonance frequency according to the temperature.
  • FIG. It is a block diagram of the power conversion system which concerns on Embodiment 1.
  • FIG. It is a block diagram of the power conversion apparatus which concerns on Embodiment 1.
  • FIG. It is explanatory drawing of the common mode noise in the power conversion system which concerns on Embodiment 1.
  • FIG. It is a block diagram of the noise filter which concerns on Embodiment 1.
  • FIG. It is a block diagram of the noise detection part which concerns on Embodiment 1.
  • FIG. It is a block diagram of the filter part which concerns on Embodiment 1.
  • FIG. It is a block diagram of the amplification part which concerns on Embodiment 1.
  • FIG. It is a block diagram of the injection part which concerns on Embodiment 1.
  • FIG. It is explanatory drawing of the main circuit part of the noise filter which concerns on Embodiment 1.
  • FIG. It is a schematic diagram which shows the control response of the main circuit part in Embodiment 1. It is a characteristic diagram of the core material in Embodiment 1.
  • FIG. It is a characteristic diagram of the dielectric in Embodiment 1.
  • FIG. It is a schematic diagram which shows the control response of the main circuit part in Embodiment 1.
  • It is a block diagram of the filter part which concerns on Embodiment 1.
  • FIG. It is a schematic diagram which shows the control response of the main circuit part in Embodiment 1.
  • FIG. It is a schematic diagram which shows the control response of the main circuit part in Embodiment 2.
  • FIG. It is a block diagram of the filter part which concerns on Embodiment 4.
  • FIG. 1 is a configuration diagram of a power conversion system to which the noise filter according to the first embodiment is applied.
  • the power conversion system 100 is arranged between the AC power supply 1 and the load 90.
  • the power conversion system 100 includes a power conversion device 80 that converts the power input from the AC power supply 1 via the power supply line 2, and a noise filter 10 inserted between the AC power supply 1 and the power conversion device 80. It is configured.
  • the power conversion device 80 converts the power input from the AC power supply 1 into the power required to drive the load 90 and outputs the power.
  • the noise filter 10 is arranged between the AC power supply 1 and the power conversion device 80, but may be arranged between the power conversion device 80 and the load 90.
  • FIG. 2 is a configuration diagram showing an example of the power conversion device 80 of the present embodiment.
  • the power converter 80 is a two-level three-phase inverter.
  • Two semiconductor switches 82a and 82b connected in series constitute one upper and lower arm 82.
  • one upper and lower arm 83 is composed of two semiconductor switches 83a and 83b connected in series.
  • two semiconductor switches 84a and 84b connected in series constitute one upper and lower arm 84.
  • a DC power supply 81 is connected to the three upper and lower arms 82, 83, 84.
  • the midpoints of the three upper and lower arms 82, 83, 84 are connected to the inverter output terminal 85.
  • the common mode voltage of the power converter 80 is a constant voltage that is not zero.
  • FIG. 3 is an explanatory diagram of common mode noise in the power conversion system of the present embodiment.
  • a parasitic capacitance 86 and a parasitic capacitance 91 exist between the power conversion device 80 and the load 90 and the ground wire 3, respectively.
  • the common mode voltage of the power conversion device 80 is applied to the common mode loop via the parasitic capacitances 86 and 91 and the ground wire 3, and the common mode current (common). Mode noise) flows.
  • FIG. 4 is a configuration diagram of the noise filter 10 of the present embodiment.
  • the noise filter 10 is inserted between the AC power supply 1 and the power conversion device 80.
  • the noise filter 10 includes a noise detection unit 12 provided in the electric circuit 11 connected to the power supply line 2, a cancellation signal output unit 13 that generates and outputs a cancellation signal from the common mode noise detected by the noise detection unit 12, and noise. It has an injection unit 14 provided in the electric circuit 11 on the output side of the detection unit 12, and a grounding capacitor 15 provided between the electric circuit 11 and the ground potential.
  • the cancel signal output unit 13 has a filter unit 16 that filters the common mode noise detected by the noise detection unit 12 to generate a cancel signal, and an amplification unit 17 that amplifies the cancel signal.
  • FIG. 5 is a configuration diagram of the noise detection unit 12 of the present embodiment.
  • the noise detection unit 12 is composed of a common mode transformer.
  • the common mode transformer constituting the noise detection unit 12 is referred to as a detection transformer here.
  • This detection transformer has an R-phase winding 12a wound around an R-phase power line, an S-phase winding 12b wound around an S-phase power line, and a T-phase power line in the electric circuit 11 connected to the power line 2 of the AC power supply 1. It is composed of a T-phase winding 12c wound around and an auxiliary winding 12d.
  • the R-phase winding 12a, the S-phase winding 12b, and the T-phase winding 12c are wound in the same phase.
  • this detection transformer has a high inductance value only for the common mode and acts as a common mode choke coil. Then, in the noise detection unit 12, a common mode noise detection signal is generated at both ends of the auxiliary winding 12d due to the common mode noise passing through the detection transformer. Both ends of the auxiliary winding 12d are connected to the filter unit 16.
  • FIG. 6 is a configuration diagram showing an example of the filter unit 16 according to the present embodiment.
  • the filter unit 16 is composed of two circuits connected in parallel. One circuit is composed of two resistors 16a connected in series and a capacitor 16b connected between the midpoint of the two resistors 16a and the ground potential. The other circuit is composed of two capacitors 16b connected in series and a resistance 16a connected between the midpoint of the two capacitors 16b and the ground potential.
  • the filter unit 16 is a notch filter called a Twin-T type, and attenuates the gain at a specific frequency called a reject frequency.
  • the filter unit 16 applies a notch filter to the common mode noise detection signal input from the noise detection unit 12 to generate a cancel signal, and outputs this cancel signal to the amplification unit 17.
  • FIG. 7 is a configuration diagram of the amplification unit 17 of the present embodiment.
  • the amplification unit 17 is composed of an input resistance 17a, an operational amplifier 17b, and a feedback resistance 17c.
  • the amplifier unit 17 is an inverting amplifier circuit or a non-inverting amplifier circuit using an operational amplifier 17b.
  • the amplification unit 17 amplifies the cancellation signal input from the filter unit 16 at an amplification factor given by the ratio of the resistance value of the input resistance 17a to the resistance value of the feedback resistance 17c, and outputs the amplification unit 14 to the injection unit 14.
  • FIG. 8 is a block diagram of the injection unit 14 of the present embodiment.
  • the injection unit 14 is composed of a common mode transformer.
  • the common mode transformer constituting the injection unit 14 is referred to as an injection transformer here.
  • the injection transformer has an R-phase winding 14a wound around the R-phase power line, an S-phase winding 14b wound around the S-phase power line, and a T-phase winding 14c wound around the T-phase power line.
  • the auxiliary winding 14d The R-phase winding 14a, the S-phase winding 14b, and the T-phase winding 14c are wound in the same phase. Therefore, this injection transformer has a high inductance value only for the common mode and acts as a common mode choke coil.
  • a cancellation signal is input to both ends of the auxiliary winding 14d. Then, in the injection unit 14, the cancellation signal input to the auxiliary winding 14d induces a voltage for canceling the common mode noise with respect to the R-phase winding 14a, the S-phase winding 14b, and the T-phase winding 14c.
  • FIG. 9 is an explanatory diagram of the main circuit portion in the noise filter according to the present embodiment.
  • the portion composed of the noise detection unit 12, the injection unit 14, and the grounding capacitor 15 is referred to as a main circuit unit 20.
  • the inductance value of the main circuit unit 20 is the sum of the inductance value of the common mode choke coil constituting the noise detection unit 12 and the inductance value of the common mode choke coil constituting the injection unit 14.
  • the capacitance value of the main circuit unit 20 is the capacitance value of the grounding capacitor 15.
  • the inductance value and the capacitance value of the filter unit 16 are the sum of the inductance values and the capacitance values of each element constituting the filter unit 16.
  • FIG. 10 is a schematic diagram showing the control response of the main circuit unit 20.
  • the horizontal axis is frequency and the vertical axis is gain.
  • the control response represents an open-loop response in a path in which the output of the noise detection unit 12 returns to the noise detection unit 12 again via the cancellation signal output unit 13 and the injection unit 14.
  • the control stability of the noise filter 10 is controlled by the gain margin and phase margin values of this open-loop response.
  • FIG. 10A is a schematic diagram showing an open loop response when the filter unit 16 is not present.
  • the inductance value L1 of the main circuit unit 20 is the sum of the inductance value of the common mode choke coil constituting the noise detection unit 12 and the inductance value of the common mode choke coil constituting the injection unit 14.
  • the capacitance value C1 of the main circuit unit 20 is the capacitance value of the grounding capacitor 15.
  • FIG. 10B is a schematic diagram showing the filter passing characteristics of the filter unit 16.
  • this filter unit 16 is a notch filter, and the reject frequency f2 is matched with the resonance frequency f1 of the main circuit unit 20.
  • FIG. 10C is a schematic diagram showing an open loop response when the filter unit 16 is present. As shown in FIG. 10C, in the open loop response when the filter unit 16 is present, the large resonance peak of f1 is attenuated by the filter passage characteristic of the filter unit 16.
  • the cancel signal output unit 13 having the filter unit 16 can generate a cancel signal in which the unnecessary resonance peak of the main circuit unit 20 included in the noise detected by the noise detection unit 12 is attenuated.
  • the noise filter 10 can exhibit a stable noise suppression effect.
  • FIG. 11 is a characteristic diagram showing the temperature dependence of the relative magnetic permeability of a general core material used for a common mode choke coil, for example, Mn—Zn ferrite.
  • the magnetic permeability of this ferrite increases with increasing temperature from a very low temperature to just before reaching the Curie temperature. Since the inductance value of the common mode choke coil is proportional to the relative permeability, this inductance value also changes according to the temperature change.
  • FIG. 12 is a characteristic diagram showing the temperature dependence of the relative permittivity of a general dielectric used for a grounding capacitor, for example, barium titanate (BaTIO 3).
  • the dielectric constant of this dielectric has a peak value at a certain temperature, and the dielectric constant decreases as the temperature becomes lower or higher than this temperature. Since the capacitance value of the grounded capacitor is proportional to the relative permittivity, this capacitance value also changes according to the temperature change.
  • FIG. 13 is a schematic diagram showing the control response of the main circuit unit 20 when the temperature changes.
  • the horizontal axis is frequency and the vertical axis is gain.
  • the solid line shows the characteristic curve at normal temperature
  • the broken line shows the characteristic curve when the temperature is higher than normal temperature
  • the long broken line shows the characteristic curve when the temperature is lower than normal temperature.
  • FIG. 13A is a schematic diagram showing an open loop response when the filter unit 16 is not present.
  • the resonance frequency increases as the temperature rises. Therefore, with respect to the resonance peak at room temperature shown by the solid line, the resonance peak at high temperature shown by the broken line shifts to the high frequency side, and the resonance peak at low temperature shown by the long broken line shifts to the low frequency side.
  • FIG. 13B is a schematic diagram showing the filter passing characteristics of the filter unit 16.
  • the reject frequency f2 is a frequency that matches the resonance frequency f1 at room temperature.
  • FIG. 13C is a schematic diagram showing an open loop response when the filter unit 16 is present.
  • the frequency of the resonance peak shown in FIG. 13A and the reject frequency shown in FIG. 13B coincide with each other, so that the resonance peak is attenuated.
  • the frequency of the resonance peak shown in FIG. 13A does not match the reject frequency shown in FIG. 13B, so that it is unnecessary for the open-loop response as shown by the broken line or the long broken line in FIG. 13C.
  • Resonance peak occurs.
  • the control response of the main circuit unit 20 becomes unstable, and the noise suppression effect of the noise filter 10 is reduced.
  • the noise filter of the present embodiment is designed so that the noise suppression effect does not decrease even if the resonance frequency changes due to a temperature change.
  • the temperature dependence of the product of the inductance value and the capacitance value in the filter unit 16 is set to be the same as the temperature dependence of the product of the inductance value and the capacitance value in the main circuit unit 20.
  • the temperature dependence of the product of the inductance value and the capacitance value in the filter unit 16 and the temperature dependence of the product of the inductance value and the capacitance value in the main circuit unit 20 are the same as the value of L1 ⁇ C1. It means that the amount of change with respect to the temperature change and the amount of change with respect to the temperature change of the value of L2 ⁇ C2 are the same. However, as will be described later, the two changes are not limited to be exactly the same, but are included in the meaning that they are the same even if there is a certain difference between the two changes. Next, the configuration of the noise filter of the present embodiment will be described.
  • FIG. 14 is a configuration diagram showing an example of the filter unit 16 of the present embodiment.
  • the filter unit 16 is composed of a resistor 16a, a capacitor 16b, and an inductor 16c.
  • the filter unit 16 is composed of a resistor 16a, an inductor 16c and a capacitor 16b connected in series between the electric circuit and the ground potential on the output side of the resistor 16a.
  • the filter unit 16 is an RLC notch filter and attenuates the gain at the reject frequency.
  • the temperature dependence of the product of the inductance value and the capacitance value of the main circuit unit 20 and the temperature dependence of the product of the inductance value of the inductor 16c and the capacitance value of the capacitor 16b in the filter unit 16 are the same. Is set to. Specifically, the core material of the common mode choke coil of the noise detection unit 12 and the injection unit 14 and the core material of the inductor 16c of the filter unit 16 are made of the same material. Further, the dielectric of the grounding capacitor 15 and the dielectric of the capacitor 16b of the filter unit 16 are made of the same material.
  • the core material of the main circuit unit 20 and the core material of the filter unit 16 do not necessarily have to be the same material, and may be another material having the same magnetic permeability and the same temperature dependence. Further, the dielectric of the main circuit unit 20 and the dielectric of the filter unit 16 do not necessarily have to be the same material, and may be another material having the same permittivity and temperature dependence.
  • FIG. 15 is a schematic diagram showing a control response of the main circuit unit 20 when the temperature changes in the noise filter 10 of the present embodiment.
  • the horizontal axis is frequency and the vertical axis is gain.
  • the solid line shows the characteristic curve at normal temperature
  • the broken line shows the characteristic curve when the temperature is higher than normal temperature
  • the long broken line shows the characteristic curve when the temperature is lower than normal temperature.
  • the resonance frequency in the main circuit unit 20 increases as the temperature rises.
  • FIG. 15A is a schematic diagram showing an open loop response when the filter unit 16 is not present.
  • the resonance frequency increases as the temperature rises. Therefore, with respect to the resonance peak at room temperature shown by the solid line, the resonance peak at high temperature shown by the broken line shifts to the high frequency side, and the resonance peak at low temperature shown by the long broken line shifts to the low frequency side.
  • FIG. 15B is a schematic diagram showing the filter passing characteristics of the filter unit 16.
  • the inductance value of the filter unit 16 is L2 and the capacitance value is C2
  • the temperature dependence of the product of the inductance value and the capacitance value in the filter unit 16 is set to be the same as the temperature dependence of the product of the inductance value and the capacitance value in the main circuit unit 20. That is, the amount of change in the value of L1 ⁇ C1 with respect to the temperature change and the amount of change in the value of L2 ⁇ C2 with respect to the temperature change are set to be the same.
  • the reject frequency of the filter unit 16 shifts according to the temperature in the same manner as the resonance frequency of the main circuit unit 20. That is, with respect to the reject frequency at normal temperature shown by the solid line, the reject frequency at high temperature shown by the broken line shifts to the high frequency side, and the reject frequency at low temperature shown by the long broken line shifts to the low frequency side. Then, the shift amount of the resonance frequency and the shift amount of the reject frequency with respect to the temperature change become the same.
  • FIG. 15C is a schematic diagram showing an open loop response when the filter unit 16 is present.
  • the resonance peak is attenuated.
  • the reject frequency shown in FIG. 15B shifts in the same manner as the shift of the resonance peak shown in FIG. 15A, so that it is unnecessary for the open loop response as shown by the broken line or the long broken line in FIG. 15C.
  • Resonance peak is attenuated.
  • the noise filter 10 can exhibit a stable noise suppression effect.
  • the noise filter configured in this way, the temperature dependence of the product of the inductance value and the capacitance value of the main circuit section and the temperature dependence of the product of the inductance value and the capacitance value of the filter section are set to be the same. Therefore, the noise suppression effect does not decrease even if the resonance frequency changes due to the temperature change. Further, this noise filter is low in cost because it does not require a temperature detector for detecting the temperature of the noise detection unit or the like and a controller for adjusting the frequency characteristic of the filter unit to the resonance frequency according to the temperature.
  • the same temperature dependence is not limited to exactly the same. Even if there is a difference in temperature dependence in the range in which the above-mentioned stable noise suppression effect is exhibited, it is included in the same range. For example, even when the core material of the common mode choke coil of the noise detection unit 12 and the injection unit 14 and the core material of the inductor 16c of the filter unit 16 are made of the same material, it is caused by variations in material characteristics, component dimensions, and the like. Variations in temperature dependence are included in the same range.
  • the core material and the dielectric material contained in the main circuit unit 20 and the core material and the dielectric material contained in the filter unit 16 are used. Each may be different.
  • the core material for example, Mn—Zn ferrite, Ni—Zn ferrite, or the like can be used.
  • the dielectric barium titanate (BaTIO 3 ), strontium titanate (SrTiO 3 ), lead oxide (PbO) and the like can be used.
  • the Curie temperature and the initial magnetic permeability are the same magnetic materials, it can be judged that the temperature dependence of the magnetic permeability is also the same. Therefore, in the present embodiment, the Curie temperature and the initial magnetic permeability of the core material of the common mode choke coil may be the same as the Curie temperature and the initial magnetic permeability of the core material of the inductor included in the filter unit, respectively.
  • an example of a circuit using an operational amplifier as the configuration of the amplifier unit is shown, but another inverting amplifier circuit or a non-inverting amplifier circuit may be used as the configuration of the amplifier unit.
  • another common mode choke coil may be connected in addition to the noise detection unit and the injection unit.
  • at least one of the noise detection unit and the injection unit may be composed of a capacitor instead of the common mode choke coil.
  • the resonance frequency of the main circuit unit is determined by the inductance component and the capacitance component of all the elements.
  • the power conversion system in the present embodiment is a three-phase three-wire power conversion system, it may be a three-phase four-wire power conversion system.
  • Embodiment 2 In the noise filter of the first embodiment, the filter unit was a notch filter.
  • the noise filter of the second embodiment has a filter unit composed of a high-pass filter.
  • the configuration of the noise filter of the present embodiment is the same as the configuration of the noise filter shown in FIG. 4 of the first embodiment except for the filter unit.
  • FIG. 16 is a block diagram of the filter unit 16 according to the present embodiment.
  • the filter unit 16 is composed of a resistor 16a, a capacitor 16b, and an inductor 16c.
  • the filter unit 16 is composed of a resistor 16a and a capacitor 16b connected in series, and an inductor 16c connected between the electric circuit and the ground potential on the output side of the capacitor 16b.
  • the filter unit 16 is an LC high-pass filter and attenuates a gain of a frequency lower than a specific frequency called a cutoff frequency.
  • the filter unit 16 applies an LC high-pass filter to the common mode noise detection signal input from the noise detection unit 12 to generate a cancel signal, and outputs this cancel signal to the amplification unit 17.
  • the temperature dependence of the product of the inductance value and the capacitance value of the main circuit unit 20 and the temperature dependence of the product of the inductance value of the inductor 16c and the capacitance value of the capacitor 16b in the filter unit 16 are the same. Is set to. Specifically, the core material of the common mode choke coil of the noise detection unit 12 and the injection unit 14 and the core material of the inductor 16c of the filter unit 16 are made of the same material. Further, the dielectric of the grounding capacitor 15 and the dielectric of the capacitor 16b of the filter unit 16 are made of the same material.
  • the core material of the main circuit unit 20 and the core material of the filter unit 16 do not necessarily have to be the same material, and may be another material having the same magnetic permeability and the same temperature dependence. Further, the dielectric of the main circuit unit 20 and the dielectric of the filter unit 16 do not necessarily have to be the same material, and may be another material having the same permittivity and temperature dependence.
  • FIG. 17 is a schematic diagram showing the control response of the main circuit unit 20 when the temperature changes in the noise filter of the present embodiment.
  • the horizontal axis is frequency and the vertical axis is gain.
  • the solid line shows the characteristic curve at normal temperature
  • the broken line shows the characteristic curve when the temperature is higher than normal temperature
  • the long broken line shows the characteristic curve when the temperature is lower than normal temperature.
  • the resonance frequency in the main circuit unit 20 increases as the temperature rises, as in FIG. 13 of the first embodiment.
  • FIG. 17A is a schematic diagram showing an open loop response when the filter unit 16 is not present.
  • the resonance frequency increases as the temperature rises. Therefore, with respect to the resonance peak at room temperature shown by the solid line, the resonance peak at high temperature shown by the broken line shifts to the high frequency side, and the resonance peak at low temperature shown by the long broken line shifts to the low frequency side.
  • FIG. 17B is a schematic diagram showing the filter passing characteristics of the filter unit 16.
  • the inductance value of the filter unit 16 is L3 and the capacitance value is C3
  • the temperature dependence of the product of the inductance value and the capacitance value in the filter unit 16 is set to be the same as the temperature dependence of the product of the inductance value and the capacitance value in the main circuit unit 20. That is, the amount of change in the value of L1 ⁇ C1 with respect to the temperature change and the amount of change in the value of L3 ⁇ C3 with respect to the temperature change are set to be the same.
  • the cutoff frequency of the filter unit 16 shifts according to the temperature in the same manner as the resonance frequency of the main circuit unit 20. That is, with respect to the cutoff frequency at room temperature shown by the solid line, the cutoff frequency at high temperature shown by the broken line shifts to the high frequency side, and the cutoff frequency at low temperature shown by the long broken line shifts to the low frequency side. Then, the shift amount of the resonance frequency and the shift amount of the cutoff frequency with respect to the temperature change become the same.
  • FIG. 17C is a schematic diagram showing an open loop response when the filter unit 16 is present.
  • the resonance peak shown in FIG. 17A is lower than the cutoff frequency shown in FIG. 17B at room temperature, the resonance peak is attenuated.
  • the cutoff frequency shown in FIG. 17B also shifts in the same manner as the shift of the resonance peak shown in FIG. 17A. Unwanted resonance peaks are attenuated. As a result, the noise filter 10 can exhibit a stable noise suppression effect.
  • the noise filter configured in this way, the temperature dependence of the product of the inductance value and the capacitance value of the main circuit section and the temperature dependence of the product of the inductance value and the capacitance value of the filter section are set to be the same. Therefore, the noise suppression effect does not decrease even if the resonance frequency changes due to the temperature change. Further, this noise filter is low in cost because it does not require a temperature detector for detecting the temperature of the noise detection unit or the like and a controller for adjusting the frequency characteristic of the filter unit to the resonance frequency according to the temperature.
  • the filter unit is composed of a notch filter. Further, in the noise filter of the second embodiment, the filter unit is composed of a high-pass filter. In addition to these, the filter unit may be configured by another filter such as a low-pass filter or a band-pass filter.
  • Embodiment 3 In the noise filters of the first embodiment and the second embodiment, the magnetic permeability of the core material of the common mode choke coil of the noise detection unit and the injection unit and the dielectric constant of the dielectric of the grounding capacitor are both depending on the temperature change. Change. Therefore, the inductance value and the capacitance value of the main circuit portion also change according to the temperature change.
  • the noise filter of the third embodiment is a noise filter when the capacitance value of the main circuit portion does not change with respect to a temperature change.
  • the operating environment temperature of general electric equipment is in the range of ⁇ 40 ° C. to 85 ° C.
  • the dielectric constants of barium titanate (BaTIO 3 ), strontium titanate (SrTiO 3 ), lead oxide (PbO), etc. which are shown as the dielectrics used for ground capacitors, are from -40 ° C. It changes by up to several tens of percent in the temperature range of 85 ° C.
  • the change in the dielectric constant of a normal dielectric such as titanium oxide (TIM 2 ) and calcium zirconate (CaZrO 3 ) used for a temperature compensation capacitor is negligible as compared with the above-mentioned ferroelectric substance. small.
  • the noise filter of the present embodiment uses a normal dielectric as the dielectric of the grounding capacitor.
  • the core material of the common mode choke coil of the noise detection unit and the injection unit is Mn—Zn ferrite, which is a general core material, as in the first embodiment. Therefore, the magnetic permeability of the core material of the common mode choke coil of the noise detection unit and the injection unit changes according to the temperature change as shown in FIG. 11 of the first embodiment.
  • FIG. 18 is a configuration diagram of the filter unit 16 of the present embodiment.
  • the filter unit 16 is composed of a resistor 16a and an inductor 16c.
  • the filter unit 16 is composed of a resistance 16a and an inductor 16c connected between the electric circuit and the ground potential on the output side of the resistance 16a.
  • the filter unit 16 is an RL high-pass filter and attenuates a gain of a frequency lower than a specific frequency called a cutoff frequency.
  • the filter unit 16 applies an RL high-pass filter to the common mode noise detection signal input from the noise detection unit 12 to generate a cancel signal, and outputs this cancel signal to the amplification unit 17.
  • the capacitance value of the main circuit unit 20 does not change according to the temperature change.
  • the filter unit 16 is composed of a resistor 16a and an inductor 16c, and does not have a capacitor.
  • the capacitance component of the filter unit 16 is only the parasitic capacitance generated between the ground potential and the ground potential.
  • the capacitance value of this parasitic capacitance is very small compared to the capacitance value of the grounded capacitor, and can be regarded as constant with respect to temperature changes. Therefore, even in the filter unit 16, only the inductance value changes according to the temperature change.
  • the core material of the common mode choke coil of the noise detection unit 12 and the injection unit 14 and the core material of the inductor 16c of the filter unit 16 are made of the same material. With this configuration, the temperature dependence of the inductance value of the main circuit unit 20 and the temperature dependence of the inductance value of the inductor 16c in the filter unit 16 can be made the same.
  • the cutoff frequency of the filter unit 16 when the resonance frequency generated in the open loop response shifts due to the temperature change, the cutoff frequency of the filter unit 16 also shifts so as to follow it. Therefore, unnecessary resonance peaks are attenuated in the open loop response.
  • the noise filter configured in this way, the temperature dependence of the product of the inductance value and the capacitance value of the main circuit section and the temperature dependence of the product of the inductance value and the capacitance value of the filter section are set to be the same. Therefore, the noise suppression effect does not decrease even if the resonance frequency changes due to the temperature change. Further, this noise filter is low in cost because it does not require a temperature detector for detecting the temperature of the noise detection unit or the like and a controller for adjusting the frequency characteristic of the filter unit to the resonance frequency according to the temperature.
  • the core material of the main circuit unit 20 and the core material of the filter unit 16 do not necessarily have to be the same material, and may be another material having the same magnetic permeability and the same temperature dependence.
  • Embodiment 4 In the noise filters of the first embodiment and the second embodiment, the magnetic permeability of the core material of the common mode choke coil of the noise detection unit and the injection unit and the dielectric constant of the dielectric of the grounding capacitor are both depending on the temperature change. Change. Therefore, the inductance value and the capacitance value of the main circuit portion also change according to the temperature change.
  • the noise filter of the fourth embodiment is a noise filter when the inductance value of the main circuit portion does not change with respect to a temperature change.
  • the magnetic permeability of Mn—Zn ferrite or the like shown as a core material used for a common mode choke coil changes by a maximum of several tens of percent in the temperature range of ⁇ 40 ° C. to 85 ° C.
  • the change in magnetic permeability of nanocrystal materials having a high Curie temperature is negligibly smaller than that of the above-mentioned Mn—Zn ferrite.
  • the core material having a high Curie temperature include an amorphous material and a nanocrystalline material.
  • the noise filter of the present embodiment uses an amorphous material or a nanocrystal material as the core material used for the common mode choke coil.
  • the dielectric of the grounding capacitor is barium titanate (BaTIO 3 ), which is a general dielectric, as in the first embodiment. Therefore, as shown in FIG. 12 of the first embodiment, the dielectric constant of the grounded capacitor changes according to the temperature change.
  • BaTIO 3 barium titanate
  • FIG. 19 is a configuration diagram of the filter unit 16 of the present embodiment.
  • the filter unit 16 is composed of a resistor 16a and a capacitor 16b.
  • the filter unit 16 is composed of a capacitor 16b and a resistance 16a connected between the electric circuit and the ground potential on the output side of the capacitor 16b.
  • the filter unit 16 is an RC high-pass filter and attenuates a gain of a frequency lower than a specific frequency called a cutoff frequency.
  • the filter unit 16 applies an RC high-pass filter to the common mode noise detection signal input from the noise detection unit 12 to generate a cancel signal, and outputs this cancel signal to the amplification unit 17.
  • the inductance value of the main circuit unit 20 does not change according to the temperature change. .. In the main circuit unit 20, only the capacitance value changes according to the temperature change.
  • the filter unit 16 is composed of a resistor 16a and a capacitor 16b, and does not have an inductor.
  • the inductance component of the filter unit 16 is only the parasitic inductor generated in the wiring.
  • the inductance value of this parasitic inductor is very small compared to the inductance value of the common mode choke coil, and can be regarded as constant with respect to temperature changes. Therefore, even in the filter unit 16, only the capacitance value changes according to the temperature change.
  • the dielectric of the grounding capacitor of the main circuit section and the dielectric of the capacitor 16b of the filter section 16 are made of the same material. With this configuration, the temperature dependence of the capacitance value of the main circuit unit 20 and the temperature dependence of the capacitance value of the capacitor 16b in the filter unit 16 can be made the same.
  • the cutoff frequency of the filter unit 16 when the resonance frequency generated in the open loop response shifts due to the temperature change, the cutoff frequency of the filter unit 16 also shifts so as to follow it. Therefore, unnecessary resonance peaks are attenuated in the open loop response.
  • the noise filter configured in this way, the temperature dependence of the product of the inductance value and the capacitance value of the main circuit section and the temperature dependence of the product of the inductance value and the capacitance value of the filter section are set to be the same. Therefore, the noise suppression effect does not decrease even if the resonance frequency changes due to the temperature change. Further, this noise filter is low in cost because it does not require a temperature detector for detecting the temperature of the noise detection unit or the like and a controller for adjusting the frequency characteristic of the filter unit to the resonance frequency according to the temperature.
  • the dielectric of the main circuit unit 20 and the dielectric of the filter unit 16 do not necessarily have to be the same material, and may be another material having the same permittivity and temperature dependence.
  • Unit 80 power converter, 81 DC power supply, 82, 83, 84 upper and lower arms, 82a, 82b, 83a, 83b, 84a, 84b semiconductor switch, 85 inverter output terminal, 86, 91 parasitic capacity, 90 load, 100 power conversion system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Filters And Equalizers (AREA)

Abstract

温度変化で共振周波数が変化してもノイズ抑制効果が低下しない低コストのノイズフィルタを提供する。 ノイズフィルタ(10)は、コモンモードノイズを検出するノイズ検出部(12)と、キャンセル信号出力部(13)と、キャンセル信号を注入する注入部(14)と、接地コンデンサ(15)とを有する。キャンセル信号出力部は、コモンモードノイズからキャンセル信号を生成するフィルタ部(16)とキャンセル信号を増幅する増幅部(17)とを有し、ノイズ検出部、注入部および接地コンデンサを含む主回路部(20)のインダクタンス値と容量値との積の温度依存性と、フィルタ部のインダクタンス値と容量値との積の温度依存性とが同じである。

Description

ノイズフィルタ
 本願は、ノイズフィルタに関する。
 電源からの入力電力を任意の直流電力または交流電力に変換して負荷に供給する電力変換装置が知られている。この電力変換装置は、スイッチング動作に起因する高周波ノイズを発生する。この高周波ノイズは、寄生容量などを介して接地電位を経由して電源または負荷に流れるコモンモードノイズの原因となる。このコモンモードノイズを抑制するために、電源と電力変換装置との間の電路、または電力変換装置と負荷との間の電路にノイズフィルタが設置される。
 ノイズフィルタの一つにアクティブノイズフィルタがある。このアクティブノイズフィルタは、電路のコモンモードノイズを検出するノイズ検出部と、検出されたコモンモードノイズからキャンセル信号を生成して出力するキャンセル信号出力部と、キャンセル信号を電路に注入する注入部とを有する。ノイズ検出部および注入部としてチョークコイルが用いられた場合、このチョークコイルのインダクタンス成分と電路の容量成分とに起因した共振が発生する。そのため、キャンセル信号出力部は共振周波数における増幅率を調整するためのフィルタ部を備えている。
 チョークコイルのコア材の透磁率は温度に応じて変化するため、チョークコイルの温度が変化すると共振周波数が変化する。温度変化によって共振周波数が変化すると共振周波数とフィルタ部の周波数特性との間にずれが生じ、ノイズ抑制効果が低下する。従来のノイズフィルタは、チョークコイルの温度を検知する温度検知器と、この温度検知器で検知された温度に応じてフィルタの周波数特性を共振周波数に合わせるコントローラとを備えている(例えば、特許文献1参照)。
特開平9-215341号公報
 しかしながら、従来のノイズフィルタにおいては、チョークコイルの温度を検知する温度検知器と、この温度検知器で検知された温度に応じてフィルタ部の周波数特性を共振周波数に合わせるコントローラとを備えているので、高コストになるという問題がある。
 本願は上述のような課題を解決するためになされたもので、温度変化で共振周波数が変化してもノイズ抑制効果が低下しない低コストのノイズフィルタを提供することを目的とする。
 本願のノイズフィルタは、電路のコモンモードノイズを検出するノイズ検出部と、検出されたコモンモードノイズからキャンセル信号を生成して出力するキャンセル信号出力部と、キャンセル信号を電路に注入する注入部と、電路に接続された接地コンデンサとを有する。そして、キャンセル信号出力部は、検出されたコモンモードノイズにフィルタをかけてキャンセル信号を生成するフィルタ部とキャンセル信号を増幅する増幅部とを有しており、ノイズ検出部、注入部および接地コンデンサを含む主回路部のインダクタンス値と容量値との積の温度依存性と、フィルタ部のインダクタンス値と容量値との積の温度依存性とが同じである。
 本願のノイズフィルタにおいては、主回路部のインダクタンス値と容量値との積の温度依存性と、フィルタ部のインダクタンス値と容量値との積の温度依存性とが同じに設定されているので、温度変化で共振周波数が変化してもノイズ抑制効果が低下しない。また、このノイズフィルタは、ノイズ検出部などの温度を検知する温度検知器、および温度に応じてフィルタ部の周波数特性を共振周波数に合わせるコントローラが不要となるので低コストとなる。
実施の形態1に係る電力変換システムの構成図である。 実施の形態1に係る電力変換装置の構成図である。 実施の形態1に係る電力変換システムにおけるコモンモードノイズの説明図である。 実施の形態1に係るノイズフィルタの構成図である。 実施の形態1に係るノイズ検出部の構成図である。 実施の形態1に係るフィルタ部の構成図である。 実施の形態1に係る増幅部の構成図である。 実施の形態1に係る注入部の構成図である。 実施の形態1に係るノイズフィルタの主回路部の説明図である。 実施の形態1における主回路部の制御応答を示す模式図である。 実施の形態1におけるコア材の特性図である。 実施の形態1における誘電体の特性図である。 実施の形態1における主回路部の制御応答を示す模式図である。 実施の形態1に係るフィルタ部の構成図である。 実施の形態1における主回路部の制御応答を示す模式図である。 実施の形態2に係るフィルタ部の構成図である。 実施の形態2における主回路部の制御応答を示す模式図である。 実施の形態3に係るフィルタ部の構成図である。 実施の形態4に係るフィルタ部の構成図である。
 以下、本願を実施するための実施の形態に係るノイズフィルタについて、図面を参照して詳細に説明する。なお、各図において同一符号は同一もしくは相当部分を示している。
実施の形態1.
 図1は、実施の形態1に係るノイズフィルタが適用された電力変換システムの構成図である。電力変換システム100は、交流電源1と負荷90との間に配置される。この電力変換システム100は、電源線2を介して交流電源1から入力される電力を変換する電力変換装置80と、交流電源1と電力変換装置80との間に挿入されたノイズフィルタ10とで構成されている。電力変換装置80は、交流電源1から入力される電力を負荷90の駆動に必要な電力に変換して出力する。なお、本実施の形態において、ノイズフィルタ10は交流電源1と電力変換装置80との間に配置されているが、電力変換装置80と負荷90との間に配置されてもよい。
 図2は、本実施の形態の電力変換装置80の一例を示す構成図である。この電力変換装置80は、2レベル三相インバータである。直列に接続された2つの半導体スイッチ82a、82bで1つの上下アーム82が構成されている。また、直列に接続された2つの半導体スイッチ83a、83bで1つの上下アーム83が構成されている。さらに、直列に接続された2つの半導体スイッチ84a、84bで1つの上下アーム84が構成されている。この3つの上下アーム82、83、84には直流電源81が接続されている。3つの上下アーム82、83、84の中点は、インバータ出力端子85に接続されている。これらの6つの半導体スイッチ82a、82b、83a、83b、84a、84bがスイッチ動作をおこなうことで、インバータ出力端子85に交流電力が出力される。このとき、インバータ出力端子85の出力電位は、直流電源81の正電圧および負電圧のいずれか一方の電位となる。そのため、この電力変換装置80のコモンモード電圧は、ゼロではない一定の電圧となる。
 図3は、本実施の形態の電力変換システムにおけるコモンモードノイズの説明図である。この電力変換システム100において、電力変換装置80および負荷90と接地線3との間には寄生容量86および寄生容量91がそれぞれ存在する。図3において破線矢印で示したように、電力変換システム100には、寄生容量86、91および接地線3を介するコモンモードループに電力変換装置80のコモンモード電圧が印加されてコモンモード電流(コモンモードノイズ)が流れる。
 図4は、本実施の形態のノイズフィルタ10の構成図である。このノイズフィルタ10は、交流電源1と電力変換装置80との間に挿入されている。ノイズフィルタ10は、電源線2につながる電路11に設けられたノイズ検出部12と、ノイズ検出部12で検出されたコモンモードノイズからキャンセル信号を生成して出力するキャンセル信号出力部13と、ノイズ検出部12よりも出力側の電路11に設けられた注入部14と、電路11と接地電位との間に設けられた接地コンデンサ15とを有している。キャンセル信号出力部13は、ノイズ検出部12で検出されたコモンモードノイズにフィルタをかけてキャンセル信号を生成するフィルタ部16と、キャンセル信号を増幅する増幅部17とを有している。
 図5は、本実施の形態のノイズ検出部12の構成図である。このノイズ検出部12は、コモンモードトランスで構成されている。ノイズ検出部12を構成するコモンモードトランスをここでは検出トランスと称す。この検出トランスは、交流電源1の電源線2につながる電路11において、R相動力線に巻かれたR相巻線12aとS相動力線に巻かれたS相巻線12bとT相動力線に巻かれたT相巻線12cと補助巻線12dとで構成されている。R相巻線12a、S相巻線12bおよびT相巻線12cは同相に巻かれている。このように構成されたノイズ検出部12は、ノーマルモードの発生磁束は相殺し、コモンモードの発生磁束は強め合う。そのため、この検出トランスは、コモンモードに対してのみ高いインダクタンス値を備え、コモンモードチョークコイルとして働く。そして、このノイズ検出部12では、検出トランスを通過するコモンモードノイズによって、補助巻線12dの両端にコモンモードノイズ検出信号が生じる。補助巻線12dの両端は、フィルタ部16に接続されている。
 図6は、本実施の形態に係るフィルタ部16の一例を示す構成図である。このフィルタ部16は、2つの回路の並列接続で構成されている。一方の回路は、直列に接続された2つの抵抗16aと、この2つの抵抗16aの中点と接地電位との間に接続されたコンデンサ16bとで構成されている。他方の回路は、直列に接続された2つのコンデンサ16bと、この2つのコンデンサ16bの中点と接地電位との間に接続された抵抗16aとで構成されている。このフィルタ部16はTwin-T型と呼ばれるノッチフィルタであり、リジェクト周波数と呼ばれる特定の周波数でゲインを減衰させる。フィルタ部16は、ノイズ検出部12から入力されたコモンモードノイズ検出信号にノッチフィルタをかけてキャンセル信号を生成し、このキャンセル信号を増幅部17へ出力する。
 図7は、本実施の形態の増幅部17の構成図である。この増幅部17は、入力抵抗17aとオペアンプ17bと帰還抵抗17cとで構成されている。この増幅部17はオペアンプ17bを用いた反転増幅回路または非反転増幅回路である。増幅部17は、フィルタ部16から入力されたキャンセル信号を入力抵抗17aの抵抗値と帰還抵抗17cの抵抗値との比で与えられる増幅率で増幅して注入部14へ出力する。
 図8は、本実施の形態の注入部14の構成図である。この注入部14は、コモンモードトランスで構成されている。注入部14を構成するコモンモードトランスをここでは注入トランスと称す。この注入トランスは、電路11において、R相動力線に巻かれたR相巻線14aとS相動力線に巻かれたS相巻線14bとT相動力線に巻かれたT相巻線14cと補助巻線14dとで構成されている。R相巻線14a、S相巻線14bおよびT相巻線14cは同相に巻かれている。そのため、この注入トランスは、コモンモードに対してのみ高いインダクタンス値を備え、コモンモードチョークコイルとして働く。このように構成された注入部14においては、補助巻線14dの両端にキャンセル信号が入力される。そして、この注入部14において、補助巻線14dに入力されたキャンセル信号によって、R相巻線14a、S相巻線14bおよびT相巻線14cに対してコモンモードノイズをキャンセルする電圧が誘起される。
 図9は、本実施の形態に係るノイズフィルタにおける主回路部の説明図である。ここで、ノイズ検出部12、注入部14および接地コンデンサ15で構成された部分を主回路部20と称する。主回路部20のインダクタンス値は、ノイズ検出部12を構成するコモンモードチョークコイルのインダクタンス値と注入部14を構成するコモンモードチョークコイルのインダクタンス値との和である。また、主回路部20の容量値は、接地コンデンサ15の容量値である。さらに、フィルタ部16のインダクタンス値および容量値は、フィルタ部16を構成する各素子のインダクタンス値および容量値のそれぞれの和である。
 図10は、主回路部20の制御応答を示す模式図である。図10において、横軸は周波数、縦軸はゲインである。ここで制御応答とは、ノイズ検出部12の出力からキャンセル信号出力部13および注入部14を経由してノイズ検出部12に再び帰還してくる経路における開ループ応答を表すものとする。ノイズフィルタ10の制御安定性は、この開ループ応答のゲイン余裕および位相余裕の値によって管理される。
 図10Aは、フィルタ部16が存在しない場合の開ループ応答を示す模式図である。ここで、主回路部20のインダクタンス値をL1、容量値をC1とすると、主回路部20の共振周波数f1は、f1=1/{2π√(L1×C1)}で与えられる。図10Aに示すように、フィルタ部16が存在しない場合の開ループ応答にはf1に大きな共振ピークが発生して位相回転が生じる。そのため、主回路部20の制御応答が不安定になる。なお、主回路部20のインダクタンス値L1は、ノイズ検出部12を構成するコモンモードチョークコイルのインダクタンス値と注入部14を構成するコモンモードチョークコイルのインダクタンス値との和である。また、主回路部20の容量値C1は、接地コンデンサ15の容量値である。
 図10Bは、フィルタ部16のフィルタ通過特性を示す模式図である。図6に示したように、このフィルタ部16はノッチフィルタであり、リジェクト周波数f2を主回路部20の共振周波数f1に一致させている。ここで、フィルタ部16のインダクタンス値をL2、容量値をC2とすると、フィルタ部16におけるリジェクト周波数f2は、f2=1/{2π√(L2×C2)}で与えられる。さらに、このリジェクト周波数f2は、主回路部20の共振周波数f1と同じになるように設定されている(f1=f2)。
 図10Cは、フィルタ部16が存在する場合の開ループ応答を示す模式図である。図10Cに示すように、フィルタ部16が存在する場合の開ループ応答にはf1の大きな共振ピークはフィルタ部16のフィルタ通過特性で減衰される。
 このようにフィルタ部16を有するキャンセル信号出力部13は、ノイズ検出部12で検出されたノイズに含まれる主回路部20の不要な共振ピークを減衰させたキャンセル信号を生成することができる。その結果、ノイズフィルタ10は安定したノイズ抑制効果を発揮することができる。
 次に、このように構成されたノイズフィルタ10において、温度が変化したときのノイズ抑制効果の変化について説明する。
 図11は、コモンモードチョークコイルに用いられる一般的なコア材、例えばMn-Znフェライトの比透磁率の温度依存性を示した特性図である。このフェライトの透磁率は、ごく低温からキュリー温度に達する直前まで温度上昇と共に増大する。コモンモードチョークコイルのインダクタンス値は比透磁率に比例するため、このインダクタンス値も温度変化に応じて変化する。
 図12は、接地コンデンサに用いられる一般的な誘電体、例えばチタン酸バリウム(BaTiO)の比誘電率の温度依存性を示した特性図である。この誘電体の誘電率は、ある温度にピーク値を有し、この温度より低温または高温になるにしたがって誘電率は低下する。接地コンデンサの容量値は比誘電率に比例するため、この容量値も温度変化に応じて変化する。
 図13は、温度が変化したときの主回路部20の制御応答を示す模式図である。図13において、横軸は周波数、縦軸はゲインである。図13において、実線は常温における特性曲線、破線は常温よりも高温のときの特性曲線、長破線は常温よりも低温のときの特性曲線を示す。ここで、コモンモードチョークコイルに用いられるコア材の透磁率は温度上昇に伴って増大すると仮定し、接地コンデンサに用いられる誘電体の誘電率は温度上昇に伴って減少すると仮定する。そして、温度上昇に伴う透磁率の増大率は温度上昇に伴う誘電率の減少率よりも小さいと仮定する。そのため、主回路部20におけるインダクタンス値と容量値との積は温度上昇に伴って低下する。その結果、共振周波数は温度上昇に伴って大きくなる。
 図13Aは、フィルタ部16が存在しない場合の開ループ応答を示す模式図である。上述のように共振周波数は温度上昇に伴って大きくなる。そのため、実線で示す常温時の共振ピークに対して、破線で示す高温時の共振ピークは高周波側にシフトし、長破線で示す低温時の共振ピークは低周波側にシフトする。
 図13Bは、フィルタ部16のフィルタ通過特性を示す模式図である。ここで、フィルタ部16のリジェクト周波数は温度によって変化しないと仮定する。したがって、リジェクト周波数f2は常温のときの共振周波数f1と一致した周波数となっている。
 図13Cは、フィルタ部16が存在する場合の開ループ応答を示す模式図である。図13Cの実線に示すように、常温であれば図13Aに示す共振ピークの周波数と図13Bに示すリジェクト周波数とが一致するので、共振ピークは減衰される。しかしながら、常温よりも高温または低温においては、図13Aに示す共振ピークの周波数と図13Bに示すリジェクト周波数とは一致しないために、図13Cの破線または長破線に示すように、開ループ応答に不要な共振ピークが発生する。その結果、主回路部20の制御応答が不安定になり、ノイズフィルタ10のノイズ抑制効果が低下する。
 本実施の形態のノイズフィルタは、温度変化によって共振周波数が変化してもノイズ抑制効果が低下しないようにしたものである。具体的には、フィルタ部16におけるインダクタンス値と容量値との積の温度依存性を主回路部20におけるインダクタンス値と容量値との積の温度依存性と同じに設定している。このように設定することにより、温度変化に応じてフィルタ部16のリジェクト周波数を主回路部20の共振周波数のシフトに合せてシフトさせることができる。
 ここで、フィルタ部16におけるインダクタンス値と容量値との積の温度依存性と、主回路部20におけるインダクタンス値と容量値との積の温度依存性とが同じとは、L1×C1の値の温度変化に対する変化量とL2×C2の値の温度変化に対する変化量とが同じであることを意味する。ただし、後述するように2つの変化量が厳密に同じであることに限定されるものではなく、2つの変化量にある程度の差異があっても同じという意味に含まれる。
 次に、本実施の形態のノイズフィルタの構成を説明する。
 図14は、本実施の形態のフィルタ部16の一例を示す構成図である。このフィルタ部16は、抵抗16aとコンデンサ16bとインダクタ16cとで構成されている。フィルタ部16は、抵抗16aと、この抵抗16aの出力側において電路と接地電位との間で直列に接続されたインダクタ16cおよびコンデンサ16bとで構成されている。このフィルタ部16はRLCノッチフィルタであり、リジェクト周波数でゲインを減衰させる。
 本実施の形態において、主回路部20のインダクタンス値と容量値との積の温度依存性と、フィルタ部16におけるインダクタ16cのインダクタンス値とコンデンサ16bの容量値との積の温度依存性とが同じに設定されている。具体的には、ノイズ検出部12および注入部14のコモンモードチョークコイルのコア材と、フィルタ部16のインダクタ16cのコア材とを同じ素材としている。さらに、接地コンデンサ15の誘電体と、フィルタ部16のコンデンサ16bの誘電体とを同じ素材としている。なお、主回路部20のコア材とフィルタ部16のコア材とは必ずしも同じ素材である必要はなく、透磁率が同じ温度依存性をもつ別の素材でもよい。また、主回路部20の誘電体とフィルタ部16の誘電体とは必ずしも同じ素材である必要はなく、誘電率が同じ温度依存性をもつ別の素材でもよい。
 次に、本実施の形態のノイズフィルタの動作を説明する。
 図15は、本実施の形態のノイズフィルタ10において、温度が変化したときの主回路部20の制御応答を示す模式図である。図15において、横軸は周波数、縦軸はゲインである。図15において、実線は常温における特性曲線、破線は常温よりも高温のときの特性曲線、長破線は常温よりも低温のときの特性曲線を示す。ここで、図13と同様に、主回路部20における共振周波数は温度上昇に伴って大きくなると仮定する。
 図15Aは、フィルタ部16が存在しない場合の開ループ応答を示す模式図である。上述のように共振周波数は温度上昇に伴って大きくなる。そのため、実線で示す常温時の共振ピークに対して、破線で示す高温時の共振ピークは高周波側にシフトし、長破線で示す低温時の共振ピークは低周波側にシフトする。
 図15Bは、フィルタ部16のフィルタ通過特性を示す模式図である。ここで、フィルタ部16のインダクタンス値をL2、容量値をC2とすると、フィルタ部16のリジェクト周波数f2は、f2=1/{2π√(L2×C2)}で与えられる。フィルタ部16におけるインダクタンス値と容量値との積の温度依存性は、主回路部20におけるインダクタンス値と容量値との積の温度依存性と同じに設定されている。すなわち、L1×C1の値の温度変化に対する変化量とL2×C2の値の温度変化に対する変化量とが同じに設定されている。そのため、フィルタ部16のリジェクト周波数は、主回路部20の共振周波数と同様に温度に応じてシフトする。すなわち、実線で示す常温時のリジェクト周波数に対して、破線で示す高温時のリジェクト周波数は高周波側にシフトし、長破線で示す低温時のリジェクト周波数は低周波側にシフトする。そして、温度変化に対する共振周波数のシフト量とリジェクト周波数のシフト量とが同じになる。
 図15Cは、フィルタ部16が存在する場合の開ループ応答を示す模式図である。図15Cの実線に示すように、常温では図15Aに示す共振ピークの周波数と図15Bに示すリジェクト周波数とが一致するので、共振ピークは減衰される。さらに、常温よりも高温または低温においては、図15Aに示す共振ピークのシフトと同様に図15Bに示すリジェクト周波数もシフトするので、図15Cの破線または長破線に示すように、開ループ応答において不要な共振ピークが減衰される。その結果、ノイズフィルタ10は安定したノイズ抑制効果を発揮することができる。
 このように構成されたノイズフィルタは、主回路部のインダクタンス値と容量値との積の温度依存性と、フィルタ部のインダクタンス値と容量値との積の温度依存性とが同じに設定されているので、温度変化で共振周波数が変化してもノイズ抑制効果が低下しない。また、このノイズフィルタは、ノイズ検出部などの温度を検知する温度検知器、および温度に応じてフィルタ部の周波数特性を共振周波数に合わせるコントローラが不要となるので低コストとなる。
 なお、本実施の形態において、温度依存性が同じとは厳密に一致することに限定されない。上述の安定したノイズ抑制効果が奏される範囲において温度依存性に差異があっても同じ範囲に含まる。例えば、ノイズ検出部12および注入部14のコモンモードチョークコイルのコア材と、フィルタ部16のインダクタ16cのコア材とを同じ素材とする場合でも、素材の特性ばらつき、部品寸法のばらつきなどに起因する温度依存性のばらつきなどは同じ範囲に含まれる。また、インダクタンス値と容量値との積の温度依存性が同じであれば、主回路部20に含まれるコア材および誘電体の素材とフィルタ部16に含まれるコア材および誘電体の素材とがそれぞれ異なていていもよい。コア材としては、例えばMn-Znフェライト、Ni-Znフェライトなどを用いることができる。誘電体とてしは、チタン酸バリウム(BaTiO)、チタン酸ストロンチウム(SrTiO)、酸化鉛(PbO)などを用いることができる。
 また、キュリー温度および初透磁率が同じ磁性体同士であれば透磁率の温度依存性も同じと判断できる。したがって、本実施の形態において、コモンモードチョークコイルのコア材のキュリー温度および初透磁率とフィルタ部に含まれるインダクタのコア材のキュリー温度および初透磁率とがそれぞれ同じであってもよい。
 また、本実施の形態において、増幅部の構成としてオペアンプを用いた回路の例を示したが、増幅部の構成として他の反転増幅回路、非反転増幅回路であってもよい。さらに、本実施の形態のノイズフィルタは、ノイズ検出部および注入部以外に他のコモンモードチョークコイルが接続されていてもよい。また、ノイズ検出部および注入部の少なくとも一方はコモンモードチョークコイルの代わりにコンデンサで構成されていてもよい。主回路部の共振周波数は、それらの全ての素子のインダクタンス成分および容量成分で決定される。さらに、本実施の形態における電力変換システムは三相三線式の電力変換システムであるが、三相四線式の電力変換システムであってもよい。
実施の形態2.
 実施の形態1のノイズフィルタにおいて、フィルタ部はノッチフィルタであった。実施の形態2のノイズフィルタは、ハイパスフィルタでフィルタ部を構成したものである。本実施の形態のノイズフィルタの構成は、フィルタ部以外は実施の形態1の図4に示したノイズフィルタの構成と同じである。
 図16は、本実施の形態に係るフィルタ部16の構成図である。このフィルタ部16は、抵抗16aとコンデンサ16bとインダクタ16cとで構成されている。フィルタ部16は、直列に接続された抵抗16aおよびコンデンサ16bと、コンデンサ16bの出力側において電路と接地電位との間に接続されたインダクタ16cとで構成されている。このフィルタ部16はLCハイパスフィルタであり、カットオフ周波数と呼ばれる特定の周波数より低い周波数のゲインを減衰させる。フィルタ部16は、ノイズ検出部12から入力されたコモンモードノイズ検出信号にLCハイパスフィルタをかけてキャンセル信号を生成し、このキャンセル信号を増幅部17へ出力する。
 本実施の形態において、主回路部20のインダクタンス値と容量値との積の温度依存性と、フィルタ部16におけるインダクタ16cのインダクタンス値とコンデンサ16bの容量値との積の温度依存性とが同じに設定されている。具体的には、ノイズ検出部12および注入部14のコモンモードチョークコイルのコア材と、フィルタ部16のインダクタ16cのコア材とを同じ素材としている。さらに、接地コンデンサ15の誘電体と、フィルタ部16のコンデンサ16bの誘電体とを同じ素材としている。なお、主回路部20のコア材とフィルタ部16のコア材とは必ずしも同じ素材である必要はなく、透磁率が同じ温度依存性をもつ別の素材でもよい。また、主回路部20の誘電体とフィルタ部16の誘電体とは必ずしも同じ素材である必要はなく、誘電率が同じ温度依存性をもつ別の素材でもよい。
 次に、本実施の形態のノイズフィルタの動作を説明する。
 図17は、本実施の形態のノイズフィルタにおいて、温度が変化したときの主回路部20の制御応答を示す模式図である。図17において、横軸は周波数、縦軸はゲインである。図17において、実線は常温における特性曲線、破線は常温よりも高温のときの特性曲線、長破線は常温よりも低温のときの特性曲線を示す。ここで、実施の形態1の図13と同様に、主回路部20における共振周波数は温度上昇に伴って大きくなると仮定する。
 図17Aは、フィルタ部16が存在しない場合の開ループ応答を示す模式図である。上述のように共振周波数は温度上昇に伴って大きくなる。そのため、実線で示す常温時の共振ピークに対して、破線で示す高温時の共振ピークは高周波側にシフトし、長破線で示す低温時の共振ピークは低周波側にシフトする。
 図17Bは、フィルタ部16のフィルタ通過特性を示す模式図である。ここで、フィルタ部16のインダクタンス値をL3、容量値をC3とすると、フィルタ部16のカットオフ周波数f3は、f3=1/{2π√(L3×C3)}で与えられる。フィルタ部16におけるインダクタンス値と容量値との積の温度依存性は、主回路部20におけるインダクタンス値と容量値との積の温度依存性と同じに設定されている。なわち、L1×C1の値の温度変化に対する変化量とL3×C3の値の温度変化に対する変化量とが同じに設定されている。そのため、フィルタ部16のカットオフ周波数は、主回路部20の共振周波数と同様に温度に応じてシフトする。すなわち、実線で示す常温時のカットオフ周波数に対して、破線で示す高温時のカットオフ周波数は高周波側にシフトし、長破線で示す低温時のカットオフ周波数は低周波側にシフトする。そして、温度変化に対する共振周波数のシフト量とカットオフ周波数のシフト量とが同じになる。
 図17Cは、フィルタ部16が存在する場合の開ループ応答を示す模式図である。図17Cの実線に示すように、常温では図17Aに示す共振ピークの周波数は図17Bに示すカットオフ周波数より低いので共振ピークは減衰される。さらに、常温よりも高温または低温においては、図17Aに示す共振ピークのシフトと同様に図17Bに示すカットオフ周波数もシフトするので、図17Cの破線または長破線に示すように、開ループ応答において不要な共振ピークが減衰される。その結果、ノイズフィルタ10は安定したノイズ抑制効果を発揮することができる。
 このように構成されたノイズフィルタは、主回路部のインダクタンス値と容量値との積の温度依存性と、フィルタ部のインダクタンス値と容量値との積の温度依存性とが同じに設定されているので、温度変化で共振周波数が変化してもノイズ抑制効果が低下しない。また、このノイズフィルタは、ノイズ検出部などの温度を検知する温度検知器、および温度に応じてフィルタ部の周波数特性を共振周波数に合わせるコントローラが不要となるので低コストとなる。
 なお、実施の形態1のノイズフィルタにおいては、フィルタ部をノッチフィルタで構成していた。また、実施の形態2のノイズフィルタにおいては、フィルタ部をハイパスフィルタで構成していた。これらに加えて、フィルタ部をローパスフィルタ、バンドパスフィルタなど別のフィルタで構成してもよい。
実施の形態3.
 実施の形態1および実施の形態2のノイズフィルタにおいては、ノイズ検出部および注入部のコモンモードチョークコイルのコア材の透磁率と接地コンデンサの誘電体の誘電率とは、共に温度変化に応じて変化する。そのため、主回路部のインダクタンス値および容量値も温度変化に応じて変化する。実施の形態3のノイズフィルタは、主回路部の容量値が温度変化に対して変化しない場合のノイズフィルタである。
 一般の電気機器の使用環境温度は、-40℃から85℃の範囲である。例えば、接地コンデンサに用いられる誘電体とてして示したチタン酸バリウム(BaTiO)、チタン酸ストロンチウム(SrTiO)および酸化鉛(PbO)などの強誘電体の誘電率は、-40℃から85℃の温度範囲において、最大で数十%変化する。これに対して、温度補償用コンデンサに用いられる例えば酸化チタン(TiO)、ジルコン酸カルシウム(CaZrO)などの常誘電体の誘電率の変化は、上述の強誘電体に比べて無視できるほど小さい。本実施の形態のノイズフィルタは、接地コンデンサの誘電体として常誘電体を用いたものである。なお、本実施の形態のノイズフィルタにおいて、ノイズ検出部および注入部のコモンモードチョークコイルのコア材は、実施の形態1と同様に、一般的なコア材であるMn-Znフェライトである。そのため、ノイズ検出部および注入部のコモンモードチョークコイルのコア材の透磁率は、実施の形態1の図11に示したように、温度変化に応じて変化する。
 図18は、本実施の形態のフィルタ部16の構成図である。このフィルタ部16は、抵抗16aとインダクタ16cとで構成されている。フィルタ部16は、抵抗16aとこの抵抗16aの出力側において電路と接地電位との間に接続されたインダクタ16cとで構成されている。このフィルタ部16はRLハイパスフィルタであり、カットオフ周波数と呼ばれる特定の周波数より低い周波数のゲインを減衰させる。フィルタ部16は、ノイズ検出部12から入力されたコモンモードノイズ検出信号にRLハイパスフィルタをかけてキャンセル信号を生成し、このキャンセル信号を増幅部17へ出力する。
 本実施の形態においては、接地コンデンサを常誘電体で構成しているので、主回路部20の容量値は温度変化に応じて変化しない。主回路部20においては、インダクタンス値のみ温度変化に応じて変化する。これに対して、フィルタ部16は抵抗16aとインダクタ16cとで構成されており、コンデンサを備えていない。フィルタ部16の容量成分は、接地電位との間に発生する寄生容量のみである。この寄生容量の容量値は、接地コンデンサの容量値に比べてとても小さく、温度変化に対して一定と見做すことができる。したがって、フィルタ部16においても、インダクタンス値のみ温度変化に応じて変化する。
 本実施の形態においては、ノイズ検出部12および注入部14のコモンモードチョークコイルのコア材と、フィルタ部16のインダクタ16cのコア材とを同じ素材としている。このように構成することで、主回路部20のインダクタンス値の温度依存性と、フィルタ部16におけるインダクタ16cのインダクタンス値の温度依存性とを同じにすることができる。
 このように構成されたノイズフィルタにおいては、開ループ応答に生じる共振周波数が温度変化によってシフトしたときに、それに追従するようにフィルタ部16のカットオフ周波数もシフトする。そのため、開ループ応答において不要な共振ピークが減衰される。
 このように構成されたノイズフィルタは、主回路部のインダクタンス値と容量値との積の温度依存性と、フィルタ部のインダクタンス値と容量値との積の温度依存性とが同じに設定されているので、温度変化で共振周波数が変化してもノイズ抑制効果が低下しない。また、このノイズフィルタは、ノイズ検出部などの温度を検知する温度検知器、および温度に応じてフィルタ部の周波数特性を共振周波数に合わせるコントローラが不要となるので低コストとなる。
 なお、主回路部20のコア材とフィルタ部16のコア材とは必ずしも同じ素材である必要はなく、透磁率が同じ温度依存性をもつ別の素材でもよい。
実施の形態4.
 実施の形態1および実施の形態2のノイズフィルタにおいては、ノイズ検出部および注入部のコモンモードチョークコイルのコア材の透磁率と接地コンデンサの誘電体の誘電率とは、共に温度変化に応じて変化する。そのため、主回路部のインダクタンス値および容量値も温度変化に応じて変化する。実施の形態4のノイズフィルタは、主回路部のインダクタンス値が温度変化に対して変化しない場合のノイズフィルタである。
 例えば、コモンモードチョークコイルに用いられるコア材とてして示したMn-Znフェライトなどの透磁率は、-40℃から85℃の温度範囲において、最大数十%変化する。これに対して、キュリー温度が高いナノ結晶材などの透磁率の変化は、上述のMn-Znフェライトに比べて無視できるほど小さい。キュリー温度が高いコア材としては、アモルファス材、ナノ結晶材などがある。本実施の形態のノイズフィルタは、コモンモードチョークコイルに用いられるコア材としてアモルファス材またはナノ結晶材を用いたものである。なお、本実施の形態のノイズフィルタにおいて、接地コンデンサの誘電体は、実施の形態1と同様に、一般的な誘電体であるチタン酸バリウム(BaTiO)である。そのため、接地コンデンサの誘電率は、実施の形態1の図12に示したように、温度変化に応じて変化する。
 図19は、本実施の形態のフィルタ部16の構成図である。このフィルタ部16は、抵抗16aとコンデンサ16bとで構成されている。フィルタ部16は、コンデンサ16bとこのコンデンサ16bの出力側において電路と接地電位との間に接続された抵抗16aとで構成されている。このフィルタ部16はRCハイパスフィルタであり、カットオフ周波数と呼ばれる特定の周波数より低い周波数のゲインを減衰させる。フィルタ部16は、ノイズ検出部12から入力されたコモンモードノイズ検出信号にRCハイパスフィルタをかけてキャンセル信号を生成し、このキャンセル信号を増幅部17へ出力する。
 本実施の形態においては、ノイズ検出部および注入部のコモンモードチョークコイルのコア材をアモルファス材またはナノ結晶材で構成しているので、主回路部20のインダクタンス値は温度変化に応じて変化しない。主回路部20においては、容量値のみ温度変化に応じて変化する。これに対して、フィルタ部16は抵抗16aとコンデンサ16bとで構成されており、インダクタを備えていない。フィルタ部16のインダクタンス成分は、配線に発生する寄生インダクタのみである。この寄生インダクタのインダクタンス値は、コモンモードチョークコイルのインダクタンス値に比べてとても小さく、温度変化に対して一定と見做すことができる。したがって、フィルタ部16においても、容量値のみ温度変化に応じて変化する。
 本実施の形態においては、主回路部の接地コンデンサの誘電体と、フィルタ部16のコンデンサ16bの誘電体とを同じ素材としている。このように構成することで、主回路部20の容量値の温度依存性と、フィルタ部16におけるコンデンサ16bの容量値の温度依存性とを同じにすることができる。
 このように構成されたノイズフィルタにおいては、開ループ応答に生じる共振周波数が温度変化によってシフトしたときに、それに追従するようにフィルタ部16のカットオフ周波数もシフトする。そのため、開ループ応答において不要な共振ピークが減衰される。
 このように構成されたノイズフィルタは、主回路部のインダクタンス値と容量値との積の温度依存性と、フィルタ部のインダクタンス値と容量値との積の温度依存性とが同じに設定されているので、温度変化で共振周波数が変化してもノイズ抑制効果が低下しない。また、このノイズフィルタは、ノイズ検出部などの温度を検知する温度検知器、および温度に応じてフィルタ部の周波数特性を共振周波数に合わせるコントローラが不要となるので低コストとなる。
 なお、主回路部20の誘電体とフィルタ部16の誘電体とは必ずしも同じ素材である必要はなく、誘電率が同じ温度依存性をもつ別の素材でもよい。
 本願は、様々な例示的な実施の形態および実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 したがって、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 1 交流電源、2 電源線、3 接地線、10 ノイズフィルタ、11 電路、12 ノイズ検出部、12a、14a R相巻線、12b、14b S相巻線、12c、14c T相巻線、12d、14d 補助巻線、13 キャンセル信号出力部、14 注入部、15 接地コンデンサ、16 フィルタ部、16a 抵抗、16b コンデンサ、16c インダクタ、17 増幅部、17a 入力抵抗、17b オペアンプ、17c 帰還抵抗、20 主回路部、80 電力変換装置、81 直流電源、82、83、84 上下アーム、82a、82b、83a、83b、84a、84b 半導体スイッチ、85 インバータ出力端子、86、91 寄生容量、90 負荷、100 電力変換システム。

Claims (9)

  1.  電路のコモンモードノイズを検出するノイズ検出部と、検出された前記コモンモードノイズからキャンセル信号を生成して出力するキャンセル信号出力部と、前記キャンセル信号を前記電路に注入する注入部と、前記電路に接続された接地コンデンサとを有するノイズフィルタであって、
     前記キャンセル信号出力部は、検出された前記コモンモードノイズにフィルタをかけて前記キャンセル信号を生成するフィルタ部と前記キャンセル信号を増幅する増幅部とを有し、
     前記ノイズ検出部、前記注入部および前記接地コンデンサを含む主回路部のインダクタンス値と容量値との積の温度依存性と、前記フィルタ部のインダクタンス値と容量値との積の温度依存性とが同じであることを特徴とするノイズフィルタ。
  2.  前記ノイズ検出部および前記注入部は、それぞれコモンモードチョークコイルで構成されていることを特徴とする請求項1に記載のノイズフィルタ。
  3.  前記フィルタ部は、インダクタおよびコンデンサを含み、前記コモンモードチョークコイルのコア材と前記フィルタ部に含まれる前記インダクタのコア材とが同じ透磁率の温度依存性をもつ素材で構成されており、かつ前記接地コンデンサの誘電体と前記フィルタ部に含まれる前記コンデンサの誘電体とが同じ誘電率の温度依存性をもつ素材で構成されていることを特徴とする請求項2に記載のノイズフィルタ。
  4.  前記コモンモードチョークコイルのコア材のキュリー温度および初透磁率と前記フィルタ部に含まれる前記インダクタのコア材のキュリー温度および初透磁率とがそれぞれ同じであることを特徴とする請求項3に記載のノイズフィルタ。
  5.  前記コモンモードチョークコイルのコア材と前記フィルタ部に含まれる前記インダクタのコア材とが同じ素材で構成されており、かつ前記接地コンデンサの誘電体と前記フィルタ部に含まれる前記コンデンサの誘電体とが同じ素材で構成されていることを特徴とする請求項3または4に記載のノイズフィルタ。
  6.  前記フィルタ部は、抵抗とインダクタとで構成されており、かつ前記接地コンデンサが常誘電体で構成されており、前記コモンモードチョークコイルのコア材と前記フィルタ部の前記インダクタのコア材とが同じ透磁率の温度依存性をもつ素材で構成されていることを特徴とする請求項2に記載のノイズフィルタ。
  7.  前記コモンモードチョークコイルのコア材と前記フィルタ部に含まれる前記インダクタのコア材とが同じ素材で構成されていることを特徴とする請求項6に記載のノイズフィルタ。
  8.  前記フィルタ部は、抵抗とコンデンサとで構成されており、かつ前記コモンモードチョークコイルのコア材がアモルファス材またはナノ結晶材で構成されており、前記接地コンデンサの誘電体と前記フィルタ部の前記コンデンサの誘電体とが同じ誘電率の温度依存性をもつ素材で構成されていることを特徴とする請求項2に記載のノイズフィルタ。
  9. 前記接地コンデンサの誘電体と前記フィルタ部の前記コンデンサの誘電体とが同じ素材で構成されていることを特徴とする請求項8に記載のノイズフィルタ。
PCT/JP2020/027197 2020-07-13 2020-07-13 ノイズフィルタ WO2022013905A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2020/027197 WO2022013905A1 (ja) 2020-07-13 2020-07-13 ノイズフィルタ
EP20945364.6A EP4181371A4 (en) 2020-07-13 2020-07-13 NOISE FILTER
JP2022535985A JP7321377B2 (ja) 2020-07-13 2020-07-13 ノイズフィルタ
CN202080101267.3A CN115702545A (zh) 2020-07-13 2020-07-13 噪声滤波器
US17/917,628 US11990833B2 (en) 2020-07-13 2020-07-13 Noise filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/027197 WO2022013905A1 (ja) 2020-07-13 2020-07-13 ノイズフィルタ

Publications (1)

Publication Number Publication Date
WO2022013905A1 true WO2022013905A1 (ja) 2022-01-20

Family

ID=79555193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027197 WO2022013905A1 (ja) 2020-07-13 2020-07-13 ノイズフィルタ

Country Status (5)

Country Link
US (1) US11990833B2 (ja)
EP (1) EP4181371A4 (ja)
JP (1) JP7321377B2 (ja)
CN (1) CN115702545A (ja)
WO (1) WO2022013905A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4142134A4 (en) * 2020-04-20 2023-05-31 Mitsubishi Electric Corporation POWER CONVERSION DEVICE AND AIR CONDITIONER

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100934A1 (ja) * 2009-03-05 2010-09-10 三菱電機株式会社 漏れ電流低減装置
JP2013158085A (ja) * 2012-01-27 2013-08-15 Mitsubishi Electric Corp 高周波電流低減装置および検出トランス
JP2017038500A (ja) * 2015-08-12 2017-02-16 三星電子株式会社Samsung Electronics Co.,Ltd. 伝導性ノイズ抑制回路及びインバータ装置
JP2019080469A (ja) * 2017-10-27 2019-05-23 三菱電機株式会社 ノイズ低減装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3259693A (en) 1960-09-28 1966-07-05 Nippon Electric Co Frequency division multiplex communication system
JPS5871735A (ja) 1981-10-26 1983-04-28 Hitachi Ltd テレビジヨン受信機のチユ−ナ
JPH09215341A (ja) 1996-02-09 1997-08-15 Nissan Motor Co Ltd インバータ装置における高周波漏れ電流低減装置
US6778042B2 (en) 2000-10-30 2004-08-17 Kabushiki Kaisha Toshiba High-frequency device
JP2002141704A (ja) * 2000-10-31 2002-05-17 Toshiba Corp フィルタ装置
JP5301812B2 (ja) 2007-11-14 2013-09-25 東京エレクトロン株式会社 プラズマ処理装置
JP5263663B2 (ja) 2008-08-28 2013-08-14 富士電機株式会社 伝導性ノイズフィルタ
US8649193B2 (en) * 2010-04-05 2014-02-11 Mitsubishi Electric Corporation Leakage current reducing apparatus
JP6858070B2 (ja) * 2017-05-08 2021-04-14 三星電子株式会社Samsung Electronics Co.,Ltd. 伝導性ノイズ抑制装置、電力変換装置及びモータ装置
CN109217648A (zh) * 2017-07-05 2019-01-15 许继电气股份有限公司 一种模块化滤波器
US11616433B2 (en) * 2020-04-07 2023-03-28 Texas Instruments Incorporated Active noise filtering for switch mode power supplies
US20230109575A1 (en) * 2020-05-20 2023-04-06 Ngai Kit Franki Poon Power supply apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100934A1 (ja) * 2009-03-05 2010-09-10 三菱電機株式会社 漏れ電流低減装置
JP2013158085A (ja) * 2012-01-27 2013-08-15 Mitsubishi Electric Corp 高周波電流低減装置および検出トランス
JP2017038500A (ja) * 2015-08-12 2017-02-16 三星電子株式会社Samsung Electronics Co.,Ltd. 伝導性ノイズ抑制回路及びインバータ装置
JP2019080469A (ja) * 2017-10-27 2019-05-23 三菱電機株式会社 ノイズ低減装置

Also Published As

Publication number Publication date
JP7321377B2 (ja) 2023-08-04
EP4181371A1 (en) 2023-05-17
CN115702545A (zh) 2023-02-14
JPWO2022013905A1 (ja) 2022-01-20
EP4181371A4 (en) 2023-08-02
US20230179085A1 (en) 2023-06-08
US11990833B2 (en) 2024-05-21

Similar Documents

Publication Publication Date Title
JP3354939B2 (ja) 力率訂正回路のためのダンピングされたemi入力フィルタ
US5619079A (en) EMI line filter
WO1996009693A9 (en) Damped emi input filter for power factor correction circuits
US10069480B2 (en) Active filter device and circuit arrangement comprising an active filter device
EP3651385B1 (en) Control circuit for suppressing electromagnetic interference signals
WO2022013905A1 (ja) ノイズフィルタ
WO2014048471A1 (en) Power line filter device
WO2021166018A1 (ja) ノイズ抑制装置
US4768002A (en) Power filter resonant frequency modulation network
US6266259B1 (en) Half-bridge inverter
US5036292A (en) Decoupled electrolytic capacitor
US20180212592A1 (en) Second order switched capacitor filter
US2579286A (en) Discriminator circuit
JP3092968B2 (ja) 電子的に制御可能な伝達特性を持つ回路装置
WO2023105687A1 (ja) ノイズフィルタ
Kuisma et al. Air-cored common mode filter with integrated capacitors
JP3159459B2 (ja) 電気機器における感電を防止するラインフィルター
US11037735B2 (en) Voltage-controllable capacitive device, a method for manufacturing such a device and a method for operating such a device, and a device of a system for inductive power transfer
US20230163681A1 (en) Electromagnetic interference suppression circuit
US20050122181A1 (en) Wien-robinson oscillator
SU1458863A2 (ru) Регулирующий орган устройства стабилизации переменного напр жени
Haensel et al. Influence of Voltage Dependency of Capacitors on a 3-Phase Common Mode Feedforward Current Sense Current Injection Active EMI Filter
SU1734175A1 (ru) Стабилизирующий источник напр жени посто нного тока
SU951650A1 (ru) Перестраиваемый фильтр
RU1794277C (ru) Датчик фазы

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945364

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022535985

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020945364

Country of ref document: EP

Effective date: 20230213