WO2022012711A1 - Verfahren zur steuerung einer elektrisch betriebenen pumpe für ein hydrauliksystem - Google Patents

Verfahren zur steuerung einer elektrisch betriebenen pumpe für ein hydrauliksystem Download PDF

Info

Publication number
WO2022012711A1
WO2022012711A1 PCT/DE2021/100514 DE2021100514W WO2022012711A1 WO 2022012711 A1 WO2022012711 A1 WO 2022012711A1 DE 2021100514 W DE2021100514 W DE 2021100514W WO 2022012711 A1 WO2022012711 A1 WO 2022012711A1
Authority
WO
WIPO (PCT)
Prior art keywords
power consumption
air
pump
electric motor
intake
Prior art date
Application number
PCT/DE2021/100514
Other languages
English (en)
French (fr)
Inventor
Ralf Mannsperger
Timo ENDERS
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to CN202180043636.2A priority Critical patent/CN115702299A/zh
Priority to KR1020227046017A priority patent/KR20230015467A/ko
Publication of WO2022012711A1 publication Critical patent/WO2022012711A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • F16H57/0441Arrangements of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N29/00Special means in lubricating arrangements or systems providing for the indication or detection of undesired conditions; Use of devices responsive to conditions in lubricating arrangements or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0201Current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0205Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0208Power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0209Rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/11Outlet temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/14Viscosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/50Presence of foreign matter in the fluid
    • F04B2205/503Presence of foreign matter in the fluid of gas in a liquid flow, e.g. gas bubbles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0473Friction devices, e.g. clutches or brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/34Locking or disabling mechanisms
    • F16H63/3416Parking lock mechanisms or brakes in the transmission
    • F16H63/3483Parking lock mechanisms or brakes in the transmission with hydraulic actuating means

Definitions

  • the invention relates to a method for controlling an electrically operated pump for a hydraulic system, in particular for actuating and cooling components in a drive train of a motor vehicle, with the pump being operated by means of a brushless electric motor controlled by a control unit drawing in hydraulic fluid from a fluid sump located at a lower level.
  • a method for initializing a generic hydraulic system is known from publication DE 10 2018 130 700 A1.
  • the pump of this hydraulic system is arranged above an oil sump and sucks in the hydraulic fluid.
  • the object of the invention is the development of a method for controlling a hydraulic system.
  • the object of the invention is to propose a method for recognizing that the pressure supply device is sucking in air.
  • the proposed method is used to control an electrically operated pump for a hydraulic system.
  • the proposed hydraulic system can be provided, for example, in a purely electric drive train of a motor vehicle, in particular for actuating a clutch between an electric motor and a transmission and/or a parking lock and for cooling components of the transmission or the clutch.
  • the hydraulic system includes or is controlled by a controller that controls valves and an electric motor to operate the components of the transmission. bes to control and cool.
  • the electric motor drives a pump, for example a suction pump designed as a gear pump, and is designed to be brushless, so that a power consumption is available due to the necessary current sensor when it commutations.
  • the power consumption of the electric motor can be determined from the currents determined by the current sensor.
  • the pump sucks in hydraulic fluid from a fluid sump located below, so that air can be sucked in if the level of the fluid sump of the hydraulic fluid is not sufficient.
  • the continuously determined power consumption can be compared to a reference value of the power consumption without air being sucked in in order to detect that air is being sucked in. If the power consumption falls below the reference value within a predefined or definable time interval of, for example, 15 seconds, a decision is made to suck in air.
  • the power consumption can be evaluated as a function of the viscosity of the hydraulic fluid.
  • the viscosity changes type-specifically and operating time, so that the power consumption can already be adjusted accordingly when the hydraulic system is initialized.
  • the temperature dependence of the viscosity of the hydraulic fluid has a much greater influence on the power consumption of the electric motor. It is therefore proposed to evaluate the determined power consumption as a function of a system temperature of the hydraulic system.
  • the temperature of the hydraulic fluid can be determined directly using a temperature sensor.
  • a temperature model can be used, with the actual temperature being determined elsewhere, for example on a circuit board of the control unit, and the hydraulic fluid temperature being determined taking into account modeled temperature flows.
  • the power consumption of the electric motor in undisturbed pumping operation can be learned as a function of the speed of the pump and the temperature and stored in a characteristic map.
  • a reference value to be found with the real conditions corresponding to temperature and speed is taken from the map and compared with the currently determined power consumption. If the actual power consumption of the electric motor deviates from the reference value by a specified tolerance, intake of air is detected.
  • air intake measures to shut it down can be initiated. For example, if air is sucked in, the speed of the pump can be reduced. By reducing the speed, the volume of hydraulic fluid in the hydraulic system is reduced and fed to the fluid sump, so that the level of the fluid sump rises and hydraulic fluid without air is sucked in. After a predetermined or specifiable time interval has elapsed, the speed can be increased again, preferably increased to the original speed. If air is sucked in again, the process can be repeated. After several times, for example five times recognized intake of air, an entry can be made in a fault memory, which suggests refilling hydraulic fluid. As an alternative or in addition, a driver warning can be issued after repeated detection of air intake, which suggests a visit to the workshop or refilling of hydraulic fluid.
  • the pump is driven by an electronically commutated electric motor with a current sensor, so that a software function calculates the electrical output of the electric motor and draws conclusions from the signal about dry running or the intake of air and can also respond to this.
  • the viscosity of the hydraulic fluid varies greatly depending on the temperature.
  • a minimum power consumption of the electric motor depending on the temperature of the hydraulic fluid and the pump speed is therefore learned and stored for a detection function.
  • the power consumption of the electric motor is continuously calculated and monitored. If the power consumption falls below minimum limits for an average value, which is calculated over approximately 15 seconds, for example, the pump speed is reduced so that the hydraulic fluid can collect in the fluid sump, such as the transmission reservoir, and its level rises. This prevents air from being sucked in over the long term. After reducing the speed, the power consumption can be increased again to a level above the minimum limits for the average value.
  • the short-term operating point which regulates a reduced pump speed, is maintained for a calibratable threshold of, for example, one minute.
  • the required pump speed is then increased and the performance of the pump observed. If the power consumption falls below the learned value again, the pump speed is reduced again. This process can be repeated up to five times, for example. It can then be assumed that the oil level in the gearbox is fundamentally too low and an error memory entry can be created. This can also result in the driver, for example in a text message, for example "check transmission oil", is output in an instrument cluster.
  • FIG. 1 shows a schematic representation of a flydraulic system
  • FIG 2 shows a schematic installation situation of the pump of the hydraulic system of Figure 1
  • Figure 3 is a diagram of a characteristic map of the pump of Figure 2 and
  • Figure 4 shows a time sequence of a suction process of the pump of Figures 2 and 3.
  • FIG. 1 shows the hydraulic system 1 in a schematic representation.
  • the pump 3, which is driven by the electronically commutated electric motor 2, is used in a first drive direction to cool components that are only shown schematically, for example a disk pack of the clutch 13 via the spray mist 7 that is provided in the pressure line 5 and is cooled by the heat exchanger 6.
  • the pump 3 supplies the slave cylinders 10, 11 of the parking lock 12 and the clutch 13 via the valves 8, 9.
  • the valves 8, 9 connect the pressure lines 14, 15 to the fluid sump 16
  • the electric motor 2 is commutated by the control unit 17 with power electronics and the on-site electronics 18 to a specified speed and supplied with electrical energy, so that the Pump 3 rotates at a corresponding speed and draws in a corresponding amount of hydraulic fluid 19 from the fluid sump 16 located below the pump 3 and pumps it into the pressure lines 5, 14, 15.
  • FIG. 2 shows a schematic representation of the pump 3 and the electric motor, not shown, containing the assembly 22 with the intake manifold 20 in the installation situation in the transmission housing 23 shown in cross section. If the level h is above the end 24 of the intake manifold 20, the pump 3 is sucked in air-free hydraulic fluid 19 . If the hydraulic fluid 19 falls to the level h', air is sucked in. Depending on the movement and inclination of the motor vehicle, air can be partially sucked in at levels in between.
  • FIG. 3 shows the diagram 100 of the characteristics map 101 of the increasing power consumption P of the electric motor 2 of FIG -Axis.
  • the hydraulic fluid 19 of FIGS. 1 and 2 is conveyed without air. If the power consumption P of the electric motor 2 drops below the currently recorded temperature T and currently recorded speed n for a predetermined time interval, air intake is detected and the speed n of the electric motor 2 or the pump 3 is reduced.
  • FIG. 4 shows the flowchart 200 with the time sequence of an intake process of the pump 3 of FIGS. 1 and 3 over time t.
  • Partial diagram I shows the volume flow V delivered by pump 3 and partial diagram II shows power consumption P of electric motor 2 driving pump 3 over time t.
  • the curve 201 shows the volume flow V(setpoint) requested by the control unit 17, and the curve 202 shows the power consumption P recorded using the electronic commutation of the electric motor 2.
  • the power consumption of the electric motor 2 is above the temperature- and speed-compensated reference value P(R) according to the characteristics map 101 of FIG. 3.
  • the power consumption falls below the reference value P(R) . This means that air is sucked in.
  • the speed of the electric motor 2 is lowered at the time t(2), the volumetric flow drops despite the requested volumetric flow V(setpoint) being maintained due to the conveyance of air and due to the reduction in the speed to the actual value - Flow rate V(actual) from.
  • the fluid sump fills over time to a level at which air-free hydraulic fluid is sucked in again, so that the power consumption of the electric motor 2 again exceeds the reference value P (R) increases, the speed increases again and the actual volume flow V(actual) approaches the requested volume flow V(setpoint) again at time t(4).
  • the power consumption falls below the reference value P(R) again, so that a permanent malfunction can be assumed, and at time t(6) after a renewed waiting time
  • the cooling volume flow is permanently in an actual volume flow V(actual) that is lower than the originally requested volume flow V(setpoint) and thus emergency operation is set.
  • a driver message is issued or an entry is made in an error memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Transmission Device (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Steuerung einer elektrisch betriebenen Pumpe (3) für ein Hydrauliksystem (1), insbesondere zur Betätigung und Kühlung von Komponenten (4) in einem Antriebsstrang eines Kraftfahrzeugs, wobei die mittels eines von einem Steuergerät (17) gesteuerten, bürstenlosen Elektromotors (2) betriebene Pumpe Hydraulikfluid (19) aus einem tiefer angeordneten Fluidsumpf (16) ansaugt. Um das Hydrauliksystem (1) vor Fehlfunktion und Schäden zu bewahren, wird eine Leistungsaufnahme des Elektromotors (2) laufend ermittelt und ein Ansaugen von Luft aufgrund einer signifikanten Änderung der Leistungsaufnahme erkannt.

Description

Verfahren zur Steuerung einer elektrisch betriebenen Pumpe für ein Hvdrauliksvstem
Die Erfindung betrifft ein Verfahren zur Steuerung einer elektrisch betriebenen Pumpe für ein Hydrauliksystem, insbesondere zur Betätigung und Kühlung von Komponenten in einem Antriebsstrang eines Kraftfahrzeugs, wobei die mittels eines von einem Steu ergerät gesteuerten, bürstenlosen Elektromotors betriebene Pumpe Hydraulikfluid aus einem tiefer angeordneten Fluidsumpf ansaugt.
Aus der Druckschrift DE 10 2018 130 700 A1 ist ein Verfahren zur Initialisierung eines gattungsgemäßen Hydrauliksystems bekannt. Die Pumpe dieses Hydrauliksystems ist über einem Ölsumpf angeordnet und saugt das Hydraulikfluid an.
Aus der Druckschrift DE 102018 112 663 A1 ist ein Verfahren zur Entfernung von Luft in einem gattungsgemäßen Hydrauliksystem bekannt.
Aufgabe der Erfindung ist die Weiterbildung eines Verfahrens zur Steuerung eines Hydrauliksystems. Insbesondere ist Aufgabe der Erfindung, ein Verfahren zur Erken nung eines Ansaugens der Druckversorgungseinrichtung von Luft vorzuschlagen.
Die Aufgabe wird durch den Gegenstand des Anspruchs 1 gelöst. Die von dem An spruch 1 abhängigen Ansprüche geben vorteilhafte Ausführungsformen des Gegen stands des Anspruchs 1 wieder.
Das vorgeschlagene Verfahren dient der Steuerung einer elektrisch betriebenen Pumpe für ein Hydrauliksystem. Das vorgeschlagene Hydrauliksystem kann beispiels weise in einem rein elektrischen Antriebsstrang eines Kraftfahrzeugs insbesondere zur Betätigung einer Kupplung zwischen einer Elektromaschine und einem Getriebe und/oder einer Parksperre und zur Kühlung von Komponenten des Getriebes bezie hungsweise der Kupplung vorgesehen sein.
Das Hydrauliksystem enthält ein Steuergerät oder wird von einem Steuergerät gesteu ert, welches Ventile und einen Elektromotor steuert, um die Komponenten des Getrie- bes zu steuern und zu kühlen. Der Elektromotor treibt eine Pumpe beispielsweise eine als Zahnradpumpe ausgebildete Säugpumpe an und ist bürstenlos ausgebildet, so dass durch den notwendigen Stromsensor bei dessen Kommutierung eine Leistungs aufnahme zur Verfügung steht. Beispielsweise kann aus den vom Stromsensor ermit telten Strömen die Leistungsaufnahme des Elektromotors bestimmt werden.
Die Pumpe saugt Hydraulikfluid aus einem tiefer angeordneten Fluidsumpf an, so dass bei nicht ausreichendem Pegel des Fluidsumpfs des Hydraulikfluids Luft ange saugt werden kann.
Um zu erkennen, ob Luft angesaugt wurde, wird laufend eine Leistungsaufnahme des Elektromotors ermittelt und ein Ansaugen von Luft aufgrund einer signifikanten Ände rung der Leistungsaufnahme erkannt. Hierbei wird die unterschiedliche Viskosität von reinem Hydraulikfluid und Gemischen aus Luft und Hydraulikfluid beziehungsweise im Extremfall nur Luft genutzt, wodurch die Pumpe weniger Leistung verbraucht und die Leistungsaufnahme beim Ansaugen von Luft abnimmt. Bei einem Erkennen von Luft in dem Ansaugrohr der Pumpe kann daher entsprechend reagiert werden. Aufgrund einer frühzeitigen Erkennung von angesaugter Luft kann beispielsweise einer ver ringerte Schmierung der Pumpe mit dadurch bedingtem erhöhtem Verschleiß, einer verringerten Kühlleistung der zu kühlenden Komponenten, einer verringerten oder we niger zuverlässigen Steuerung der Komponenten wie beispielsweise Kupplung und/oder Parksperre, einer Schaumbildung im Fluidsumpf, einer erhöhten Geräusch bildung der Pumpe wie beispielsweise einem unangenehmen „Kreischen“ der Pumpe vorgebeugt werden.
Die laufend ermittelte Leistungsaufnahme kann zur Erkennung eines Ansaugens von Luft mit einem Referenzwert der Leistungsaufnahme ohne Ansaugen von Luft vergli chen werden. Unterschreitet die Leistungsaufnahme innerhalb eines vorgegebenen oder vorgebbaren Zeitintervalls von beispielsweise 15 Sekunden den Referenzwert, wird auf ein Ansaugen von Luft entschieden.
Um eine für eine Aufnahme von Luft spezifische Leistungsaufnahme vorzusehen, kann eine Bewertung der Leistungsaufnahme abhängig von der Viskosität des Hy draulikfluids vorgesehen sein. Die Viskosität ändert sich typspezifisch und über Be- triebszeit, so dass die Leistungsaufnahme bereits bei der Initialisierung des Hydraulik systems entsprechend abgestimmt werden kann. Einen wesentlich größeren Einfluss auf die Leistungsaufnahme des Elektromotors weist die Temperaturabhängigkeit der Viskosität des Hydraulikfluids auf. Es wird daher vorgeschlagen die ermittelte Leis tungsaufnahme abhängig von einer Systemtemperatur des Hydrauliksystems zu be werten. Beispielsweise kann mittels eines Temperaturfühlers direkt die Temperatur des Hydraulikfluids bestimmt werden. Alternativ kann ein Temperaturmodell dienen, wobei die tatsächliche Temperatur an anderer Stelle, beispielsweise auf einer Platine des Steuergeräts ermittelt und unter Berücksichtigung von modellierten Temperatur flüssen die Hydraulikfluidtemperatur bestimmt wird.
Weiterkann kann vorteilhaft sein, die Leistungsaufnahme abhängig von der Drehzahl der Pumpe zu bewerten, um beispielsweise dynamische Auswirkungen der Viskosität auf die Leistungsaufnahme des Elektromotors zu berücksichtigen und zu kompensie ren.
Beispielsweise kann die Leistungsaufnahme des Elektromotors im ungestörten Pump betrieb, insbesondere bei einer Abwesenheit von Luft in dem Ansaugrohr und in der Pumpe abhängig von der Drehzahl der Pumpe und der Temperatur gelernt und in ei nem Kennfeld abgelegt werden. Im laufenden Betrieb wird dabei dem Kennfeld ein zu treffender Referenzwert mit den realen Bedingungen entsprechender Temperatur und Drehzahl entnommen und mit der aktuell ermittelten Leistungsaufnahme verglichen. Weicht die tatsächliche Leistungsaufnahme des Elektromotors um eine vorgegebene Toleranz von dem Referenzwert ab, wird auf ein Ansaugen von Luft erkannt.
Im Falle eines erkannten Ansaugens von Luft können Maßnahmen zur Abstellung ein geleitet werden. Beispielsweise kann bei einem erkannten Ansaugen von Luft die Drehzahl der Pumpe erniedrigt werden. Durch eine Erniedrigung der Drehzahl wird das Volumen des Hydraulikfluids im Hydrauliksystem erniedrigt und dem Fluidsumpf zugeführt, so dass der Pegel des Fluidsumpfs ansteigt und Hydraulikfluid ohne Luft angesaugt wird. Nach Ablauf eines vorgegebenen oder vorgebbaren Zeitintervalls kann die Drehzahl wieder gesteigert, bevorzugt auf die ursprüngliche Drehzahl erhöht werden. Tritt erneut ein Ansaugen von Luft auf, kann der Vorgang wiederholt werden. Nach mehrfach, beispielsweise fünfmalig erkanntem Ansaugen von Luft kann ein Ein trag in einen Fehlerspeicher erfolgen, der ein Nachfüllen von Hydraulikfluid nahelegt. Alternativ oder zusätzlich kann nach mehrmaligem erkanntem Ansaugen von Luft eine Fahrerwarnung ausgegeben werden, welche einen Werkstattbesuch oder ein Nachfül len von Hydraulikfluid nahelegt.
Mit anderen Worten wird die Pumpe über einen elektronisch kommutierten Elektromo tor mit Stromsensor angetrieben, so dass eine Softwarefunktion die elektrische Leis tung des Elektromotors berechnen und aus dem Signal Rückschlüsse über das Tro ckenlaufen beziehungsweise Ansaugen von Luft ziehen und auch darauf reagiert wer den kann.
Die Viskosität des Hydraulikfluids, beispielsweise Getriebeöls variiert stark abhängig von der Temperatur. Für eine Erkennungsfunktion wird daher eine minimale Leis tungsaufnahme des Elektromotors abhängig von der Temperatur des Hydraulikfluids und der Pumpendrehzahl eingelernt und abgespeichert.
Im Betrieb wird die Leistungsaufnahme des Elektromotors kontinuierlich berechnet und überwacht. Sinkt die Leistungsaufnahme unterhalb von minimalen Grenzen für ei nen Durchschnittswert, der beispielsweise über circa 15 Sekunden berechnet wird, wird die Pumpendrehzahl gesenkt, damit sich das Hydraulikfluid im Fluidsumpf wie beispielsweise Getriebe-Reservoir sammeln kann und dessen Pegel steigt. Auf diese Weise wird verhindert, dass langfristig Luft angesaugt wird. Nach der Reduktion der Drehzahl kann die Leistungsaufnahme wieder auf ein Niveau oberhalb der minimalen Grenzen für den Durchschnittswert gesteigert werden.
Der kurzfristige Betriebspunkt, der eine reduzierte Pumpendrehzahl einregelt, wird für eine kalibrierbare Schwelle von beispielsweise einer Minute aufrechterhalten. Danach wird auf die geforderte Pumpendrehzahl erhöht und beobachtet, wie sich die Leis tungsaufnahme der Pumpe verhält. Unterschreitet die Leistungsaufnahme erneut den eingelernten Wert, wird die Pumpendrehzahl erneut abgesenkt. Dieser Vorgang kann beispielsweise bis zu fünf Mal wiederholt werden. Danach kann ein grundsätzlich zu niedriger Ölstand im Getriebe angenommen werden und ein Fehlerspeichereintrag an gelegt werden. Dies kann auch zur Folge haben, dass dem Fahrer beispielsweise in einem Kombiinstrument eine Textmeldung, beispielsweise "Getriebeöl prüfen" ausge geben wird.
Die Erfindung wird anhand des in den Figuren 1 bis 4 dargestellten Ausführungsbei spiels näher erläutert. Diese zeigen:
Figur 1 eine schematische Darstellung eines Flydrauliksystems,
Figur 2 eine schematisch dargestellte Einbausituation der Pumpe des Hydraulik systems der Figur 1 ,
Figur 3 ein Diagramm eines Kennfelds der Pumpe der Figur 2 und
Figur 4 einen zeitlichen Ablauf eines Ansaugvorgangs der Pumpe der Figuren 2 und 3.
Die Figur 1 zeigt das Hydrauliksystem 1 in schematischer Darstellung. Die von dem elektronisch kommutierten Elektromotor 2 angetriebene Pumpe 3 dient in einer ersten Antriebsrichtung der Kühlung von nur schematisch dargestellten Komponenten, bei spielsweise eines Lamellenpakets der Kupplung 13 über den in der Druckleitung 5 be reitgestellten und mittels des Wärmetauschers 6 gekühlten Sprühnebel 7.
In der reversierten Antriebsrichtung versorgt die Pumpe 3 über die Ventile 8, 9 die Nehmerzylinder 10, 11 der Parksperre 12 und der Kupplung 13. Zum Öffnen der Neh merzylinder 10, 11 verbinden die Ventile 8, 9 die Druckleitungen 14, 15 mit dem Flu idsumpf 16.
Zur Einstellung eines vorgegebenen Kühlvolumenstroms in der Druckleitung 5 bezie hungsweise zur Bereitstellung eines hydrostatischen Drucks in den Druckleitungen 14, 15 wird der Elektromotor 2 von dem Steuergerät 17 mit Leistungselektronik und der Vorortelektronik 18 auf eine vorgegebene Drehzahl kommutiert und mit elektrischer Energie versorgt, so dass die Pumpe 3 mit entsprechender Drehzahl dreht und eine entsprechende Menge an Hydraulikfluid 19 aus dem unterhalb der Pumpe 3 liegenden Fluidsumpf 16 ansaugt und in die Druckleitungen 5, 14, 15 fördert.
Solange der Pegel h für das Saugrohr 20 mit dem Filter 21 ausreichend hoch steht, erfolgt eine zuverlässige Förderung von Hydraulikfluid 19. Sinkt der Pegel h unter das Ende des Saugrohrs 20 wird Luft angesaugt. Ein Ansaugen von Luft wird erkannt, in dem die aufgrund der elektrischen Kommutierung des Elektromotors 2 in dem Steuer gerät 17 zur Verfügung stehende Leistungsaufnahme des Elektromotors 2 laufend ausgewertet wird. Sinkt diese unter einen vorgegebenen Referenzwert, wird von ei nem Ansaugen von Luft ausgegangen.
Die Figur 2 zeigt in schematischer Darstellung die die Pumpe 3 und den nicht darge stellten Elektromotor enthaltende Baueinheit 22 mit dem Saugrohr 20 in Einbausitua tion in das im Querschnitt dargestellte Getriebegehäuse 23. Befindet sich der Pegel h über dem Ende 24 des Saugrohrs 20, wird von der Pumpe 3 luftfrei Hydraulikfluid 19 angesaugt. Sinkt das Hydraulikfluid 19 auf den Pegel h‘, wird Luft angesaugt. In Pe geln dazwischen kann je nach Bewegung und Neigung des Kraftfahrzeugs teilweise Luft angesaugt werden.
Die Figur 3 zeigt das Diagramm 100 des Kennfelds 101 der zunehmenden Leistungs aufnahme P des Elektromotors 2 der Figur 1 auf der Y-Achse abhängig von von ho hen zu niedrigen fallenden Temperaturen auf der X-Achse und abhängig von anstei genden Drehzahlen n auf der z-Achse.
Oberhalb des Kennfelds 101 erfolgt eine luftfreie Förderung des Hydraulikfluids 19 der Figuren 1 und 2. Sinkt die Leistungsaufnahme P des Elektromotors 2 unter den bei entsprechend aktuell erfasster Temperatur T und aktuell erfasster Drehzahl n für ein vorgegebenes Zeitintervall ab, wird auf ein Ansaugen von Luft erkannt und die Dreh zahl n des Elektromotors 2 beziehungsweise der Pumpe 3 wird gesenkt.
Die Figur 4 zeigt das Ablaufdiagramm 200 mit dem zeitlichen Ablauf eines Ansaugvor gangs der Pumpe 3 der Figuren 1 und 3 über die Zeit t. Das Teildiagramm I zeigt da bei den von der Pumpe 3 geförderten Volumenstrom V und das Teildiagramm II die Leistungsaufnahme P des die Pumpe 3 antreibenden Elektromotors 2 über die Zeit t.
Die Kurve 201 zeigt den von dem Steuergerät 17 angeforderten Volumenstrom V(soll), die Kurve 202 die anhand der elektronischen Kommutierung des Elektromo tors 2 erfasste Leistungsaufnahme P. Bis zum Zeitpunkt t(1) befindet sich die Leistungsaufnahme des Elektromotors 2 ober halb des temperatur- und drehzahlkompensierten Referenzwerts P(R) entsprechend dem Kennfeld 101 der Figur 3. Beim Zeitpunkt t(1 ) fällt die Leistungsaufnahme unter den Referenzwert P(R). Dies bedeutet, dass Luft angesaugt wird. Nach einer Warte- zeit At(1 ) wird die Drehzahl des Elektromotors 2 zum Zeitpunkt t(2) abgesenkt, der Vo lumenstrom sinkt trotz aufrechterhaltenem angefordertem Volumenstrom V(soll) auf grund der Förderung von Luft und aufgrund der Absenkung der Drehzahl auf den Ist- Volumenstrom V(ist) ab. Aufgrund der geringeren Fördermenge und des dadurch ver ringerten Ist-Volumenstroms V(ist) füllt sich im weiteren zeitlichen Verlauf der Flu- idsumpf auf einen Pegel, bei dem wieder luftfrei Hydraulikfluid angesaugt wird, so dass die Leistungsaufnahme des Elektromotors 2 wieder über den Referenzwert P(R) steigt, die Drehzahl wieder angehoben und sich der Ist-Volumenstrom V(ist) wieder zum Zeitpunkt t(4) dem angeforderten Volumenstrom V(soll) annähert. Zum Zeitpunkt t(5) fällt die Leistungsaufnahme erneut unter den Referenzwert P(R), so dass von einem dauerhaften Fehlverhalten auszugehen ist und zum Zeitpunkt t(6) nach einer erneuten Wartezeit At(2) durch Erniedrigung der Drehzahl der Kühlvolu menstrom dauerhaft in einen gegenüber dem ursprünglich angeforderten Volumen strom V(soll) niedrigeren Ist-Volumenstrom V(ist) geschaltet und damit ein Notlauf ein- gestellt wird. Eine Fahrermeldung wird ausgegeben beziehungsweise ein Eintrag in einen Fehlerspeicher erfolgt.
Bezugszeichenliste
Hydrauliksystem
Elektromotor
Pumpe
Komponente
Druckleitung
Wärmetauscher
Sprühnebel
Ventil
Ventil 0 Nehmerzylinder 1 Nehmerzylinder 2 Parksperre 3 Kupplung
14 Druckleitung
15 Druckleitung
16 Fluidsumpf
17 Steuergerät
18 Vorortelektronik
19 Hydraulikfluid 0 Saugrohr 1 Filter 2 Baueinheit
23 Getriebegehäuse
24 Ende 100 Diagramm 101 Kennfeld 200 Ablaufdiagramm 201 Kurve 202 Kurve h Pegel h‘ Pegel n Drehzahl
P Leistungsaufnahme
R(R) Referenzwert
T Temperatur t Zeit t(1) Zeitpunkt t(2) Zeitpunkt t(3) Zeitpunkt t(4) Zeitpunkt t(5) Zeitpunkt t(6) Zeitpunkt
V Volumenstrom
V(soll) angeforderter Volumenstrom
V(ist) Ist-Volumenstrom
At(1) Wartezeit
At(2) Wartezeit

Claims

Patentansprüche
1. Verfahren zur Steuerung einer elektrisch betriebenen Pumpe (3) für ein Hy drauliksystem (1), insbesondere zur Betätigung und Kühlung von Komponenten (4) in einem Antriebsstrang eines Kraftfahrzeugs, wobei die mittels eines von einem Steuergerät (17) gesteuerten, bürstenlosen Elektromotors (2) betriebene Pumpe (3) Hydraulikfluid (19) aus einem tiefer angeordneten Fluidsumpf (16) ansaugt, dadurch gekennzeichnet, dass eine Leistungsaufnahme (P) des Elek tromotors (2) laufend ermittelt und ein Ansaugen von Luft aufgrund einer signifi kanten Änderung der Leistungsaufnahme (P) erkannt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die ermittelte Leis tungsaufnahme (P) mit einem Referenzwert (P(R)) der Leistungsaufnahme (P) ohne Ansaugen von Luft verglichen und bei gegenüber diesem verringerter Leistungsaufnahme (P) auf ein Ansaugen von Luft erkannt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Bewer tung der Leistungsaufnahme (P) abhängig von der Viskosität des Hydraulikflu ids (19) vorgesehen wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die ermittelte Leistungsaufnahme (P) abhängig von einer Systemtemperatur des Hydrauliksystems (1) bewertet wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Leistungsaufnahme (P) abhängig von der Drehzahl (n) der Pumpe bewertet wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Leistungsaufnahme (P) des Elektromotors im ungestörten Pumpbetrieb ge lernt und in einem Kennfeld (101) abgelegt wird, dem laufenden Betrieb ein zu treffender Referenzwert (P(R)) entnommen und mit der aktuell ermittelten Leis tungsaufnahme (P) verglichen wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass bei erkanntem Ansaugen von Luft die Drehzahl (n) der Pumpe (3) erniedrigt wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass nach Ablauf eines vorgegebenen Zeitintervalls die Drehzahl (n) wieder gesteigert, bevorzugt auf die ursprüngliche Drehzahl (n) erhöht wird.
9. Verfahren nach Anspruch 7 und 8, dadurch gekennzeichnet, dass nach mehr- fach erkanntem Ansaugen von Luft ein Eintrag in einen Fehlerspeicher erfolgt.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass bei mehr maligem erkanntem Ansaugen von Luft eine Fahrerwarnung ausgegeben wird.
PCT/DE2021/100514 2020-07-16 2021-06-16 Verfahren zur steuerung einer elektrisch betriebenen pumpe für ein hydrauliksystem WO2022012711A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180043636.2A CN115702299A (zh) 2020-07-16 2021-06-16 用于控制用于液压系统的电动运行的泵的方法
KR1020227046017A KR20230015467A (ko) 2020-07-16 2021-06-16 유압 시스템용 전기 작동식 펌프 제어 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020118825.0 2020-07-16
DE102020118825 2020-07-16

Publications (1)

Publication Number Publication Date
WO2022012711A1 true WO2022012711A1 (de) 2022-01-20

Family

ID=76958664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2021/100514 WO2022012711A1 (de) 2020-07-16 2021-06-16 Verfahren zur steuerung einer elektrisch betriebenen pumpe für ein hydrauliksystem

Country Status (4)

Country Link
KR (1) KR20230015467A (de)
CN (1) CN115702299A (de)
DE (1) DE102021115514A1 (de)
WO (1) WO2022012711A1 (de)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110129356A1 (en) * 2009-12-02 2011-06-02 Hitachi Automotive Systems, Ltd. Electric-motor-driven oil pump control system
US20110224879A1 (en) * 2010-03-09 2011-09-15 Jatco Ltd. Oil pressure control device for transmission and control method thereof
US20130118593A1 (en) * 2011-06-22 2013-05-16 Allison Transmission, Inc. Low oil level detection system and method
DE112014003376T5 (de) * 2013-09-30 2016-04-07 Aisin Aw Co., Ltd. Steuerungsvorrichtung für eine Fahrzeughydraulikdruckzufuhrvorrichtung
DE102015006609B3 (de) * 2015-05-21 2016-05-04 Audi Ag Verfahren zum Betreiben einer elektrisch ansteuerbaren Förderpumpe in einem Hydraulikkreis
DE102018112663A1 (de) 2018-05-28 2019-11-28 Schaeffler Technologies AG & Co. KG Hydraulikeinrichtung mit zwei unterschiedlichen Fluidquellen zur Versorgung entweder eines ersten Verbrauchers oder eines zweiten Verbrauchers
DE102018130700A1 (de) 2018-12-03 2020-06-04 Schaeffler Technologies AG & Co. KG Verfahren zum Herstellen einer hydraulischen Bereitschaft eines Hydrauliksystems sowie Hydrauliksystem

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110129356A1 (en) * 2009-12-02 2011-06-02 Hitachi Automotive Systems, Ltd. Electric-motor-driven oil pump control system
US20110224879A1 (en) * 2010-03-09 2011-09-15 Jatco Ltd. Oil pressure control device for transmission and control method thereof
US20130118593A1 (en) * 2011-06-22 2013-05-16 Allison Transmission, Inc. Low oil level detection system and method
DE112014003376T5 (de) * 2013-09-30 2016-04-07 Aisin Aw Co., Ltd. Steuerungsvorrichtung für eine Fahrzeughydraulikdruckzufuhrvorrichtung
DE102015006609B3 (de) * 2015-05-21 2016-05-04 Audi Ag Verfahren zum Betreiben einer elektrisch ansteuerbaren Förderpumpe in einem Hydraulikkreis
DE102018112663A1 (de) 2018-05-28 2019-11-28 Schaeffler Technologies AG & Co. KG Hydraulikeinrichtung mit zwei unterschiedlichen Fluidquellen zur Versorgung entweder eines ersten Verbrauchers oder eines zweiten Verbrauchers
DE102018130700A1 (de) 2018-12-03 2020-06-04 Schaeffler Technologies AG & Co. KG Verfahren zum Herstellen einer hydraulischen Bereitschaft eines Hydrauliksystems sowie Hydrauliksystem

Also Published As

Publication number Publication date
DE102021115514A1 (de) 2022-01-20
KR20230015467A (ko) 2023-01-31
CN115702299A (zh) 2023-02-14

Similar Documents

Publication Publication Date Title
EP1893896B1 (de) Antriebssteuerungsvorrichtung eines automatgetriebes für ein kraftfahrzeug und verfahren dafür
EP2469094B1 (de) Verfahren zum Betrieb eines Doppelpumpen- oder Multipumpenaggregates
WO2018042044A1 (de) Verfahren und fluidpumpe zum fördern eines fluids in einem fluidkreislauf eines kraftfahrzeugs
EP3172446A1 (de) Kühlmittelpumpe mit integrierter regelung
EP3172445A1 (de) Kühlmittelpumpe mit integrierter regelung
AT511148A2 (de) Arbeitsfahrzeug, arbeitsmaschine und verfahren zur reduktion parasitärer lasten während des anlaufens
DE10306418A1 (de) Antriebsanordnung für ein Förderaggregat
EP2806189A1 (de) Verfahren zum Betrieb eines Ölfiltersystems
DE102012207618A1 (de) Pumpen-Motor-Anordnung
DE102015220535A1 (de) Hydrauliksystem zur Kühlung eines Automatikgetriebes
WO2022012711A1 (de) Verfahren zur steuerung einer elektrisch betriebenen pumpe für ein hydrauliksystem
WO2016096585A1 (de) Verfahren zum betrieb eines dieselmotors
EP1602849A1 (de) Hydraulische Schaltungsanordnung und Verfahren zur Ansteuerung einer nasslaufenden Doppelkupplung
DE10296725T5 (de) Layover-Heizungsanlage für eine Lokomotive
DE10154449A1 (de) Hydraulische Hubvorrichtung insbesondere für batteriegetriebene Flurförderzeuge und Verfahren zu deren Steuerung
WO2015132035A1 (de) Verfahren zum ansteuern eines hydraulikmittelversorgungssystems eines automatikgetriebes
EP4194668A1 (de) Fluidfördersystem mit lastabhängiger drehzahlumkehr einer rotationspumpe
DE102013218366B4 (de) Motoransteuervorrichtung und Motoransteuerverfahren für elektrische Fahrzeugpumpe
EP3273071B1 (de) Temperaturermittlungsverfahren in einer hydraulikanordnung
DE102019101468A1 (de) Entlüftungsverfahren für ein Hydrauliksystem; sowie Hydrauliksystem
DE102004003931B4 (de) Hydraulikkreislauf bzw. Verfahren zum Steuern eines Druckes und/oder eines Volumenstromes eines Hydraulikmediums in einem Hydraulikkreislauf, insbesondere für ein Doppelkupplungsgetriebe eines Kraftfahrzeuges
DE10139510B4 (de) Verfahren zur Regelung der Drehzahl einer Umwälzpumpe
WO2017084791A1 (de) Bereitstellung von unterdruck für tankentlüftung oder bremskraftverstärker
DE102022001315A1 (de) Vorrichtung und Verfahren zum Ermitteln eines Zustandes, insbesondere eines Verschleißzustandes, einer Verdrängereinheit
DE102017216014A1 (de) Hydraulikaggregat einer Fahrzeugbremsanlage mit einem Exzenterraum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21742693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227046017

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21742693

Country of ref document: EP

Kind code of ref document: A1