WO2022012431A1 - 冰箱温度控制方法及冰箱 - Google Patents

冰箱温度控制方法及冰箱 Download PDF

Info

Publication number
WO2022012431A1
WO2022012431A1 PCT/CN2021/105500 CN2021105500W WO2022012431A1 WO 2022012431 A1 WO2022012431 A1 WO 2022012431A1 CN 2021105500 W CN2021105500 W CN 2021105500W WO 2022012431 A1 WO2022012431 A1 WO 2022012431A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
thawing
storage area
refrigerator
chamber
Prior art date
Application number
PCT/CN2021/105500
Other languages
English (en)
French (fr)
Inventor
姬立胜
戚斐斐
崔展鹏
韩志强
李鹏
王凯
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Priority to JP2023500360A priority Critical patent/JP2023533951A/ja
Priority to EP21841234.4A priority patent/EP4160125B1/en
Priority to AU2021308238A priority patent/AU2021308238B2/en
Priority to US18/013,611 priority patent/US20230332818A1/en
Publication of WO2022012431A1 publication Critical patent/WO2022012431A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/363Freezing; Subsequent thawing; Cooling the materials not being transported through or in the apparatus with or without shaping, e.g. in form of powder, granules, or flakes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/365Thawing subsequent to freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/006General constructional features for mounting refrigerating machinery components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/005Combined cooling and heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/061Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation through special compartments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/06Controlling according to a predetermined profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/06Sensors detecting the presence of a product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/121Sensors measuring the inside temperature of particular compartments

Definitions

  • the invention relates to the field of refrigeration, in particular to a refrigerator temperature control method and a refrigerator.
  • Frozen ingredients can maintain the freshness, nutritional value and original flavor of frozen ingredients to the greatest extent during the frozen storage process.
  • There are two main ways to store frozen ingredients in traditional refrigerators one is long-term low-temperature storage at -14 to -24 °C, and the other is short-term soft-freezing storage at around -4 °C.
  • long-term low-temperature storage of ingredients it needs to be thawed for a long time before processing the ingredients, which is inconvenient for users to quickly process the ingredients.
  • soft freezing for short-term storage of ingredients there will be a long time for the ingredients to pass through the ice crystal belt when frozen, and the preservation effect is poor. , The problem of short storage time. Therefore, there is an urgent need to provide a food storage solution that can not only quickly pass through the ice crystal belt, but also realize ready-to-eat food.
  • An object of the present invention is to overcome at least one technical defect of the prior art, and to provide a refrigerator temperature control method and a refrigerator that take into account the advantages of fast passing through the ice crystal belt and instant use.
  • a further object of the present invention is to ensure that normal temperature control is maintained in both the storage area and the thawing area of the storage compartment.
  • Another further object of the present invention is to use the micro-air duct turntable to meet the refrigeration requirements of the storage area and the defrosting area, which can effectively reduce the switching of the solenoid valve, thereby prolonging the service life of the solenoid valve.
  • the present invention provides a temperature control method for a refrigerator.
  • the refrigerator includes: a box body defining a storage compartment, and the storage compartment includes a storage area and a defrosting area; the defrosting compartment is arranged in the defrosting area; a refrigeration system, It is configured to generate cold air flow; the breeze duct turntable is set to allow the cold air flow to enter the storage area and the defrosting chamber selectively; the refrigerator temperature control method includes:
  • the air duct turntable is controlled to direct the cold air to the storage area and the thawing chamber at the same time;
  • the air duct turntable will be controlled to direct all the cold air flow to the storage area, so as to cool the storage area independently.
  • the method further includes:
  • the steps of controlling the breeze duct turntable to guide all the cold air to the storage area include:
  • the breeze duct turntable is controlled to guide all the cold airflow to the storage area.
  • the method further includes: when the temperature of the thawing chamber drops to a preset thawing shutdown temperature threshold, stopping cooling the thawing chamber;
  • the method further includes: when the temperature of the storage area drops to a preset storage area shutdown temperature threshold, stopping cooling the storage area.
  • the refrigerator further includes: a heating unit configured to defrost the thawing chamber; and the above-mentioned refrigerator temperature control method further includes:
  • the attribute information of the object to be processed is obtained;
  • the attribute information includes any of the following:
  • the type of the object to be treated the dimensions of the object to be treated, and the temperature of the object to be treated.
  • the step of determining the operating parameters of the heating unit according to the attribute information includes:
  • the on-time of the heating unit is determined according to the temperature difference.
  • the temperature of the object to be treated includes the surface temperature and/or the core temperature of the object to be treated.
  • the present invention also provides a refrigerator, comprising:
  • a box body defining at least one storage compartment
  • a thawing chamber arranged in at least one storage room
  • Refrigeration system set to generate cold air when working
  • a breezeway turntable configured to selectively allow cold air to enter at least one of the storage compartments and the defrosting compartment
  • the control module includes a memory and a processor, wherein a control program is stored in the memory, and when the control program is executed by the processor, it is used to implement any one of the above refrigerator temperature control methods.
  • the above refrigerator also includes:
  • the heat insulation board is arranged in the storage compartment, and is configured to separate the storage compartment into a storage area and a defrosting area.
  • the above refrigerator also includes:
  • a first temperature sensor arranged in the storage area, for detecting the temperature of the storage area
  • the second temperature sensor is arranged in the thawing zone and is used for detecting the temperature of the thawing zone.
  • the present invention provides a refrigerator temperature control method and refrigerator.
  • the cold air flow is generated by starting the refrigeration system when the temperature of the storage area is greater than or equal to the preset storage start-up temperature threshold, and passes through the refrigerator.
  • the comparison between the temperature of the thawing chamber and the preset thawing shutdown temperature threshold determines the direction of the cold air flow, and the direction of the cold air flow is completed through the breeze duct turntable, so as to meet the different cooling needs of the storage area and the thawing area.
  • It can not only reduce the use of the solenoid valve, but also effectively reduce the switching times of the solenoid valve and prolong the service life of the solenoid valve.
  • the present invention can determine the opening time of the heating unit by the temperature difference between the temperature of the object to be processed and the preset thawing shutdown temperature threshold, so as to reasonably control the thawing time and avoid excessive thawing leading to deterioration of food quality.
  • the storage compartment can be separated into the storage area and the thawing area by setting the heat insulation plate, and then the thawing chamber is arranged in the thawing area, which can effectively isolate the heat exchange between the thawing chamber and the storage area, thereby reducing
  • the thawing compartment is affected by the cooling of the storage area.
  • FIG. 1 is a schematic cross-sectional view of a refrigerator according to an embodiment of the present invention, showing a cold airflow flow path for cooling a storage area and a defrosting area;
  • FIG. 2 is a schematic cross-sectional view of an air duct cover according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a method for controlling temperature of a refrigerator according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a method for controlling temperature of a refrigerator according to another embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for controlling temperature of a refrigerator according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a method for controlling temperature of a refrigerator according to another embodiment of the present invention.
  • FIG. 7 is a flowchart of a method for controlling temperature of a refrigerator according to yet another embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a refrigerator according to an embodiment of the present invention, showing a cold airflow flow path for cooling a storage area and a defrosting area.
  • the refrigerator 100 may include a box body 110 , a defrosting chamber 120 , a refrigeration system, a breeze duct turntable 180 and a control module.
  • the box body 110 may define a storage compartment, and the storage compartment may include one or more storage areas 112 and a defrosting area 111 .
  • the thawing chamber 120 may be disposed within the thawing area 111 .
  • the storage compartment may include a plurality of storage compartments, and in the illustrated embodiment, the case 110 defines two storage compartments. The storage compartments are open to the front. In other embodiments, the storage compartment may also be open upwards.
  • the storage compartments may include a refrigerating compartment and a freezing compartment.
  • a refrigerator compartment refers to a storage compartment with a storage temperature of 0 to +8°C for ingredients
  • a freezer compartment refers to a storage compartment with a storage temperature of -24 to -14°C for ingredients room.
  • the thawing chamber 120 can be disposed in the refrigerating compartment to reduce the influence of thawing or maintaining the soft freezing temperature on the preservation of foodstuffs in the storage compartment.
  • the refrigeration system may be arranged to generate a cold air flow.
  • a refrigeration system may include a compressor, a condenser, a throttling element, and an evaporator.
  • the breezeway turntable 180 may be configured to selectively allow cold airflow to enter the storage area 112 and the defrost compartment 120 .
  • the cold airflow may exchange heat with the air in the storage area 112 or the defrosting chamber 120 , so as to reduce the temperature of the storage area 112 or the defrosting chamber 120 , so as to satisfy the cooling demand of the storage compartment and the defrosting chamber 120 .
  • the refrigerator 100 may further include a heat insulation board 130 disposed in the storage compartment and configured to separate the storage compartment from the storage area 112 and the defrosting area 111 .
  • the thawing chamber 120 is disposed in the thawing area 111 .
  • the heat shields 130 are all arranged to extend in a horizontal direction.
  • the storage compartment where the thawing chamber 120 is located can be separated into a thawing area 111 and at least one storage area 112, and then the thawing chamber 120 is arranged in the thawing area 111, which can effectively isolate
  • the heat exchange between the thawing chamber 120 and the storage area 112 reduces the influence of the thawing chamber 120 being cooled by the storage area 112 .
  • the defrosting area 111 may be disposed below the storage area 112.
  • the refrigerator 100 may further be provided with a heat insulation board extending in a vertical direction, and the heat insulation board extending in a horizontal direction and a heat insulation board extending in a vertical direction may be arranged end to end around the outside of the thawing chamber 120 . Therefore, the heat exchange between the thawing chamber 120 and the storage area 112 can be further isolated, thereby ensuring the heat preservation performance of the thawing chamber 120 .
  • the control module may include a memory and a processor.
  • a control program may be stored in the memory, and when the control program is executed by the processor, is used to implement the refrigerator temperature control method according to any embodiment of the present invention.
  • the control module can be arranged on the electric control board of the refrigerator to facilitate the installation and maintenance of the control module.
  • the refrigerator 100 may include a first temperature sensor and a second temperature sensor.
  • the first temperature sensor may be disposed in the storage area 112 for detecting the temperature of the storage area 112 .
  • the second temperature sensor may be disposed in the thawing chamber 120 for detecting the temperature of the thawing chamber 120 .
  • the temperature of the storage area and the thawing chamber can be detected by the first temperature sensor and the second temperature sensor respectively, so as to facilitate the temperature control of the storage area 112 and the thawing chamber 120 .
  • the refrigerator 100 may further include a heating unit.
  • the heating unit may be configured to thaw the thawing chamber 120 .
  • the heating unit may include at least a part of an electromagnetic wave generating system disposed in the thawing chamber 120 or communicating into the thawing chamber 120 .
  • the electromagnetic wave generating system can be used to generate electromagnetic waves to thaw the objects to be treated.
  • the electromagnetic wave generating system may be disposed at least partially outside the box body 110 to avoid the temperature fluctuation of the compartment caused by the generated heat.
  • the outer side of the box body 110 here refers to the side of the box body 110 exposed to ambient air, and the inner side of the box body 110 is the storage compartment.
  • the electromagnetic wave generating system may include: an electromagnetic wave generating module for generating electromagnetic wave signals; a power supply module, which is electrically connected to the electromagnetic wave generating module, and used for providing electrical energy to the electromagnetic wave generating module, so that the electromagnetic wave generating module generates electromagnetic wave signals; a radiation antenna, which is connected to the electromagnetic wave generating module The electrical connection is used to radiate electromagnetic waves of corresponding frequencies according to the electromagnetic wave signal to thaw the objects to be processed in the thawing chamber 120; the signal processing and measurement and control circuits are used to detect the characteristic parameters of the electromagnetic waves.
  • the electromagnetic wave generating module and the power supply module may be disposed outside the box body 110 .
  • the signal processing and measurement and control circuits can be disposed at the bottom of the thawing chamber 120 .
  • the signal processing and measurement and control circuits can be integrated into one circuit board to facilitate the installation and maintenance of the signal processing and measurement and control circuits.
  • the refrigerator 100 may be an air-cooled refrigerator.
  • An air duct cover plate 140 may be provided in each storage room, so as to separate the cooling air duct 150 in each storage room.
  • Each cooling air duct 150 may be provided with an evaporator 160 and a cooling fan 170 respectively, so that the cooling system can independently cool one of the storage compartments.
  • only one evaporator 160 and one cooling fan 170 may be provided in one of the cooling air ducts 150, and the cooling air duct 150 where the evaporator 160 is located may be It is selectively communicated with other cooling air ducts 150 .
  • the refrigerating air duct 150 where the evaporator 160 is located can be selectively communicated with other refrigerating air ducts 150, so that the refrigeration system can only cool the storage compartment where the evaporator 160 is located or simultaneously provide cooling for multiple storage compartments. Room cooling.
  • the air duct cover 140 may be provided with at least one air supply port 141 and one air return port 142 to circulate the air in the storage room for cooling.
  • the number of the air supply ports 141 may be plural.
  • the defrosting chamber 120 may be provided with an air supply port 141 and a return air port 142 to circulate the air in the defrosting chamber 120 for cooling.
  • the air return port 142 can be disposed below the plurality of air supply ports 141 to make the cooling more sufficient.
  • the refrigerator 100 may also be a direct-cooling refrigerator, that is, each storage compartment may be provided with an evaporator 160, and the cooling is carried out by natural convection.
  • FIG. 2 is a schematic cross-sectional view of an air duct cover 140 according to an embodiment of the present invention.
  • the air duct cover 140 may be sandwiched with the rear wall of the storage compartment to form a return air portion of the cooling air duct 150 , and the evaporator 160 may be disposed in the return air portion.
  • the air duct cover plate 140 itself can be formed with at least one air supply part of the compartment air duct, and each air supply part can be opened with at least one air supply port 141 and one air inlet port 143 .
  • the breeze duct turntable 180 may be configured to accommodate a volute of the cooling fan 170 .
  • the volute is rotatable and its air outlet is docked with the air inlet 143 of an air supply part, so as to deliver the cold air cooled by the evaporator 160 to an air supply part and blow out from the air supply opening 141 of the air supply part.
  • FIG. 3 is a schematic diagram of a method for controlling temperature of a refrigerator according to an embodiment of the present invention.
  • the refrigerator temperature control method may include steps S302 to S308.
  • Step S302 when the temperature of the storage area is greater than or equal to a preset storage startup temperature threshold, control the refrigeration system to start; wherein, the refrigeration system can generate cold airflow after it is started;
  • Step S304 obtaining the temperature of the thawing chamber, and comparing the temperature of the thawing chamber with a preset thawing shutdown temperature threshold;
  • Step S306 if the temperature of the thawing chamber is greater than or equal to the preset thawing shutdown temperature threshold, control the micro-air duct turntable to guide the cold air flow to the storage area and the thawing chamber at the same time;
  • step S308 if the temperature of the thawing chamber is lower than the preset thawing shutdown temperature threshold, the micro-air duct turntable is controlled to direct all the cold airflow to the storage area, so as to cool the storage area independently.
  • the refrigeration system is activated when the temperature of the storage area is greater than or equal to the storage startup temperature threshold to generate cold air flow, and the direction of the cold air flow is determined by comparing the temperature of the thawing chamber with the preset thawing shutdown temperature threshold, and through The micro-air channel turntable is used to orient the cold air flow, so as to meet the different cooling requirements of the storage area and the thawing room.
  • the solenoid valve In the process of controlling the temperature of the compartment, there is no need to switch the solenoid valve frequently, which effectively prolongs the service life of the solenoid valve.
  • the temperature of the storage area or the temperature of the thawing chamber 120 may drop.
  • the temperature of the storage area 112 may also drop to a preset storage shutdown temperature threshold.
  • the micro-air duct turntable 180 is controlled to direct all the cold air flow to the thawing chamber 120, so as to cool the thawing chamber 120 alone, and then the temperature of the thawing chamber 120 will drop rapidly,
  • the ingredients placed in the defrosting chamber 120 are made to quickly pass through the ice crystal belt, which facilitates the preservation of the ingredients.
  • the thawing chamber 120 may be stopped from cooling when the temperature of the thawing chamber 120 drops to a preset thawing shutdown temperature threshold. Since the temperature of the storage area 112 first drops to the preset storage shutdown temperature threshold, the cooling of the storage area 112 will be stopped first, and then, when the temperature of the thawing compartment 120 drops to the preset thawing shutdown temperature threshold, the thawing will be stopped.
  • the chamber 120 is refrigerated, so that both the storage area 112 and the defrosting chamber 120 can meet their respective cooling requirements, thereby ensuring that both the storage area and the defrosting chamber 120 can maintain normal temperature control.
  • the temperature of the thawing chamber 120 may also drop to a preset thawing shutdown temperature threshold, and When the temperature of the storage area 112 is still higher than the preset storage shutdown temperature threshold, the breeze duct turntable 180 is controlled to direct all the cold airflow to the storage area 112 so as to cool the storage area 112 individually.
  • Zone 112 is refrigerated. Since the temperature of the thawing chamber 120 first drops to the preset thawing shutdown temperature threshold, the refrigeration of the thawing chamber 120 will be stopped first, and then, when the temperature of the storage area 112 drops to the preset storage shutdown temperature threshold, the cooling of the storage area will be stopped. The area 112 is refrigerated, so that both the storage area and the defrosting chamber 120 can meet their respective cooling demands, thereby ensuring that both the storage area 112 and the defrosting chamber 120 can maintain normal temperature control.
  • the refrigerator 100 may further include a heating unit.
  • the heating unit may be configured to thaw the thawing chamber 120 .
  • Fig. 4 is a flowchart of a temperature control method for a refrigerator according to another embodiment of the present invention. Referring to FIG. 4, in this embodiment, the refrigerator temperature control method may further include steps S402 to S408.
  • Step S402 when the cooling of the thawing chamber 120 is stopped, an event of placing the object to be processed in the thawing chamber 120 is detected.
  • Objects to be processed generally refer to ingredients/foods that need to be frozen, thawed, or refrigerated in the refrigerator.
  • step S404 when it is detected that the object to be processed is placed in the thawing chamber 120, attribute information of the object to be processed is acquired.
  • the attribute information may include the type of the object to be processed, the external dimension of the object to be processed, and/or the temperature of the object to be processed.
  • the temperature of the object to be treated includes the surface temperature and/or the core temperature of the object to be treated.
  • Step S406 determining the operation parameters of the heating unit according to the attribute information.
  • the operating parameters include, but are not limited to, the ON time, OFF time, and power of the heating unit.
  • Step S408 control the operation of the heating unit according to the operation parameters.
  • the attribute information of the object to be treated can be obtained, and then the operation parameters of the heating unit can be determined according to the attribute information, and the operation of the heating unit can be controlled based on the operation parameters, In this way, a better thawing effect can be obtained, and the problem of food quality degradation caused by thawing can be reduced.
  • step S406 may include: calculating the temperature difference between the temperature of the object to be processed and the threshold temperature for shutting down the thawing chamber; and determining the ON time of the heating unit according to the temperature difference.
  • the on-time of the heating unit is determined by the temperature difference between the temperature of the object to be processed and the shutdown temperature threshold of the thawing chamber, which makes the thawing time more reasonable and reduces the problem of food quality degradation caused by excessive thawing.
  • the first preset temperature threshold value and the second preset temperature threshold value can be determined according to an experiment of thawing the thawing chamber 120, and the second preset temperature threshold value can be set to 0°C, so that the thawing chamber 120 is in a negative temperature thawing state during thawing .
  • the first preset temperature threshold and the second preset temperature threshold may also be set to a certain threshold range, respectively.
  • FIG. 5 is a flowchart of a method for controlling temperature of a refrigerator according to an embodiment of the present invention.
  • the refrigerator temperature control method may include steps S502 to S524.
  • Step S502 obtaining the temperature of the storage area
  • Step S504 judging whether the temperature of the storage area is greater than or equal to the preset storage power-on temperature threshold; if yes, go to step S506; if not, go to step S502;
  • Step S506 turning on the refrigeration system of the refrigerator to generate cold airflow
  • Step S508 obtaining the temperature of the thawing chamber
  • Step S510 determine whether the temperature of the thawing chamber is greater than or equal to the preset thawing shutdown temperature threshold; if so, go to step S512; if not, go to step S522;
  • Step S512 controlling the breeze duct turntable to guide the cold airflow to the refrigerating compartment and the defrosting compartment at the same time;
  • Step S514 judging whether the temperature of the storage area has dropped to the preset storage shutdown temperature threshold; if so, go to step S516; if not, go to step S520;
  • Step S516 determine whether the temperature of the thawing chamber has dropped to the preset thawing shutdown temperature threshold; if so, go to step S518; if not, go to step S520;
  • Step S528 turning off the refrigeration system of the refrigerator
  • Step S520 controlling the breeze duct turntable to guide all the cold airflow to the thawing chamber
  • Step S522 controlling the turntable of the breeze duct to guide all the cold air flow to the storage area.
  • the refrigerator temperature control method may include steps S602 to S626.
  • Step S602 acquiring the temperature of the storage area.
  • Step S604 it is judged whether the temperature of the storage area is greater than or equal to the preset storage power-on temperature threshold; if so, step S606 is performed; if not, step S602 is continued.
  • step S606 the refrigeration system of the refrigerator is turned on to generate cold airflow.
  • Step S608 acquiring the temperature of the thawing chamber.
  • step S610 it is determined whether the temperature of the thawing chamber is greater than or equal to the preset thawing shutdown temperature threshold; if so, step S612 is performed; if not, step S626 is performed.
  • Step S612 controlling the air duct turntable to guide the cold airflow to the storage area and the defrosting chamber at the same time.
  • Step S614 acquiring the temperature of the storage area.
  • step S616 it is determined whether the temperature of the storage area has dropped to the preset storage shutdown temperature threshold; if not, return to step S608; if yes, execute step S618.
  • Step S618, controlling the turntable of the breeze duct to guide all the cold air flow to the thawing chamber.
  • Step S620 acquiring the temperature of the thawing chamber.
  • step S622 it is determined whether the temperature of the thawing chamber has dropped to the preset thawing shutdown temperature threshold; if not, return to step S620; if yes, execute step S624.
  • Step S624 turning off the refrigeration system of the refrigerator.
  • Step S626 controlling the air duct turntable to guide all the cold air flow to the storage area.
  • the cooling of the storage area 112 will be stopped first, and all the cold air will be directed to the thawing chamber 120 , and then, the cooling of the storage area 112 will be stopped.
  • the refrigeration system is turned off to stop cooling the thawing chamber 120, so that both the storage area 112 and the thawing chamber 120 can meet their respective cooling requirements, and not only make the food placed in the thawing chamber 120 fast Passing through the ice crystal belt also ensures that both the storage area and the thawing chamber 120 maintain normal temperature control.
  • FIG. 7 is a flowchart of a method for controlling temperature of a refrigerator according to yet another embodiment of the present invention.
  • the refrigerator temperature control method may include steps S702 to S720.
  • Step S702 acquiring the temperature of the storage area.
  • Step S704 it is judged whether the temperature of the storage area is greater than or equal to the preset storage power-on temperature threshold; if yes, go to step S706; if not, go to step S702.
  • step S706 the refrigeration system of the refrigerator is turned on to generate cold airflow.
  • step S708 the temperature of the thawing chamber is acquired.
  • step S710 it is determined whether the temperature of the thawing chamber is greater than or equal to the preset thawing shutdown temperature threshold; if so, step S712 is performed; if not, step S714 is performed.
  • step S712 the turntable of the air duct is controlled to guide the cold air flow to the storage area and the defrosting chamber at the same time.
  • Step S714 controlling the turntable of the breeze duct to guide all the cold air flow to the storage area.
  • Step S716 acquiring the temperature of the storage area.
  • step S718 it is determined whether the temperature of the storage area has dropped to the preset storage shutdown temperature threshold; if not, return to step S716; if yes, execute step S720.
  • step S720 the refrigeration system of the refrigerator is turned off.
  • Embodiments of the present invention provide a refrigerator temperature control method and a refrigerator.
  • cold airflow is generated by activating a refrigeration system when the temperature of the storage area is greater than or equal to a preset storage startup temperature threshold.
  • the direction of the cold air flow is determined, and the direction of the cold air flow is completed by using the breeze duct turntable, so as to meet the different refrigeration requirements of the storage area 112 and the thawing chamber 120. It can not only reduce the use of the solenoid valve during the refrigeration process, but also can effectively reduce the switching times of the solenoid valve and prolong the service life of the solenoid valve.
  • the ON time of the heating unit can be determined by the temperature difference between the temperature of the object to be processed and the preset thawing shutdown temperature threshold, so as to reasonably control the thawing time to avoid food quality degradation caused by excessive thawing.
  • the refrigerator according to the embodiment of the present invention is further provided with a heat insulating plate 130, which can separate the storage compartment where the thawing chamber 120 is located into the thawing area 111 and the storage area 112, and then the thawing chamber 120 is arranged in the thawing area, which can The heat exchange between the thawing chamber 120 and the storage area 112 is effectively isolated, thereby reducing the cooling effect of the thawing chamber 120 by the storage area 112 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

一种冰箱温度控制方法及冰箱。冰箱(100)包括箱体(110)、解冻室(120)、制冷系统及微风道转盘(180),箱体(110)限定有储物间室,储物间室包括储物区(112)和解冻区(111),解冻室(120)设置在解冻区(111),制冷系统设置为产生冷气流,微风道转盘(180)设置为使冷气流有选择地进入储物区(112)和解冻室(120)。该技术方案通过在储物区(112)的温度大于等于预设储物开机温度阈值时启动制冷系统来产生冷气流,通过解冻室(120)的温度和预设解冻关机温度阈值的对比来确定冷气流导向方向,并通过微风道转盘(180)来完成冷气流的定向导向,从而满足储物区(112)和解冻室(120)的不同制冷需求,并且在对间室温度控制过程中,无需频繁切换电磁阀,有效延长了电磁阀的使用寿命。

Description

冰箱温度控制方法及冰箱 技术领域
本发明涉及制冷领域,特别是涉及一种冰箱温度控制方法及冰箱。
背景技术
冷冻食材在冷冻保存过程中,能够最大程度地保持冷冻食材的新鲜度、营养价值和原有风味。传统冰箱保存冷冻食材主要分两种方式,一种是在-14~-24℃的长期低温存储,另一种方式是-4℃左右的软冷冻短期存储。然而采用长期低温存储食材时,在处理食材时需要先进行长时间解冻,不便于用户快速处理食材,而采用软冷冻短期存储食材时,会存在食材冷冻时穿过冰晶带时间长、保鲜效果差、存储时间短的问题。因此,亟需提供一种既能够快速穿过冰晶带,又能够实现即食即用的食材存储方案。
发明内容
本发明的一个目的是要克服现有技术的至少一个技术缺陷,提供一种兼顾快速穿过冰晶带和即食即用优点的冰箱温度控制方法及冰箱。
本发明一个进一步的目的是要保证储物间室的储物区和解冻区都能维持正常的温度控制。
本发明另一个进一步的目的是要利用微风道转盘满足储物区和解冻区的制冷需求,能够有效减少电磁阀的切换,从而延长电磁阀的使用寿命。
特别地,本发明提供了一种冰箱温度控制方法,冰箱包括:箱体,限定有储物间室,储物间室包括储物区和解冻区;解冻室,设置于解冻区;制冷系统,配置为产生冷气流;微风道转盘,设置为使冷气流有选择地进入储物区和解冻室;冰箱温度控制方法包括:
在储物区的温度大于等于预设储物开机温度阈值时,控制制冷系统启动;
获取解冻室的温度,并且将解冻室的温度与预设解冻关机温度阈值进行对比;
若解冻室的温度大于等于预设解冻关机温度阈值,则控制微风道转盘将冷气流同时导向储物区和解冻室;
若解冻室的温度低于预设解冻关机温度阈值,则控制微风道转盘将冷气 流全部导向储物区,以单独对储物区进行制冷。
可选地,在控制微风道转盘将冷气流同时导向储物区和解冻室的步骤之后,该方法还包括:
在储物区的温度下降至预设储物关机温度阈值,并且解冻室的温度仍高于预设解冻关机温度阈值时,控制微风道转盘将冷气流全部导向解冻室;
若解冻室的温度低于预设解冻关机温度阈值,则控制微风道转盘将冷气流全部导向储物区的步骤包括:
在解冻室的温度下降至预设解冻关机温度阈值,并且储物区的温度仍高于预设储物关机温度阈值时,控制微风道转盘将冷气流全部导向储物区。
可选地,在控制微风道转盘将冷气流全部导向解冻室的步骤之后,该方法还包括:在解冻室的温度下降至预设解冻关机温度阈值时,停止对解冻室进行制冷;
在控制微风道转盘将冷气流全部导向储物区的步骤之后,该方法还包括:在储物区的温度下降至预设储物区关机温度阈值时,停止对储物区进行制冷。
可选地,冰箱还包括:加热单元,配置成对解冻室进行解冻;并且上述冰箱温度控制方法还包括:
在停止对解冻室进行制冷状态下,检测解冻室的待处理物放入事件;
当检测到解冻室放入了待处理物时,获取待处理物的属性信息;
根据属性信息确定加热单元的运行参数;
按照运行参数控制加热单元运行。
可选地,属性信息包括以下任一项:
待处理物种类、待处理物外形尺寸、待处理物温度。
可选地,在属性信息包括待处理物温度时,根据属性信息确定加热单元的运行参数的步骤包括:
计算待处理物温度与解冻室关机温度阈值的温度差;
根据温度差确定出加热单元的开启时间。
可选地,待处理物温度包括待处理物的表面温度和/或中心温度。
基于同一发明构思,本发明还提供了一种冰箱,包括:
箱体,限定有至少一个储物间室;
解冻室,设置于至少一个储物间室内;
制冷系统,设置为工作时产生冷气流;
微风道转盘,设置为使冷气流有选择地进入至少一个储物间室和解冻室;
控制模块,其包括存储器以及处理器,存储器内存储有控制程序,控制程序被处理器执行时用于实现上述任一的冰箱温度控制方法。
可选地,上述冰箱还包括:
隔热板,设置在储物间室内,配置成将储物间室分隔出储物区和解冻区。
可选地,上述冰箱还包括:
第一温度传感器,设置在储物区内,用于检测该储物区的温度;
第二温度传感器,设置在解冻区内,用于检测该解冻区的温度。
本发明提供了一种冰箱温度控制方法及冰箱,在发明提供的冰箱温度控制方法中,通过在储物区的温度大于等于预设储物开机温度阈值时启动制冷系统来产生冷气流,并通过解冻室的温度和预设解冻关机温度阈值的对比来确定冷气流导向方向,并通过微风道转盘来完成冷气流的定向导向,从而满足储物区和解冻区的不同制冷需求,在制冷过程中不仅可以减少电磁阀的使用,而且能够有效减少电磁阀的切换次数,延长电磁阀的使用寿命。
进一步地,本发明可以通过待处理物温度与预设解冻关机温度阈值的温度差确定加热单元的开启时间,进而合理控制解冻时间,避免过度解冻导致食物品质下降。
进一步地,本发明通过设置隔热板,可将储物间室分隔出储物区和解冻区,进而将解冻室设置于解冻区,可有效隔绝解冻室与储物区的热交换,从而减少了解冻室受储物区制冷影响。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱的示意性剖视图,其中示出了为储物区和解冻区制冷的冷气流流动路径;
图2是根据本发明一个实施例的风道盖板的示意性剖视图;
图3是根据本发明一个实施例的冰箱温度控制方法示意图;
图4是根据本发明另一个实施例的冰箱温度控制方法示意图;
图5是根据本发明一个实施例的冰箱温度控制方法流程图;
图6是根据本发明另一个实施例的冰箱温度控制方法流程图;
图7是根据本发明又一个实施例的冰箱温度控制方法流程图。
具体实施方式
图1是根据本发明一个实施例的冰箱的示意性剖视图,其中示出了为储物区和解冻区制冷的冷气流流动路径。参见图1,冰箱100可包括箱体110、解冻室120、制冷系统、微风道转盘180以及控制模块。
箱体110可限定有储物间室,储物间室可包括一个或多个储物区112和一个解冻区111。解冻室120可设置在解冻区111内。在一些实施例中,储物间室可包括多个,在图示实施例中,箱体110限定有两个储物间室。储物间室均为向前开口。在另一些实施例中,储物间室也可为向上开口。
在箱体110限定有两个储物间室情况下,储物间室可包括冷藏间室和冷冻间室。本领域技术人员均熟知地,冷藏间室是指对食材的保藏温度为0~+8℃的储物间室;冷冻间室是指对食材的保藏温度为-24~-14℃的储物间室。解冻室120可设置于冷藏间室内,以降低解冻或维持软冷冻温度对储物间室内保藏食材的影响。
制冷系统可设置为产生冷气流。具体地,制冷系统可包括压缩机、冷凝器、节流元件和蒸发器。
微风道转盘180可设置为使冷气流有选择地进入储物区112和解冻室120。冷气流可与储物区112或解冻室120内的空气换热,以使储物区112或解冻室120的温度降低,从而满足储物间室和解冻室120的制冷需求。
进一步地,冰箱100还可包括隔热板130,设置在储物间室内,配置成将储物间室分隔出储物区112和解冻区111。解冻室120设置于解冻区111。在图示实施例中,隔热板130均设置为水平方向延伸。本发明实施例通过设置隔热板130,可将解冻室120所在的储物间室分隔出一个解冻区111和至少一个储物区112,进而将解冻室120设置于解冻区111,可有效隔绝解冻室120与储物区112的热交换,减少解冻室120受储物区112制冷影响。解 冻区111可设置于储物区112的下方。
在另一些实施例中,冰箱100还可设置有竖直方向延伸的隔热板,水平方向延伸的隔热板和竖直方向延伸的隔热板可首尾相接围设于解冻室120外侧。由此,可进一步隔绝解冻室120与储物区112的热交换,从而保证解冻室120的保温性能。
控制模块可包括存储器以及处理器。存储器内可存储有控制程序,控制程序被处理器执行时用于实现根据本发明任一个实施例的冰箱温度控制方法。控制模块可设置在冰箱的电控板上,以便于控制模块的安装与维修。
在一些实施例中,冰箱100可包括第一温度传感器和第二温度传感器。第一温度传感器可设置在储物区112内,用于检测该储物区112的温度。第二温度传感器可设置在解冻室120内,用于检测解冻室120的温度。通过第一温度传感器和第二温度传感器可分别检测储物区和解冻室的温度,方便控制储物区112和解冻室120的温度。
在一些实施例中,冰箱100还可包括加热单元。加热单元可设置为对解冻室120进行解冻。具体地,加热单元可包括至少一部分设置于解冻室120或通达至解冻室120内的电磁波发生系统。电磁波发生系统可用于产生电磁波来解冻待处理物。电磁波发生系统可至少部分设置于箱体110的外侧,以避免产生的热量造成间室温度波动。这里的箱体110的外侧是指箱体110暴露于环境空气的一侧,箱体110的内侧即为储物间室。
电磁波发生系统可包括:电磁波发生模块,用于产生电磁波信号;供电模块,与电磁波发生模块电连接,用于为电磁波发生模块提供电能,使得电磁波发生模块产生电磁波信号;辐射天线,与电磁波发生模块电连接,用于根据电磁波信号辐射相应频率的电磁波,对解冻室120内的待处理物进行解冻;信号处理及测控电路,用于对电磁波的特征参数进行检测。
电磁波发生模块和供电模块可设置于箱体110的外侧。信号处理及测控电路可设置于解冻室120的底部。信号处理及测控电路可集成于一块电路板,以便于信号处理及测控电路的安装及维修。
在一些实施例中,冰箱100可为风冷冰箱。每个储物间室内可分别设置有一个风道盖板140,以在每个储物间室内分隔出制冷风道150。每个制冷风道150可分别设置有一个蒸发器160和一个制冷风扇170,以使制冷系统可单独为其中一个储物间室制冷。当然,在箱体限定有多个储物间室的情况 下,还可仅在其中一个制冷风道150内设置一个蒸发器160和一个制冷风扇170,并且蒸发器160所在的制冷风道150可选择地与其它制冷风道150连通。在该实施例中,通过蒸发器160所在的制冷风道150可选择地与其它制冷风道150连通,可使制冷系统可仅为蒸发器160所在的储物间室制冷或同时为多个储物间室制冷。
其中,风道盖板140可开设有至少一个送风口141和一个回风口142,以循环储物间室内的空气进行制冷。送风口141的数量可为多个。解冻室120可开设一个送风口141和一个回风口142,以循环解冻室120内的空气进行制冷。回风口142可设置于多个送风口141的下方,以使制冷更加充分。
在另一些实施例中,冰箱100还可为直冷冰箱,即每个储物间室可均设置有一个蒸发器160,并通过自然对流进行传冷。
图2是根据本发明一个实施例的风道盖板140的示意性剖视图。参见图2,在一些实施例中,风道盖板140可与储物间室的后壁夹置形成制冷风道150的回风部,蒸发器160可设置于回风部。风道盖板140本身可形成有间室风道的至少一个送风部,每个送风部均可开设有至少一个送风口141和一个进风口143。
微风道转盘180可设置成可容置制冷风扇170的蜗壳。蜗壳设置为可旋转并将其出风口与一个送风部的进风口143对接,以将由蒸发器160制冷后的冷气流输送至一个送风部并由该送风部的送风口141吹出。
图3是根据本发明一个实施例的冰箱温度控制方法示意图。参见图3,在该实施例中,冰箱温度控制方法可以包括步骤S302至步骤S308。
步骤S302,在储物区的温度大于等于预设储物开机温度阈值时,控制制冷系统启动;其中,制冷系统启动后可产生冷气流;
步骤S304,获取解冻室的温度,并且将解冻室的温度与预设解冻关机温度阈值进行对比;
步骤S306,若解冻室的温度大于等于预设解冻关机温度阈值,则控制微风道转盘将冷气流同时导向储物区和解冻室;
步骤S308,若解冻室的温度低于预设解冻关机温度阈值,则控制微风道转盘将冷气流全部导向储物区,以单独对储物区进行制冷。
本发明实施例通过在储物区的温度大于等于储物开机温度阈值时启动制冷系统来产生冷气流,通过解冻室的温度和预设解冻关机温度阈值的对比 来确定冷气流导向方向,并通过微风道转盘来完成冷气流的定向导向,从而满足储物区和解冻室的不同制冷需求,并且在对间室温度控制过程中,无需频繁切换电磁阀,有效延长了电磁阀的使用寿命。
考虑到对储物区112或解冻室120制冷时,储物区的温度或解冻室120的温度会下降。对于步骤S306,在一些实施例中,在控制微风道转盘180将冷气流同时导向储物区112和解冻室120之后,还可以在储物区112的温度下降至预设储物关机温度阈值,并且解冻室120的温度仍高于预设解冻关机温度阈值时,控制微风道转盘180将冷气流全部导向解冻室120,以单独对解冻室120制冷,这时解冻室120的温度会迅速下降,使得置于解冻室120的食材快速穿过冰晶带,便于食材保鲜。
在一些进一步地实施例中,在控制微风道转盘180将冷气流全部导向解冻室120之后,还可以在解冻室120的温度下降至预设解冻关机温度阈值时,停止对解冻室120进行制冷。由于储物区112的温度先下降至预设储物关机温度阈值,因而首先会停止对储物区112制冷,之后,在解冻室120的温度下降至预设解冻关机温度阈值时,停止对解冻室120制冷,以使储物区112和解冻室120均能满足各自的制冷需求,进而保证了储物区和解冻室120都能维持正常的温度控制。
对于步骤S306,在另一些实施例中,在控制微风道转盘180将冷气流同时导向储物区112和解冻室120之后,还可以在解冻室120的温度下降至预设解冻关机温度阈值,并且储物区112的温度仍高于预设储物关机温度阈值时,控制微风道转盘180将冷气流全部导向储物区112,以单独对储物区112制冷。
在一些进一步地实施例中,在控制微风道转盘180将冷气流全部导向储物区112之后,还可以在储物区112的温度下降至预设储物区关机温度阈值时,停止对储物区112制冷。由于解冻室120的温度先下降至预设解冻关机温度阈值,因而会首先停止对解冻室120制冷,之后,在储物区112的温度下降至预设储物关机温度阈值时,停止对储物区112制冷,以使储物区和解冻室120均能满足各自的制冷需求,进而保证了储物区112和解冻室120都能维持正常的温度控制。
为了方便对冷冻食材的解冻,在一些实施例中,冰箱100还可以包括加热单元。加热单元可设置为对解冻室120进行解冻。图4是根据本发明另一 个实施例的冰箱温度控制方法流程图。参见图4,在该实施例中,冰箱温度控制方法还可以包括步骤S402至步骤S408。
步骤S402,在停止对解冻室120制冷时,检测解冻室120的待处理物放入事件。待处理物一般指需要放入冰箱进行冷冻、解冻、或冷藏的食材/食物。
步骤S404,当检测到解冻室120放入了待处理物时,获取待处理物的属性信息。属性信息可包括待处理物种类、待处理物外形尺寸、和/或待处理物温度。待处理物温度包括待处理物的表面温度和/或中心温度。
步骤S406,根据属性信息确定加热单元的运行参数。运行参数包括但不限于加热单元的开启时间、关闭时间、功率。
步骤S408,按照运行参数控制加热单元运行。
在该实施例中,当解冻室120放入了待处理物时,可以获取待处理物的属性信息,进而根据属性信息可以确定出加热单元的运行参数,并以此运行参数控制加热单元运行,由此能够获得较佳的解冻效果,减少因解冻导致食物品质下降的问题。
在一些实施例中,在属性信息包括待处理物温度时,步骤S406可以包括:计算待处理物温度与解冻室关机温度阈值的温度差;根据温度差确定出加热单元的开启时间。该实施例通过待处理物温度与解冻室关机温度阈值的温度差确定加热单元的开启时间,使得解冻时间更加合理,减少了过度解冻导致食物品质下降的问题。
第一预设温度阈值、第二预设温度阈值可根据对解冻室120进行解冻的实验确定,第二预设温度阈值可设置为0℃,以使解冻室120在解冻时处于负温解冻状态。当然,第一预设温度阈值、第二预设温度阈值还可分别设置为一定的阈值范围。
图5是根据本发明一个实施例的冰箱温度控制方法流程图。参见图5,在该实施例中,冰箱温度控制方法可包括步骤S502至步骤S524。
步骤S502,获取储物区的温度;
步骤S504,判断储物区的温度是否≥预设储物开机温度阈值;若是,则执行步骤S506;若否,则继续执行步骤S502;
步骤S506,开启冰箱的制冷系统,以产生冷气流;
步骤S508,获取解冻室的温度;
步骤S510,判断解冻室的温度是否≥预设解冻关机温度阈值;若是,则执行步骤S512;若否,则执行步骤S522;
步骤S512,控制微风道转盘将冷气流同时导向冷藏间室和解冻室;
步骤S514,判断储物区的温度是否下降至预设储物关机温度阈值;若是,则执行步骤S516;若否,则执行步骤S520;
步骤S516,判断解冻室的温度是否下降至预设解冻关机温度阈值;若是,执行步骤S518;若否,则执行步骤S520;
步骤S518,关闭冰箱的制冷系统;
步骤S520,控制微风道转盘将冷气流全部导向解冻室;
步骤S522,控制微风道转盘将冷气流全部导向储物区。
图6是根据本发明另一个实施例的冰箱温度控制方法流程图。参见图6,在该实施例中,冰箱温度控制方法可包括步骤S602至步骤S626。
步骤S602,获取储物区的温度。
步骤S604,判断储物区的温度是否≥预设储物开机温度阈值;若是,则执行步骤S606;若否,则继续执行步骤S602。
步骤S606,开启冰箱的制冷系统,以产生冷气流。
步骤S608,获取解冻室的温度。
步骤S610,判断解冻室的温度是否≥预设解冻关机温度阈值;若是,则执行步骤S612;若否,则执行步骤S626。
步骤S612,控制微风道转盘将冷气流同时导向储物区和解冻室。
步骤S614,获取储物区的温度。
步骤S616,判断储物区的温度是否下降至预设储物关机温度阈值;若否,返回至步骤S608;若是,执行步骤S618。
步骤S618,控制微风道转盘将冷气流全部导向解冻室。
步骤S620,获取解冻室的温度。
步骤S622,判断解冻室的温度是否下降至预设解冻关机温度阈值;若否,返回至步骤S620;若是,执行步骤S624。
步骤S624,关闭冰箱的制冷系统。
步骤S626,控制微风道转盘将冷气流全部导向储物区。
本实施例中,由于储物区112的温度先下降至预设储物关机温度阈值,因而首先会停止对储物区112制冷,将冷气流全部导向解冻室120,之后, 在解冻室120的温度下降至预设解冻关机温度阈值时,关闭制冷系统从而停止对解冻室120制冷,以使储物区112和解冻室120均能满足各自的制冷需求,不仅使得置于解冻室120的食材快速穿过冰晶带,还保证了储物区和解冻室120都能维持正常的温度控制。
图7是根据本发明又一个实施例的冰箱温度控制方法流程图。参见图7,在该实施例中,冰箱温度控制方法可包括步骤S702至步骤S720。
步骤S702,获取储物区的温度。
步骤S704,判断储物区的温度是否≥预设储物开机温度阈值;若是,则执行步骤S706;若否,则继续执行步骤S702。
步骤S706,开启冰箱的制冷系统,以产生冷气流。
步骤S708,获取解冻室的温度。
步骤S710,判断解冻室的温度是否≥预设解冻关机温度阈值;若是,则执行步骤S712;若否,则执行步骤S714。
步骤S712,控制微风道转盘将冷气流同时导向储物区和解冻室。
步骤S714,控制微风道转盘将冷气流全部导向储物区。
步骤S716,获取储物区的温度。
步骤S718,判断储物区的温度是否下降至预设储物关机温度阈值;若否,返回至步骤S716;若是,执行步骤S720。
步骤S720,关闭冰箱的制冷系统。
本实施例中,由于解冻室120的温度先下降至预设解冻关机温度阈值,因而会首先停止对解冻室120制冷,将冷气流全部导向储物区112,之后,在储物区112的温度下降至预设储物关机温度阈值时,关闭制冷系统从而停止对储物区112制冷,以使储物区112和解冻室120均能满足各自的制冷需求,进而保证了储物区112和解冻室120都能维持正常的温度控制。需要说明的是,本发明的实施例的一或多个示例在附图中示出。每个示例是通过解释本发明的方式提供的,并不是对本发明的限制。实际上,对于本领域技术人员来说显而易见的是,在不脱离本发明的范围或精神的情况下,可以对本发明进行各种修改和变型。例如,作为一个实施例的一部分示出或描述的特征可以与另一个实施例一起使用,以产生又一个实施例。
本发明实施例提供了一种冰箱温度控制方法及冰箱,在发明提供的冰箱 温度控制方法中,通过在储物区的温度大于等于预设储物开机温度阈值时启动制冷系统来产生冷气流,并通过解冻室120的温度和预设解冻关机温度阈值的对比来确定冷气流导向方向,并通过利用微风道转盘来完成冷气流的定向导向,从而满足储物区112和解冻室120的不同制冷需求,在制冷过程中不仅可以减少电磁阀的使用,而且能够有效减少电磁阀的切换次数,延长电磁阀的使用寿命。
进一步地,本发明实施例还可以通过待处理物温度与预设解冻关机温度阈值的温度差确定加热单元的开启时间,进而合理控制解冻时间,避免过度解冻导致食物品质下降。
进一步地,本发明实施例的冰箱中还设置隔热板130,可将解冻室120所在的储物间室分隔出解冻区111和储物区112,进而将解冻室120设置于解冻区,可有效隔绝解冻室120与储物区112的热交换,从而减少了解冻室120受储物区112制冷影响。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种冰箱温度控制方法,所述冰箱包括:箱体,限定有储物间室,所述储物间室包括储物区和解冻区;解冻室,设置于所述解冻区;制冷系统,设置为产生冷气流;微风道转盘,设置为使所述冷气流有选择地进入所述储物区和所述解冻室;所述方法包括:
    在所述储物区的温度大于等于预设储物开机温度阈值时,控制所述制冷系统启动;
    获取所述解冻室的温度,并且将所述解冻室的温度与预设解冻关机温度阈值进行对比;
    若所述解冻室的温度大于等于所述预设解冻关机温度阈值,则控制所述微风道转盘将所述冷气流同时导向所述储物区和所述解冻室;
    若所述解冻室的温度低于所述预设解冻关机温度阈值,则控制所述微风道转盘将所述冷气流全部导向所述储物区,以单独对所述储物区进行制冷。
  2. 根据权利要求1所述的冰箱温度控制方法,其中,在所述控制所述微风道转盘将所述冷气流同时导向所述储物区和所述解冻室的步骤之后,所述方法还包括:
    在所述储物区的温度下降至预设储物关机温度阈值,并且所述解冻室的温度仍高于所述预设解冻关机温度阈值时,控制所述微风道转盘将所述冷气流全部导向所述解冻室;
    所述若所述解冻室的温度低于所述预设解冻关机温度阈值,则控制所述微风道转盘将所述冷气流全部导向所述储物区的步骤包括:
    在所述解冻室的温度下降至所述预设解冻关机温度阈值,并且所述储物区的温度仍高于所述预设储物关机温度阈值时,控制所述微风道转盘将所述冷气流全部导向所述储物区。
  3. 根据权利要求2所述的冰箱温度控制方法,其中,
    在所述控制所述微风道转盘将所述冷气流全部导向所述解冻室的步骤之后,所述方法还包括:在所述解冻室的温度下降至所述预设解冻关机温度阈值时,停止对所述解冻室进行制冷;
    在所述控制所述微风道转盘将所述冷气流全部导向所述储物区的步骤 之后,所述方法还包括:在所述储物区的温度下降至所述预设储物关机温度阈值时,停止对所述储物区进行制冷。
  4. 根据权利要求3所述的冰箱温度控制方法,其中,所述冰箱还包括:加热单元,设置为对所述解冻室进行解冻;并且所述方法还包括:
    在停止对所述解冻室制冷时,检测所述解冻室的待处理物放入事件;
    当检测到所述解冻室放入了待处理物时,获取所述待处理物的属性信息;根据所述属性信息确定所述加热单元的运行参数;
    按照所述运行参数控制所述加热单元运行。
  5. 根据权利要求4所述的冰箱温度控制方法,其中,所述属性信息包括以下任一项:
    待处理物种类、待处理物外形尺寸、待处理物温度。
  6. 根据权利要求5所述的冰箱温度控制方法,其中,在所述属性信息包括待处理物温度时,所述根据所述属性信息确定所述加热单元的运行参数的步骤包括:
    计算所述待处理物温度与所述解冻室关机温度阈值的温度差;
    根据所述温度差确定所述加热单元的开启时间。
  7. 根据权利要求6所述的冰箱温度控制方法,其中,
    所述待处理物温度包括所述待处理物的表面温度和/或中心温度。
  8. 一种冰箱,包括:
    箱体,限定有至少一个储物间室;
    解冻室,设置于所述至少一个储物间室内;
    制冷系统,设置为工作时产生冷气流;
    微风道转盘,设置为使所述冷气流有选择地进入所述至少一个储物间室和所述解冻室;
    控制模块,其包括存储器以及处理器,所述存储器内存储有控制程序,所述控制程序被所述处理器执行时用于实现根据权利要求1-7中任一项所述的冰箱温度控制方法。
  9. 根据权利要求8所述的冰箱,还包括:
    隔热板,设置在所述储物间室内,配置成将所述储物间室分隔出所述储物区和所述解冻区。
  10. 根据权利要求9所述的冰箱,还包括:
    第一温度传感器,设置在所述储物区内,用于检测该储物区的温度;
    第二温度传感器,设置在所述解冻区内,用于检测该解冻区的温度。
PCT/CN2021/105500 2020-07-13 2021-07-09 冰箱温度控制方法及冰箱 WO2022012431A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023500360A JP2023533951A (ja) 2020-07-13 2021-07-09 冷蔵庫の温度制御方法及び冷蔵庫
EP21841234.4A EP4160125B1 (en) 2020-07-13 2021-07-09 Method for controlling temperature of refrigerator, and refrigerator
AU2021308238A AU2021308238B2 (en) 2020-07-13 2021-07-09 Method for controlling temperature of refrigerator, and refrigerator
US18/013,611 US20230332818A1 (en) 2020-07-13 2021-07-09 Method for controlling temperature of refrigerator, and refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010670624.XA CN113932551A (zh) 2020-07-13 2020-07-13 冰箱温度控制方法及冰箱
CN202010670624.X 2020-07-13

Publications (1)

Publication Number Publication Date
WO2022012431A1 true WO2022012431A1 (zh) 2022-01-20

Family

ID=79273489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105500 WO2022012431A1 (zh) 2020-07-13 2021-07-09 冰箱温度控制方法及冰箱

Country Status (6)

Country Link
US (1) US20230332818A1 (zh)
EP (1) EP4160125B1 (zh)
JP (1) JP2023533951A (zh)
CN (1) CN113932551A (zh)
AU (1) AU2021308238B2 (zh)
WO (1) WO2022012431A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115590056A (zh) * 2022-09-22 2023-01-13 上海盘点食品科技有限公司(Cn) 通过控制温湿度解冻肉制品的方法和设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04244569A (ja) * 1991-01-31 1992-09-01 Hitachi Ltd 冷蔵庫
US5205128A (en) * 1990-06-08 1993-04-27 Cryo-Cell International, Inc. Multichamber storage apparatus and related method
CN1174976A (zh) * 1996-04-30 1998-03-04 三星电子株式会社 分别冷却具有旋转叶片的冰箱的温度控制方法
CN1421666A (zh) * 2001-11-27 2003-06-04 三星电子株式会社 具有多用途储藏盒的冰箱及其控制方法
CN102937364A (zh) * 2012-10-30 2013-02-20 合肥美菱股份有限公司 一种风冷冰箱风机的控制方法
KR20130117575A (ko) * 2012-04-18 2013-10-28 엘지전자 주식회사 냉장고 및 그 운전 방법
CN107504756A (zh) * 2017-09-29 2017-12-22 合肥华凌股份有限公司 减少化霜次数控制方法、控制系统及冰箱和可读存储介质

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4002199A (en) * 1975-11-10 1977-01-11 General Motors Corporation Refrigerator food conditioning appliance
JPS6011873A (ja) * 1983-04-19 1985-01-22 株式会社ジユネ−ド 種々のイメ−ジに基づいて色の組み合わせを決定出来る色組合せ用スケ−ル
JPS60111873A (ja) * 1983-11-24 1985-06-18 株式会社日立製作所 急冷解凍室付冷蔵庫
JP2763622B2 (ja) * 1989-10-25 1998-06-11 松下冷機株式会社 解凍室付冷蔵庫
JPH0518662A (ja) * 1991-07-09 1993-01-26 Matsushita Refrig Co Ltd 解凍室付き冷蔵庫
US6802369B2 (en) * 2001-01-05 2004-10-12 General Electric Company Refrigerator quick chill and thaw control methods and apparatus
US7348522B1 (en) * 2005-01-25 2008-03-25 Lance Criscuolo Apparatus for thawing frozen food items
US9322578B2 (en) * 2007-09-10 2016-04-26 Whirlpool Corporation Quick thaw/quick chill refrigerated compartment
JP4781378B2 (ja) * 2008-03-25 2011-09-28 三菱電機株式会社 食品貯蔵装置、冷蔵庫、製氷装置並びに高周波加熱調理器
CN106196837B (zh) * 2015-09-24 2018-07-13 青岛海尔股份有限公司 冰箱
CN106610173B (zh) * 2016-12-26 2019-12-06 青岛海尔股份有限公司 风冷冰箱及其运行控制方法
CN109000404B (zh) * 2017-06-06 2020-06-23 青岛海尔股份有限公司 冰箱
CN109323514A (zh) * 2017-07-31 2019-02-12 青岛海尔智能技术研发有限公司 用于冰箱的解冻控制方法
CN107763933B (zh) * 2017-08-31 2019-12-24 青岛海尔股份有限公司 冰箱的制冷控制方法与冰箱
CN109619369B (zh) * 2017-10-09 2022-03-04 青岛海尔智能技术研发有限公司 用于冰箱的超声波解冻控制方法
TWI700466B (zh) * 2018-08-13 2020-08-01 黃渤為 消音箱結構

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5205128A (en) * 1990-06-08 1993-04-27 Cryo-Cell International, Inc. Multichamber storage apparatus and related method
JPH04244569A (ja) * 1991-01-31 1992-09-01 Hitachi Ltd 冷蔵庫
CN1174976A (zh) * 1996-04-30 1998-03-04 三星电子株式会社 分别冷却具有旋转叶片的冰箱的温度控制方法
CN1421666A (zh) * 2001-11-27 2003-06-04 三星电子株式会社 具有多用途储藏盒的冰箱及其控制方法
KR20130117575A (ko) * 2012-04-18 2013-10-28 엘지전자 주식회사 냉장고 및 그 운전 방법
CN102937364A (zh) * 2012-10-30 2013-02-20 合肥美菱股份有限公司 一种风冷冰箱风机的控制方法
CN107504756A (zh) * 2017-09-29 2017-12-22 合肥华凌股份有限公司 减少化霜次数控制方法、控制系统及冰箱和可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4160125A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115590056A (zh) * 2022-09-22 2023-01-13 上海盘点食品科技有限公司(Cn) 通过控制温湿度解冻肉制品的方法和设备
CN115590056B (zh) * 2022-09-22 2023-12-01 上海盘点食品科技有限公司 通过控制温湿度解冻肉制品的方法和设备

Also Published As

Publication number Publication date
EP4160125A4 (en) 2023-11-22
JP2023533951A (ja) 2023-08-07
EP4160125A1 (en) 2023-04-05
AU2021308238A1 (en) 2023-02-16
AU2021308238B2 (en) 2024-02-22
US20230332818A1 (en) 2023-10-19
EP4160125B1 (en) 2024-08-07
CN113932551A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
JP2012037073A (ja) 冷蔵庫
CN102345956B (zh) 冰箱
WO2022012431A1 (zh) 冰箱温度控制方法及冰箱
JP2018071874A (ja) 冷蔵庫
JP2012057888A (ja) 冷蔵庫
WO2018076583A1 (zh) 冰箱
CN113544451A (zh) 冰箱的控制方法
WO2022012430A1 (zh) 冰箱保鲜控制方法及冰箱
CN213273345U (zh) 冷藏冷冻装置
JPH11311473A (ja) 冷蔵庫の制御方法
JP2011038716A (ja) 冷蔵庫
JP2000121230A (ja) 冷凍冷蔵庫
JP2011038714A (ja) 冷蔵庫
CN112824785B (zh) 用于风冷冰箱的控制方法及风冷冰箱
JP2019184092A (ja) 冷蔵庫
WO2023231979A1 (zh) 设置有磁场保鲜间室的冰箱及其控制方法
JP2014122746A (ja) 冷蔵庫
WO2021219148A1 (zh) 用于冷藏冷冻装置的控制方法及冷藏冷冻装置
CN117469884A (zh) 设置保鲜储藏间室的制冷设备
KR100526600B1 (ko) 냉장고
JP4906400B2 (ja) 冷蔵庫
CN112629120A (zh) 冰箱及其控制方法
JP2013108707A (ja) 冷蔵庫
KR20200105196A (ko) 냉장고의 제어 방법
CN116972594A (zh) 冷藏冷冻装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21841234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500360

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021841234

Country of ref document: EP

Effective date: 20221227

WWE Wipo information: entry into national phase

Ref document number: 2021308238

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021308238

Country of ref document: AU

Date of ref document: 20210709

Kind code of ref document: A