WO2022012502A1 - 一种可调反射率的电致变色器件及包含其的电子终端 - Google Patents

一种可调反射率的电致变色器件及包含其的电子终端 Download PDF

Info

Publication number
WO2022012502A1
WO2022012502A1 PCT/CN2021/105929 CN2021105929W WO2022012502A1 WO 2022012502 A1 WO2022012502 A1 WO 2022012502A1 CN 2021105929 W CN2021105929 W CN 2021105929W WO 2022012502 A1 WO2022012502 A1 WO 2022012502A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrochromic
metal
transparent
stack
Prior art date
Application number
PCT/CN2021/105929
Other languages
English (en)
French (fr)
Inventor
何嘉智
何逸雪
Original Assignee
深圳市光羿科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光羿科技有限公司 filed Critical 深圳市光羿科技有限公司
Priority to EP21841386.2A priority Critical patent/EP4184240A1/en
Publication of WO2022012502A1 publication Critical patent/WO2022012502A1/zh
Priority to US18/154,330 priority patent/US20230152650A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1506Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/157Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F2001/15145Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material the electrochromic layer comprises a mixture of anodic and cathodic compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • G02F2001/1536Constructional details structural features not otherwise provided for additional, e.g. protective, layer inside the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers

Definitions

  • the present application belongs to the technical field of color-changing displays, and in particular relates to an electrochromic device with adjustable reflectivity and an electronic terminal including the same.
  • Electrochromism refers to the phenomenon in which the optical properties of materials undergo stable and reversible color changes under the action of an external electric field, which manifests as reversible changes in color and transparency in appearance.
  • Materials with electrochromic properties are called electrochromic materials, and devices made of electrochromic materials are called electrochromic devices. Electrochromic devices have very important application prospects in the fields of color-changing glasses, electronic displays, military concealment, and building energy conservation.
  • a common electrochromic device is generally composed of a transparent substrate layer, a transparent conductive layer, an electrochromic layer, an electrolyte layer, an ion storage layer, a transparent conductive layer and a transparent substrate layer that are stacked in sequence.
  • ions are conducted from the ion storage layer through the electrolyte layer into the electrochromic layer to achieve discoloration;
  • ions are conducted from the electrochromic layer through the electrolyte layer into the ion storage layer to achieve discoloration.
  • Electrochromic materials can be divided into inorganic electrochromic materials and organic electrochromic materials.
  • Inorganic electrochromic materials have the advantages of stability and fast response, such as tungsten trioxide, vanadium pentoxide, nickel oxide, titanium dioxide, etc.; organic electrochromic materials have many types and rich colors, which are easy to design, such as viologen, polythiophene kind. By selecting different electrochromic materials, electrochromic devices with different colors and different color changing ranges can be obtained.
  • the discoloration effect produced by the change of transmittance is relatively simple, and it is difficult to present a variety of colorful visual effects.
  • a patterned layer is added under the device, when the transmittance of the electrochromic device changes, especially the electrochromic device exhibits a colored state, when the transmittance is low, the electrochromic device often does not look bright enough, and the pattern is not bright enough. The color of the layer looks darker, so it is not very aesthetically pleasing in practical application, and the visual effect is poor.
  • the present application provides an electrochromic device with adjustable reflectance and an electronic terminal including the same.
  • the reflectivity and transmittance of the electrochromic device are adjustable, and the visual effect of the electrochromic device is enhanced and enriched by the coordination of the transmittance change of the electrochromic stack and the reflectivity change of the metal ion stack.
  • the present application provides an electrochromic device with adjustable reflectivity, the electrochromic device comprising a first transparent base layer, an electrochromic stack, a metal ion stack and a second base layer stacked in sequence;
  • the electrochromic stack includes a stacked second transparent conductive layer, a metal ion layer, and optionally an electrodeposition inhibition layer;
  • the first electrochromic functional layer is adjacent to the metal ion layer or the electrodeposition inhibition layer;
  • the electrochromic stack includes a first transparent conductive layer, a second electrochromic stack stacked in sequence A functional layer and a third transparent conductive layer
  • the metal ion stack includes a second transparent conductive layer, a metal ion layer and a fourth conductive layer stacked in sequence.
  • the "optionally electrodeposition inhibitory layer” mentioned in this application refers to the presence of the electrodeposition inhibitory layer or the absence of the electrodeposition inhibitory layer.
  • the first electrochromic functional layer is adjacent to the electrodeposition inhibition layer; when the electrochromic stack does not contain the electrodeposition inhibition layer, the first electrochromic functional layer is adjacent to the metal ion layer. Layers are adjacent.
  • the electrochromic device takes an electrochromic stack and a metal ion stack as the main structure.
  • the metal ion stack when positive pressure is applied to the first transparent conductive layer and negative pressure is applied to the second transparent conductive layer, or the When positive pressure is applied to the fourth conductive layer and negative pressure is applied to the second transparent conductive layer, the metal ions in the metal ion layer will be reduced to metal and deposited on the surface of the second transparent conductive layer, so that the reflectivity of the metal ion stack increases; when When negative pressure is applied to the first transparent conductive layer, and positive pressure is applied to the second transparent conductive layer, or negative pressure is applied to the fourth conductive layer, and positive pressure is applied to the second transparent conductive layer, the deposited metal will oxidize into metal ions and enter In the metal ion layer, the reflectivity of the metal ion stack is reduced.
  • the metal ion stack can be controlled to switch between transparent and total reflection, or in any reflectivity state between transparent and total reflection.
  • the first electrochromic functional layer or the second electrochromic functional layer can be made in a colored state switch between the colored state and the faded state, or in any transmittance state between the colored state and the faded state.
  • the color of the first electrochromic functional layer or the second electrochromic functional layer in the colored state depends on the type of electrochromic material selected.
  • the present application enhances the visual effect of electrochromic devices (especially when colored) through the coordination of transmittance changes of electrochromic stacks and reflectivity changes of metal ion stacks , so that the electrochromic device presents a more colorful visual effect, and in some scenarios, the surface of the product can also have a metal-like texture, so as to meet the needs of various use scenarios.
  • the first transparent conductive layer and the second transparent conductive layer are two electrodes for driving the electrochromic device.
  • the transmittance of the electrochromic stack and the reflectivity of the metal ion stack change simultaneously.
  • the first transparent conductive layer and the third transparent conductive layer are electrodes for driving the electrochromic stack
  • the second transparent conductive layer and the fourth conductive layer are used for driving Electrodes of metal ion stack.
  • the electrochromic stack and the metal ion stack are independent of each other, and the changes of the transmittance of the electrochromic stack and the reflectance of the metal ion stack do not affect each other.
  • the metal ion stack can be arranged so that the second transparent conductive layer is close to the second base layer, or the fourth conductive layer can be set close to the second base layer.
  • transparent refers to being completely transparent or partially transparent, and the first transparent base layer may be completely transparent or partially transparent, so that the electrochromic device can present a specific pattern.
  • the second substrate layer may be fully transparent, partially transparent or opaque.
  • the transparent base layer may be a rigid transparent base layer or a flexible transparent base layer.
  • the material of the base layer can be glass;
  • the material of the flexible transparent base layer includes but is not limited to polyethylene terephthalate (PET), Olefin copolymer and cellulose triacetate, any one of them or a combination of at least two of them can be selected.
  • PET polyethylene terephthalate
  • Olefin copolymer and cellulose triacetate, any one of them or a combination of at least two of them can be selected.
  • Typical but non-limiting combinations include the combination of PET and cycloolefin copolymer, and the combination of cycloolefin copolymer and cellulose triacetate. combination, PET and cellulose triacetate, and PET, cyclic olefin copolymer and cellulose triacetate.
  • the first electrochromic functional layer is an anodic electrochromic material layer or a cathodic electrochromic material layer.
  • the second electrochromic functional layer is a polymer dispersed liquid crystal layer, a suspended particle device layer, or a composite layer of an anodic electrochromic material, an electrolyte and a cathodic electrochromic material.
  • the material of the first electrochromic functional layer is an anodic electrochromic material or a cathodic electrochromic material; the cathodic electrochromic material can obtain electrons to undergo a reduction reaction, and the transmittance is carried out between the colored state and the discolored state.
  • the anodic electrochromic material can lose electrons and undergo an oxidation reaction, and the transmittance changes between the colored state and the decolorized state.
  • the material of the first electrochromic functional layer can be selected from color-changing materials that can form solid thin films in the prior art, such as NiO, WO 3 , Nb 2 O 5 , TiO 2 etc.
  • the color change of the first electrochromic functional layer can be adjusted according to the type of electrochromic material.
  • an anodic electrochromic material or a cathodic electrochromic material as the material of the first electrochromic functional layer, it can be matched with the initial state of the corresponding metal ion stack according to the product's requirements for transmittance and reflectivity. as the basis for material type selection.
  • the second electrochromic functional layer is a structural unit with electrochromic function, which can be a sheet layer with adjustable transmittance made of a combination of flexible or rigid one or more layers of materials.
  • it may be a PDLC (Polymer Dispersed Liquid Crystal, polymer dispersed liquid crystal) layer, an SPD (Suspended Particle Device, suspended particle device) layer or an EC (Electrochromic, electrochromic) layer.
  • the EC layer is a composite layer of anodic electrochromic material, electrolyte and cathodic electrochromic material.
  • the EC layer may be a liquid composite material layer or a gel state composite material layer formed by mixing an anodic electrochromic material, an electrolyte and a cathodic electrochromic material, or a layer of anodic electrochromic materials stacked in sequence.
  • Layer, solid electrolyte layer and cathodic electrochromic material layer composed of three-layer structure of solid composite layer.
  • the process of adjusting the transmittance of the electrochromic layer is illustrated by taking an EC of a specific structure (consisting of an anodic electrochromic material layer, an electrolyte layer and a cathodic electrochromic material layer stacked in sequence) as an example: applying The voltage across the anodic electrochromic material layer and the cathodic electrochromic material layer causes ions to move between the anodic electrochromic material layer and the cathodic electrochromic material layer, and between the anodic electrochromic material layer and the cathodic electrochromic material layer Intercalation/extraction occurs in the material layer, or extraction/intercalation occurs, thereby changing the optical state of the electrochromic material in the anodic electrochromic material layer and the cathodic electrochromic material layer, thereby changing the transmittance of the EC layer, making it Changes between colored, intermediate, and faded states.
  • the metal ion layer is a liquid electrolyte layer containing metal ions or a gel electrolyte layer containing metal ions.
  • the metal ions in the metal ion layer include one or a combination of at least two of silver ions, bismuth ions, copper ions, and zinc ions.
  • the fourth conductive layer is composed of staggered or spaced metal lines, and/or metal strips located at the edge of the plane where the fourth conductive layer is located.
  • the material of the second transparent conductive layer in this application occupies the entire area of the plane where it is located.
  • the metal ions in the metal ion layer can be An entire metal layer is deposited on the surface of the second conductive layer, thereby increasing the reflectivity of the metal ion stack.
  • the fourth conductive layer is composed of thin metal wires and/or metal strips at the edge.
  • the metal layer deposited on the side of the second conductive layer It is oxidized into metal ions and enters the metal ion layer; the metal ions on the side of the fourth conductive layer are reduced to metal and deposited on the metal wire or edge metal strip of the fourth conductive layer, and the light can still pass from the metal without metal. regions pass through, thereby reducing the reflectivity of the metal ion stack.
  • the width of the metal wire is less than or equal to 100 ⁇ m, such as 100 ⁇ m, 90 ⁇ m, 80 ⁇ m, 70 ⁇ m, 60 ⁇ m, 50 ⁇ m, 40 ⁇ m, 30 ⁇ m, 20 ⁇ m, 15 ⁇ m, 10 ⁇ m, 5 ⁇ m, 3 ⁇ m, or 1 ⁇ m, etc., preferably less than or equal to 20 ⁇ m.
  • the distance between two adjacent metal lines spaced apart from each other is ⁇ 10 ⁇ m, for example, may be 10 ⁇ m, 20 ⁇ m, 50 ⁇ m, 80 ⁇ m, 100 ⁇ m, 150 ⁇ m, 200 ⁇ m, 300 ⁇ m, 500 ⁇ m, 1000 ⁇ m, 2000 ⁇ m or 5000 ⁇ m, etc.
  • the width of the metal strip is ⁇ 3cm, for example, it can be 3cm, 2.5cm, 2cm, 1.5cm, 1cm, 0.5cm or 0.3cm, etc.
  • the size of the metal wire or the metal strip is preferably within the above range, which can ensure that the fourth conductive layer does not block light obviously, and does not affect the adjustment of the reflectivity of the metal ion stack.
  • a metal layer is further provided between the metal ion layer and the second transparent conductive layer, and the metal element of the metal layer includes one or at least two of silver, bismuth, copper, and zinc. combination.
  • the present application does not have any special restrictions on the material of the second transparent conductive layer.
  • the metal ion stack when the metal ion stack does not contain the metal layer, at least one of the second transparent conductive layer and the fourth conductive layer
  • the material of the material includes metal silver, bismuth, copper, and zinc, or a combination of at least two of them; when the metal layer is contained in the metal ion stack, the present application has no effect on the second transparent conductive layer and the fourth conductive layer. There are no special restrictions on the material.
  • the material of the electrodeposition inhibition layer is selected from derivatives of triazole.
  • the role of the electrodeposition inhibition layer is to use the triazole ring structure to react with metal ions, convert metal ions into sub-ions, and form oligomers of metal triazole ring derivatives together, thereby preventing metal ions from forming and depositing on the surface, making metal ions After being reduced to metal, it is deposited on the surface of the second conductive layer to prevent the metal from being deposited on the first electrochromic functional layer.
  • the triazole derivatives are selected from benzotriazole, 1-(methoxymethyl)-1H-benzotriazole, 1-(formamidomethyl)- One or a combination of at least two of 1H-benzotriazole and N5-benzyl-1H-1,2,4-triazole-3,5-diamine.
  • the first transparent conductive layer and the third transparent conductive layer are independently composed of indium tin oxide, zinc aluminum oxide, fluorine-doped tin oxide, silver nanowires, graphene, carbon nanotubes, One or at least both of metal grids and silver nanoparticles are formed.
  • the transparent insulating layer is a hollow layer, a transparent base layer, or a composite layer formed by bonding multiple transparent base layers with an adhesive layer.
  • the hollow layer means that the space between the electrochromic stack and the metal ion stack is not filled with solid or liquid material, which may be an air layer or a vacuum layer or the like.
  • the transparent insulating layer may be composed of one transparent base layer, or may be multiple transparent base layers bonded by adhesive layers.
  • a functional layer is further provided on one or both sides of the first transparent base layer, the second base layer and/or the transparent insulating layer, and/or between the transparent insulating layers , the functional layer includes a pattern layer, a texture layer, an antireflection layer, a color layer, an ink layer, a filter layer, a photonic crystal layer, a liquid crystal layer, and a combination of at least two layers, so that the The electrochromic device obtains the corresponding effect of the functional layer.
  • the above-mentioned functional layers may be provided on one or both sides of the first transparent base layer, the second base layer and/or the transparent insulating layer; when the transparent insulating layer has a multilayer structure, it may also be provided on the side of the multilayer structure.
  • a functional layer is arranged between the layers, so that the electrochromic device can obtain corresponding functions.
  • a base support layer is further provided on the outer side of the first transparent base layer and/or the second base layer.
  • the first transparent base layer and/or the second base layer are connected to the base support layer through an adhesive layer.
  • the above-mentioned outer side refers to the side of the first transparent base layer and the second base layer away from the electrochromic stack and the metal ion stack.
  • the base support layer adopts a rigid material or a flexible material, the rigid material includes glass, rigid plastic, and metal, and the flexible material includes a flexible plastic film.
  • the base support layer close to the first transparent base layer is preferably a transparent material; the base support layer close to the second base layer can be fully transparent, partially transparent or opaque, and the material can be selected according to specific application scenarios.
  • the present application provides an electronic terminal, wherein the electronic terminal includes the electrochromic device described in the first aspect.
  • the electronic terminal may be a wearable electronic product, a mobile electronic product terminal, architectural glass, laminated glass, insulating glass, decorative film and the like.
  • the electrochromic device When the electrochromic device is applied to the above-mentioned electronic terminal, it can be set at any desired position such as the surface or the interior of the terminal, and according to specific application scenarios, it can achieve various functions such as appearance diversification, privacy shielding, status display, information differentiation, adjustment of ambient light, etc. Effects such as filtering/passing light of different preset wavelengths.
  • the transmittance of the electrochromic stack and the reflectivity of the metal ion stack can be adjusted by adjusting parameters such as the magnitude, duration, and direction of the applied voltage.
  • the combination of the change and the reflectivity change of the metal ion stack enhances the visual effect of the existing electrochromic device, so that the surface of the electrochromic device can obtain colorful colors and reflection effects, and in some scenarios, the surface of the device can also be displayed. It has a metal-like texture to meet the needs of various usage scenarios.
  • FIG. 1 is a schematic cross-sectional structure diagram of the electrochromic device provided in Embodiment 1 of the present application;
  • FIG. 2 is a schematic cross-sectional structure diagram of the electrochromic device provided in Embodiment 2 of the present application;
  • FIG. 3 is a schematic cross-sectional structure diagram of the electrochromic device provided in Embodiment 4 of the present application.
  • FIG. 4 is a schematic cross-sectional structure diagram of the electrochromic device provided in Embodiment 5 of the present application.
  • FIG. 5 is a schematic cross-sectional structure diagram of the electrochromic device provided in Embodiment 6 of the present application.
  • FIG. 6 is a schematic cross-sectional structure diagram of the electrochromic device provided in Embodiment 7 of the present application.
  • Example 7 is a schematic cross-sectional structure diagram of the second electrochromic functional layer in Example 7 of the present application.
  • Embodiment 8 is a schematic structural diagram of the fourth conductive layer in Embodiment 7 of the present application.
  • FIG. 9 is a schematic cross-sectional structure diagram of the electrochromic device provided in Embodiment 8 of the present application.
  • Example 10 is a schematic structural diagram of the fourth conductive layer in Example 8 of the application.
  • FIG. 11 is a schematic cross-sectional structure diagram of the electrochromic device provided in Embodiment 11 of the present application.
  • FIG. 12 is a schematic cross-sectional structure diagram of the electrochromic device provided in Embodiment 12 of the present application.
  • 1 is the first transparent base layer
  • 2 is the electrochromic stack
  • 3 is the metal ion stack
  • 4 is the second base layer
  • 5 is the functional layer
  • 6 is the first base support layer
  • 7 is the second base support layer
  • 8 is a transparent insulating layer
  • 21 is the first transparent conductive layer
  • 22 is the first electrochromic functional layer
  • 23 is the second electrochromic functional layer
  • 24 is the third transparent conductive layer
  • 221 is a cathode electrochromic material layer, 222 is an electrolyte layer, and 223 is an anode electrochromic material layer;
  • 31 is a second transparent conductive layer
  • 32 is a metal ion layer
  • 33 is an electrodeposition inhibition layer
  • 34 is a metal layer
  • 35 is a fourth conductive layer
  • 81 is the third transparent base layer
  • 82 is the functional layer
  • 83 is the fourth transparent base layer.
  • This embodiment provides an electrochromic device with adjustable reflectivity, as shown in FIG. 1 , including a first transparent base layer 1 , an electrochromic stack 2 , a metal ion stack 3 and a second base layer 4 stacked in sequence;
  • the electrochromic stack 2 includes a laminated first transparent conductive layer 21 and a first electrochromic functional layer 22;
  • the metal ion stack 3 includes a second transparent conductive layer 31, a metal ion layer 32 and an electrodeposition inhibition layer 33 stacked in sequence, and the first electrochromic functional layer 22 and the electrodeposition inhibition layer 33 are adjacent to each other;
  • the first transparent conductive layer 21 and the second transparent conductive layer 31 are used as a pair of electrodes for driving the electrochromic device, the second base layer 4 is completely transparent, the material of the first electrochromic functional layer 22 is NiO, and the metal ion layer is
  • the material of 32 is a colloid formed by dissolving 3.0 wt% hydroxyethyl cellulose in an aqueous solution of 10 mM AgNO 3 , and the material of electrodeposition inhibition layer 33 is N5-benzyl-1H-1,2,4-triazole-3 , 5-diamine.
  • Initial state the electrochromic stack 2 is initially colorless, the metal ion stack 3 is initially transparent, and the appearance of the electrochromic device is colorless and transparent;
  • NiO gets electrons reduced, and the color returns to colorless; the deposited metal Ag layer is oxidized to Ag + , which enters the metal ion layer 32, and the metal ion stack returns to a transparent state; electrochromic The device returns to the initial state, and the appearance is colorless and transparent;
  • the voltage direction when the potential of the first transparent conductive layer 21 is higher than the potential of the second transparent conductive layer 31, the voltage direction is called forward; when the potential of the first transparent conductive layer 21 is lower than that of the second transparent conductive layer 31 When the potential of , the voltage direction is called reverse.
  • any preset transmittance of the electrochromic stack 2 between the colored state and the faded state can be adjusted by adjusting parameters such as the magnitude, duration, and direction of the applied voltage.
  • the electrochromic device can be used in wearable electronic products, mobile electronic product terminals, architectural glass, laminated glass, insulating glass, decorative film layers and other electronic terminal products.
  • This embodiment provides an electrochromic device with adjustable reflectivity, the structure of which is shown in FIG. 2 , and the difference from Embodiment 1 is that the metal ion stack 3 includes a second transparent conductive layer 31 and a metal layer 34 stacked in sequence , a metal ion layer 32 and an electrodeposition inhibition layer 33;
  • the material of the first electrochromic functional layer 22 is WO 3
  • the material of the metal layer 34 is Cu
  • the material of the metal ion layer 32 is 3.0 wt % hydroxyethyl cellulose dissolved in 20 mM Cu(Cl) 2 , 10 mM HCl and
  • the colloid formed in the aqueous solution of 1M LiBr, and the material of the electrodeposition inhibition layer 33 is benzotriazole.
  • Initial state the electrochromic stack 2 is initially colorless, the metal ion stack 3 is initially reflective, and the appearance of the electrochromic device presents a reflective copper mirror effect;
  • Apply a reverse voltage (-2.0V): apply a reverse voltage to the electrochromic device in the initial state, WO 3 gets electrons and is reduced, changing from colorless to blue; Cu in the metal layer 34 loses electrons and is oxidized to Cu 2+ enters the metal ion layer 32, and the metal ion stack 3 changes from a mirror surface state to a transparent state; the appearance of the electrochromic device is blue with a certain transmittance;
  • the first electrochromic functional layer 22 is oxidized, and the color returns to colorless; the metal ions in the metal ion layer 32 are reduced, and a reflective layer is deposited on the surface of the second transparent conductive layer 31. Effect metal layer 34; the electrochromic device returns to the initial state, restoring the reflective copper mirror effect;
  • the voltage direction when the potential of the first transparent conductive layer 21 is higher than the potential of the second transparent conductive layer 31, the voltage direction is called forward; when the potential of the first transparent conductive layer 21 is lower than that of the second transparent conductive layer 31 When the potential of , the voltage direction is called reverse.
  • any preset transmittance of the electrochromic stack 2 between the colored state and the faded state can be adjusted by adjusting parameters such as the magnitude, duration, and direction of the applied voltage.
  • the electrochromic device can be used in wearable electronic products, mobile electronic product terminals, architectural glass, laminated glass, insulating glass, decorative film layers and other electronic terminal products.
  • This embodiment provides an electrochromic device with adjustable reflectivity.
  • the difference from Embodiment 1 is that the second base layer 4 is partially transparent or completely opaque, and uses a material with a preset color, texture or pattern.
  • This embodiment provides an electrochromic device with adjustable reflectivity, the structure of which is shown in FIG. 3 , and the difference from Embodiment 1 is that the side of the first transparent base layer 1 close to the electrochromic stack 2 is provided with a function Layer 5; the functional layer 5 is a pattern layer, a texture layer, an antireflection layer, a color layer, an ink layer, a filter layer, a photonic crystal layer or a liquid crystal layer.
  • the functional layer 5 may also be disposed on the side of the first transparent base layer 1 away from the electrochromic stack 2 , and/or on the side of the second base layer 4 close to the metal ion stack 3 .
  • This embodiment provides an electrochromic device with adjustable reflectance, the structure of which is shown in FIG. 4 , and the difference from Embodiment 1 is that a first base support layer 6 (the first base support layer 6 is provided on the outside of the first transparent base layer 1 ) The transparent base layer 1 and the first base support layer 6 are bonded by an adhesive layer, which is not shown in FIG. 5 ), and the second base layer 4 is provided with a second base support layer 7 (the second base layer 4 Adhesion to the second base support layer 7 by an adhesive layer, which is not shown in FIG. 5 ).
  • the first base support layer 6 may also be provided only on the outside of the first transparent base layer 1 , or the second base support layer 7 may be provided only on the outside of the second base layer 4 .
  • This embodiment provides an electrochromic device with adjustable reflectivity, as shown in FIG. 5 , including a first transparent base layer 1 , an electrochromic stack 2 , a metal ion stack 3 and a second base layer 4 that are stacked in sequence;
  • the electrochromic stack 2 includes a laminated first transparent conductive layer 21 and a first electrochromic functional layer 22;
  • the metal ion stack 3 includes a second transparent conductive layer 31 and a metal ion layer 32 stacked in sequence, and the first electrochromic functional layer 22 is adjacent to the metal ion layer 32;
  • the first transparent conductive layer 21 and the second transparent conductive layer 31 are used as a pair of electrodes for driving the electrochromic device
  • the second base layer 4 is completely transparent
  • the material of the first electrochromic functional layer 22 is poly2-[( 2-ethylhexyloxy)methyl]3,4-thieno1,4-dioxane
  • the material of the metal ion layer 32 is Bi(Cl) 3 .
  • Initial state the electrochromic stack 2 is initially blue, the metal ion stack 3 is initially transparent, and the appearance of the electrochromic device is transparent blue;
  • the voltage direction when the potential of the first transparent conductive layer 21 is higher than the potential of the second transparent conductive layer 31, the voltage direction is called forward; when the potential of the first transparent conductive layer 21 is lower than that of the second transparent conductive layer 31 When the potential of , the voltage direction is called reverse.
  • any preset transmittance of the electrochromic stack 2 between the colored state and the faded state can be adjusted by adjusting parameters such as the magnitude, duration, and direction of the applied voltage.
  • the electrochromic device can be used in wearable electronic products, mobile electronic product terminals, architectural glass, laminated glass, insulating glass, decorative film layers and other electronic terminal products.
  • the electrodeposition inhibition layer is not used in this embodiment, with the progress of charging and discharging, some metal Bi is gradually deposited on the first electrochromic functional layer 22, which affects the long-term cycle performance of the electrochromic device. Affects appearance.
  • This embodiment provides an electrochromic device with adjustable reflectivity, as shown in FIG. 6 , including a first transparent base layer 1 , an electrochromic stack 2 , a transparent insulating layer 8 , a metal ion stack 3 and a two base layers 4;
  • the electrochromic stack 2 includes a first transparent conductive layer 21, a second electrochromic functional layer 23 and a third transparent conductive layer 24 stacked in sequence, and the first transparent conductive layer 21 is close to the first transparent base layer 1;
  • the metal ion stack 3 includes a second transparent conductive layer 31, a metal ion layer 32 and a fourth conductive layer 35 stacked in sequence, and the second transparent conductive layer 31 is close to the second base layer 4;
  • the structure of the second electrochromic functional layer 23 is shown in FIG. 7 , and is composed of a cathodic electrochromic material layer 231 , an electrolyte layer 232 and an anodic electrochromic material layer 233 stacked in sequence, and the cathodic electrochromic material layer 231 is close to the first electrochromic material layer 231 .
  • the first transparent conductive layer 21 and the third transparent conductive layer 24 are opposite electrodes for driving the electrochromic stack 2;
  • the second transparent conductive layer 31 and the fourth conductive layer 35 are a pair of electrodes for driving the metal ion stack 3;
  • the second base layer 4 is completely transparent, the transparent insulating layer 8 is a transparent base layer, the cathode electrochromic material layer 231 is made of tungsten oxide, the electrolyte layer is made of LiClO 4 -propylene carbonate, and the anode electrochromic material layer is made of tungsten oxide.
  • the material of 233 is nickel oxide, and the material of metal ion layer 32 is a colloid formed by dissolving 3.0 wt% hydroxyethyl cellulose in an aqueous solution containing 10 mM CuCl 2 , 10 mM BiCl 3 , 10 mM HCl and 1 M LiBr;
  • the shape of the fourth conductive layer 35 is shown in FIG. 8 , which is a metal mesh wire composed of Cu/Bi alloy metal wires staggered.
  • the width of the metal wires is 10 ⁇ m, and the spacing between the metal wires is 80 ⁇ m.
  • Initial state the electrochromic stack 2 is initially colorless, and the metal ion stack 3 is in a transparent state; the electrochromic device is in a transparent state. Electrochromic stack 2 and metal ion stack 3 are not energized, so incident light can pass through electrochromic stack 2 and metal ion stack 3.
  • Adjustment of the transmittance of the electrochromic stack 2 a reverse voltage of -2V is applied to the electrochromic stack alone (the potential of the first transparent conductive layer 21 is lower than the potential of the third transparent conductive layer 24), the cathode electrochromic material layer 231 is reduced, from colorless to blue, the anode electrochromic material layer 233 is oxidized, from colorless to tan; apply +1.5V forward voltage (the potential of the first transparent conductive layer 21 is higher than the third The potential of the transparent conductive layer 24), the cathode electrochromic material layer 231 is oxidized, from blue to colorless, the anode electrochromic material layer 233 is reduced, from tan to colorless; by adjusting the magnitude of the applied voltage , duration, direction and other parameters, the transmittance of the electrochromic stack 2 can be adjusted to be in any preset transmittance state between the colorless faded state and the dark blue (superimposed color of blue and tan) colored state.
  • Adjustment of the reflectivity of the metal ion stack 3 a reverse voltage of +1.0V is applied to the metal ion stack alone (the potential of the second transparent conductive layer 31 is lower than the potential of the fourth conductive layer 35), the metal mesh of the fourth conductive layer 35
  • the metal Cu and Bi lost electrons are oxidized to Cu 2+ and Bi 3+ , and enter the metal ion layer 32; the metal ions in the metal ion layer 32 are reduced, and a reflective effect is deposited on the surface of the second transparent conductive layer 31.
  • the mixed metal layer of Cu and Bi, the metal ion stack 3 is in a total reflection state.
  • the deposited mixed metal layer of Cu and Bi is oxidized into metal ions and enters the metal ion layer 32; the metal ion layer
  • the metal ions in 32 are reduced to metal by electrons at the metal mesh wire position of the fourth conductive layer 35 and deposited on the metal mesh wire. Since light can pass through the mesh hole, the metal ion stack 3 is in a transparent state.
  • the reflectivity of the metal ion stack 3 can be adjusted to be in a transflective state with any preset reflectivity between transparent and total reflection.
  • the electrochromic stack 2 and the metal ion stack 3 are independently controlled, so the number of layers is more than that of Embodiment 1, but the electrochromic stack 2 and the metal ion stack 3
  • the states are not constrained to each other, and a richer appearance display effect can be produced by adjusting the voltages respectively.
  • This embodiment provides an electrochromic device with adjustable reflectivity, the structure of which is shown in FIG. 9 , and the difference from Embodiment 7 is that the metal ion stack 3 is arranged such that the fourth conductive layer 35 is close to the second base layer 4 , The second transparent conductive layer 31 is close to the transparent insulating layer 8, and the shape of the fourth conductive layer 35 is shown in FIG. 10, which is a metal frame formed by four Ag/Bi alloy metal strips located at the edge of the plane of the layer. The width of the belt is 2cm.
  • This embodiment provides an electrochromic device with adjustable reflectivity.
  • the second electrochromic functional layer is a polymer-dispersed liquid crystal layer
  • the material of the polymer-dispersed liquid crystal layer is composed of 15wt% polymer Methyl methacrylate macromolecule and 75wt% liquid crystal small molecule composition of 4-(trans-4-n-hexylcyclohexyl)-4'-cyanobiphenyl.
  • the second electrochromic functional layer is a suspended particle device layer.
  • This embodiment provides an electrochromic device with adjustable reflectivity.
  • the difference from Embodiment 7 is that the second base layer 4 is partially transparent or completely opaque, and is made of a material with a preset color, texture or pattern.
  • the second electrochromic functional layer 23 is a composite material layer formed by mixing the cathodic electrochromic material, the electrolyte and the anodic electrochromic material.
  • This embodiment provides an electrochromic device with adjustable reflectivity, the structure of which is shown in FIG. 11 .
  • the transparent insulating layer 8 is composed of a third transparent base layer 81 and a functional layer 82 that are stacked in sequence. and the fourth transparent base layer 83; the functional layer 82 is a pattern layer, a texture layer, an antireflection layer, a color layer, an ink layer, a filter layer, a photonic crystal layer or a liquid crystal layer.
  • This embodiment provides an electrochromic device with adjustable reflectivity, the structure of which is shown in FIG. 12 .
  • the difference from Embodiment 7 is that a first base support layer 6 (the first base support layer 6 (the first base support layer 6 ) is provided outside the first transparent base layer 1 The transparent base layer 1 and the first base support layer 6 are bonded by an adhesive layer, which is not shown in FIG. 9 ), and the second base layer 4 is provided with a second base support layer 7 (the second base layer 4 It is bonded to the second base support layer 7 by an adhesive layer, which is not shown in FIG. 12 ).
  • the first base support layer 6 may also be provided only on the outside of the first transparent base layer 1 , or the second base support layer 7 may be provided only on the outside of the second base layer 4 .
  • the transmittance of the electrochromic stack and the reflectivity of the metal ion stack can be adjusted by adjusting parameters such as the magnitude, duration, and direction of the applied voltage.
  • the combination of the change of the pass rate and the change of the reflectivity of the metal ion stack enhances the visual effect of the existing electrochromic device, and enables the surface of the electrochromic device to obtain colorful colors and reflection effects.
  • the electrochromic device can be used in wearable electronic products, mobile electronic product terminals, architectural glass, laminated glass, insulating glass, decorative film layers and other electronic terminal products.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

一种可调反射率的电致变色器件及包含其的电子终端,电致变色器件包括依次层叠的第一透明基底层(1)、电致变色堆栈(2)、金属离子堆栈(3)和第二基底层(4)。电致变色堆栈(2)包括层叠的第一透明导电层(21)和第一电致变色功能层(22)。金属离子堆栈(3)包括依次层叠的第二透明导电层(31)、金属离子层(32)和电沉积抑制层(33)。第一电致变色功能层(22)与电沉积抑制层(33)相邻。通过电致变色堆栈(2)的透过率变化和金属离子堆栈(3)的反射率变化的配合,增强了电致变色器件的视觉效果。

Description

一种可调反射率的电致变色器件及包含其的电子终端 技术领域
本申请属于变色显示技术领域,具体涉及一种可调反射率的电致变色器件及包含其的电子终端。
背景技术
电致变色是指材料的光学属性在外加电场的作用下发生稳定、可逆的颜色变化的现象,在外观上表现为颜色和透明度的可逆变化。具有电致变色性能的材料称为电致变色材料,用电致变色材料做成的器件称为电致变色器件。电致变色器件在变色眼镜、电子显示、军事隐藏、建筑节能等领域有非常重要的应用前景。
常见的电致变色器件一般由依次层叠的透明基材层、透明导电层、电致变色层、电解质层、离子存储层、透明导电层和透明基材层构成。当施加电压后,离子从离子存储层经由电解质层传导进入电致变色层,实现变色;当施加反向电压后,离子从电致变色层经由电解质层传导进入离子存储层,实现褪色。
电致变色材料可分成无机电致变色材料与有机电致变色材料。无机电致变色材料具有稳定、响应快的优点,如三氧化钨、五氧化二钒、氧化镍、二氧化钛等;有机电致变色材料种类多,颜色丰富,便于设计,如紫罗精、聚噻吩类。通过选择不同的电致变色材料,可获得不同颜色、不同变色范围的电致变色器件。
但是对于确定的一种电致变色器件,其根据透过率变化来产生的变色效果比较单一,难以呈现多样化的炫彩视觉效果。而且,即使在器件下方增加图案层,在电致变色器件的透过率变化时,特别是电致变色器件呈现着色态,透过率较低时,电致变色器件往往看起来不够明亮,图案层的颜色看起来较为灰暗,因而在实际应用中不太美观,视觉效果较差。
发明内容
本申请提供了一种可调反射率的电致变色器件及包含其的电子终端。该电致变色器件的反射率和透过率可调,通过电致变色堆栈的透过率变化和金属离 子堆栈的反射率变化的配合,增强并丰富了电致变色器件的视觉效果。
第一方面,本申请提供一种可调反射率的电致变色器件,所述电致变色器件包括依次层叠的第一透明基底层、电致变色堆栈、金属离子堆栈和第二基底层;所述电致变色堆栈包括层叠的第二透明导电层、金属离子层和任选地电沉积抑制层;所述第一电致变色功能层与所述金属离子层或电沉积抑制层相邻;
或者包括依次层叠的第一透明基底层、电致变色堆栈、透明绝缘层、金属离子堆栈和第二基底层;所述电致变色堆栈包括依次层叠的第一透明导电层、第二电致变色功能层和第三透明导电层;所述金属离子堆栈包括依次层叠的第二透明导电层、金属离子层和第四导电层。
需要说明的是,本申请中所述“任选地电沉积抑制层”是指有电沉积抑制层或没有电沉积抑制层。当电致变色堆栈含有电沉积抑制层时,第一电致变色功能层与电沉积抑制层相邻;当电致变色堆栈不含电沉积抑制层时,第一电致变色功能层与金属离子层相邻。
本申请提供的电致变色器件以电致变色堆栈和金属离子堆栈为主体结构,在金属离子堆栈中,当对第一透明导电层加正压,第二透明导电层加负压时,或对第四导电层加正压,第二透明导电层加负压时,金属离子层中的金属离子会还原成金属,沉积在第二透明导电层表面,使金属离子堆栈的反射率增大;当对第一透明导电层加负压,第二透明导电层加正压时,或对第四导电层加负压,第二透明导电层加正压时,沉积的金属会氧化成金属离子,进入金属离子层中,使金属离子堆栈的反射率减小。通过调节施加的电压,可以控制金属离子堆栈在透明和全反射之间切换,或处于透明和全反射之间的任意反射率状态。
在电致变色堆栈中,通过调节施加到第一电致变色功能层或第二电致变色功能层中的电压,可以使第一电致变色功能层或第二电致变色功能层在着色态和褪色态之间切换,或处于着色态和褪色态之间的任意透过率状态。第一电致变色功能层或第二电致变色功能层在着色态时的颜色,取决于所选择的电致变色材料种类。
与现有的电致变色器件相比,本申请通过电致变色堆栈的透过率变化和金属离子堆栈的反射率变化的配合,增强了电致变色器件(尤其是在着色时)的视觉效果,使电致变色器件呈现出更加炫彩的视觉效果,在一些场景下还可以使产品表面具有如金属般的质感,从而满足多种使用场景的需求。
本申请中,当电致变色堆栈的电致变色功能层和金属离子堆栈的金属离子层相邻时,第一透明导电层和第二透明导电层为驱动电致变色器件的两个电极。当改变施加的电压时,电致变色堆栈的透过率和金属离子堆栈的反射率同时发生变化。
当电致变色堆栈和金属离子堆栈之间以透明绝缘层间隔时,第一透明导电层和第三透明导电层为驱动电致变色堆栈的电极,第二透明导电层和第四导电层为驱动金属离子堆栈的电极。电致变色堆栈和金属离子堆栈相互独立,电致变色堆栈的透过率和金属离子堆栈的反射率的变化互不影响。此时,金属离子堆栈可以设置为第二透明导电层靠近第二基底层,也可以设置为第四导电层靠近第二基底层。
本申请中,“透明”是指全部透明或局部透明,第一透明基底层可以是全部透明的,也可以是局部透明的,以使电致变色器件呈现出特定的图案。第二基底层可以是全部透明的、局部透明的或不透明的。
透明基底层可以为硬质透明基底层或柔性透明基底层。本申请对基底层的材料没有特殊限制,示例性的,硬质透明基底层的材料可以为玻璃;柔性透明基底层的材料包括但不限于聚对苯二甲酸乙二醇酯(PET)、环烯烃共聚物和三醋酸纤维素,可以选择其中的任意一种或至少两种的组合,典型但非限制性的组合包括PET与环烯烃共聚物的组合、环烯烃共聚物与三醋酸纤维素的组合、PET与三醋酸纤维素的组合,以及PET、环烯烃共聚物与三醋酸纤维素的组合。
在本申请一实施方式中,所述第一电致变色功能层为阳极电致变色材料层或阴极电致变色材料层。
在本申请一实施方式中,所述第二电致变色功能层为聚合物分散液晶层、悬浮粒子装置层,或阳极电致变色材料、电解质和阴极电致变色材料的复合层。
本申请中,第一电致变色功能层的材料为阳极电致变色材料或阴极电致变色材料;阴极电致变色材料可以得电子发生还原反应,在着色态和褪色态之间进行透过率的变化;阳极电致变色材料可以失电子发生氧化反应,在着色态和褪色态之间进行透过率的变化。第一电致变色功能层的材料具体地可以选自现有技术中能形成固体薄膜的变色材料,例如无机材料中的NiO、WO 3、Nb 2O 5、TiO 2等;有机材料中的聚噻吩衍生物及共聚物体系等;金属共轭体系,如普鲁士蓝等。第一电致变色功能层的颜色变化可根据电致变色材料的种类进行调节。 在选择阳极电致变色材料或阴极电致变色材料作为第一电致变色功能层的材料时,可以根据产品对透过率和反射率的需求,与对应的金属离子堆栈的初始状态进行匹配,来作为材料类型选择的依据。
第二电致变色功能层是具有电致变色功能的结构单元,其可以是柔性或刚性的一层或多层材料组合制成的具有可调透过率的片层。例如可以是PDLC(Polymer Dispersed Liquid Crystal,聚合物分散液晶)层、SPD(Suspended Particle Device,悬浮粒子装置)层或EC(Electrochromic,电致变色)层。EC层为阳极电致变色材料、电解质和阴极电致变色材料的复合层。本申请中,EC层可以是由阳极电致变色材料、电解质和阴极电致变色材料混合后形成的液态复合材料层或凝胶态复合材料层,也可以是由依次层叠的阳极电致变色材料层、固态电解质层和阴极电致变色材料层构成的三层结构的固态复合层。
为了便于说明,以一种特定结构的EC(由依次层叠的阳极电致变色材料层、电解质层和阴极电致变色材料层构成)为例说明调节电致变色层的透过率的过程:施加于阳极电致变色材料层和阴极电致变色材料层两端的电压促使离子在阳极电致变色材料层和阴极电致变色材料层之间移动,并在阳极电致变色材料层和阴极电致变色材料层中发生嵌入/脱出,或发生脱出/嵌入,从而改变阳极电致变色材料层和阴极电致变色材料层中的电致变色材料的光学状态,进而改变EC层的透过率,使其在着色态、中间态到褪色态之间变化。
在本申请一实施方式中,所述金属离子层为含金属离子的液态电解质层或含金属离子的凝胶态电解质层。
优选地,所述金属离子层中的金属离子包括银离子、铋离子、铜离子、锌离子中一种或至少两种的组合。
在本申请一实施方式中,所述第四导电层由交错或间隔的金属线,和/或位于所述第四导电层所在平面边缘处的金属条带构成。
需要说明的是,本申请中第二透明导电层的材料占据其所在平面的全部区域,当对第四导电层加正压,第二导电层加负压时,金属离子层中的金属离子可在第二导电层表面沉积出整面的金属层,从而使金属离子堆栈的反射率增大。第四导电层由较细的金属线和/或边缘处的金属条带构成,当对第四导电层加负压,第二导电层加正压时,第二导电层一侧沉积的金属层被氧化成金属离子,进入金属离子层中;第四导电层一侧的金属离子被还原成金属,沉积在第四导 电层的金属线上或边缘金属条带上,光线仍然可以从没有金属的区域穿过,从而使金属离子堆栈的反射率减小。
优选地,所述金属线的宽度≤100μm,例如可以是100μm、90μm、80μm、70μm、60μm、50μm、40μm、30μm、20μm、15μm、10μm、5μm、3μm或1μm等,优选为≤20μm。
优选地,相邻两条相互间隔的所述金属线间的间距≥10μm,例如可以是10μm、20μm、50μm、80μm、100μm、150μm、200μm、300μm、500μm、1000μm、2000μm或5000μm等。
优选地,所述金属条带的宽度为≤3cm,例如可以是3cm、2.5cm、2cm、1.5cm、1cm、0.5cm或0.3cm等。
本申请中,金属线或金属条带的尺寸优选在上述范围内,这样可以保证第四导电层不明显遮挡光线,不影响金属离子堆栈反射率的调节。
在本申请一实施方式中,所述金属离子层和第二透明导电层之间还设置有金属层,所述金属层的金属元素包括银、铋、铜、锌中一种或至少两种的组合。
本申请中,对于电致变色堆栈和金属离子堆栈相连的电致变色器件,本申请对所述第二透明导电层的材质没有特殊限制。
对于电致变色堆栈和金属离子堆栈之间设置有透明绝缘层的电致变色器件:当金属离子堆栈中不含有所述金属层时,所述第二透明导电层和第四导电层中至少一者的材料包括金属银、铋、铜、锌中一种或至少两种的组合;当金属离子堆栈中含有所述金属层时,本申请对所述第二透明导电层和第四导电层的材质没有特殊限制。
本申请中,若金属离子层表面没有所述金属层,则当需要调节电致变色器件的反射率时,需要先对第二透明导电层加负压,第一透明导电层或第四导电层加正压,使金属离子层中的金属离子还原成金属,在第二透明导电层表面沉积出金属层。若金属离子层表面设置有所述金属层,则当需要调节电致变色器件的反射率时,既可以先对第二透明导电层加负压,第一透明导电层或第四导电层加正压;也可以先对第二透明导电层加正压,第一透明导电层或第四导电层加负压。
在本申请一实施方式中,所述电沉积抑制层的材料选自三氮唑的衍生物。电沉积抑制层的作用是利用三唑环结构与金属离子反应,将金属离子转化成亚 离子,共同形成金属三唑环衍生物的低聚物,从而阻止金属离子在表面形成沉积,使金属离子还原成金属后沉积在第二导电层表面,防止金属沉积在第一电致变色功能层上。
在本申请一实施方式中,所述三氮唑的衍生物选自苯并三氮唑、1-(甲氧甲基)-1H-苯并三唑、1-(甲酰氨基甲基)-1H-苯并三唑、N5-苯甲基-1H-1,2,4-三唑-3,5-二胺中的一种或至少两种的组合。
在本申请一实施方式中,所述第一透明导电层和第三透明导电层各自独立地由氧化铟锡、氧化锌铝、氟掺杂氧化锡、银纳米线、石墨烯、碳纳米管、金属网格和银纳米颗粒中的一种或至少两种形成。
在本申请一实施方式中,所述透明绝缘层为中空层、一层透明基底层,或多层透明基底层经胶层粘合而成的复合层。
本申请中,所述中空层是指电致变色堆栈和金属离子堆栈之间的空间无固体或液体材料填充,其可以是空气层或真空层等。透明绝缘层可以由一层透明基底层构成,也可以是由胶层粘合而成的多层透明基底层。
在本申请一实施方式中,在所述第一透明基底层、第二基底层和/或透明绝缘层的一侧或两侧,和/或所述透明绝缘层的层间还设置有功能层,所述功能层包括图案层、纹理层、增透层、色彩层、油墨层、滤光层、光子晶体层、液晶层和胶层中的一层或至少两层的组合,以使所述电致变色器件获得功能层对应的效果。
本申请中,可以在第一透明基底层、第二基底层和/或透明绝缘层的一面或两面上设置上述功能层;当透明绝缘层为多层结构时,也可以在该多层结构的层间设置功能层,以使电致变色器件获得相应功能。
在本申请一实施方式中,所述第一透明基底层和/或第二基底层的外侧还设置有基底支撑层。
在本申请一实施方式中,所述第一透明基底层和/或第二基底层通过粘结层和所述基底支撑层连接。
本申请中,上述外侧是指第一透明基底层、第二基底层远离电致变色堆栈和金属离子堆栈的一侧。基底支撑层采用硬质材料或柔性材料,硬质材料包括玻璃、硬质塑料、金属,柔性材料包括柔性塑料膜。靠近第一透明基底层的基底支撑层优选为透明材质;靠近第二基底层的基底支撑层可以是全透明材质, 也可以是部分透明材质或不透明材质,可以根据具体应用场景进行材料的选择。
第二方面,本申请提供一种电子终端,所述电子终端中含有第一方面所述的电致变色器件。
所述电子终端可以是可穿戴电子产品、移动电子产品终端、建筑玻璃、夹胶玻璃、中空玻璃、装饰膜层等。当所述电致变色器件应用于上述电子终端时,可以设置于终端表面或内部等任意需要的位置,根据具体应用场景起到外观多样化、遮挡隐私、状态显示、信息区分、调节环境光亮、过滤/透过不同预设波长的光线等效果。
与现有技术相比,本申请具有以下有益效果:
本申请提供的电致变色器件中,电致变色堆栈的透过率和金属离子堆栈的反射率可以通过调节施加电压的大小、时长、方向等参数进行调节,通过电致变色堆栈的透过率变化和金属离子堆栈的反射率变化的配合,增强了现有电致变色器件的视觉效果,使电致变色器件表面获得了丰富多彩的颜色及反射效果,在一些场景下还可以使器件表面呈现出如金属般的质感,从而满足多种使用场景的需求。
附图说明
图1为本申请实施例1提供的电致变色器件的剖面结构示意图;
图2为本申请实施例2提供的电致变色器件的剖面结构示意图;
图3为本申请实施例4提供的电致变色器件的剖面结构示意图;
图4为本申请实施例5提供的电致变色器件的剖面结构示意图;
图5为本申请实施例6提供的电致变色器件的剖面结构示意图;
图6为本申请实施例7提供的电致变色器件的剖面结构示意图;
图7为本申请实施例7中第二电致变色功能层的剖面结构示意图;
图8为本申请实施例7中第四导电层的结构示意图;
图9为本申请实施例8提供的电致变色器件的剖面结构示意图;
图10为本申请实施例8中第四导电层的结构示意图;
图11为本申请实施例11提供的电致变色器件的剖面结构示意图;
图12为本申请实施例12提供的电致变色器件的剖面结构示意图;
其中,1为第一透明基底层,2为电致变色堆栈,3为金属离子堆栈,4为 第二基底层,5为功能层,6为第一基底支撑层,7为第二基底支撑层,8为透明绝缘层;
21为第一透明导电层,22为第一电致变色功能层,23为第二电致变色功能层,24为第三透明导电层;
221为阴极电致变色材料层,222为电解质层,223为阳极电致变色材料层;
31为第二透明导电层,32为金属离子层,33为电沉积抑制层,34为金属层,35为第四导电层;
81为第三透明基底层,82为功能层,83为第四透明基底层。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述具体实施方式仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
本实施例提供一种可调反射率的电致变色器件,如图1所示,包括依次层叠的第一透明基底层1、电致变色堆栈2、金属离子堆栈3和第二基底层4;
电致变色堆栈2包括层叠的第一透明导电层21和第一电致变色功能层22;
金属离子堆栈3包括依次层叠的第二透明导电层31、金属离子层32和电沉积抑制层33,第一电致变色功能层22和电沉积抑制层33相邻;
其中,第一透明导电层21和第二透明导电层31作为驱动电致变色器件的一对电极,第二基底层4完全透明,第一电致变色功能层22的材料为NiO,金属离子层32的材料为3.0wt%羟乙基纤维素溶解于10mM AgNO 3的水溶液中形成的胶体,电沉积抑制层33的材料为N5-苯甲基-1H-1,2,4-三唑-3,5-二胺。
以下,示例性地对本实施例提供的电致变色器件的透过率和反射率的调节过程进行说明:
初始态:电致变色堆栈2初始呈无色,金属离子堆栈3初始呈透明状态,电致变色器件的外观呈现为无色透明态;
施加正向电压(+2.0V):对处于初始态的电致变色器件施加正向电压,NiO失电子发生氧化反应,由无色变化为棕褐色;金属离子层32中的Ag +得电子被还原,在第二透明导电层31表面沉积出具有反射效果的金属Ag层;电致变色 堆栈2在着色态时,还具有一定的透过率,光线通过电致变色堆栈后,再被反射镜面反光,使得电致变色器件的外观呈现为具有反射效果的棕褐色镜面;
施加反向电压(-1.2V):NiO得电子被还原,颜色恢复为无色;沉积的金属Ag层被氧化成Ag +,进入金属离子层32中,金属离子堆栈恢复透明状态;电致变色器件回到初始态,外观呈现为无色透明态;
本实施例中,当第一透明导电层21的电势高于第二透明导电层31的电势时,电压方向称为正向;当第一透明导电层21的电势低于第二透明导电层31的电势时,电压方向称为反向。
在对电致变色器件施加电压的过程中,可以通过调节施加电压的大小、时长、方向等参数,来调整电致变色堆栈2的透过率处于着色态和褪色态之间的任意预设透过率状态,以及调整金属离子堆栈3的反射率处于透明和全反射之间的任意预设反射率的半透半反状态,丰富并增强了电致变色器件的外观效果。该电致变色器件可用于可穿戴电子产品、移动电子产品终端、建筑玻璃、夹胶玻璃、中空玻璃、装饰膜层等电子终端产品中。
实施例2
本实施例提供一种可调反射率的电致变色器件,其结构如图2所示,与实施例1的区别在于,金属离子堆栈3包括依次层叠的第二透明导电层31、金属层34、金属离子层32和电沉积抑制层33;
第一电致变色功能层22的材料为WO 3,金属层34的材料为Cu,金属离子层32的材料为3.0wt%羟乙基纤维素溶解于含20mM Cu(Cl) 2、10mM HCl和1M LiBr的水溶液中形成的胶体,电沉积抑制层33的材料为苯并三氮唑。
本实施例提供的电致变色器件的透过率和反射率的调节过程如下:
初始态:电致变色堆栈2初始呈无色,金属离子堆栈3初始呈反射态,电致变色器件的外观呈现为反射铜镜效果;
施加反向电压(-2.0V):对处于初始态的电致变色器件施加反向电压,WO 3得电子被还原,由无色变化为蓝色;金属层34中的Cu失电子被氧化成Cu 2+,进入金属离子层32中,金属离子堆栈3由反射镜面状态变为透明状态;电致变色器件的外观呈现为具有一定透过率的蓝色;
施加正向电压(+1.0V):第一电致变色功能层22被氧化,颜色恢复为无色;金属离子层32中的金属离子被还原,在第二透明导电层31表面沉积出具有反 射效果的金属层34;电致变色器件回到初始态,恢复反射铜镜效果;
本实施例中,当第一透明导电层21的电势高于第二透明导电层31的电势时,电压方向称为正向;当第一透明导电层21的电势低于第二透明导电层31的电势时,电压方向称为反向。
在对电致变色器件施加电压的过程中,可以通过调节施加电压的大小、时长、方向等参数,来调整电致变色堆栈2的透过率处于着色态和褪色态之间的任意预设透过率状态,以及调整金属离子堆栈3的反射率处于透明和全反射之间的任意预设反射率的半透半反状态,丰富并增强了电致变色器件的外观效果。该电致变色器件可用于可穿戴电子产品、移动电子产品终端、建筑玻璃、夹胶玻璃、中空玻璃、装饰膜层等电子终端产品中。
实施例3
本实施例提供一种可调反射率的电致变色器件,与实施例1的区别在于,第二基底层4局部透明或完全不透明,采用的是带有预设颜色、纹理或图案的材料。
实施例4
本实施例提供一种可调反射率的电致变色器件,其结构如图3所示,与实施例1的区别在于,第一透明基底层1靠近电致变色堆栈2的一侧设置有功能层5;功能层5为图案层、纹理层、增透层、色彩层、油墨层、滤光层、光子晶体层或液晶层。
在本实施例的替代实施例中,功能层5也可以设置在第一透明基底层1远离电致变色堆栈2的一侧,和/或设置在第二基底层4的靠近金属离子堆栈3的一侧、远离金属离子堆栈3的一侧或两侧。
实施例5
本实施例提供一种可调反射率的电致变色器件,其结构如图4所示,与实施例1的区别在于,第一透明基底层1外侧设置有第一基底支撑层6(第一透明基底层1与第一基底支撑层6通过粘结层粘接,粘结层在图5中未示出),第二基底层4外侧设置有第二基底支撑层7(第二基底层4与第二基底支撑层7通过粘结层粘接,粘结层在图5中未示出)。
在本实施例的替代实施例中,也可以仅在第一透明基底层1外侧设置有第一基底支撑层6,或仅在第二基底层4外侧设置有第二基底支撑层7。
实施例6
本实施例提供一种可调反射率的电致变色器件,如图5所示,包括依次层叠的第一透明基底层1、电致变色堆栈2、金属离子堆栈3和第二基底层4;
电致变色堆栈2包括层叠的第一透明导电层21和第一电致变色功能层22;
金属离子堆栈3包括依次层叠的第二透明导电层31和金属离子层32,第一电致变色功能层22和金属离子层32相邻;
其中,第一透明导电层21和第二透明导电层31作为驱动电致变色器件的一对电极,第二基底层4完全透明,第一电致变色功能层22的材料为聚2-[(2-乙基己氧基)甲基]3,4-噻吩并1,4-二氧烷,金属离子层32的材料为Bi(Cl) 3
以下,示例性地对本实施例提供的电致变色器件的透过率和反射率的调节过程进行说明:
初始态:电致变色堆栈2初始呈蓝色,金属离子堆栈3初始呈透明状态,电致变色器件的外观呈现为透明蓝色状态;
施加正向电压(+1.6V):对处于初始态的电致变色器件施加正向电压,聚2-[(2-乙基己氧基)甲基]3,4-噻吩并1,4-二氧烷失电子发生氧化反应,由蓝色变化为无色;金属离子层32中的Bi 3+得电子被还原,在第二透明导电层31表面沉积出具有反射效果的金属Bi层;电致变色器件的外观呈现为具有反射效果的银色镜面;
施加反向电压(-1.6V):聚2-[(2-乙基己氧基)甲基]3,4-噻吩并1,4-二氧烷得电子被还原,颜色恢复为蓝色;沉积的金属Bi层被氧化成Bi 3+,进入金属离子层32中,金属离子堆栈恢复透明状态;电致变色器件回到初始态,外观呈现为透明蓝色状态。
本实施例中,当第一透明导电层21的电势高于第二透明导电层31的电势时,电压方向称为正向;当第一透明导电层21的电势低于第二透明导电层31的电势时,电压方向称为反向。
在对电致变色器件施加电压的过程中,可以通过调节施加电压的大小、时长、方向等参数,来调整电致变色堆栈2的透过率处于着色态和褪色态之间的任意预设透过率状态,以及调整金属离子堆栈3的反射率处于透明和全反射之间的任意预设反射率的半透半反状态,丰富并增强了电致变色器件的外观效果。该电致变色器件可用于可穿戴电子产品、移动电子产品终端、建筑玻璃、夹胶 玻璃、中空玻璃、装饰膜层等电子终端产品中。
但由于本实施例不采用电沉积抑制层,因此随着充放电的进行,逐渐会有一些金属Bi沉积在第一电致变色功能层22上,使电致变色器件长期循环性能受影响,且影响外观效果。
实施例7
本实施例提供一种可调反射率的电致变色器件,如图6所示,包括依次层叠的第一透明基底层1、电致变色堆栈2、透明绝缘层8、金属离子堆栈3和第二基底层4;
电致变色堆栈2包括依次层叠的第一透明导电层21、第二电致变色功能层23和第三透明导电层24,第一透明导电层21靠近第一透明基底层1;
金属离子堆栈3包括依次层叠的第二透明导电层31、金属离子层32和第四导电层35,第二透明导电层31靠近第二基底层4;
第二电致变色功能层23的结构如图7所示,由依次层叠的阴极电致变色材料层231、电解质层232和阳极电致变色材料层233构成,阴极电致变色材料层231靠近第一透明导电层21;
其中,第一透明导电层21和第三透明导电层24为驱动电致变色堆栈2的对电极;第二透明导电层31和第四导电层35为驱动金属离子堆栈3的一对电极;
第二基底层4完全透明,透明绝缘层8为一层透明基底层,阴极电致变色材料层231的材料为氧化钨,电解质层的材料为LiClO 4-碳酸丙烯酯,阳极电致变色材料层233的材料为氧化镍,金属离子层32的材料为3.0wt%羟乙基纤维素溶解于含10mM CuCl 2、10mM BiCl 3、10mM HCl和1M LiBr的水溶液中形成的胶体;
第四导电层35的形状如图8所示,其是由Cu/Bi合金金属线交错排列构成的金属网线,金属线的宽度为10μm,金属线之间的间距为80μm。
以下,示例性地对本实施例提供的电致变色器件的透过率和反射率的调节过程进行说明:
初始态:电致变色堆栈2初始呈无色,金属离子堆栈3呈透明态;电致变色器件呈透明状态。不对电致变色堆栈2和金属离子堆栈3通电,因此入射光可以透过电致变色堆栈2和金属离子堆栈3。
电致变色堆栈2透过率的调节:单独对电致变色堆栈施加-2V反向电压(第一透明导电层21的电势低于第三透明导电层24的电势),阴极电致变色材料层231被还原,由无色变为蓝色,阳极电致变色材料层233被氧化,由无色变为棕褐色;施加+1.5V正向电压(第一透明导电层21的电势高于第三透明导电层24的电势),阴极电致变色材料层231被氧化,由蓝色变为无色,阳极电致变色材料层233被还原,由棕褐色变为无色;通过调节施加电压的大小、时长、方向等参数,可调整电致变色堆栈2的透过率处于无色褪色态和暗蓝色(蓝色和棕褐色的叠加色)着色态之间的任意预设透过率状态。
金属离子堆栈3反射率的调节:单独对金属离子堆栈施加+1.0V反向电压(第二透明导电层31的电势低于第四导电层35的电势),第四导电层35的金属网格中的金属Cu和Bi失电子被氧化为Cu 2+和Bi 3+,进入金属离子层32中;金属离子层32中的金属离子被还原,在第二透明导电层31表面沉积出具有反射效果的Cu和Bi的混合金属层,金属离子堆栈3呈全反射态。施加-1.0V电压(第二透明导电层31的电势高于第四导电层35的电势),沉积的Cu和Bi的混合金属层被氧化成金属离子,进入金属离子层32中;金属离子层32中的金属离子在第四导电层35的金属网线位置得电子被还原为金属,沉积于金属网线上,由于光可从网孔处穿过,因此金属离子堆栈3呈透明态。通过调节施加电压的大小、时长、方向等参数,可调整金属离子堆栈3的反射率处于透明和全反射之间的任意预设反射率的半透半反状态。
本实施例提供的电致变色器件中,电致变色堆栈2和金属离子堆栈3是分别独立控制的,因此会比实施例1的层数更多,但是电致变色堆栈2和金属离子堆栈3的状态不互相约束,可以通过分别调节电压产生更丰富的外观显示效果。
实施例8
本实施例提供一种可调反射率的电致变色器件,其结构如图9所示,与实施例7的区别在于,金属离子堆栈3设置为第四导电层35靠近第二基底层4,第二透明导电层31靠近透明绝缘层8,第四导电层35的形状如图10所示,其是由位于该层平面边缘处的四条Ag/Bi合金金属条带构成的金属边框,金属条带的宽度为2cm。
实施例9
本实施例提供一种可调反射率的电致变色器件,与实施例7的区别在于,第二电致变色功能层为聚合物分散液晶层,聚合物分散液晶层的材料由15wt%的聚甲基丙烯酸甲酯高分子和75wt%的4-(反式-4-n-已基环己基)-4'-氰基联苯的液晶小分子组成。
在本实施例的替代实施例中,第二电致变色功能层为悬浮粒子装置层。
实施例10
本实施例提供一种可调反射率的电致变色器件,与实施例7的区别在于,第二基底层4局部透明或完全不透明,采用的是带有预设颜色、纹理或图案的材料,第二电致变色功能层23是由阴极电致变色材料、电解质和阳极电致变色材料混合后形成的复合材料层。
实施例11
本实施例提供一种可调反射率的电致变色器件,其结构如图11所示,与实施例7的区别在于,透明绝缘层8由依次层叠的第三透明基底层81、功能层82和第四透明基底层83组成;功能层82为图案层、纹理层、增透层、色彩层、油墨层、滤光层、光子晶体层或液晶层。
实施例12
本实施例提供一种可调反射率的电致变色器件,其结构如图12所示,与实施例7的区别在于,第一透明基底层1外侧设置有第一基底支撑层6(第一透明基底层1与第一基底支撑层6通过粘结层粘接,粘结层在图9中未示出),第二基底层4外侧设置有第二基底支撑层7(第二基底层4与第二基底支撑层7通过粘结层粘接,粘结层在图12中未示出)。
在本实施例的替代实施例中,也可以仅在第一透明基底层1外侧设置第一基底支撑层6,或仅在第二基底层4外侧设置第二基底支撑层7。
本申请实施例提供的电致变色器件中,电致变色堆栈的透过率和金属离子堆栈的反射率可以通过调节施加电压的大小、时长、方向等参数进行调节,通过电致变色堆栈的透过率变化和金属离子堆栈的反射率变化的配合,增强了现有电致变色器件的视觉效果,使电致变色器件表面获得了丰富多彩的颜色及反射效果。该电致变色器件可用于可穿戴电子产品、移动电子产品终端、建筑玻璃、夹胶玻璃、中空玻璃、装饰膜层等电子终端产品中。
申请人声明,以上所述仅为本申请的具体实施方式,但本申请的保护范围 并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,均落在本申请的保护范围和公开范围之内。

Claims (12)

  1. 一种可调反射率的电致变色器件,其包括依次层叠的第一透明基底层、电致变色堆栈、金属离子堆栈和第二基底层;所述电致变色堆栈包括层叠的第一透明导电层和第一电致变色功能层;所述金属离子堆栈包括依次层叠的第二透明导电层、金属离子层和任选地电沉积抑制层;所述第一电致变色功能层与所述金属离子层或电沉积抑制层相邻;
    或者包括依次层叠的第一透明基底层、电致变色堆栈、透明绝缘层、金属离子堆栈和第二基底层;所述电致变色堆栈包括依次层叠的第一透明导电层、第二电致变色功能层和第三透明导电层;所述金属离子堆栈包括依次层叠的第二透明导电层、金属离子层和第四导电层。
  2. 根据权利要求1所述的电致变色器件,其中,所述第一电致变色功能层为阳极电致变色材料层或阴极电致变色材料层。
  3. 根据权利要求1所述的电致变色器件,其中,所述第二电致变色功能层为聚合物分散液晶层、悬浮粒子装置层,或阳极电致变色材料、电解质和阴极电致变色材料的复合层。
  4. 根据权利要求1-3任一项所述的电致变色器件,其中,所述金属离子层为含金属离子的液态电解质层或含金属离子的凝胶态电解质层。
  5. 根据权利要求1-4任一项所述的电致变色器件,其中,所述金属离子层中的金属离子包括银离子、铋离子、铜离子、锌离子中一种或至少两种的组合。
  6. 根据权利要求1-5任一项所述的电致变色器件,其中,所述第四导电层由交错或间隔的金属线,和/或位于所述第四导电层所在平面边缘处的金属条带构成;
    任选地,所述金属线的宽度≤100μm;
    任选地,相邻两条相互间隔的所述金属线间的间距≥10μm;
    任选地,所述金属条带的宽度≤3cm。
  7. 根据权利要求1-6任一项所述的电致变色器件,其中,所述金属离子层和第二透明导电层之间还设置有金属层,所述金属层的金属元素包括银、铋、铜、锌中一种或至少两种的组合。
  8. 根据权利要求1-7任一项所述的电致变色器件,其中,所述电沉积抑制层的材料选自三氮唑的衍生物;
    任选地,所述三氮唑的衍生物选自苯并三氮唑、1-(甲氧甲基)-1H-苯并三唑、 1-(甲酰氨基甲基)-1H-苯并三唑和N5-苯甲基-1H-1,2,4-三唑-3,5-二胺中的一种或至少两种的组合。
  9. 根据权利要求1-8任一项所述的电致变色器件,其中,所述第一透明导电层和第三透明导电层各自独立地由氧化铟锡、氧化锌铝、氟掺杂氧化锡、银纳米线、石墨烯、碳纳米管、金属网格和银纳米颗粒中的一种或至少两种形成。
  10. 根据权利要求1-9任一项所述的电致变色器件,其中,所述透明绝缘层为中空层、一层透明基底层,或多层透明基底层经胶层粘合而成的复合层。
  11. 根据权利要求1-10任一项所述的电致变色器件,其中,在所述第一透明基底层、第二基底层和/或透明绝缘层的一侧或两侧,和/或所述透明绝缘层的层间还设置有功能层,所述功能层包括图案层、纹理层、增透层、色彩层、油墨层、滤光层、光子晶体层、液晶层和胶层中的一层或至少两层的组合;
    任选地,所述第一透明基底层和/或第二基底层的外侧还设置有基底支撑层;
    任选地,所述第一透明基底层和/或第二基底层通过粘结层和所述基底支撑层连接。
  12. 一种电子终端,其中含有如权利要求1-11任一项所述的电致变色器件。
PCT/CN2021/105929 2020-07-14 2021-07-13 一种可调反射率的电致变色器件及包含其的电子终端 WO2022012502A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21841386.2A EP4184240A1 (en) 2020-07-14 2021-07-13 Electrochromic device having adjustable reflectivity, and electronic terminal comprising same
US18/154,330 US20230152650A1 (en) 2020-07-14 2023-01-13 Electrochromic device having adjustable reflectivity, and electronic terminal comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010673620.7 2020-07-14
CN202010673620.7A CN111694199A (zh) 2020-07-14 2020-07-14 一种可调反射率的电致变色器件及包含其的电子终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/154,330 Continuation US20230152650A1 (en) 2020-07-14 2023-01-13 Electrochromic device having adjustable reflectivity, and electronic terminal comprising same

Publications (1)

Publication Number Publication Date
WO2022012502A1 true WO2022012502A1 (zh) 2022-01-20

Family

ID=72485540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105929 WO2022012502A1 (zh) 2020-07-14 2021-07-13 一种可调反射率的电致变色器件及包含其的电子终端

Country Status (4)

Country Link
US (1) US20230152650A1 (zh)
EP (1) EP4184240A1 (zh)
CN (1) CN111694199A (zh)
WO (1) WO2022012502A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111694199A (zh) * 2020-07-14 2020-09-22 深圳市光羿科技有限公司 一种可调反射率的电致变色器件及包含其的电子终端
CN113391496A (zh) * 2021-06-30 2021-09-14 昇印光电(昆山)股份有限公司 电致变色器件及其制造方法,以及盖板组件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111685A (en) * 1997-12-19 2000-08-29 Rockwell Science Center, Llc Reversible electrochemical mirror (REM) with improved electrolytic solution
US20100079845A1 (en) * 2008-10-01 2010-04-01 Zhongchun Wang Reflection-Controllable Electrochromic Device Using A Base Metal As A Transparent Conductor
CN104423114A (zh) * 2013-09-05 2015-03-18 华为技术有限公司 一种全固态电致变色复合器件及其制备方法
US20160085126A1 (en) * 2014-09-22 2016-03-24 Commissariat A L'energies Alternatives Electrochromic device
TWM539636U (zh) * 2016-10-18 2017-04-11 Emerging Display Tech Corp 可調控透過率之電子鏡面視窗
CN208953850U (zh) * 2018-04-28 2019-06-07 浙江上方电子装备有限公司 一种颜色可任意定制的电致变色器件
CN111694199A (zh) * 2020-07-14 2020-09-22 深圳市光羿科技有限公司 一种可调反射率的电致变色器件及包含其的电子终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111685A (en) * 1997-12-19 2000-08-29 Rockwell Science Center, Llc Reversible electrochemical mirror (REM) with improved electrolytic solution
US20100079845A1 (en) * 2008-10-01 2010-04-01 Zhongchun Wang Reflection-Controllable Electrochromic Device Using A Base Metal As A Transparent Conductor
CN104423114A (zh) * 2013-09-05 2015-03-18 华为技术有限公司 一种全固态电致变色复合器件及其制备方法
US20160085126A1 (en) * 2014-09-22 2016-03-24 Commissariat A L'energies Alternatives Electrochromic device
TWM539636U (zh) * 2016-10-18 2017-04-11 Emerging Display Tech Corp 可調控透過率之電子鏡面視窗
CN208953850U (zh) * 2018-04-28 2019-06-07 浙江上方电子装备有限公司 一种颜色可任意定制的电致变色器件
CN111694199A (zh) * 2020-07-14 2020-09-22 深圳市光羿科技有限公司 一种可调反射率的电致变色器件及包含其的电子终端

Also Published As

Publication number Publication date
CN111694199A (zh) 2020-09-22
US20230152650A1 (en) 2023-05-18
EP4184240A1 (en) 2023-05-24

Similar Documents

Publication Publication Date Title
US20230152650A1 (en) Electrochromic device having adjustable reflectivity, and electronic terminal comprising same
US7999992B2 (en) Charge conducting medium
JP5247695B2 (ja) 可変の光学および/またはエネルギー特性を有するグレイジングタイプの電気化学的なおよび/または電気制御可能な素子
CA2149878C (en) Electrochromic devices
JP5136978B2 (ja) バッファ層を有する全固体型反射調光エレクトロクロミック素子及びそれを用いた調光部材
KR102246469B1 (ko) 가역 전기화학 거울
KR102101874B1 (ko) 저항이 낮은 투명전극 구조를 가지는 전기변색소자
KR20140041117A (ko) 전기변색미러 및 그 제조 방법
KR102101866B1 (ko) 플랙서블 전기변색소자의 제조방법
KR20080011401A (ko) 전기변색/전기제어 가능한 디바이스용 전극
JP2007102197A (ja) 全固体型反射調光エレクトロクロミック素子及びそれを用いた調光部材
CN105807526A (zh) 可在显示态和镜面态之间相互切换的显示装置
US20230034675A1 (en) Electrochromic device and manufacturing method
US7586667B2 (en) Electronic electrochromic device and method
WO2022262463A1 (zh) 基于聚合物分散液晶的电致变色装置、制备方法及电子设备
WO2020033506A1 (en) Multi-layer optical materials systems and methods of making the same
CN103744220A (zh) 一种pdlc显示模块
Cronin et al. Electrochromic glazing
KR20190009956A (ko) 전기변색소자
CN212873159U (zh) 一种可调反射率的电致变色器件及包含其的电子终端
Demiryont Electrochromics and potential automotive applications
CN211236527U (zh) 具有三个功能膜层的电致变色器件
JP2008107587A (ja) エレクトロクロミック素子及びその製造方法
CN217282987U (zh) 一种具有多重变化效果的功能后盖及电子设备
JP2827247B2 (ja) 均一着色するエレクトロクロミック素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21841386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021841386

Country of ref document: EP

Effective date: 20230214