WO2022012399A1 - 转接装置、馈电装置和天线 - Google Patents

转接装置、馈电装置和天线 Download PDF

Info

Publication number
WO2022012399A1
WO2022012399A1 PCT/CN2021/105095 CN2021105095W WO2022012399A1 WO 2022012399 A1 WO2022012399 A1 WO 2022012399A1 CN 2021105095 W CN2021105095 W CN 2021105095W WO 2022012399 A1 WO2022012399 A1 WO 2022012399A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate metal
coaxial cable
ground layer
plate
switching device
Prior art date
Application number
PCT/CN2021/105095
Other languages
English (en)
French (fr)
Inventor
李超超
徐春亮
李渭民
周杰君
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21843475.1A priority Critical patent/EP4181312A4/en
Publication of WO2022012399A1 publication Critical patent/WO2022012399A1/zh
Priority to US18/153,941 priority patent/US20230155295A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/087Transitions to a dielectric waveguide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/085Coaxial-line/strip-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/081Microstriplines
    • H01P3/084Suspended microstriplines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/085Triplate lines
    • H01P3/087Suspended triplate lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas

Definitions

  • the present application relates to the field of antenna design, and more particularly, to a switching device, a feeding device and an antenna.
  • the feeding device of the base station antenna it is often necessary to transmit the radio frequency signal from the coaxial cable to the air medium microstrip line, that is, to realize the transfer of the signal between the coaxial cable and the air medium microstrip line.
  • the manufacturing and processing cost of the power feeding device under this design is relatively high.
  • Another existing design is to couple the coaxial cable to the cavity (or reflector).
  • the inner conductor of the coaxial cable is usually electrically connected to the air dielectric microstrip line, and the outer conductor of the coaxial cable is soldered on the printed circuit board (PCB), and the grounding of the PCB is
  • the layer and the cavity (or reflective plate) form capacitive coupling to realize the grounding of the outer conductor of the coaxial cable. This capacitive coupling has poor electrical consistency and is difficult to mass produce.
  • the present application provides a switching device, a feeding device and an antenna , Through the non-plate capacitor coupling method, a stable coupling connection can be achieved, with good electrical consistency and easy mass production.
  • a switching device which may include a coaxial cable, an air dielectric microstrip line, a ground layer, and a non-flat metal piece.
  • the outer conductor of the coaxial cable is electrically connected with the non-plate metal piece, and the non-plate metal piece and the ground layer form a non-plate capacitor coupling; the inner conductor of the coaxial cable is electrically connected with the air medium microstrip line.
  • the inner conductor of the coaxial cable is electrically connected to the air dielectric microstrip line
  • the outer conductor of the coaxial cable is electrically connected to the non-plate metal piece
  • the non-plate metal piece and the ground layer form a non-plate Capacitor coupling can realize the grounding of the outer conductor of the coaxial cable.
  • the non-plate capacitor coupling method can realize stable coupling connection, good electrical consistency and easy mass production.
  • ground layer may be a cavity or a reflector, or may be other forms of ground structures, which are not limited in this application.
  • the ground plane may be an electroless device, and the need for no electroplating can result in substantial cost savings.
  • the outer conductor of the coaxial cable is electrically connected to the non-plate metal member, the non-plate metal member and the ground layer form a non-plate capacitor coupling, and the radio frequency signal can be transmitted to the air dielectric microstrip line through the capacitor coupling , can be plated without ground layer (cavity or reflector).
  • the ground layer may also be an electroplating device, which is not limited in this application.
  • the outer conductor of the coaxial cable may be welded to the non-flat metal member along the axial direction of the coaxial cable.
  • a connection part can be provided on the non-plate metal part, so that the outer conductor of the coaxial cable can be more conveniently connected to the connection part by welding or other means, so that the outer conductor of the coaxial cable can be connected to the connection part more conveniently.
  • the electrical connection of non-plate metal parts is not limited in this application.
  • a back glue can be filled between the non-flat metal part and the ground layer to play the role of fixing and insulating.
  • Other materials may also be used to fill the space between the non-plate metal member and the ground layer to achieve the purpose of fixing and/or insulation, which is not limited in this application.
  • the first connection point of the electrical connection between the outer conductor of the coaxial cable and the non-plate metal member may be located in the middle part of the non-plate capacitor in the length direction;
  • the first connection point of the electrical connection between the outer conductor of the coaxial cable and the non-plate metal member may be located at one of the two ends in the length direction of the non-plate capacitor.
  • the first connection point may also be set at other positions, which is not limited in this application.
  • a connecting portion may be provided at the first connecting point on the non-plate metal piece.
  • the connecting portion may be a metal sheet with a hole at the end of a non-flat metal piece, or may be other components with a clip/clamp function, which is not limited in this application.
  • the first connection point may be disposed on the coaxial cable at a position close to the second connection point where the inner conductor of the coaxial cable is electrically connected to the air dielectric microstrip line.
  • the positions of the first connection point and the second connection point can be set as close as possible.
  • as close as possible refers to setting the positions of the first connection point and the second connection point as close as possible under the conditions of processing and/or assembly conditions permitting.
  • the distance between the first connection point and the second connection point may be less than or equal to 5 mm, which is not limited in this application.
  • the non-planar capacitive coupling formed by the non-planar metal member and the ground layer may be a non-planar capacitive coupling with multi-faceted coupling.
  • the multi-sided coupling may be three-sided coupling or four-sided coupling, but the present application is not limited thereto.
  • the shape, size, position, etc. of each component in the switching device may have various forms, which make the switching device more flexible. Suitable for antenna structures.
  • the ground layer has a U-shaped groove structure
  • the non-plate metal part has a U-shaped structure
  • the non-plate metal part forms a U-shaped capacitor coupling with the ground layer, and the non-plate metal part of the U-shaped structure is sheathed outside the coaxial cable.
  • U-shaped capacitive coupling (with multi-faceted coupling) can ensure the stability of coupling, that is, U-shaped capacitors can ensure that the size of the capacitance remains stable, and then The switching device has good electrical consistency and is easy to mass-produce.
  • the U-shaped capacitor coupling structure can ensure the U-shaped edge of the non-plate metal part.
  • the sum of the coupling gaps between the two sides of the U-shaped groove structure of the ground plane remains unchanged, thereby ensuring that the size of the U-shaped capacitor remains stable.
  • the non-plate metal part is buckled upside down on the U-shaped groove structure of the ground layer, and the coaxial cable is placed on the bottom surface of the non-plate metal part.
  • the two U-shaped sides of the U-shaped structure of the non-plate metal part are covered by the undercuts outside the U-shaped groove structure of the ground layer.
  • This possible implementation can solve the problems of poor stability of capacitive coupling and difficulty in mass production.
  • Capacitive coupling with multi-faceted coupling can ensure the stability of coupling, that is, the size of the capacitor can be kept stable, thereby making the switching device electrically consistent Good performance and easy to mass-produce.
  • the non-plate metal part of the U-shaped structure is stuck on the cavity.
  • the ground layer is a hollow square column structure
  • the non-plate metal part is a hollow square column structure
  • the non-plate metal parts can be placed in the ground plane.
  • the hollow square column structure of the non-plate metal part is placed in the inner cavity of the hollow square column structure of the cavity.
  • the ground layer is a hollow square column structure
  • the non-plate metal part is a U-shaped structure.
  • the non-plate metal parts can be placed in the ground plane.
  • the ground plane can be placed in a non-flat metal piece.
  • the ground layer is a hollow cylindrical structure
  • the non-plate metal part is also a hollow cylindrical structure.
  • Non-flat metal pieces can be placed in the ground plane.
  • the capacitive coupling of the cylinder can ensure the stability of the coupling, that is, the size of the capacitor can be kept stable, thereby making the electrical consistency of the switching device good. and easy to mass-produce.
  • the non-plate metal parts are stuck in the cavity, and when the non-plate metal parts shake up and down, left and right, the equivalent coupling gap between the non-plate metal parts and the inner surface of the cavity remains unchanged, which can ensure that the size of the capacitor remains stable.
  • the ground layer may be placed in a non-plate metal member, which is not limited in this application.
  • the non-plate metal part and the ground layer may form other curved surface couplings other than cylindrical coupling, such as elliptical column coupling, etc.
  • the ground layer may be a hollow elliptical column structure
  • the non-plate metal The piece is also a hollow elliptical column structure.
  • a power feeding device including a connector for inputting a radio frequency signal, a power feeding line, and the switching device of the first aspect and any possible implementations thereof, wherein the connector is connected to a coaxial cable
  • the electrical connection, the feeding line and the air medium microstrip line are connected.
  • an antenna including the feeding device of the second aspect.
  • the antenna of the third aspect can be applied to network equipment, such as a base station.
  • a base station (network device) is provided, including the switching device of the first aspect and any possible implementation manner thereof, or the feeding device of the second aspect, or the antenna of the third aspect.
  • FIG. 1 is a schematic diagram of the transition between a coaxial cable and an air dielectric microstrip line accommodated in an electroplating cavity.
  • FIG. 2 is a schematic diagram of the transition between the coaxial cable and the air dielectric microstrip line placed on the reflector.
  • FIG. 3 is a schematic diagram of a switching device according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a switching device according to another embodiment of the present application.
  • FIG. 5 is a schematic diagram of a switching device according to another embodiment of the present application.
  • FIG. 6 is a schematic diagram of a switching device according to another embodiment of the present application.
  • FIG. 7 is a schematic diagram of a switching device according to another embodiment of the present application.
  • FIG. 8 is a schematic diagram of a switching device according to another embodiment of the present application.
  • FIG. 9 is a schematic diagram of a switching device according to another embodiment of the present application.
  • FIG. 10 is a schematic diagram of a switching device according to another embodiment of the present application.
  • the transfer between the coaxial cable and the air dielectric microstrip line requires connecting the inner conductor of the coaxial cable with the air dielectric microstrip line to realize the connection of the signal layer; it is also necessary to connect the outer conductor of the coaxial cable to the cavity. (or reflector) connection is to realize the connection of the ground plane.
  • the switching device in this application is a device that realizes switching between a coaxial cable and an air-dielectric microstrip line, which can be applied to the scenario of transmitting radio frequency signals from a coaxial cable to an air-dielectric microstrip line, including The inner conductor of the coaxial cable, the outer conductor of the coaxial cable, the air dielectric microstrip line, and the relevant part of the ground layer.
  • the switching device may be a part of the feeding device/feeding system of the antenna, and may be applied to network equipment such as a base station, but the present application is not limited thereto.
  • FIG. 1 is a schematic diagram of the transition between a coaxial cable and an air dielectric microstrip line accommodated in an electroplating cavity.
  • the material of the cavity for accommodating the air dielectric microstrip line is usually aluminum.
  • the cavity needs to be electroplated (eg, tinned) to facilitate welding.
  • the air dielectric microstrip line 120 is accommodated in the electroplating cavity 110 , the coaxial cable 130 enters the electroplating cavity 110 through the circular hole 112 on the cavity, and the inner conductor 132 of the coaxial cable 130 enters the electroplating cavity 110 .
  • Direct electrical connection with air dielectric microstrip lines (not shown in particular), for example by soldering.
  • the outer conductor 134 of the coaxial cable 130 is electrically connected to the electroplating cavity 110 by soldering at the circular hole 112 . Electroplating the cavity makes the antenna more expensive.
  • FIG. 2 is a schematic diagram of the transition between the coaxial cable and the air dielectric microstrip line placed on the reflector.
  • the outer conductor 212 of the coaxial cable 210 is soldered on a printed circuit board (PCB) 220 .
  • the outer conductor 212 of the coaxial cable 210 is connected to the pad 222 of the PCB 220, and is connected to the ground of the PCB 220 via the substrate 224 of the PCB 220 (the back side is the ground layer), wherein the pad 222 of the PCB 220 and the PCB 220
  • the ground planes are electrically connected through metallized vias.
  • the PCB 220 and the reflector 230 form capacitive coupling so that the outer conductor 212 of the coaxial cable 210 is grounded.
  • the inner conductor 214 of the coaxial cable 210 and the air dielectric microstrip line 240 are electrically connected.
  • the PCB 220 and the reflector 230 form capacitive coupling. Since the PCB 220 and the reflector 230 may be deformed, it is difficult to ensure a stable gap between the PCB 220 and the reflector 230, which makes mass production difficult and electrical consistency is poor. .
  • the present application provides a switching device, which can be applied to the switching between coaxial cables and air-dielectric microstrip lines.
  • FIG. 3 is a schematic diagram of a switching device 300 according to an embodiment of the present application.
  • the switching device 300 may include a coaxial cable 310 , an air dielectric microstrip line 320 , a ground layer 330 and a non-flat metal piece 340 .
  • the outer conductor 312 of the coaxial cable 310 is electrically connected to the non-plate metal member 340, and the non-plate metal member 340 and the ground layer 330 form a non-plate capacitor coupling; the inner conductor 314 of the coaxial cable 310 is connected to the air dielectric microstrip Line 320 is electrically connected.
  • the non-flat plates refer to not being on the same plane.
  • a non-flat metal piece means that the metal piece may have multiple parts that are not in the same plane, that is, the metal piece has multiple faces; or the metal piece may be curved or arcuate.
  • a non-planar capacitor means that each plate of the capacitor may have multiple parts that are not in the same plane, that is, each plate has multiple faces; or each plate of the capacitor may be curved or curved.
  • the non-plate capacitors may be U-shaped capacitors (coupling on three sides), cylindrical capacitors (coupling on four sides), cylindrical capacitors (coupling on curved surfaces), etc., but are not limited thereto.
  • the non-plate can be a combination of three sides, a combination of four sides, or a curved surface, an arc surface, etc., but is not limited thereto.
  • capacitor coupling may also be referred to as capacitive coupling, electric field coupling, or electrostatic coupling, which means that the purpose of signal transmission is achieved by forming a coupling method of capacitors.
  • the ground layer may be a cavity or a reflector.
  • the ground layer is a cavity
  • the ground layer is a reflector.
  • the grounding layer may also be other grounding structures, which are not limited in this application.
  • the cavity or the reflector can be made of a metal material, such as aluminum; it can also be made of other materials, which is not limited in this application.
  • the ground layer of each embodiment of the present application may be an electroless device, which can save a lot of cost without electroplating.
  • the outer conductor of the coaxial cable is electrically connected to the non-plate metal member, the non-plate metal member and the ground layer form a non-plate capacitor coupling, and the radio frequency signal can be transmitted to the air dielectric microstrip line through the capacitor coupling , can be plated without ground layer (cavity or reflector).
  • the ground layer of each embodiment of the present application may also be an electroplating device, which is not limited in the present application.
  • the inner conductor of the coaxial cable and the air dielectric microstrip line may be electrically connected by welding or by other means, such as crimping, winding, screw (cap) fixing, etc. , which is not limited in this application.
  • the outer conductor of the coaxial cable and the non-plate metal member may be electrically connected by welding or by other means, such as crimping, winding, screw (cap) fixing, etc. This application does not limit this.
  • the outer conductor of the coaxial cable may be electrically connected along the axial direction of the coaxial cable, for example, welded on a non-flat metal piece, and the electrical connection may be connected in a point manner (for example, at a point It can also be connected by line (such as welding along a line), or by surface connection (such as welding in a wider area).
  • a connection part can be provided on the non-plate metal part, so that the outer conductor of the coaxial cable can be more conveniently welded to the connection part to realize the electrical connection between the outer conductor of the coaxial cable and the non-plate metal part.
  • the connection, the connection by setting the connection part may also be connected in the form of points or in the form of lines or planes, which is not limited in this application.
  • a back glue can be filled between the non-flat metal part and the ground layer to play the role of fixing and insulating.
  • other materials can also be selected for filling to achieve the purpose of fixing and/or insulation, which is not limited in this application.
  • the inner conductor of the coaxial cable is electrically connected to the air dielectric microstrip line
  • the outer conductor of the coaxial cable is electrically connected to the non-plate metal piece
  • the non-plate metal piece and the ground layer form a non-plate Capacitor coupling can realize the grounding of the outer conductor of the coaxial cable.
  • the non-plate capacitor coupling method can realize stable coupling connection, good electrical consistency and easy mass production.
  • the non-plate capacitor structure will have several surface coupling (multi-face coupling) or curved surface/arc surface coupling.
  • multi-face coupling multi-face coupling
  • curved surface/arc surface coupling When the non-plate capacitor structure shakes, the capacitance formed between the various surfaces or curved surfaces of the non-plate capacitor will increase. Most of the parts are reduced, but the total capacitance remains unchanged or the change is small, which is conducive to stability, making the electrical consistency good, and the stability is easy to ensure that the requirements for processing and assembly will naturally be reduced, and it is easy to mass production.
  • the embodiments of the present application do not limit the position of the electrical connection between the outer conductor of the coaxial cable and the non-plate metal member.
  • the first connection point of the electrical connection between the outer conductor of the coaxial cable and the non-planar metal member may be located in the middle portion of the non-planar capacitor in the length direction.
  • the middle portion refers to a point or a section in the middle distance in the length direction of the non-plate capacitor, which is not limited in this application.
  • a connection portion may be provided at the first connection point on the non-flat metal piece.
  • the first connection point of the electrical connection between the outer conductor of the coaxial cable and the non-planar metal member may be located at one of the two ends of the non-planar capacitor in the length direction.
  • a connection portion may be provided at the first connection point on the non-flat metal piece.
  • the first connection point may also be set at other positions, which is not limited in this application.
  • FIG. 4 is a schematic diagram of a switching device 400 according to another embodiment of the present application.
  • Figure 4 is a schematic diagram of an embodiment of a switching device with a connecting portion provided at the first connecting point.
  • the switching device 400 may include a coaxial cable 410 , an air dielectric microstrip line 420 , a ground layer 430 (the ground layer in FIG. 4 is a cavity), and a non-plate metal member 440 .
  • the inner conductor 414 of the coaxial cable 410 is electrically connected to the air dielectric microstrip line 420 .
  • the outer conductor 412 of the coaxial cable 410 is electrically connected to the non-plate metal member 440 , and the non-plate metal member 440 and the ground layer 430 form a non-plate capacitor coupling.
  • the first connection point of the electrical connection between the outer conductor 412 of the coaxial cable 410 and the non-planar metal member 440 may be located at one of the two ends of the non-planar capacitor in the length direction.
  • a connection portion 442 is provided at the first connection point between the outer conductor 412 of the coaxial cable 410 shown in FIG. 4 and the non-plate metal member 440 .
  • the first connection point (connection portion 442 ) of the outer conductor 412 of the coaxial cable 410 and the non-flat metal piece 440 in the adapter device 400 shown in FIG. 4 is close to the inner conductor 414 of the coaxial cable 410 and the air medium
  • One end of the second connection point of the strip line 420 is the right end in the length direction of the non-plate capacitor.
  • the first connection point may also be located at the other end of the non-plate capacitor in the length direction, that is, the left end of the non-plate capacitor in the length direction, away from the inner conductor 414 of the coaxial cable 410 and the air medium One end of the connection point of the microstrip line 420 .
  • the first connection point is provided at one of both ends in the length direction of the non-plate capacitor.
  • the first connection point may not limit the first connection point to be disposed at one end of the two ends in the length direction of the non-plate capacitor, but to be located in the middle part of the non-plate capacitor in the length direction. This is not limited.
  • connection part may specifically be a metal sheet with a hole at the end of the non-flat metal piece, the outer conductor of the coaxial cable may be electrically connected to the metal sheet, for example, by welding, and the inner conductor of the coaxial cable may pass through the metal sheet.
  • the holes are electrically connected to the air dielectric microstrip line.
  • the connecting portion may also be other components with a clip/clamp function, which is not limited in this application.
  • the first connection point may not be provided with a connecting portion, but the outer conductor of the coaxial cable is directly connected to the non-plate metal member, which is not limited in the present application.
  • the first connection point may be disposed on the coaxial cable at a position close to the second connection point where the inner conductor of the coaxial cable is electrically connected to the air dielectric microstrip line.
  • the positions of the first connection point and the second connection point can be set as close as possible. It should be understood that in the present application, as close as possible refers to setting the positions of the first connection point and the second connection point as close as possible under the conditions of processing and/or assembly conditions permitting.
  • the distance between the first connection point and the second connection point may be less than or equal to 5 mm.
  • the distance between the first connection point and the second connection point may be less than or equal to 1/10 of the length of the non-flat metal piece, etc., which is not limited in this application.
  • the signal layer the layer formed by the electrical connection between the inner conductor of the coaxial cable and the air dielectric microstrip line
  • a current will be formed between the first connection point and the second connection point; in the ground layer (the outer layer of the coaxial cable) The layer to which the conductor is connected)
  • current flows in opposite directions between the first connection point and the second connection point.
  • a current loop is thus formed between the first connection point and the second connection point. Setting the positions of the first connection point and the second connection point as close as possible can improve the performance of the feeding device and ultimately the performance of the antenna.
  • each component in the switching device may have various forms, and these forms make the switching device more flexibly applicable to the antenna structure .
  • 5 to 10 are some specific examples of different forms, but the structure of the switching device of the present application is not limited to the structure in these figures.
  • the non-planar capacitive coupling formed by the non-planar metal piece and the ground layer may be a non-planar capacitive coupling with multi-faceted coupling.
  • Multi-plane coupling refers to coupling formed in multiple planes, for example, three-plane coupling or four-plane coupling, etc., but the present application is not limited to this.
  • the ground layer has a U-shaped groove structure
  • the non-plate metal part has a U-shaped structure.
  • the non-plate metal part and the ground layer form a U-shaped capacitor coupling, and the non-plate metal part of the U-shaped structure is sheathed outside the coaxial cable.
  • the non-plate metal parts of the U-shaped structure are embedded in the U-shaped groove structure of the ground layer to form a U-shaped capacitor (forming a three-sided coupling capacitor), and the non-plate metal parts of the U-shaped structure are sleeved on the coaxial cable. outside.
  • the switching devices shown in FIG. 3 and FIG. 4 are all of the above structure.
  • the ground layer can be a cavity with a U-shaped groove structure as shown in FIG. 4 , or a reflector with a U-shaped groove structure.
  • FIG. 5 is a schematic diagram of a switching device 500 according to another embodiment of the present application.
  • Figure 5 shows an example of a U-shaped capacitor coupling formed by a non-planar metal piece and a ground plane in an adapter.
  • the switching device 500 may include a coaxial cable 510, an air dielectric microstrip line 520, a ground layer 530 (the ground layer in FIG. 5 is a reflector, and the reflector is bent to form a U-shaped groove structure) and Non-flat metal piece 540.
  • the inner conductor 514 of the coaxial cable 510 is electrically connected to the air dielectric microstrip line 520 .
  • the outer conductor 512 of the coaxial cable 510 is electrically connected to the non-plate metal member 540, and the non-plate metal member 540 and the ground layer 530 form a non-plate capacitor coupling, which has three-sided coupling.
  • the U-shaped capacitor coupling structure can ensure the U-shaped edge of the non-plate metal part.
  • the sum of the coupling gap between the two sides of the U-shaped groove structure of the ground layer remains unchanged or changes very little, which can ensure that the size of the U-shaped capacitor remains stable, that is, the stability of the capacitive coupling can be ensured, so that the switching device is electrically consistent Good performance and easy to mass-produce.
  • first connection point where the outer conductor 512 of the coaxial cable 510 and the non-plate metal member 540 are electrically connected may be located at the right end of the non-plate capacitor in the length direction, or may be located at the left end of the non-plate capacitor in the length direction or the middle part, which is not limited in this application.
  • the ground layer has a U-shaped groove structure
  • the non-plate metal part has a U-shaped structure.
  • the non-plate metal part is buckled on the U-shaped groove structure of the ground layer, and the coaxial cable is placed on the bottom surface of the non-plate metal part.
  • FIG. 6 is a schematic diagram of a switching device 600 according to another embodiment of the present application. Different from FIG. 5 , FIG. 6 shows an example in which the non-plate metal part and the ground layer in the adapter device are both U-shaped structures, and are inverted to each other to form capacitor coupling.
  • the embodiments of the present application can be flexibly applied to various antenna structures, wherein the coaxial cable and the air-dielectric microstrip line in FIG. 6 are located at the second connection point (the inner conductor of the coaxial cable and the air-dielectric microstrip line) The same side of the connection point of the line), for example, the coaxial cable and the air dielectric microstrip line shown in FIG. 6 are located on the left side of the second connection point. As shown in FIG.
  • the switching device 600 may include a coaxial cable 610 , an air dielectric microstrip line 620 , a ground layer 630 (the ground layer in FIG. 6 is a cavity), and a non-plate metal member 640 .
  • the inner conductor 614 of the coaxial cable 610 is electrically connected to the air dielectric microstrip line 620 .
  • the outer conductor 612 of the coaxial cable 610 is electrically connected to the non-plate metal member 640 , and the non-plate metal member 640 and the ground layer 630 form a non-plate capacitor coupling.
  • the ground layer 630 has a U-shaped groove structure
  • the non-plate metal member 640 has a U-shaped structure.
  • the non-plate metal member 640 is buckled on the U-shaped groove structure of the ground layer 630 , and the coaxial cable 610 is placed on the bottom surface of the non-plate metal member 640 .
  • the outer conductor 612 of the coaxial cable 610 and the non-flat metal member 640 of the U-shaped structure can be welded at one end close to the second connection point between the inner conductor 614 of the coaxial cable 610 and the air dielectric microstrip line 620 Together.
  • a U-shaped non-plate metal member 640 is placed across the narrow side of the cavity to form a capacitor coupled on three sides.
  • the coaxial cable 610 is placed on the bottom surface (two sides of the non-U-shaped side) of the non-flat metal member 640 of the U-shaped structure.
  • the inner conductor 614 of the coaxial cable 610 and the air dielectric microstrip line 620 are welded together, and connecting parts may be provided for the convenience of welding.
  • the two U-shaped sides of the U-shaped structure of the non-plate metal member 640 are covered by the undercuts outside the U-shaped groove structure of the grounding layer 630 (cavity).
  • the non-plate metal part 640 of the U-shaped structure is stuck on the cavity.
  • the coupling between the two sides of the U-shaped side of the non-plate metal part and the U-shaped groove structure of the ground layer The sum of the gaps remains the same or changes very little, so that the size of the U-shaped capacitor can be kept stable, that is, the stability of the capacitive coupling can be guaranteed, so that the switching device has good electrical consistency and is easy to mass-produce.
  • first connection point where the outer conductor 612 of the coaxial cable 610 is electrically connected to the non-plate metal member 640 may be located at the right end of the non-plate capacitor in the length direction, or may be located at the left end of the non-plate capacitor in the length direction or the middle part, which is not limited in this application.
  • FIG. 7 is a schematic diagram of a switching device 700 according to another embodiment of the present application. Different from Fig. 6, Fig. 7 also shows an example in which the non-plate metal parts and the ground layer in the adapter device are both U-shaped structures, and are inverted to each other to form capacitor coupling, but the coaxial cable and the air dielectric microstrip are used. The lines are on different sides of the second connection point. For example, the coaxial cable shown in FIG. 7 is located on the left side of the second connection point, and the air dielectric microstrip lines are located on the right side of the second connection point. As shown in FIG.
  • the switching device 700 may include a coaxial cable 710, an air dielectric microstrip line 720, a ground layer 730 (the ground layer in FIG. 7 is a reflector, and the reflector is bent to form a U-shaped groove structure) and Non-flat metal piece 740.
  • the inner conductor 714 of the coaxial cable 710 is electrically connected to the air dielectric microstrip line 720 .
  • the outer conductor 712 of the coaxial cable 710 is electrically connected to the non-plate metal member 740 , and the non-plate metal member 740 and the ground layer 730 form a non-plate capacitor coupling.
  • the two U-shaped sides of the U-shaped structure of the non-plate metal member 740 are covered by the undercuts outside the U-shaped groove structure of the ground layer 730 (reflector).
  • the non-flat metal piece 740 of the U-shaped structure is stuck outside the U-shaped groove structure of the reflector.
  • the two sides of the U-shaped edge of the non-flat metal piece are connected to the U-shaped groove of the reflector.
  • the sum of the coupling gaps between the structures remains unchanged or changes very little, so that the size of the U-shaped capacitor can be kept stable, that is, the stability of the capacitive coupling can be ensured, so that the switching device has good electrical consistency and is easy to mass-produce.
  • one U-shaped side of the U-shaped structure of the non-flat metal piece may be inverted in the U-shaped groove structure of the ground layer.
  • the two U-shaped sides of the U-shaped structure of the non-plate metal piece may be inverted in the U-shaped groove structure of the ground layer, which is not limited in the present application.
  • first connection point where the outer conductor 712 of the coaxial cable 710 and the non-plate metal member 740 are electrically connected may be located at the right end of the non-plate capacitor in the length direction, or may be located at the left end of the non-plate capacitor in the length direction or the middle part, which is not limited in this application.
  • the ground layer is a hollow square column structure
  • the non-plate metal part is a hollow square column structure.
  • the non-plate metal part is placed in the ground layer, that is, the hollow square column structure of the non-plate metal part is placed in the ground layer (cavity) of the hollow square column structure.
  • FIG. 8 is a schematic diagram of a switching device 800 according to another embodiment of the present application.
  • Figure 8 shows an example in which the ground layer is a hollow square column structure, and the non-plate metal part is a hollow square column structure, which are nested together to form a capacitor coupling, wherein the ground layer of the hollow square column structure is surrounded by the hollow square column structure of the non-plate metal part. Outside the square column structure.
  • the switching device 800 may include a coaxial cable 810 , an air dielectric microstrip line 820 , a ground layer 830 (the ground layer in FIG. 8 is a cavity), and a non-plate metal member 840 .
  • the inner conductor 814 of the coaxial cable 810 is electrically connected to the air dielectric microstrip line 820 .
  • the outer conductor 812 of the coaxial cable 810 is electrically connected to the non-plate metal member 840 , and the non-plate metal member 840 and the ground layer 830 form a non-plate capacitor coupling.
  • the hollow square column structure of the non-plate metal member 840 is placed in the inner cavity of the hollow square column structure of the cavity.
  • the non-plate metal part 840 is stuck in the cavity, and when the non-plate metal part 840 shakes up and down, left and right, the sum of the coupling gaps between the surfaces of the non-plate metal part and the corresponding inner surfaces of the cavity remains unchanged or changes very little, which ensures that the The size of the capacitor remains stable, that is, the stability of the capacitive coupling can be ensured, so that the switching device has good electrical consistency and is easy to mass-produce.
  • first connection point where the outer conductor 812 of the coaxial cable 810 and the non-plate metal member 840 are electrically connected may be located at the right end of the non-plate capacitor in the length direction, or may be located at the left end of the non-plate capacitor in the length direction or the middle part, which is not limited in this application.
  • the ground layer is a hollow square column structure, and the non-plate metal part is a hollow square column structure; or, the ground layer is a hollow square column structure, and the non-plate metal part is a U-shaped structure.
  • the ground layer is placed in the non-plate metal part, that is, the hollow square column structure or U-shaped structure of the non-plate metal part is surrounded by the ground layer (cavity) of the hollow square column structure.
  • FIG. 9 is a schematic diagram of a switching device 900 according to another embodiment of the present application.
  • Fig. 9 shows an example in which the ground layer is a hollow square column structure, and the non-plate metal part is a hollow square column structure or a U-shaped structure, which are nested together to form a capacitor coupling, but the non-plate metal parts are The hollow square column structure of the component is surrounded by the ground plane of the hollow square column structure.
  • the switching device 900 may include a coaxial cable 910 , an air dielectric microstrip line 920 , a ground layer 930 (the ground layer in FIG. 9 is a cavity), and a non-plate metal member 940 .
  • the inner conductor 914 of the coaxial cable 910 is electrically connected to the air dielectric microstrip line 920 .
  • the outer conductor 912 of the coaxial cable 910 is electrically connected to the non-plate metal member 940 , and the non-plate metal member 940 and the ground layer 930 form a non-plate capacitor coupling.
  • the hollow square column structure of the non-plate metal member 940 surrounds the hollow square column structure of the cavity.
  • the non-plate metal part 940 is wrapped outside the cavity.
  • the hollow square column structure of the non-plate metal member 940 may be a closed square column or a non-closed square column (for example, the non-plate metal member 940 shown in FIG. 9 does not have an upper side).
  • Non-closed square columns are easier to process and assemble.
  • the U-shaped structure of the non-plate metal member can be enclosed outside the cavity of the hollow square column structure.
  • first connection point where the outer conductor 912 of the coaxial cable 910 and the non-plate metal member 940 are electrically connected may be located at the left end of the non-plate capacitor in the length direction, or may be located at the right end of the non-plate capacitor in the length direction or the middle part, which is not limited in this application.
  • the non-plate metal member may also be other multi-faceted cylinders, such as triangular prisms, pentagonal prisms, hexagonal prisms or other cylinders, etc.
  • the ground layer may be set according to the shape of the non-plate metal member. There are grooves or protrusions, etc., so that the non-plate metal parts are coupled with the non-plate multi-sided capacitors formed by the ground layer, which is not limited in this application.
  • the non-planar capacitive coupling formed by the non-planar metal member and the ground layer may be arc or curved capacitive coupling.
  • the ground layer can be a hollow elliptical column structure
  • the non-plate metal part can also be a hollow elliptical column structure.
  • the ground layer is a hollow cylindrical structure
  • the non-plate metal part is also a hollow cylindrical structure.
  • the non-plate metal part is placed in the ground layer, that is, the hollow cylindrical structure of the non-plate metal part is placed in the ground layer (cavity) of the hollow cylindrical structure.
  • FIG. 10 is a schematic diagram of a switching device 1000 according to another embodiment of the present application. Different from the square column structure or U-shaped structure in the embodiments corresponding to the previous drawings, FIG. 10 shows that the grounding layer is of a hollow cylindrical structure, and the non-plate metal parts are of a hollow cylindrical structure, which are sleeved together to form a hollow cylindrical structure. Example of capacitor coupling. As shown in FIG. 10 , the switching device 1000 may include a coaxial cable 1010 , an air dielectric microstrip line 1020 , a ground layer 1030 (the ground layer is a cavity in FIG. 10 ), and a non-flat metal piece 1040 .
  • the inner conductor 1014 of the coaxial cable 1010 is electrically connected to the air dielectric microstrip line 1020 .
  • the outer conductor 1012 of the coaxial cable 1010 is electrically connected to the non-plate metal member 1040 , and the non-plate metal member 1040 and the ground layer 1030 form a non-plate capacitor coupling.
  • the hollow cylindrical structure of the non-flat metal piece 1040 is placed in the inner cavity of the hollow cylindrical structure of the cavity.
  • the non-plate metal part 1040 is stuck in the cavity, and when the non-plate metal part 1040 shakes up and down, left and right, the equivalent coupling gap between the non-plate metal part 1040 and the inner surface of the cavity remains unchanged or changes very little, which can ensure that the size of the capacitor remains stable , that is, the stability of capacitive coupling can be ensured, so that the switching device has good electrical consistency and is easy to mass-produce.
  • the hollow cylindrical structure of the non-plate metal member 1040 may be a closed cylinder, or may be a non-closed cylinder with a slit as shown in FIG. 10 .
  • Non-closed cylinders are easier to machine and assemble.
  • first connection point where the outer conductor 1012 of the coaxial cable 1010 and the non-plate metal member 1040 are electrically connected may be located at the right end of the non-plate capacitor in the length direction, or may be located at the left end of the non-plate capacitor in the length direction or the middle part, which is not limited in this application.
  • the grounding layer is a hollow cylindrical structure
  • the non-plate metal part is also a hollow cylindrical structure.
  • the ground layer is placed in the non-plate metal part, that is, the hollow cylindrical structure of the non-plate metal part is surrounded by the ground layer (cavity) of the hollow cylindrical structure, which is not shown in the drawings here.
  • the present application also provides a power feeding device, comprising a connector for inputting a radio frequency signal, a feeding line and the aforementioned switching device, wherein the connector is electrically connected to the coaxial cable, and the feeding line is connected to an air medium. Microstrip connection.
  • the present application also provides an antenna including the power feeding device described above.
  • the antenna can be used in network equipment such as base stations.
  • the present application further provides a base station (network device), including the switching device of the present application, or the feeding device of the present application, or the antenna of the present application.
  • a base station network device
  • the switching device of the present application or the feeding device of the present application, or the antenna of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)

Abstract

本申请提供了一种转接装置、馈电装置和天线,该转接装置300包括同轴线缆310、空气介质微带线320、接地层330和非平板金属件340;其中,同轴线缆310的外导体312与非平板金属件340电连接,非平板金属件340与接地层330形成非平板的电容器耦合;同轴线缆310的内导体314与空气介质微带线320电连接。本申请提供的转接装置,同轴线缆的内导体与空气介质微带线电连接,同轴线缆的外导体与非平板金属件电连接,非平板金属件与接地层形成非平板的电容器耦合,从而实现同轴线缆的外导体接地,非平板的电容器耦合方式可以实现稳定的耦合连接,电气一致性好且易于量产。

Description

转接装置、馈电装置和天线
本申请要求于2020年07月13日提交中国专利局、申请号为202010670111.9、申请名称为“转接装置、馈电装置和天线”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线设计领域,更具体地,涉及一种转接装置、馈电装置和天线。
背景技术
在基站天线的馈电装置中,经常需要将射频信号从同轴线缆传输到空气介质微带线中,即实现信号在同轴线缆和空气介质微带线间的转接。在现有的一种设计中,通常需要将容纳空气介质微带线的腔体(或反射板,即接地层)进行电镀,然后将同轴线缆的外导体焊接在电镀的腔体(或反射板)上,实现同轴线缆的外导体和腔体(或反射板)之间的电连接;并将同轴线缆的内导体和空气介质微带线电连接。这种设计下馈电装置的制造加工成本较高。
现有的另外一种设计是将同轴线缆和腔体(或反射板)耦合连接。在这种设计中,通常将同轴线缆的内导体和空气介质微带线电连接,将同轴线缆的外导体焊接在印制电路板(printed circuit board,PCB)上,PCB的接地层和腔体(或反射板)形成电容耦合从而实现同轴线缆的外导体接地。这种电容耦合的电气一致性差且量产困难。
发明内容
针对现有设计中的实现信号在同轴线缆和空气介质微带线间的转接的装置的电气一致性差且量产困难的问题,本申请提供一种转接装置、馈电装置和天线,通过非平板的电容器耦合方式,可以实现稳定的耦合连接,电气一致性好且易于量产。
第一方面,提供了一种转接装置可以包括同轴线缆、空气介质微带线、接地层和非平板金属件。其中,同轴线缆的外导体与非平板金属件电连接,非平板金属件与接地层形成非平板的电容器耦合;同轴线缆的内导体与空气介质微带线电连接。
第一方面的转接装置,同轴线缆的内导体与空气介质微带线电连接,同轴线缆的外导体与非平板金属件电连接,非平板金属件与接地层形成非平板的电容器耦合,从而实现同轴线缆的外导体接地,非平板的电容器耦合方式可以实现稳定的耦合连接,电气一致性好且易于量产。
应理解,接地层可以是腔体也可以是反射板,也可以是其他形式的接地结构,本申请对此不做限定。
还应理解,接地层可以是非电镀器件,无需电镀能够节约大量成本。本申请各实施例中,同轴线缆的外导体与非平板金属件电连接,非平板金属件与接地层形成非平板的电容器耦合,射频信号可以通过电容器耦合传输到空气介质微带线中,能够无需接地层(腔体 或反射板)电镀。接地层也可以是电镀器件,本申请对此不做限定。
还应理解,同轴线缆的外导体可以沿着同轴线缆的轴向焊接在非平板金属件上。为了便于连接和装配,非平板金属件上可以设置连接部,使同轴线缆的外导体可以更方便地通过焊接或者通过其他方式电连接在该连接部,实现同轴线缆的外导体与非平板金属件的电连接,本申请对此不做限定。
还应理解,非平板金属件与接地层之间可以填充背胶,起到固定和绝缘的作用。非平板金属件与接地层之间也可以选用其他材料填充,达到固定和/或绝缘的目的,本申请对此不做限定。
在第一方面的一种可能的实现方式中,同轴线缆的外导体与非平板金属件的电连接的第一连接点可以位于非平板的电容器的长度方向上的中间部分;或者,同轴线缆的外导体与非平板金属件的电连接的第一连接点可以位于非平板的电容器的长度方向上的两端中的一端。第一连接点也可以设置在其他位置,本申请对此不做限定。
其中,非平板金属件上第一连接点处可以设置有连接部。连接部具体可以为非平板金属件末端的带有孔的金属片,也可以是其他具有卡/夹功能的部件,本申请对此不作限定。
在第一方面的一种可能的实现方式中,第一连接点可以设置于同轴线缆上靠近同轴线缆的内导体与空气介质微带线电连接的第二连接点的位置。换而言之,第一连接点和第二连接点的位置可以设置得尽量靠近。应理解,本申请中尽量靠近是指在加工和/或装配条件允许的情况下,将第一连接点和第二连接点的位置设置的尽量靠近。示例性的,第一连接点和第二连接点之间的距离可以小于或等于5mm,本申请对此不做限定。因为在信号层,第一连接点和第二连接点之间会形成电流;在接地层,第一连接点和第二连接点之间会形成方向相反的电流。这样在第一连接点和第二连接点之间会形成电流回路。将第一连接点和第二连接点的位置设置得尽量靠近,可以提升馈电装置的性能,最终提升天线的性能。
在第一方面的一种可能的实现方式中,非平板金属件与接地层形成的非平板的电容器耦合可以是具有多面耦合的非平板的电容器耦合。多面耦合例如可以是三面耦合或四面耦合等,但本申请不仅限于此。
在第一方面的几种可能的实现方式中,为了适应于具体的天线结构,转接装置中各部件的形状、大小、位置等可以具有多种形式,这些形式使得转接装置能更灵活的适用于天线结构。
在第一方面的一种可能的实现方式中,接地层具有U形槽结构,非平板金属件为U形结构。
在第一方面的一种可能的实现方式中,非平板金属件与接地层形成U形电容器耦合,U形结构的非平板金属件套在同轴线缆外。本可能的实现方式可以解决电容耦合的稳定性较差,量产困难的问题,U形电容耦合(具有多面耦合)可以保证耦合的稳定性,即U形电容器可以保证电容的大小保持稳定,进而使得转接装置电气一致性好且易于量产。当物料公差或者装配公差较大时,例如卡在接地层的U形槽结构中的U形结构的非平板金属件左右晃动时,U形电容器耦合的结构能够保证非平板金属件的U形边的两面与接地层的U形槽结构之间的耦合间隙总和保持不变,从而保证U形电容器的大小保持稳定。
在第一方面的一种可能的实现方式中,非平板金属件倒扣在接地层的U形槽结构上, 同轴线缆置于非平板金属件的底面之上。
在第一方面的一种可能的实现方式中,非平板金属件的U形结构的两个U形边被倒扣覆盖在接地层的U形槽结构外。本可能的实现方式可以解决电容耦合的稳定性较差,量产困难的问题,具有多面耦合的电容耦合可以保证耦合的稳定性,即可以保证电容器的大小保持稳定,进而使得转接装置电气一致性好且易于量产。U形结构的非平板金属件卡在腔体上,U形结构的非平板金属件左右晃动时,非平板金属件的U形边的两面与接地层的U形槽结构之间的耦合间隙总和保持不变,从而保证电容器的大小保持稳定。
在第一方面的一种可能的实现方式中,接地层为空心方柱结构,非平板金属件为空心方柱结构。
其中,非平板金属件可以置于接地层内。非平板金属件的空心方柱结构放置于腔体的空心方柱结构的内腔中。本可能的实现方式可以解决电容耦合的稳定性较差,量产困难的问题,具有多面耦合的电容耦合可以保证耦合的稳定性,即可以保证电容器的大小保持稳定,进而使得转接装置电气一致性好且易于量产。非平板金属件卡在腔体内,非平板金属件上下左右晃动时,非平板金属件的各面与对应的腔体各内表面的耦合间隙总和保持不变,这样可以保证电容器的大小保持稳定。
在第一方面的一种可能的实现方式中,接地层为空心方柱结构,非平板金属件为U形结构。其中,非平板金属件可以置于接地层内。或者,接地层可以置于非平板金属件内。
在第一方面的一种可能的实现方式中,接地层为空心圆柱结构,非平板金属件也为空心圆柱结构。非平板金属件可以置于接地层内。本可能的实现方式可以解决电容耦合的稳定性较差,量产困难的问题,圆柱的电容耦合可以保证耦合的稳定性,即可以保证电容器的大小保持稳定,进而使得转接装置电气一致性好且易于量产。非平板金属件卡在腔体内,非平板金属件上下左右晃动时,非平板金属件与腔体内表面的等效耦合间隙保持不变,这样可以保证电容器的大小保持稳定。或者,接地层可以置于非平板金属件内,本申请对此不做限定。
在第一方面的一种可能的实现方式中,非平板金属件与接地层可以形成除圆柱耦合以外的其他的曲面耦合,例如椭圆柱耦合等,接地层可以为空心椭圆柱结构,非平板金属件也为空心椭圆柱结构。
第二方面,提供了一种馈电装置,包括用于输入射频信号的连接器、馈电线路和第一方面及其任一可能的实现方式的转接装置,其中连接器与同轴线缆电连接、馈电线路与空气介质微带线连接。
第三方面,提供了一种天线,包括第二方面的馈电装置。
第三方面的天线可以应用于网络设备,例如基站中。
第四方面,提供了一种基站(网络设备),包括第一方面及其任一可能的实现方式的转接装置,或者包括第二方面的馈电装置,或者包括第三方面的天线。
附图说明
图1是同轴线缆与容纳在电镀腔体中的空气介质微带线转接的示意图。
图2是同轴线缆与置于反射板上的空气介质微带线转接的示意图。
图3是本申请的一个实施例的转接装置的示意图。
图4是本申请的另一个实施例的转接装置的示意图。
图5是本申请的另一个实施例的转接装置的示意图。
图6是本申请的另一个实施例的转接装置的示意图。
图7是本申请的另一个实施例的转接装置的示意图。
图8是本申请的另一个实施例的转接装置的示意图。
图9是本申请的另一个实施例的转接装置的示意图。
图10是本申请的另一个实施例的转接装置的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
需要说明的是,当一个元件被认为是“连接”“电连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的。
同轴线缆与空气介质微带线的转接,需要将同轴线缆的内导体与空气介质微带线连接即实现信号层的连接;还需要将同轴线缆的外导体与腔体(或反射板)连接即实现接地层的连接。本申请中的转接装置为实现同轴线缆与空气介质微带线的转接的装置,其可以应用于将射频信号从同轴线缆传输到空气介质微带线的场景中,其中包括同轴线缆的内导体、同轴线缆的外导体、空气介质微带线、接地层的相关部分。转接装置可以是天线的馈电装置/馈电系统的一部分,可以应用于网络设备例如基站中,但本申请不限于此。
图1是同轴线缆与容纳在电镀腔体中的空气介质微带线转接的示意图。容纳空气介质微带线的腔体的材料通常为铝,要将同轴线缆的外导体与腔体焊接在一起,需要将腔体进行电镀(例如镀锡)以方便焊接。如图1所示,电镀腔体110内部容纳有空气介质微带线120,同轴线缆130通过腔体上的圆孔112进入电镀腔体110内,且同轴线缆130的内导体132与空气介质微带线直接电连接(具体未示出),例如通过焊接连接在一起。同轴线缆130的外导体134在圆孔112处通过焊接与电镀腔体110电连接。对腔体进行电镀会使得天线成本较高。
图2是同轴线缆与置于反射板上的空气介质微带线转接的示意图。如图2所示,同轴线缆210的外导体212焊接在印制电路板(printed circuit board,PCB)220上。其中,同轴线缆210的外导体212与PCB 220的焊盘222连接,经由PCB 220的基材224(背面为接地层)与PCB 220的地连接,其中PCB 220的焊盘222和PCB 220的接地层通过金属化过孔电连接。PCB 220和反射板230形成电容耦合从而实现同轴线缆210的外导体212接地。将同轴线缆210的内导体214和空气介质微带线240电连接。PCB 220和反射板230形成电容耦合由于PCB 220与反射板230可能会产生变形,而难以保证PCB 220与反射板230这种大的平板之间具有稳定的间隙,使得量产困难且电气一致性差。
基于上述问题,本申请提供了一种转接装置,该转接装置可以应用于同轴线缆与空气介质微带线的转接。
图3是本申请的一个实施例的转接装置300的示意图。如图3所示,转接装置300可以包括同轴线缆310、空气介质微带线320、接地层330和非平板金属件340。其中,同 轴线缆310的外导体312与非平板金属件340电连接,非平板金属件340与接地层330形成非平板的电容器耦合;同轴线缆310的内导体314与空气介质微带线320电连接。
本申请各实施例中,非平板是指不在同一个平面。非平板金属件是指金属件可以具有不在同一个平面的多个部分,即金属件具有多个面;或者金属件可以是曲面或弧面的。非平板的电容器是指电容器的每个极板可以具有不在同一个平面的多个部分,即每个极板具有多个面;或者电容器的每个极板可以是曲面或弧面的。示例性的,非平板的电容器可以是U形的电容器(三面耦合)、方柱形的电容器(四面耦合)、圆柱形的电容器(曲面的耦合)等,但不仅限于此。非平板可以是三面的组合、四面的组合或曲面、弧面等,但不仅限于此。
本申请各实施例中,电容器耦合又可以称为电容耦合、电场耦合或静电耦合,是指通过形成电容器这一耦合方式,达到信号传输的目的。
本申请各实施例中,接地层可以是腔体也可以是反射板,本申请的以下实施例中有接地层是腔体的具体实施例,也有接地层是反射板的具体实施例。接地层也可以是其他形式的接地结构,本申请对此不做限定。腔体或反射板可以是金属材料的,例如铝;也可以是其他材料的,本申请对此不做限定。
本申请各实施例的接地层可以是非电镀器件,无需电镀能够节约大量成本。本申请各实施例中,同轴线缆的外导体与非平板金属件电连接,非平板金属件与接地层形成非平板的电容器耦合,射频信号可以通过电容器耦合传输到空气介质微带线中,能够无需接地层(腔体或反射板)电镀。当然,本申请各实施例的接地层也可以是电镀器件,本申请对此不做限定。
本申请各实施例中,同轴线缆的内导体与空气介质微带线可以通过焊接电连接也可以通过其他方式电连接,例如通过压接、绕接、螺钉(帽)固定等方式电连接,本申请对此不做限定。
本申请各实施例中,同轴线缆的外导体与非平板金属件可以通过焊接电连接也可以通过其他方式电连接,例如通过压接、绕接、螺钉(帽)固定等方式电连接,本申请对此不做限定。
本申请各实施例中,同轴线缆的外导体可以沿着同轴线缆的轴向电连接,例如焊接在非平板金属件上,该电连接可以以点的方式连接(例如在一个点处进行焊接),也可以以线的方式连接(例如沿一条线进行焊接),或是以面的方式连接(例如在一块较宽的区域进行焊接)。为了便于连接和装配,非平板金属件上可以设置连接部,使同轴线缆的外导体可以更方便地通过焊接在该连接部,实现同轴线缆的外导体与非平板金属件的电连接,设置连接部来进行连接也可以以点的方式连接或是以线或面的方式连接,本申请对此不做限定。
本申请各实施例中,非平板金属件与接地层之间可以填充背胶,起到固定和绝缘的作用。当然也可以选用其他材料填充,达到固定和/或绝缘的目的,本申请对此不做限定。
本申请提供的转接装置,同轴线缆的内导体与空气介质微带线电连接,同轴线缆的外导体与非平板金属件电连接,非平板金属件与接地层形成非平板的电容器耦合,从而实现同轴线缆的外导体接地,非平板的电容器耦合方式可以实现稳定的耦合连接,电气一致性好且易于量产。
非平板的电容器结构会有几个面耦合(多面耦合)或者是曲面/弧面耦合,在非平板的电容器结构晃动时,非平板的电容器的各个面或曲面之间形成的电容有的部分增大有的部分减小,但是电容总和不变或变化较小,有利于稳定性,使得电气一致性好,稳定性容易保证了对加工装配的要求自然也会降低些,易于量产。
本申请各实施例对同轴线缆的外导体与非平板金属件的电连接的位置不做限定。
在本申请的一些实施例中,同轴线缆的外导体与非平板金属件的电连接的第一连接点可以位于非平板的电容器的长度方向上的中间部分。应理解,该中间部分是指非平板的电容器的长度方向上中间一段距离中的一点或一段,本申请对此不做限定。在一个具体的例子中,非平板金属件上第一连接点处可以设置有连接部。
在本申请的另一些实施例中,同轴线缆的外导体与非平板金属件的电连接的第一连接点可以位于非平板的电容器的长度方向上的两端中的一端。在一个具体的例子中,非平板金属件上第一连接点处可以设置有连接部。
第一连接点也可以设置在其他位置,本申请对此不做限定。
图4是本申请的另一个实施例的转接装置400的示意图。图4是在第一连接点处设置有连接部的一个转接装置实施例的示意图。如图4所示,转接装置400可以包括同轴线缆410、空气介质微带线420、接地层430(图4中接地层为腔体)和非平板金属件440。其中,同轴线缆410的内导体414与空气介质微带线420电连接。同轴线缆410的外导体412与非平板金属件440电连接,非平板金属件440与接地层430形成非平板的电容器耦合。同轴线缆410的外导体412与非平板金属件440的电连接的第一连接点可以位于非平板的电容器的长度方向上的两端中的一端。图4示出的同轴线缆410的外导体412与非平板金属件440的第一连接点处设置有连接部442。
图4示出的转接装置400中同轴线缆410的外导体412与非平板金属件440的第一连接点(连接部442)在靠近同轴线缆410的内导体414与空气介质微带线420的第二连接点的一端,即非平板的电容器的长度方向上的右端。在其他实施例中,第一连接点也可以位于非平板的电容器的长度方向上的另一端,即非平板的电容器的长度方向上的左端,远离同轴线缆410的内导体414与空气介质微带线420的连接点的一端。将第一连接点设置于非平板的电容器的长度方向上的两端中的一端。当然,本申请的其他实施例也可以不限定第一连接点设置于非平板的电容器的长度方向上的两端中的一端,而是位于非平板的电容器的长度方向上的中间部分,本申请对此不做限定。
连接部具体可以为非平板金属件末端的带有孔的金属片,同轴线缆的外导体可以与金属片电连接,例如通过焊接连接,同轴线缆的内导体可以穿过金属片的孔与空气介质微带线电连接。连接部还可以为其他具有卡/夹功能的部件,本申请对此不作限定。本申请的其他实施例中在第一连接点处也可以不设置连接部,而是直接将同轴线缆的外导体连接到非平板金属件上,本申请对此不做限定。
在本申请的一些实施例中,第一连接点可以设置于同轴线缆上靠近同轴线缆的内导体与空气介质微带线电连接的第二连接点的位置。换而言之,第一连接点和第二连接点的位置可以设置得尽量靠近。应理解,本申请中尽量靠近是指在加工和/或装配条件允许的情况下,将第一连接点和第二连接点的位置设置的尽量靠近。示例性的,第一连接点和第二连接点之间的距离可以小于或等于5mm。或者,示例性的,第一连接点和第二连接点之 间的距离可以小于或等于非平板金属件长度的1/10等,本申请对此不做限定。因为在信号层(同轴线缆的内导体与空气介质微带线电连接形成的层),第一连接点和第二连接点之间会形成电流;在接地层(同轴线缆的外导体所连接的层),第一连接点和第二连接点之间会形成方向相反的电流。这样在第一连接点和第二连接点之间会形成电流回路。将第一连接点和第二连接点的位置设置得尽量靠近,可以提升馈电装置的性能,最终提升天线的性能。
在本申请的各实施例中,为了适应于具体的天线结构,转接装置中各部件的形状、大小、位置等可以具有多种形式,这些形式使得转接装置能更灵活地适用于天线结构。图5至图10是不同形式的一些具体示例,但本申请的转接装置的结构不仅限于这些图示中的结构。
在本申请的一些实施例中,非平板金属件与接地层形成的非平板的电容器耦合可以是具有多面耦合的非平板的电容器耦合。多面耦合是指在多个平面形成耦合,例如可以是三面耦合或四面耦合等,但本申请不仅限于此。
在本申请的一些具体的实施例中,接地层具有U形槽结构,非平板金属件为U形结构。非平板金属件与接地层形成U形电容器耦合,U形结构的非平板金属件套在同轴线缆外。换而言之,U形结构的非平板金属件嵌入到接地层的U形槽结构中,形成U形电容器(形成三面耦合的电容器),U形结构的非平板金属件套在同轴线缆外。图3和图4所示出的转接装置均是上述结构。接地层可以是如图4所示的具有U形槽结构的腔体,也可以是具有U形槽结构的反射板。
图5是本申请的另一个实施例的转接装置500的示意图。图5示出的是转接装置中非平板金属件和接地层形成U形电容器耦合的示例。如图5所示,转接装置500可以包括同轴线缆510、空气介质微带线520、接地层530(图5中接地层为反射板,反射板通过折弯形成U形槽结构)和非平板金属件540。其中,同轴线缆510的内导体514与空气介质微带线520电连接。同轴线缆510的外导体512与非平板金属件540电连接,非平板金属件540与接地层530形成非平板的电容器耦合,其具有三面耦合。
当物料公差或者装配公差较大时,例如卡在接地层的U形槽结构中的U形结构的非平板金属件左右晃动时,U形电容器耦合的结构能够保证非平板金属件的U形边的两面与接地层的U形槽结构之间的耦合间隙总和保持不变或变化很小,这样可以保证U形电容器的大小保持稳定,即可以保证电容耦合的稳定性,使得转接装置电气一致性好且易于量产。
此外,同轴线缆510的外导体512与非平板金属件540电连接的第一连接点可以位于非平板的电容器的长度方向上的右端,也可以位于非平板的电容器的长度方向上的左端或中间部分,本申请对此不做限定。
在本申请的一些具体的实施例中,接地层具有U形槽结构,非平板金属件为U形结构。非平板金属件倒扣在所述接地层的所述U形槽结构上,同轴线缆置于非平板金属件的底面之上。
图6是本申请的另一个实施例的转接装置600的示意图。与图5不同的是,图6示出的是转接装置中非平板金属件和接地层均为U形结构,相互倒扣形成电容器耦合的示例。本申请的各实施例可以灵活地适用于各种不同的天线结构,其中图6中同轴线缆和空气介 质微带线位于第二连接点(同轴线缆的内导体与空气介质微带线的连接点)的同一侧,例如图6所示的同轴线缆和空气介质微带线均位于第二连接点的左侧。如图6所示,转接装置600可以包括同轴线缆610、空气介质微带线620、接地层630(图6中接地层为腔体)和非平板金属件640。其中,同轴线缆610的内导体614与空气介质微带线620电连接。同轴线缆610的外导体612与非平板金属件640电连接,非平板金属件640与接地层630形成非平板的电容器耦合。如图6所示,接地层630具有U形槽结构,非平板金属件640为U形结构。非平板金属件640倒扣在接地层630的U形槽结构上,同轴线缆610置于非平板金属件640的底面之上。
具体地,同轴线缆610的外导体612和U形结构的非平板金属件640可以在靠近同轴线缆610的内导体614与空气介质微带线620的第二连接点的一端焊接在一起。U形结构的非平板金属件640横跨放置于腔体的窄边上,形成三面耦合的电容器。同轴线缆610置于U形结构的非平板金属件640的底面(非U形边的两面)之上。同轴线缆610的内导体614与空气介质微带线620焊接在一起,其中为方便焊接可以设置连接部件。图6所示的转接装置,非平板金属件640的U形结构的两个U形边被倒扣覆盖在接地层630(腔体)的U形槽结构外。
U形结构的非平板金属件640卡在腔体上,U形结构的非平板金属件640左右晃动时,非平板金属件的U形边的两面与接地层的U形槽结构之间的耦合间隙总和保持不变或变化很小,这样可以保证U形电容器的大小保持稳定,即可以保证电容耦合的稳定性,使得转接装置电气一致性好且易于量产。
此外,同轴线缆610的外导体612与非平板金属件640电连接的第一连接点可以位于非平板的电容器的长度方向上的右端,也可以位于非平板的电容器的长度方向上的左端或中间部分,本申请对此不做限定。
图7是本申请的另一个实施例的转接装置700的示意图。与图6不同的是,图7示出的也是转接装置中非平板金属件和接地层均为U形结构,相互倒扣形成电容器耦合的示例,但是其中同轴线缆和空气介质微带线位于第二连接点的不同侧。例如图7所示的同轴线缆位于第二连接点的左侧,空气介质微带线均位于第二连接点的右侧。如图7所示,转接装置700可以包括同轴线缆710、空气介质微带线720、接地层730(图7中接地层为反射板,反射板通过折弯形成U形槽结构)和非平板金属件740。其中,同轴线缆710的内导体714与空气介质微带线720电连接。同轴线缆710的外导体712与非平板金属件740电连接,非平板金属件740与接地层730形成非平板的电容器耦合。非平板金属件740的U形结构的两个U形边被倒扣覆盖在接地层730(反射板)的U形槽结构外。U形结构的非平板金属件740卡在反射板的U形槽结构外,U形结构的非平板金属件740左右晃动时,非平板金属件的U形边的两面与反射板的U形槽结构之间的耦合间隙总和保持不变或变化很小,这样可以保证U形电容器的大小保持稳定,即可以保证电容耦合的稳定性,使得转接装置电气一致性好且易于量产。
在本申请的其他实施例中,非平板金属件的U形结构的一个U形边可以被倒扣在接地层的U形槽结构中。或者,非平板金属件的U形结构的两个U形边可以均被倒扣在接地层的U形槽结构中,本申请对此不做限定。
此外,同轴线缆710的外导体712与非平板金属件740电连接的第一连接点可以位于 非平板的电容器的长度方向上的右端,也可以位于非平板的电容器的长度方向上的左端或中间部分,本申请对此不做限定。
在本申请的一些具体的实施例中,接地层为空心方柱结构,非平板金属件为空心方柱结构。非平板金属件置于接地层内,即非平板金属件的空心方柱结构置于空心方柱结构的接地层(腔体)内。
图8是本申请的另一个实施例的转接装置800的示意图。图8示出的是接地层为空心方柱结构,非平板金属件为空心方柱结构,其套在一起形成电容器耦合的示例,其中空心方柱结构的接地层包围在非平板金属件的空心方柱结构外。如图8所示,转接装置800可以包括同轴线缆810、空气介质微带线820、接地层830(图8中接地层为腔体)和非平板金属件840。其中,同轴线缆810的内导体814与空气介质微带线820电连接。同轴线缆810的外导体812与非平板金属件840电连接,非平板金属件840与接地层830形成非平板的电容器耦合。非平板金属件840的空心方柱结构放置于腔体的空心方柱结构的内腔中。非平板金属件840卡在腔体内,非平板金属件840上下左右晃动时,非平板金属件的各面与对应的腔体各内表面的耦合间隙总和保持不变或变化很小,这样可以保证电容器的大小保持稳定,即可以保证电容耦合的稳定性,使得转接装置电气一致性好且易于量产。
此外,同轴线缆810的外导体812与非平板金属件840电连接的第一连接点可以位于非平板的电容器的长度方向上的右端,也可以位于非平板的电容器的长度方向上的左端或中间部分,本申请对此不做限定。
在本申请的一些具体的实施例中,接地层为空心方柱结构,非平板金属件为空心方柱结构;或者,接地层为空心方柱结构,非平板金属件为U形结构。接地层置于非平板金属件内,即非平板金属件的空心方柱结构或U形结构包围在空心方柱结构的接地层(腔体)外。
图9是本申请的另一个实施例的转接装置900的示意图。与图8不同的是,图9示出的是接地层为空心方柱结构,非平板金属件为空心方柱结构或U形结构,其套在一起形成电容器耦合的示例,但是其中非平板金属件的空心方柱结构包围在空心方柱结构的接地层外。如图9所示,转接装置900可以包括同轴线缆910、空气介质微带线920、接地层930(图9中接地层为腔体)和非平板金属件940。其中,同轴线缆910的内导体914与空气介质微带线920电连接。同轴线缆910的外导体912与非平板金属件940电连接,非平板金属件940与接地层930形成非平板的电容器耦合。非平板金属件940的空心方柱结构包围在腔体的空心方柱结构外。非平板金属件940包在腔体外,非平板金属件940左右晃动时,非平板金属件的各面与对应的腔体各外表面的耦合间隙总和保持不变,这样可以保证电容器的大小保持稳定,即可以保证电容耦合的稳定性,使得转接装置电气一致性好且易于量产。
本实施例中,非平板金属件940的空心方柱结构可以是闭合的方柱,也可以是非闭合的方柱(例如,图9所示的非平板金属件940不存在上边一面)。非闭合的方柱更便于加工和装配。当图9所示的非平板金属件940不存在上边一面时,非平板金属件的U形结构可以包围在空心方柱结构的腔体外。
此外,同轴线缆910的外导体912与非平板金属件940电连接的第一连接点可以位于非平板的电容器的长度方向上的左端,也可以位于非平板的电容器的长度方向上的右端或 中间部分,本申请对此不做限定。
在本申请的一些实施例中,非平板金属件还可以是其他多面柱体,例如三棱柱、五棱柱、六棱柱或其他柱体等等,接地层上可以配合非平板金属件的形状设置相应的槽或凸起等,以使得非平板金属件与接地层形成的非平板的多面的电容器耦合,本申请对此不做限定。
在本申请的一些实施例中,非平板金属件与接地层形成的非平板的电容器耦合可以是弧面或曲面的电容器耦合。例如椭圆柱耦合等,接地层可以为空心椭圆柱结构,非平板金属件也为空心椭圆柱结构。
在本申请的一些具体的实施例中,接地层为空心圆柱结构,非平板金属件也为空心圆柱结构。非平板金属件置于接地层内,即非平板金属件的空心圆柱结构置于空心圆柱结构的接地层(腔体)内。
图10是本申请的另一个实施例的转接装置1000的示意图。不同于之前的各附图对应的实施例中的方柱结构或U形结构,图10示出的是接地层为为空心圆柱结构,非平板金属件为为空心圆柱结构,其套在一起形成电容器耦合的示例。如图10所示,转接装置1000可以包括同轴线缆1010、空气介质微带线1020、接地层1030(图10中接地层为腔体)和非平板金属件1040。其中,同轴线缆1010的内导体1014与空气介质微带线1020电连接。同轴线缆1010的外导体1012与非平板金属件1040电连接,非平板金属件1040与接地层1030形成非平板的电容器耦合。非平板金属件1040的空心圆柱结构放置于腔体的空心圆柱结构的内腔中。非平板金属件1040卡在腔体内,非平板金属件1040上下左右晃动时,非平板金属件1040与腔体内表面的等效耦合间隙保持不变或变化很小,这样可以保证电容器的大小保持稳定,即可以保证电容耦合的稳定性,使得转接装置电气一致性好且易于量产。
本实施例中,非平板金属件1040的空心圆柱结构可以是闭合的圆柱,也可以是如图10所示的带有狭缝的非闭合的圆柱。非闭合的圆柱更便于加工和装配。
此外,同轴线缆1010的外导体1012与非平板金属件1040电连接的第一连接点可以位于非平板的电容器的长度方向上的右端,也可以位于非平板的电容器的长度方向上的左端或中间部分,本申请对此不做限定。
在本申请的另一些具体的实施例中,接地层为空心圆柱结构,非平板金属件也为空心圆柱结构。接地层置于非平板金属件内,即非平板金属件的空心圆柱结构包围在空心圆柱结构的接地层(腔体)外,此处不再以附图示出。
本申请还提供了一种馈电装置,包括用于输入射频信号的连接器、馈电线路和前文所描述的转接装置,其中连接器与同轴线缆电连接、馈电线路与空气介质微带线连接。
本申请还提供了一种天线,包括前文描述的馈电装置。
该天线可以应用于网络设备,例如基站中。
本申请还提供了一种基站(网络设备),包括本申请的转接装置,或者包括本申请的馈电装置,或者包括本申请的天线。
应理解,本文中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例 中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种转接装置,其特征在于,包括同轴线缆、空气介质微带线、接地层和非平板金属件;其中,所述同轴线缆的外导体与所述非平板金属件电连接,所述非平板金属件与所述接地层形成非平板的电容器耦合;所述同轴线缆的内导体与所述空气介质微带线电连接。
  2. 根据权利要求1所述的转接装置,其特征在于,所述同轴线缆的外导体与所述非平板金属件的电连接的第一连接点位于所述非平板的电容器的长度方向上的两端中的一端或位于所述非平板的电容器的长度方向上的中间部分。
  3. 根据权利要求2所述的转接装置,其特征在于,所述非平板金属件上所述第一连接点处设置有连接部。
  4. 根据权利要求2或3所述的转接装置,其特征在于,所述第一连接点设置于所述同轴线缆上靠近所述同轴线缆的内导体与所述空气介质微带线电连接的第二连接点的位置。
  5. 根据权利要求1至4中任一项所述的转接装置,其特征在于,所述非平板金属件与所述接地层形成具有多面耦合的所述非平板的电容器耦合。
  6. 根据权利要求1至5中任一项所述的转接装置,其特征在于,所述接地层具有U形槽结构,所述非平板金属件为U形结构。
  7. 根据权利要求6所述的转接装置,其特征在于,所述非平板金属件与所述接地层形成U形电容器耦合,所述U形结构的所述非平板金属件套在所述同轴线缆外。
  8. 根据权利要求6所述的转接装置,其特征在于,所述非平板金属件倒扣在所述接地层的所述U形槽结构上,所述同轴线缆置于所述非平板金属件的底面之上。
  9. 根据权利要求8所述的转接装置,其特征在于,所述非平板金属件的U形结构的两个U形边被倒扣覆盖在所述接地层的所述U形槽结构外。
  10. 根据权利要求1至5中任一项所述的转接装置,其特征在于,所述接地层为空心方柱结构,所述非平板金属件为空心方柱结构。
  11. 根据权利要求1至5中任一项所述的转接装置,其特征在于,所述接地层为空心方柱结构,所述非平板金属件为U形结构。
  12. 根据权利要求1至4中任一项所述的转接装置,其特征在于,所述接地层为空心圆柱结构,所述非平板金属件为空心圆柱结构。
  13. 根据权利要求10至12中任一项所述的转接装置,其特征在于,所述非平板金属件置于所述接地层内。
  14. 根据权利要求10至12中任一项所述的转接装置,其特征在于,所述接地层置于所述非平板金属件内。
  15. 根据权利要求1至14中任一项所述的转接装置,其特征在于,所述接地层为非电镀器件。
  16. 一种馈电装置,其特征在于,包括用于输入射频信号的连接器、馈电线路和权利要求1至15中任一项所述的转接装置,其中所述连接器与所述同轴线缆电连接、所述馈 电线路与所述空气介质微带线连接。
  17. 一种天线,其特征在于,包括权利要求16所述的馈电装置。
  18. 根据权利要求17所述的天线,其特征在于,所述天线应用于网络设备中。
PCT/CN2021/105095 2020-07-13 2021-07-08 转接装置、馈电装置和天线 WO2022012399A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21843475.1A EP4181312A4 (en) 2020-07-13 2021-07-08 ADAPTER DEVICE, FEEDING DEVICE AND ANTENNA
US18/153,941 US20230155295A1 (en) 2020-07-13 2023-01-12 Adapter Device, Feeder Device, and Antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010670111.9A CN113937447B (zh) 2020-07-13 2020-07-13 转接装置、馈电装置和天线
CN202010670111.9 2020-07-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/153,941 Continuation US20230155295A1 (en) 2020-07-13 2023-01-12 Adapter Device, Feeder Device, and Antenna

Publications (1)

Publication Number Publication Date
WO2022012399A1 true WO2022012399A1 (zh) 2022-01-20

Family

ID=79273470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105095 WO2022012399A1 (zh) 2020-07-13 2021-07-08 转接装置、馈电装置和天线

Country Status (4)

Country Link
US (1) US20230155295A1 (zh)
EP (1) EP4181312A4 (zh)
CN (1) CN113937447B (zh)
WO (1) WO2022012399A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208710A (zh) * 2010-03-31 2011-10-05 安德鲁公司 射频同轴电缆至空气微带耦合接地转换结构及相应的天线
CN102334232A (zh) * 2009-02-25 2012-01-25 阿尔卡特朗讯 用于传输高频信号的同轴电缆的机械和电连接设备
US20120274535A1 (en) * 2011-04-29 2012-11-01 Deavours Daniel D RFID Microstip Interrogator Antenna System

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6746277B2 (en) * 2001-12-05 2004-06-08 Tyco Electronics Corporation Coaxial cable connector
SE526987C2 (sv) * 2004-04-15 2005-11-29 Cellmax Technologies Ab Matningsnät för antenner
US9780431B2 (en) * 2013-02-12 2017-10-03 Commscope Technologies Llc Dual capacitively coupled coaxial cable to air microstrip transition
CN204348913U (zh) * 2014-09-19 2015-05-20 安弗施无线射频系统(上海)有限公司 电容耦合接地传输装置和移相器网络设备
WO2017111029A1 (ja) * 2015-12-25 2017-06-29 日本電信電話株式会社 高周波伝送線路の接続構造
WO2019032366A1 (en) * 2017-08-07 2019-02-14 Commscope Technologies Llc CABLE CONNECTOR BLOCK ASSEMBLIES FOR BASE STATION ANTENNAS
CN108172981B (zh) * 2017-12-30 2024-05-24 京信通信技术(广州)有限公司 天线及其辐射单元

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102334232A (zh) * 2009-02-25 2012-01-25 阿尔卡特朗讯 用于传输高频信号的同轴电缆的机械和电连接设备
CN102208710A (zh) * 2010-03-31 2011-10-05 安德鲁公司 射频同轴电缆至空气微带耦合接地转换结构及相应的天线
US20120274535A1 (en) * 2011-04-29 2012-11-01 Deavours Daniel D RFID Microstip Interrogator Antenna System

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4181312A4

Also Published As

Publication number Publication date
EP4181312A1 (en) 2023-05-17
EP4181312A4 (en) 2024-01-03
US20230155295A1 (en) 2023-05-18
CN113937447A (zh) 2022-01-14
CN113937447B (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
US5552752A (en) Microwave vertical interconnect through circuit with compressible conductor
JP6588403B2 (ja) 同軸コネクタ
US20200412002A1 (en) Antenna Element and Array Antenna
JP3147728B2 (ja) アンテナ装置
JPH11355033A (ja) アンテナ装置
WO2020155723A1 (zh) 移相馈电装置及基站天线
US20150042530A1 (en) Antenna device
EP2765646B1 (en) Dual capacitively coupled coaxial cable to air microstrip transition
CN104752929A (zh) 毫米波连接器及具有带状导体的传输线
WO2016008607A1 (en) Antenna arrangement and connector for an antenna arrangement
US20210227684A1 (en) Printed circuit board for base station antenna
CN111342249A (zh) 用于同轴电缆的连接器
US20150042531A1 (en) Antenna device
JP7307819B2 (ja) 端末
WO2022061724A1 (zh) 馈电结构、天线和通讯设备
TWI451628B (zh) 具有天線結構之電子設備
WO2022012399A1 (zh) 转接装置、馈电装置和天线
JP3826007B2 (ja) 配線接続構造およびこれを用いた送信機
JP2007267214A (ja) アンテナ装置
US11063380B2 (en) Universal power input assembly
US6636180B2 (en) Printed circuit board antenna
WO2022160094A1 (zh) 一种一体化基站天线
CN115441218A (zh) 用于将同轴电缆连接至印刷电路板的连接器和方法
WO2018168336A1 (ja) 信号伝送モジュール
JP4103466B2 (ja) 高周波コネクタの表面実装方法及び高周波コネクタ実装プリント基板並びにプリント基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21843475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021843475

Country of ref document: EP

Effective date: 20230207