WO2022013076A1 - Verwendung von silikon zum ausfüllen von fugen - Google Patents

Verwendung von silikon zum ausfüllen von fugen Download PDF

Info

Publication number
WO2022013076A1
WO2022013076A1 PCT/EP2021/069094 EP2021069094W WO2022013076A1 WO 2022013076 A1 WO2022013076 A1 WO 2022013076A1 EP 2021069094 W EP2021069094 W EP 2021069094W WO 2022013076 A1 WO2022013076 A1 WO 2022013076A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone
zinc oxide
nano
tetrapods
joints
Prior art date
Application number
PCT/EP2021/069094
Other languages
English (en)
French (fr)
Inventor
Jörg NASS
Murat Gündüz
Original Assignee
Nass Joerg
Guenduez Murat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nass Joerg, Guenduez Murat filed Critical Nass Joerg
Priority to US17/916,865 priority Critical patent/US20230159805A1/en
Publication of WO2022013076A1 publication Critical patent/WO2022013076A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/34Filling pastes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/08Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/90Other crystal-structural characteristics not specified above
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/02Inorganic compounds
    • C09K2200/0239Oxides, hydroxides, carbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/04Non-macromolecular organic compounds
    • C09K2200/0494Silicon-containing compounds

Definitions

  • the invention relates to the use of silicone to fill gaps in floors used by vehicles.
  • Silicones are heat resistant, hydrophobic, dielectric and are generally considered to be physiologically compatible (not harmful), which is why they are used for skin protection, cosmetic skin care and plastic surgery.
  • Physical analysis methods can be used to detect silicones, e.g. IR spectroscopy and pyrolysis gas chromatography.
  • the molecular weight distribution can be examined using gel permeation chromatography. Liquid silicones were formerly used in cosmetics to inject wrinkles. This procedure is unusual today because the material tends to migrate and granulomas (small, non-cancerous but annoying growths) then form in places other than the injection site. Silicone bags filled with silicone gel are used for silicone breast implants.
  • silicone breasts in humans.
  • Artificial heart valves, pacemakers, penile implants, skin creams, syringe lubricants, etc. are also made from silicone.
  • silicones Compared to carbon-based plastics, silicones have the great advantage that the human immune system hardly reacts to them.
  • silicone resins are used to impregnate decaying biological specimens.
  • silicone is used to create a negative mold for the subsequent casting of sculptures and reliefs. Silicone is characterized by the
  • Mold silicones, construction silicones, cosmetic silicones, etc. contain a variety of fillers and additives. They improve their specific properties, depending on the desired modification.
  • the nano zinc oxide tetrapods are zinc oxide crystals with a size of several nanometers to a few micrometers, i.e. a few thousandths to millionths of a millimeter in size. They are in the form of tetrapods, four rigid arms radiating from a central point. Larger tetrapods of several meters are known as breakwaters to protect the coasts of Sylt or Heligoland, where the arms interlock and thus defy the forces of the sea currents.
  • the arms of the tetrapods interlock like staples and thus form a solid bond.
  • Nano zinc oxide tetrapods are needle-shaped crystals made from zinc metal vapor and oxygen. In doing so, they grow in the direction of the C-axis of the respective hexagonal crystal of zinc oxide from all of the four opposite surfaces of an octagon.
  • the crystal is used in filters with very good filter and dust collection properties due to its shape, good light catalyst activation due to its semiconductor and UV light absorption properties, and as an antibacterial material (zinc ion effect). Characteristics:
  • Zinc Oxide Chemical Formula ZnO Molecule Structure: Single Crystal (Needle Shape)
  • Shape tetrapod shape (four feet)
  • the arms of the tetrapod staples interlock and form a solid bond.
  • a nanocomposite with a high dielectric constant is known from EIS 2011/0 315 914 A1, which consists of at least one ferroelectric filler and one non-ferroelectric filler, which are dispersed in a binder.
  • the binder can be made of silicone.
  • the non-ferroelectric filler may be nano-zinc oxide tetrapods.
  • a possible use as a coating agent for dissipating electrostatics is indicated.
  • Elastomeric articles are known from DE 102015 203 914 A1, which consist of a rubber matrix, a component and an adhesion system with adhesion promoter connecting these two. Until now, the parts were connected more by chemical means
  • the elastomeric article known from DE 102015 203 914 A1 consists of a
  • the adhesion promoter layer contains nano zinc oxide tetrapods. Indirectly will on it pointed out that nano-zinc oxide tetrapods can also be used to bond silicone and Teflon.
  • a component is vulcanized in or on a rubber matrix by providing the component with an adhesive layer containing nano-zinc oxide tetrapods, which is then bonded to the rubber matrix by vulcanization.
  • the component, rubber matrix and adhesive layer together form the elastomeric article.
  • Nano zinc oxide tetrapods and methyl vinyl silicone rubber are used in CN 106977824 A as optional components for a heat and age resistant rubber gasket for plate heat exchangers.
  • a windshield wiper blade mentioned in CN 108944810 A consists, among other things, of a "scraping part" which i.a. Nano-zinc oxide tetrapods and / or a silicone rubber composition may contain.
  • Object of the invention The strength, in particular the notch strength, and the tensile strength of the silicone and its insensitivity to mechanical loads are to be improved.
  • silicone is used to fill gaps in floors on which vehicles drive, in that the silicone contains zinc oxide, which is present in the form of tetrapod-shaped crystals.
  • the nanocomposite from US 2011/0315 914 A1 is not specifically used for joints.
  • the elastomeric article from DE 102015 203 914 A1 does not explicitly contain nano-zinc oxide tetrapods as an additive to silicone.
  • nano-zinc oxide tetrapods as an additive to silicone.
  • CN 106977824 A also does not mention the use of a mixture of silicone with nano-zinc oxide tetrapods to fill in joints.
  • CN 108944810 A also does not mention the use of a silicone-nano-zinc-oxide-tetrapod mixture for filling joints.
  • the use of the silicone-nano-zinc oxide tetrapod mixture according to the invention for filling joints was not obvious to a person skilled in the art, even with knowledge of the above-mentioned publications. Because the use according to the invention for filling joints in floors driven on by vehicles requires increased notch strength of the joint compound, which is not referred to in the publications as a special property of the mixture of silicone with nano-zinc oxide tetrapods.
  • Additives are used in order to achieve a positive effect on production, storage, processing or product properties during and after the usage phase.
  • additives usually only make up a few percent of the total volume and are very finely distributed in the material. Additives ensure e.g. gloss effects, different viscosities, higher ones
  • the additive according to the invention namely zinc oxide, which is present in the form of tetrapod-shaped crystals, creates up to 70% higher tear and tensile strength in contrast to silicone sealants without this additive.
  • the weight percentages in the manufacture of the silicone mixtures (sealants) are less than one percent. This is very dependent on the desired setting of the sealant material.
  • nano-zinc oxide tetrapods from Tianjin YR Chemspec Co., Ltd. were used. used.
  • the nano-zinc oxide tetrapods have a higher body stability, which provides advantages especially with a lower layer thickness.
  • the advantage is e.g. insensitivity to mechanical influences, less abrasion.
  • Silicone with nano zinc oxide tetrapods can be used as a sealant in particularly exposed areas (underground car park entrances, areas with heavy traffic).
  • the advantage is e.g. insensitivity to mechanical influences, less abrasion.
  • Another advantage is the antibacterial property, which makes it possible to use it in hospitals or canteen kitchens.
  • the antibacterial properties of the zinc oxide tetrapods make the silicone mold resistant.
  • the silicone provided with the additive according to the invention is characterized by a high notch resistance, which is particularly important when used on joints with a high mechanical load and/or a high cleaning intensity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)

Abstract

Bei der Verwendung von Silikon zum Ausfüllen von Fugen in von Fahrzeugen befahrenen Böden ist es von Vorteil, wenn das Silikon Zinkoxid enthält, welches in Form von tetrapodenförmigen Kristallen vorliegt.

Description

VERWENDUNG VON SILIKON ZUM AUSFULLEN VON FUGEN
Die Erfindung betrifft die Verwendung von Silikon zum Ausfüllen von Fugen in von Fahrzeugen befahrenen Böden.
Hintergrund
Silikone sind wärmebeständig, hydrophob, dielektrisch und gelten in der Regel als physiologisch verträglich (nicht gesundheitsschädlich), weshalb sie für den Hautschutz, die kosmetische Hautpflege und plastische Chirurgie genutzt werden. Zum Nachweis von Silikonen sind physikalische Analyseverfahren einsetzbar, z.B. die IR- Spektroskopie und die Pyrolyse-Gaschromatographie. Die Molekülgewichtsverteilung ist mittels Gel-Permeations-Chromatographie untersuchbar. Flüssige Silikone wurden früher in der Kosmetik zur Unterspritzung von Falten genutzt. Dieses Verfahren ist heute unüblich, da das Material zum Abwandem neigt, und sich dann an anderen Stellen als dem Injektionsort Granulome (kleine, nicht bösartige, aber störende Geschwülste) bilden. Für Silikon-Brustimplantate werden mit Silikongel gefüllte Silikonbeutel benutzt.
Doch nicht nur für Silikonbrüste wird das Material beim Menschen verwendet. Künstliche Herzklappen, Herzschrittmacher, Schwellkörperimplantate, Hautcremes, Gleitmittel für Spritzen usw. werden auch aus Silikon hergestellt. Silikone haben gegenüber kohlenstoffbasierten Kunststoffen den großen Vorteil, dass das menschliche Immunsystem kaum auf sie reagiert.
In der Zahnmedizin sind additions- und kondensationsvemetzende Silikone unerlässlich für die exakte Abformung der Zahnreihen und der Kiefer, um Präzisionsmodelle hersteilen zu können.
Bei der Plastination werden Silikonharze zur Imprägnierung von verweslichen biologischen Präparaten verwendet.
Im Kunstguss wird Silikon zur Herstellung einer Negativform für den späteren Abguss von Skulpturen und Reliefs verwendet. Silikon zeichnet sich dabei durch die
Abzeichnungsgenauigkeit von Oberflächendetails aus und ist beim Aushärten der gegossenen Form praktisch schrumpffrei. Die wohl bekannteste Verwendung findet sich im Baugewerbe als Dichtstoff zum Füllen von Fugen. Dort werden sie aber auch zur Herstellung von Abform- und Vergussmassen und als Beschichtungsmassen für Gewebe verwendet. Abschottungen aus Silikon dienen der Versiegelung von Durchbrüchen und Fugen in Wänden und Decken, die eine Brandrate aufweisen müssen. Hier dient das Silikon nicht allein als Abdichtung, sondern auch als Bestandteil eines Bauteils.
Formsilikone, Bausilikone, kosmetische Silikone usw. enthalten eine Vielzahl von Füllstoffen und Additiven. Sie verbessern deren spezifischen Eigenschaften, je nach gewünschter Modifikation.
Eine ganze Reihe von bautechnischen Anwendungen verlangt ein Höchstmaß an Festigkeit und Zugkraft sowie Unempfindlichkeit gegen mechanische Belastungen.
Stand der Technik
Die Verwendung von Zinkoxid, welches in Form von tetrapodenförmigen Kristallen vorliegt, ist z. B. in der EP 2 782 103 Al, allerdings für Lackdraht, und in der DE 10 2013 104 195 Al für optoelektronische Bauelemente beschrieben.
Die Nano-Zinkoxid-Tetrapoden (ZnO) sind Kristalle aus Zinkoxid mit einer Größe von mehreren Nano- bis wenigen Mikrometern, also wenige Tausendstel- bis Millionstel Millimeter klein. Sie haben die Form von Tetrapoden, vier starren Armen, die von einem zentralen Punkt ausgehen. Größere Tetrapoden von mehreren Metern kennt man als Wellenbrecher zum Küstenschutz von Sylt oder Helgoland, wo sich die Arme ineinander verhaken und so den Kräften der Meeresströmungen trotzen.
Die Arme der Tetrapoden verhaken sich wie Heftklammern ineinander und bilden so einen festen Verbund.
Nano-Zinkoxid-Tetrapoden sind nadelförmige Kristalle, hergestellt aus Zinkmetalldampf und Sauerstoff. Dabei wachsen sie in Richtung der C-Achse des jeweiligen sechseckigen Kristalls des Zinkoxids aus allen der vier sich gegenüberliegenden Oberflächen eines Achtecks. Der Kristall findet Verwendung in Filtern mit sehr guten Filter- und Staub Sammlungseigenschaften aufgrund seiner Form, guter Lichtkatalysator Aktivierung aufgrund seiner Halbleiter- und UV- Lichtaufnahmeeigenschaften sowie als antibakterielles Material (Zinkionen-Effekt). Eigenschaften:
Materialname: Zinkoxid Chemische Formel: ZnO Molekül Struktur: Einzelkristall (Nadelform)
Form: Tetrapoden-Form (vier Füße)
Durchschnittliche Länge eines Fußes: 10 pm bis 20 pm Spezifisches Gewicht: 5,78 Relative Dichte: ca. 0,1 Schmelzpunkt unter Druck: 2.000 °C Spezifische Hitze: 0,1248 cal/g * Grad Wärmeleitfähigkeit: 25,3 W/m * k Wärmeausdehnungskoeffizient: 3,18x 10-6rc Reflexionsindex: 1, 9-2,0 Elektrische Leitfähigkeit (2,4x 1010 Hz): e = 8,5 Volumenwiderstand: ca. 10 W * cm
Die Arme der Tetrapoden-Heftklammem verhaken sich ineinander und bilden so einen festen Verbund.
Aus der EIS 2011 / 0 315 914 Al ist ein Nanokomposit mit hoher Dielektrizitätszahl bekannt, welches aus mindestens je einem ferroelektrischen Füllmittel und einem nicht-ferroelektrischen Füllmittel besteht, welche dispergiert in einem Bindemittel vorliegen. Das Bindemittel kann aus Silikon bestehen. Das nicht-ferroelektrische Füllmittel kann aus Nano-Zinkoxid-Tetrapoden bestehen. Eine mögliche Verwendung als Beschichtungsmittel zum Ableiten von Elektrostatik wird angedeutet.
Aus der DE 102015 203 914 Al sind elastomere Artikel bekannt, die aus einer Gummimatrix, einem Bauteil und einem diese beiden verbindenden Haftsystem mit Haftvermittler bestehen. Die Verbindung der Teile wurde bisher eher durch chemische
Reaktionen als durch Formschlüsse erreicht. Verwendet man Nano-Zinkoxid- Tetrapoden als Haftvermittler, erreicht man einen Formschluss und somit auch eine bessere Haftung. Der aus der DE 102015 203 914 Al bekannte elastomere Artikel besteht aus einer
Gummimatrix und einem Bauteil, die über eine Haftvermittler Schicht verbunden sind. Die Haftvermittlerschicht enthält Nano-Zinkoxid-Tetrapoden. Indirekt wird darauf hingewiesen, dass durch Nano-Zinkoxid-Tetrapoden auch Silikon und Teflon miteinander verbunden werden können.
Zusammengefasst wird hier ein Bauteil in oder an eine Gummimatrix vulkanisiert, indem das Bauteil mit einer Nano-Zinkoxid-Tetrapoden enthaltenden Haftschicht versehen wird, welche dann mit der Gummimatrix durch Vulkanisation verbunden wird. Das Bauteil, die Gummimatrix und die Haftschicht bilden zusammen den elastomeren Artikel.
Nano-Zinkoxid-Tetrapoden und Methyl-Vinyl-Silikon-Gummi werden in der CN 106977824 A als optionale Bestandteile für eine hitze- und altersresistente Gummidichtung für Plattenwärmetauscher verwendet.
Ein in der CN 108944810 A genanntes Scheibenwischerblatt besteht u.a. aus einem „schabenden Teil“, welches u. a. Nano-Zinkoxid-Tetrapoden und/oder eine Silikon- Gummi-Zusammensetzung enthalten kann.
Aufgabe und Lösung der Erfindung
Aufgabe der Erfindung: Es sollen die Festigkeit, insbesondere die Kerbfestigkeit, und die Zugkraft des Silikons sowie dessen Unempfindlichkeit gegen mechanische Belastungen verbessert werden.
Diese Aufgabe wird bei der Verwendung von Silikon zum Ausfüllen von Fugen in von Fahrzeugen befahrenen Böden erfindungsgemäß dadurch gelöst, dass das Silikon Zinkoxid enthält, welches in Form von tetrapodenförmigen Kristallen vorliegt.
Das Nanokomposit aus der US 2011 / 0315 914 Al wird nicht konkret für Fugen verwendet.
Der elastomere Artikel aus der DE 102015 203 914 Al enthält Nano-Zinkoxid- Tetrapoden nicht explizit als Additiv zu Silikon. Insbesondere wird eine Verwendung einer Mischung aus Silikon mit Nano-Zinkoxid-Tetrapoden zum Ausfüllen von Fugen nicht erwähnt.
Auch in der CN 106977824 A wird eine Verwendung einer Mischung von Silikon mit Nano-Zinkoxid-Tetrapoden zum Ausfüllen von Fugen nicht genannt. In der CN 108944810 A wird ebenso keine Verwendung einer Silikon-Nano-Zinkoxid- Tetrapoden-Mischung zum Ausfüllen von Fugen erwähnt. Die erfindungsgemäße Verwendung der Silikon-Nano-Zinkoxid-Tetrapoden-Mischung zum Ausfüllen von Fugen war für einen Fachmann auch bei Kenntnis der oben genannten Druckschriften nicht naheliegend. Denn die erfindungsgemäße Verwendung zum Ausfüllen von Fugen in von Fahrzeugen befahrenen Böden erfordert eine erhöhte Kerbfestigkeit der Fugenmasse, auf die als besondere Eigenschaft der Mischung von Silikon mit Nano-Zinkoxid-Tetrapoden in den Druckschriften nicht hingewiesen wird.
Der Fachmann hatte daher keinen Anlass, die Eignung einer Mischung von Silikon mit Nano-Zinkoxid-Tetrapoden für die Verwendung zum Ausfüllen von Fugen in von Fahrzeugen befahrenen Böden zu prüfen.
Vorteile der Erfindung Unter anderem werden die folgenden Vorteile erreicht: Additive werden eingesetzt, um einen positiven Effekt auf Herstellung, Lagerung, Verarbeitung oder Produkteigenschaften während und nach der Gebrauchsphase zu erreichen. Im Gegensatz zu Füllstoffen tragen Additive meist nur wenige Prozent zum Gesamtvolumen bei und sind im Material sehr fein verteilt. Additive sorgen z.B. für Glanzeffekte, verschiedene Viskositäten, höhere
Bewegungsaufnahme, verbesserte Klebkraft usw. Durch das Einbringen von Nano Zinkoxid Tetrapoden in Silikon oder Dichtstoffen wie Polyurethandichtstoffe, Dichtstoffe auf Basis silanmodifizierter Polymere, Butyldichtstoffe, Acryl atdichtstoffe usw. wird vor allem eine höhere Reißkraft und eine bessere Kerbfestigkeit erzielt.
Das erfindungsgemäße Additiv, nämlich Zinkoxid, welches in Form von tetrapodenförmigen Kristallen vorliegt, schafft eine bis zu 70 % höhere Reiß- und Zugkraft im Gegensatz zu Silikondichtstoffen ohne diesen Zusatz. Die prozentualen Gewichtsanteile in der Herstellung der Silikonmischungen (Dichtstoffe) liegen unter einem Prozent. Dies ist sehr abhängig von der gewünschten Einstellung des Dichtstoffmaterials.
Weitere Vorteile:
• Präzise Gussstabilität (Gussteile)
• Bleibender Druckwiderstand (Dichtringe)
• Ab rieb widerstand (Kugellager, Zahnräder)
• Mikro Verstärkung (Kleber)
• Filter
• Antialgen und antibakterielle Eigenschaften (Farbe, Kunstharz, Wasser)
Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angeführt.
Versuchs- und Vergleichsbeispiele
In den folgenden Ausführungsbeispielen und Versuchsreihen wurden Nano-Zinkoxid- Tetrapoden der Firma Tianjin YR Chemspec Co., Ltd. verwendet.
Eingesetzt wurden
180 mm x 18 mm x 2 mm Silikonstreifen ohne Additiv
180 mm x 18 mm x 6 mm Silikonstreifen ohne Additiv
180 mm x 18 mm x 2 mm Silikonstreifen mit Additiv 180 mm x 18 mm x 6 mm Silikonstreifen mit Additiv
Zugstrecke der Silikonstreifen ohne und mit Additiv: 300 mm
Verhalten des Teststreifens (180 mm x 18 mm) bei unterschiedlichen Anteilen des Additivs: Zugkraft in Newton
Figure imgf000008_0001
Anwendungsbeispiele
Die Nano-Zinkoxid-Tetrapoden besitzt eine höhere Körperstabilität, welche besonders bei geringerer Schichtdicke Vorteile verschafft.
Vorteil ist z.B. Unempfindlichkeit gegenüber mechanischen Einflüssen, weniger Abrieb.
Silikon mit Nano-Zinkoxid-Tetrapoden kann als Dichtstoff an besonders exponierten Stellen (Tiefgarageneinfahrten, stark befahrenen Bereichen) eingesetzt werden. Vorteil ist z.B. Unempfindlichkeit gegenüber mechanischen Einflüssen, weniger Abrieb.
Ein weiterer Vorteil ist die antibakterielle Eigenschaft, was den Einsatz in Krankenhäusern oder Großküchen möglich macht. Durch die antibakterielle Eigenschaft der Zinkoxid-Tetrapoden wird eine Schimmelresistenz des Silikons erreicht.
Weitere Vorteile sind, dass durch die Zugabe der Zinkoxid-Tetrapoden eine hohe UV- Stabilität und dass eine bessere Beständigkeit gegen Scherkräfte erreicht wird.
Weiter zeichnet sich das mit dem erfindungsgemäßen Additiv versehene Silikon durch eine hohe Kerbfestigkeit aus, was insbesondere bei der Anwendung an Fugen mit einer hohen mechanischen Belastung und/oder einer hohen Reinigungsintensität wichtig ist.

Claims

A n s p rü c h e 1. Verwendung von Silikon zum Ausfüllen von Fugen in von Fahrzeugen befahrenen Böden, wobei das Silikon Zinkoxid, welches in Form von tetrapodenförmigen Kristallen vorliegt, enthält.
2 Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass das Silikon maximal 5 Gew.-% Zinkoxid enthält.
3. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass das Silikon mindestens 0,5 Gew.-% Zinkoxid enthält.
Es folgen keine Zeichnungen
PCT/EP2021/069094 2020-07-15 2021-07-09 Verwendung von silikon zum ausfüllen von fugen WO2022013076A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/916,865 US20230159805A1 (en) 2020-07-15 2021-07-09 Use of silicone to fill joints

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020118742.4A DE102020118742B4 (de) 2020-07-15 2020-07-15 Verwendung von Silikon als Dichtstoff an besonders exponierten Stellen
DE102020118742.4 2020-07-15

Publications (1)

Publication Number Publication Date
WO2022013076A1 true WO2022013076A1 (de) 2022-01-20

Family

ID=77726430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/069094 WO2022013076A1 (de) 2020-07-15 2021-07-09 Verwendung von silikon zum ausfüllen von fugen

Country Status (3)

Country Link
US (1) US20230159805A1 (de)
DE (1) DE102020118742B4 (de)
WO (1) WO2022013076A1 (de)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1460699A (zh) * 2003-05-16 2003-12-10 广州秀珀化工有限公司 新型无溶剂防静电环氧地坪涂料及生产方法
US20110315914A1 (en) 2010-06-29 2011-12-29 Pixelligent Technologies, Llc Nanocomposites with high dielectric constant
EP2782103A1 (de) 2013-03-18 2014-09-24 Schwering & Hasse Elektrodraht GmbH Lackdraht
DE102013104195A1 (de) 2013-04-25 2014-10-30 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zu seiner Herstellung
DE102015203914A1 (de) 2015-03-05 2016-09-08 Contitech Luftfedersysteme Gmbh Elastomerer Artikel
CN106221489A (zh) * 2016-08-25 2016-12-14 芜湖市天雄新材料科技有限公司 一种用于地板的自清洁装饰材料
CN106977824A (zh) 2017-04-26 2017-07-25 安徽普瑞普勒传热技术有限公司 一种板式换热器用耐热耐老化橡胶密封垫片
CN108944810A (zh) 2018-07-16 2018-12-07 嘉兴奕霞汽配科技有限公司 雨刮器刮片及雨刮器
CN110204994A (zh) * 2019-06-10 2019-09-06 扬州彩虹粉末涂料有限公司 一种防静电地板涂料及其制备该涂料的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0502483A3 (en) * 1991-03-05 1993-01-20 Matsushita Electric Industrial Co., Ltd. Static dissipative resin composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1460699A (zh) * 2003-05-16 2003-12-10 广州秀珀化工有限公司 新型无溶剂防静电环氧地坪涂料及生产方法
US20110315914A1 (en) 2010-06-29 2011-12-29 Pixelligent Technologies, Llc Nanocomposites with high dielectric constant
EP2782103A1 (de) 2013-03-18 2014-09-24 Schwering & Hasse Elektrodraht GmbH Lackdraht
DE102013104195A1 (de) 2013-04-25 2014-10-30 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zu seiner Herstellung
DE102015203914A1 (de) 2015-03-05 2016-09-08 Contitech Luftfedersysteme Gmbh Elastomerer Artikel
CN106221489A (zh) * 2016-08-25 2016-12-14 芜湖市天雄新材料科技有限公司 一种用于地板的自清洁装饰材料
CN106977824A (zh) 2017-04-26 2017-07-25 安徽普瑞普勒传热技术有限公司 一种板式换热器用耐热耐老化橡胶密封垫片
CN108944810A (zh) 2018-07-16 2018-12-07 嘉兴奕霞汽配科技有限公司 雨刮器刮片及雨刮器
CN110204994A (zh) * 2019-06-10 2019-09-06 扬州彩虹粉末涂料有限公司 一种防静电地板涂料及其制备该涂料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIN JIN ET AL: "Challenges and Solutions for Joining Polymer Materials", MACROMOLECULAR RAPID COMMUNICATIONS, vol. 35, no. 18, 1 September 2014 (2014-09-01), DE, pages 1551 - 1570, XP055745093, ISSN: 1022-1336, DOI: 10.1002/marc.201400200 *

Also Published As

Publication number Publication date
US20230159805A1 (en) 2023-05-25
DE102020118742A1 (de) 2022-01-20
DE102020118742B4 (de) 2022-11-03

Similar Documents

Publication Publication Date Title
DE3337121C2 (de) Verfahren zur Herstellung eines Härtungsprodukts aus kugeligen Teilchen
DE102011101579B4 (de) Verwendung eines leitfähigen Polymermaterials für medizinische und orthopädietechnische Anwendungen
EP1981552B1 (de) Resorbierbares calciumphosphatbasierendes biopolymervernetztes knochenersatzmaterial
DE60028737T2 (de) Elektrisch leitfähige flexible zusammensetzung, verfahren zu ihrer herstellung
EP2271704B1 (de) Beschichtung für elastomere strangförmige profile, insbesondere scheibenwischerblätter, und verfahren zu deren herstellung
EP1361261B1 (de) Dichtung
EP2789656B1 (de) Vernetzbare Massen auf der Basis von Organosiliciumverbindungen
CH656143A5 (de) Dichtungsmaterial fuer grundschichten bzw. grundplatten aus polymerfolien bei fluessigkristallanzeigen.
EP1674535A1 (de) Selbstreinigende Oberflächen mit durch hydrophobe strukturgebende Partikel und Wachspartikel gebildeten Erhebungen
DE1650105A1 (de) Abdichtungsmittel
DE102008024288A1 (de) Selektives Sintern von strukturell modifizierten Polymeren
EP2882802B1 (de) Witterungsstabile siliconmischung mit verbesserter grünstandfestigkeit
DE2002579C2 (de) Thermoplastische Formmassen aus einer Mischung eines Isobutylenpolymerisates und eines elastomeren Copolymerisates
EP1680462B1 (de) Verfahren zur herstellung eines antistatisch beschichteten formkörpers
DE20221002U1 (de) Additionsvernetzende Zweikomponenten-Siliconmaterialien mit hoher Shore D-Härte
DE2754795A1 (de) Bei raumtemperatur haertende silikon-zusammensetzungen mit guter waermedaemmung
EP0203363B1 (de) Wasser enthaltender Kitt auf Basis von Organopolysiloxanen
EP1512154A1 (de) Strahlenschutzmaterial sowie verfahren zur hertellung eines strahlenschutzmaterials und verwendung desselben
DE69910982T2 (de) Medizinischer artikel mit beschichteter oberfläche mit niedriger reibung und geringer eiweissadsorption
DE4414117A1 (de) Staubarme pulverförmige hydrophile Polymere
DE102010032780A1 (de) Hydrophile Schicht und Beschichtungszusammensetzung zur Herstellung der Schicht sowie Verfahren zur Herstellung der Beschichtungszusammensetzung
WO2022013076A1 (de) Verwendung von silikon zum ausfüllen von fugen
EP0885921A2 (de) RTV-Siliconkautschuk-Mischungen
AT511292A1 (de) Handschuh
EP0107764B1 (de) Giessharze auf Basis von Acrylsäureestern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21769342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21769342

Country of ref document: EP

Kind code of ref document: A1