WO2022160094A1 - 一种一体化基站天线 - Google Patents

一种一体化基站天线 Download PDF

Info

Publication number
WO2022160094A1
WO2022160094A1 PCT/CN2021/073778 CN2021073778W WO2022160094A1 WO 2022160094 A1 WO2022160094 A1 WO 2022160094A1 CN 2021073778 W CN2021073778 W CN 2021073778W WO 2022160094 A1 WO2022160094 A1 WO 2022160094A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
base station
reflector
feeding
integrated base
Prior art date
Application number
PCT/CN2021/073778
Other languages
English (en)
French (fr)
Inventor
邱小凯
周凌波
王羽林
罗经崔
蔡娟
崔益阳
Original Assignee
摩比天线技术(深圳)有限公司
摩比科技(深圳)有限公司
摩比通讯技术(吉安)有限公司
摩比科技(西安)有限公司
深圳市晟煜智慧网络科技有限公司
西安摩比天线技术工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 摩比天线技术(深圳)有限公司, 摩比科技(深圳)有限公司, 摩比通讯技术(吉安)有限公司, 摩比科技(西安)有限公司, 深圳市晟煜智慧网络科技有限公司, 西安摩比天线技术工程有限公司 filed Critical 摩比天线技术(深圳)有限公司
Priority to PCT/CN2021/073778 priority Critical patent/WO2022160094A1/zh
Publication of WO2022160094A1 publication Critical patent/WO2022160094A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • the invention belongs to the technical field of base station antennas, and in particular relates to an integrated base station antenna.
  • the base station antenna is usually composed of a radiation unit, a reflector, a phase shifter and its drive system, and in a conventional base station antenna, the radiation unit, reflector, phase shifter and its drive system are three independent groups of structures , the radiation unit is arranged on the front of the reflector, the side of the reflector is bent into different shapes as the radiation boundary, and the phase shifter is located on the reverse side of the reflector, then the phase shifter and the radiation unit need to pass through cables or other means.
  • other microwave devices such as combiners, power dividers, filters, etc. are located on the reverse side of the reflector, the structure of the reverse side of the reflector is complicated, the cable layout is difficult, and a large number of cable transfer, resulting in loss of antenna gain.
  • the purpose of the present invention is to solve the deficiencies in the prior art at least to a certain extent, and to provide an integrated base station antenna.
  • an integrated base station antenna including:
  • the back of the reflecting plate is integrally formed with a box body, and a cavity is formed between the box body and the reflecting plate;
  • the antenna array is arranged on the front surface of the reflector, the antenna array includes at least one row of radiation element arrays arranged along the length of the reflector, and each row of radiation element arrays includes at least one radiation element;
  • the phase shifter assembly is disposed in the cavity, and includes a feeding network electrically connected with each of the radiation units.
  • the radiating unit includes a fixing frame fixed on the reflector by snapping, and a radiating sheet and a feeding sheet arranged on the fixing frame, and one end of the feeding sheet is connected to the radiating sheet.
  • the sheet is coupled, and the other end is electrically connected to the feeding network through the reflecting plate.
  • the radiation patch is a double-layer radiation patch, including an upper layer radiation patch and a lower layer radiation patch that are spaced apart from each other in the up-down direction.
  • the feeding sheet includes two feeding probes, the feeding probes include a connecting part and a coupling part, one end of the connecting part is coupled with the feeding network, and one end of the coupling part is Connected perpendicularly to the other end of the connecting portion, the other end of the coupling portion extends toward the central axis of the radiation patch, the coupling portion and the lower radiation patch; and two of the feeding probes
  • the coupling parts are perpendicular to each other.
  • the cavity includes at least two cavities symmetrical with respect to the central axis of the radiation element array
  • the phase shifter assembly includes PCB boards respectively disposed in the two cavities, each of the PCBs
  • the feeding network is formed on the board by printing, and the two feeding probes of one radiating unit extend into the two chambers respectively, and are respectively connected with the feeding networks on the two PCB boards. circuit connection.
  • the feeding network includes radiation output units arranged corresponding to the radiation units and having the same number, each of the radiation output units includes a phase-shift circuit and a radiation output terminal that are electrically connected to each other, and the radiation output terminal is connected to One of the feeding probes of the radiating element at the corresponding position is electrically connected.
  • each of the PCB boards are further provided with a sliding dielectric board that can slide relative to the PCB board, and a part of the sliding dielectric board covers the phase-shifting circuit and is coupled with the phase-shifting circuit, And the sliding medium board can slide relative to the PCB board to move the phase.
  • the reflector is provided with a clamping hole which communicates with the two chambers corresponding to the installation position of each radiation unit, and each PCB board is provided with a positioning hole at a position corresponding to the clamping hole.
  • the lower end of the fixing frame is provided with two hook portions which are respectively fixed with the reflector through the two hook holes, and the ends of the hook portions extend into the positioning holes, so that the The PCB board is relatively fixed to the radiation unit.
  • the reflector includes an insulating substrate and a metal ground layer disposed on a side of the insulating substrate away from the radiation unit, and the reflector is provided with an escape hole corresponding to the position of the feeding probe.
  • the two side edges in the width direction of the reflector are respectively bent toward the front of the reflector to form vertical flanges.
  • the radiation unit is assembled and fixed on the front of the reflector by means of a snap, and at the same time, the radiation unit and the phase shifter component in the back cavity of the reflector are electrically connected without cables.
  • the structure is simple, the assembly is convenient and fast, and it is easy to realize automatic production, meanwhile, the loss caused by the cable transfer is avoided, and the antenna gain is improved.
  • FIG. 1 is a schematic assembly diagram of an embodiment of an integrated base station antenna according to the present invention
  • Fig. 2 is the connection schematic diagram of the antenna array and the phase shifter assembly of the present invention
  • Fig. 3 is the sectional view of A-A direction in Fig. 1;
  • FIG. 4 is a schematic structural diagram of a radiation unit of the present invention.
  • FIG. 5 is a schematic diagram of the explosion of FIG. 4 .
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • “plurality” means two or more, unless otherwise expressly and specifically defined.
  • the embodiment of the present invention discloses an integrated base station antenna, including a reflector 20, an antenna array, and a phase shifter assembly 30; the back of the reflector 20 is integrally formed with a box body 21, the box body 21 and the reflector plate A cavity 22 is formed between the 20; the cavity 22 has openings at both ends along the length direction of the reflector 20; the antenna array is arranged on the front of the reflector 20, and the antenna array includes at least one row of radiation units arranged along the length of the reflector 20 Each column of the radiating element array includes at least one radiating element 10 ; the phase shifter assembly 30 is arranged in the cavity 22 and includes a feeding network 32 that is electrically connected to each radiating element 10 .
  • the front surface of the reflector 20 is the upper surface, and the back surface of the reflector 20 is the lower surface, that is, the reflector 20 is perpendicular to the vertical direction;
  • An array of radiating elements 10 of radiating elements 10 is exemplified.
  • the radiation unit 10 includes a fixing frame 11 fixed on the reflector 20 by means of a buckle, and a radiation sheet 12 and a feeding sheet arranged on the fixing frame 11 .
  • the radiation sheet 12 is fixedly arranged on the On the upper end of the fixing frame 11
  • the feeding sheet is fixed on the lower end of the fixing frame 11
  • the upper end of the feeding sheet is coupled with the radiating sheet 12
  • the lower end passes through the reflector 20 and is electrically connected to the feeding network 32 .
  • the radiation patch 12 in this embodiment is a double-layer radiation patch, including an upper layer radiation patch 121 and a lower layer radiation patch 122 that are spaced apart from each other in the upper and lower directions.
  • the upper end of the fixing frame 11 protrudes with two first hooks 111 and two second hooks 122 , and the height of the second hooks 122 is greater than the height of the first hooks 111 , and the lower radiation patch 122 passes through the two first hooks 122 .
  • the hooks 111 are fixed on the fixing frame 11
  • the upper radiation patch 121 is fixed on the top of the two first hooks 111 through the two second fixing hooks, so that the space between the upper radiation patch 121 and the lower radiation patch 122 is formed.
  • a gap is formed, and the area of the upper radiation patch 121 is smaller than the area of the lower radiation patch 122; the assembly in this way is more convenient and quick, the stability between the radiation patch 12 and the fixing frame 11 is improved, and the bandwidth of the radiation unit 10 can be expanded. , which can effectively extend the current path on the surface of the patch and achieve the effect of miniaturization.
  • the feeding sheet includes two feeding probes 13, the feeding probe 13 includes a connecting part 131 and a coupling part 132, the lower end of the connecting part 131 is coupled with the feeding network 32, and one end of the coupling part 132 is connected with the connecting part
  • the upper end of the 131 is connected vertically, the other end of the coupling portion 132 extends toward the center axis of the radiating patch 12, the coupling portion 132 and the lower radiating patch 122; and the coupling portions 132 of the two feeding probes 13 are perpendicular to each other.
  • the two feeding probes 13 are coupled to feed local positions of the lower radiating patch 122 to form a dual-polarized antenna structure, so as to avoid direct feeding to cause the probes to introduce inductance and limit the impedance bandwidth.
  • the cavity 22 includes two cavities 221 that are symmetrical with respect to the central axis of the array of radiation elements 10, and the phase shifter assembly 30 includes PCB boards 31 respectively disposed in the two cavities 221. Microstrip lines are printed on each PCB board 31 to form a feeding network 32 , and the two feeding probes 13 of one radiating unit 10 extend into the two chambers 221 respectively, and are respectively connected with the two PCB boards 31 . electrical connection to the feeder circuit.
  • the PCB board 31 can be a double-sided copper-clad high-frequency dielectric printed circuit board.
  • the feeding network 32 on each PCB board 31 includes radiation output units 321 that are arranged corresponding to the radiation units 10 and have the same number, that is, the feeding network 32 in this embodiment includes two radiation output units that are electrically connected to each other.
  • each radiation output unit 321 includes a phase shift circuit 3211 and a radiation output terminal 3212 electrically connected to each other, and the radiation output terminal 3212 is electrically connected to a feeding probe 13 of the radiation unit 10 at a corresponding position. That is to say, the feeding network 32 in one chamber 221 is electrically connected to one feeding probe 13 of each radiating element 10 , and the feeding network 32 in the other chamber 221 is electrically connected to the other feeding probe 13 of each radiating element 10 .
  • the probes 13 are electrically connected, and the feeding networks 32 in the two chambers 221 respectively feed the radiating sheet 12 through the two feeding probes 13 of each radiating element 10 .
  • the phase shifter assembly 30 further includes a sliding dielectric plate 33 disposed on the upper and lower sides of each PCB board 31 and slidable relative to the PCB board 31 .
  • the sliding dielectric plate 33 partially covers the phase shifting circuit 3211 and is connected with the phase shifting circuit. 3211 is coupled, and the sliding medium board 33 can slide relative to the PCB board 31 to move the phase.
  • the PCB board 31 in the chamber 221 is fixed, the phase shifting circuit 3211 is extended along the length direction of the reflector 20 , and one end of the sliding dielectric plate 33 extends from one end of the chamber 221 opening.
  • the transmission mechanism drives the sliding medium plate 33 to slide relative to the PCB board 31 along the length of the reflector 20, thereby changing the phase-shifting circuit 3211 on the PCB, that is, the length of the transmission line, thereby changing the phase-shifting circuit
  • the phase adjustment of the dual-polarized antenna of the radiation unit 10 can be performed by moving the sliding dielectric plates 33 in the two chambers 221 respectively.
  • the two chambers 221 in this embodiment are designed side by side, so that the box body 21 with the phase shifter assembly 30 can be integrated with the reflector 20 to form an integrated structure, so that the structure is simple and the assembly is more convenient.
  • the relative fixing structure of the PCB board 31 and the radiation unit 10 is that the reflector 20 corresponding to the installation position of each radiation unit 10 is respectively provided with a card hole 23 that communicates with the two chambers 221 , and each PCB board 31 corresponds to a card hole
  • the position of 23 is provided with a positioning hole 311
  • the lower end of the fixing frame 11 is provided with two hook portions 113 which are respectively clipped and fixed with the reflector 20 through the two locking holes 23, and the ends of the hook portions 113 extend into the positioning holes. 311, so that the PCB board 31 and the radiation unit 10 are relatively fixed.
  • the PCB board 31 is provided with a connection hole at the position of the radiation output end 3212.
  • the feeding probe 13 When the radiation unit 10 is assembled on the reflector 20 and the end of the hook portion 113 extends into the positioning hole 311, the feeding probe 13 The lower end of the connecting portion 131 is just inserted into the connecting hole, so as to realize the electrical connection between the feeding probe 13 and the radiation output end 3212 .
  • the reflector 20 includes an insulating substrate and a metal ground layer disposed on a side of the insulating substrate away from the radiation unit 10 , and the reflector 20 is provided with an escape hole corresponding to the position of the feeding probe 13 ; that is, the feeding probe 13
  • the connecting portion 131 of the feeder probe 13 protrudes into the chamber 221 through the avoidance hole and is electrically connected to the radiation output end 3212 of the feeding network 32 .
  • the isolation sleeve 114 that is, when the fixing frame 11 is assembled on the reflector 20 , the isolation sleeve 114 is located in the avoidance hole, so as to keep the feeding probe 13 isolated from the metal ground layer.
  • the two side edges in the width direction of the reflector 20 are respectively bent toward the front of the reflector 20 to form vertical flanges 24 , and the vertical flanges 24 serve as radiation boundaries of the antenna array.
  • the radiation unit 10 is assembled and fixed on the front of the reflector 20 by means of a snap, and at the same time, the radiation unit 10 and the phase shifter in the back cavity 22 of the reflector 20
  • the component 30 realizes electrical connection without cables, and has a simple structure, convenient and quick assembly, easy to realize automatic production, avoids the loss caused by the cable transfer, and improves the antenna gain.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明涉及一种一体化基站天线,包括反射板、天线阵列以及移相器组件,所述反射板的背面一体成型有一盒体,所述盒体与所述反射板之间形成有一腔体;所述天线阵列设置于所述反射板的正面,所述天线阵列包括至少一列沿所述反射板长度方向排列的辐射单元阵列,且每列辐射单元阵列包括至少一个辐射单元;所述移相器组件设置于所述腔体内,其包括有与各所述辐射单元电连接的馈电网络。根据本发明实施例的一体化基站天线,通过使辐射单元利用卡扣方式装配固定在反射板正面,与此同时辐射单元与反射板背面腔体内的移相器组件实现无电缆的电连接,其结构简单,装配方便快捷,易于实现自动化生产,同时避免了电缆转接造成的损耗,提高了天线增益。

Description

一种一体化基站天线 技术领域
本发明属于基站天线技术领域,尤其涉及一种一体化基站天线。
背景技术
基站天线通常由辐射单元、反射板、移相器及其传动系统等部分组成,而且在常规的基站天线中,辐射单元、反射板、移相器及其传动系统三者为独立的三组结构,辐射单元设置于反射板的正面,反射板的侧边弯折成不同的形状作为辐射边界,移相器位于反射板的反面,则移相器与辐射单元之间需通过电缆或其他方式穿过反射板以电连接,同时由于其它微波器件,如合路器、功分器、滤波器等均位于反射板的反面,则导致反射板反面的结构较为复杂,线缆布局困难,同时需要大量的电缆转接,导致天线增益的损失。
技术问题
本发明的目的在于至少一定程度上解决现有技术中的不足,提供一种一体化基站天线。
技术解决方案
为实现上述目的,本发明实施例提供了一种一体化基站天线,包括:
反射板,所述反射板的背面一体成型有一盒体,所述盒体与所述反射板之间形成有一腔体;
天线阵列,所述天线阵列设置于所述反射板的正面,所述天线阵列包括至少一列沿所述反射板长度方向排列的辐射单元阵列,且每列辐射单元阵列包括至少一个辐射单元;
移相器组件,所述移相器组件设置于所述腔体内,其包括有与各所述辐射单元电连接的馈电网络。
优选地,所述辐射单元包括通过卡扣方式固定在所述反射板上的固定架、以及设置于所述固定架上的辐射片和馈电片,所述馈电片的一端与所述辐射片耦合,另一端穿过所述反射板而与所述馈电网络电连接。
优选地,所述辐射片为双层辐射贴片,包括上下方向相互间隔设置的上层辐射贴片和下层辐射贴片。
优选地,所述馈电片包括两个馈电探针,所述馈电探针包括连接部和耦合部,所述连接部的一端与所述馈电网络耦接,所述耦合部的一端与所述连接部的另一端垂直连接,所述耦合部的另一端向所述辐射片的中心轴线方向延伸,所述耦合部与所述下层辐射贴片;且两个所述馈电探针的耦合部相互垂直。
优选地,所述腔体包括至少两个相对所述辐射单元阵列的中心轴线对称的腔室,所述移相器组件包括分别设置于两个所述腔室内的PCB板,每个所述PCB板上通过印刷方式形成有所述馈电网络,一个所述辐射单元的两个所述馈电探针分别伸入两个所述腔室内,并分别与两个所述PCB板上的馈电网路电连接。
优选地,所述馈电网络包括与所述辐射单元对应设置且数量相同的辐射输出单元,每一所述辐射输出单元包括相互电连接的移相电路和辐射输出端,所述辐射输出端与对应位置的所述辐射单元的一个所述馈电探针电连接。
优选地,每个所述PCB板的上下两侧还设置有可相对所述PCB板滑动的滑动介质板,所述滑动介质板的部分覆盖所述移相电路并与所述移相电路耦合,且所述滑动介质板可相对所述PCB板滑动而移动相位。
优选地,所述反射板对应每个辐射单元的安装位置分别开设有与两个所述腔室连通的卡孔,每一所述PCB板对应所述卡孔的位置开设有定位孔,所述固定架的下端设有两个分别通过两个所述卡孔而与所述反射板卡扣固定的卡勾部,且所述卡勾部的末端伸入所述定位孔中,以使所述PCB板与所述辐射单元相对固定。
优选地,所述反射板包括绝缘基板以及设置于所述绝缘基板远离所述辐射单元一侧的金属接地层,所述反射板对应所述馈电探针的位置开设有避让孔。
优选地,所述反射板宽度方向的两侧边缘分别朝反射板的正面弯折形成有垂直翻边。
有益效果
根据本发明实施例的一体化基站天线,通过使辐射单元利用卡扣方式装配固定在反射板正面,与此同时辐射单元与反射板背面腔体内的移相器组件实现无电缆的电连接,其结构简单,装配方便快捷,易于实现自动化生产,同时避免了电缆转接造成的损耗,提高了天线增益。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一体化基站天线实施例的组装示意图;
图2为本发明天线阵列与移相器组件的连接示意图;
图3为图1中A-A方向的剖视图;
图4为本发明辐射单元的结构示意图;
图5为图4的爆炸示意图。
本发明的实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制,基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“周向”、“径向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
请参阅图1-3,本发明实施例公开了一体化基站天线,包括反射板20、天线阵列以及移相器组件30;反射板20的背面一体成型有一盒体21,盒体21与反射板20之间形成有一腔体22;该腔体22沿反射板20长度方向的两端具有开口;天线阵列设置于反射板20的正面,天线阵列包括至少一列沿反射板20长度方向排列的辐射单元阵列,且每列辐射单元阵列包括至少一个辐射单元10;移相器组件30设置于腔体22内,并包括有与各辐射单元10电连接的馈电网络32。
需要说明的是,本实施例中反射板20的正面为其上表面,反射板20的背面为其下表面,即反射板20与上下方向垂直设置;本实施例以天线阵列包括一列具有两个辐射单元10的辐射单元10阵列进行举例说明。
具体地,结合图4所示,辐射单元10包括通过卡扣方式固定在反射板20上的固定架11、以及设置于固定架11上的辐射片12和馈电片,辐射片12固定设置于固定架11的上端,馈电片固定于固定架11的下端,且馈电片的上端与辐射片12耦合,下端穿过反射板20而与馈电网络32电连接。
其中,结合图5所示,本实施例中的辐射片12为双层辐射贴片,包括上下方向相互间隔设置的上层辐射贴片121和下层辐射贴片122。固定架11上端凸设有两个第一卡勾111和两个第二卡勾122,且第二卡勾122的高度大于第一卡勾111的高度,下层辐射贴片122通过两个第一卡勾111固定于固定架11上,上层辐射贴片121通过两个第二固定卡勾固定于两个第一卡勾111的顶部,从而使得上层辐射贴片121和下层辐射贴片122之间形成有间隙,并且上层辐射贴片121的面积小于下层辐射贴片122的面积;如此组装更加方便快捷,提高了辐射片12与固定架11之间的稳定性,并可拓展辐射单元10的带宽,可以有效延长贴片表面的电流路径,达到小型化的效果。
进一步地,馈电片包括两个馈电探针13,馈电探针13包括连接部131和耦合部132,连接部131的下端与馈电网络32耦接,耦合部132的一端与连接部131的上端垂直连接,耦合部132的另一端向辐射片12的中心轴线方向延伸,耦合部132与下层辐射贴片122;且两个馈电探针13的耦合部132相互垂直。从而通过两个馈电探针13给下层辐射贴片122的局部位置耦合馈电形成双极化天线结构,避免直接馈电致使探针引入电感而限制阻抗带宽。
在本发明的一个实施例中,腔体22包括两个相对辐射单元10阵列的中心轴线对称的腔室221,移相器组件30包括分别设置于两个腔室221内的PCB板31,每个PCB板31上通过印刷方式印刷有微带线路从而形成馈电网络32,一个辐射单元10的两个馈电探针13分别伸入两个腔室221内,并分别与两个PCB板31上的馈电网路电连接。需要说明的是,PCB板31可以使用双面覆铜高频介质印制电路板。
具体地,每个PCB板31上的馈电网络32包括与辐射单元10对应设置且数量相同的辐射输出单元321,即本实施例中的馈电网络32包括两个相互电连接的辐射输出单元321,每一辐射输出单元321包括相互电连接的移相电路3211和辐射输出端3212,辐射输出端3212与对应位置的辐射单元10的一个馈电探针13电连接。也就是说,一个腔室221内的馈电网络32与各辐射单元10的一个馈电探针13电连接,另一个腔室221内的馈电网络32与各辐射单元10的另一个馈电探针13电连接,两个腔室221内的馈电网络32分别通过各辐射单元10的两个馈电探针13来对辐射片12进行馈电。
进一步地,移相器组件30还包括于每个PCB板31的上下两侧设置的可相对PCB板31滑动的滑动介质板33,滑动介质板33的部分覆盖移相电路3211并与移相电路3211耦合,且滑动介质板33可相对PCB板31滑动而移动相位。在本实施例中,腔室221内的PCB板31是固定不动的,移相电路3211沿反射板20的长度方向延伸设置,而滑动介质板33的一端从腔室221的其中一端开口延伸出并与外部的传动机构连接,由传动机构驱动滑动介质板33相对PCB板31沿反射板20的长度方向滑动,由此改变PCB上的移相电路3211即传输线的长度,进而改变移相电路3211的传播相位,通过分别移动两个腔室221内的滑动介质板33可分别对辐射单元10的双极化天线进行相位调节,相比现有常规腔体移相器两个极化上下叠放不同,本实施例的两个腔室221并排设计,使得具有安装移相器组件30的盒体21可以与反射板20形成一体化结构,从而结构简单,组装更加方便。
其中,PCB板31与辐射单元10的相对固定结构为,反射板20对应每个辐射单元10的安装位置分别开设有与两个腔室221连通的卡孔23,每一PCB板31对应卡孔23的位置开设有定位孔311,固定架11的下端设有两个分别通过两个卡孔23而与反射板20卡扣固定的卡勾部113,且卡勾部113的末端伸入定位孔311中,以使PCB板31与辐射单元10相对固定。需要说明的是,PCB板31于辐射输出端3212位置开设有连接孔,当辐射单元10装配在反射板20上并设卡勾部113末端伸入定位孔311中的同时,馈电探针13的连接部131下端恰好插入在连接孔中,从而实现馈电探针13与辐射输出端3212电连接。
在一个实施例中,反射板20包括绝缘基板以及设置于绝缘基板远离辐射单元10一侧的金属接地层,反射板20对应馈电探针13的位置开设有避让孔;即馈电探针13的连接部131通过该避让孔伸入至腔室221内而与馈电网络32的辐射输出端3212电连接,较佳地,固定架11还设有包裹馈电探针13的连接部131的隔离套114,即固定架11装配在反射板20上时,隔离套114位于该避让孔内,以使馈电探针13与金属接地层之间保持隔绝。进一步地,反射板20宽度方向的两侧边缘分别朝反射板20的正面弯折形成有垂直翻边24,该垂直翻边24即作为天线阵列的辐射边界。
综上所述,本发明公开的一体化基站天线,通过使辐射单元10利用卡扣方式装配固定在反射板20正面,与此同时辐射单元10与反射板20背面腔体22内的移相器组件30实现无电缆的电连接,其结构简单,装配方便快捷,易于实现自动化生产,同时避免了电缆转接造成的损耗,提高了天线增益。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。
以上为对本发明所提供的技术方案的描述,对于本领域的技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种一体化基站天线,其特征在于,包括:
    反射板,所述反射板的背面一体成型有一盒体,所述盒体与所述反射板之间形成有一腔体;
    天线阵列,所述天线阵列设置于所述反射板的正面,所述天线阵列包括至少一列沿所述反射板长度方向排列的辐射单元阵列,且每列辐射单元阵列包括至少一个辐射单元;
    移相器组件,所述移相器组件设置于所述腔体内,其包括有与各所述辐射单元电连接的馈电网络。
  2. 根据权利要求1所述的一体化基站天线,其特征在于,所述辐射单元包括通过卡扣方式固定在所述反射板上的固定架、以及设置于所述固定架上的辐射片和馈电片,所述馈电片的一端与所述辐射片耦合,另一端穿过所述反射板而与所述馈电网络电连接。
  3. 根据权利要求2所述的一体化基站天线,其特征在于,所述辐射片为双层辐射贴片,包括上下方向相互间隔设置的上层辐射贴片和下层辐射贴片。
  4. 根据权利要求3所述的一体化基站天线,其特征在于,所述馈电片包括两个馈电探针,所述馈电探针包括连接部和耦合部,所述连接部的一端与所述馈电网络耦接,所述耦合部的一端与所述连接部的另一端垂直连接,所述耦合部的另一端向所述辐射片的中心轴线方向延伸,所述耦合部与所述下层辐射贴片;且两个所述馈电探针的耦合部相互垂直。
  5. 根据权利要求4所述的一体化基站天线,其特征在于,所述腔体包括至少两个相对所述辐射单元阵列的中心轴线对称的腔室,所述移相器组件包括分别设置于两个所述腔室内的PCB板,每个所述PCB板上通过印刷方式形成有所述馈电网络,一个所述辐射单元的两个所述馈电探针分别伸入两个所述腔室内,并分别与两个所述PCB板上的馈电网路电连接。
  6. 根据权利要求5所述的一体化基站天线,其特征在于,所述馈电网络包括与所述辐射单元对应设置且数量相同的辐射输出单元,每一所述辐射输出单元包括相互电连接的移相电路和辐射输出端,所述辐射输出端与对应位置的所述辐射单元的一个所述馈电探针电连接。
  7. 根据权利要求6所述的一体化基站天线,其特征在于,每个所述PCB板的上下两侧还设置有可相对所述PCB板滑动的滑动介质板,所述滑动介质板的部分覆盖所述移相电路并与所述移相电路耦合,且所述滑动介质板可相对所述PCB板滑动而移动相位。
  8. 根据权利要求5所述的一体化基站天线,其特征在于,所述反射板对应每个辐射单元的安装位置分别开设有与两个所述腔室连通的卡孔,每一所述PCB板对应所述卡孔的位置开设有定位孔,所述固定架的下端设有两个分别通过两个所述卡孔而与所述反射板卡扣固定的卡勾部,且所述卡勾部的末端伸入所述定位孔中,以使所述PCB板与所述辐射单元相对固定。
  9. 根据权利要求4所述的一体化基站天线,其特征在于,所述反射板包括绝缘基板以及设置于所述绝缘基板远离所述辐射单元一侧的金属接地层,所述反射板对应所述馈电探针的位置开设有避让孔。
  10. 根据权利要求9所述的一体化基站天线,其特征在于,所述反射板宽度方向的两侧边缘分别朝反射板的正面弯折形成有垂直翻边。
PCT/CN2021/073778 2021-01-26 2021-01-26 一种一体化基站天线 WO2022160094A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/073778 WO2022160094A1 (zh) 2021-01-26 2021-01-26 一种一体化基站天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/073778 WO2022160094A1 (zh) 2021-01-26 2021-01-26 一种一体化基站天线

Publications (1)

Publication Number Publication Date
WO2022160094A1 true WO2022160094A1 (zh) 2022-08-04

Family

ID=82652973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073778 WO2022160094A1 (zh) 2021-01-26 2021-01-26 一种一体化基站天线

Country Status (1)

Country Link
WO (1) WO2022160094A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116744143A (zh) * 2023-07-25 2023-09-12 广州旭杰电子有限公司 一种便于安装的通信网络基站

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505007A (zh) * 2009-03-10 2009-08-12 摩比天线技术(深圳)有限公司 一种宽频双极化天线辐射元结构
US7639198B2 (en) * 2005-06-02 2009-12-29 Andrew Llc Dipole antenna array having dipole arms tilted at an acute angle
CN104466426A (zh) * 2014-11-11 2015-03-25 李梓萌 一种用于基站天线的反射板以及基站天线阵列结构
CN205882154U (zh) * 2016-03-29 2017-01-11 重庆克洛弗电子有限公司 一种轻型移动通信基站天线
WO2017113147A1 (zh) * 2015-12-30 2017-07-06 华为技术有限公司 一种阵列天线系统
CN107819198A (zh) * 2017-09-19 2018-03-20 上海华为技术有限公司 一种基站天线的馈电网络,基站天线及基站
CN210430115U (zh) * 2019-05-13 2020-04-28 华为技术有限公司 移相器、阵列天线及基站
CN111525248A (zh) * 2020-05-09 2020-08-11 京信通信技术(广州)有限公司 一种天线
CN111525230A (zh) * 2020-05-09 2020-08-11 京信通信技术(广州)有限公司 天线

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7639198B2 (en) * 2005-06-02 2009-12-29 Andrew Llc Dipole antenna array having dipole arms tilted at an acute angle
CN101505007A (zh) * 2009-03-10 2009-08-12 摩比天线技术(深圳)有限公司 一种宽频双极化天线辐射元结构
CN104466426A (zh) * 2014-11-11 2015-03-25 李梓萌 一种用于基站天线的反射板以及基站天线阵列结构
WO2017113147A1 (zh) * 2015-12-30 2017-07-06 华为技术有限公司 一种阵列天线系统
CN205882154U (zh) * 2016-03-29 2017-01-11 重庆克洛弗电子有限公司 一种轻型移动通信基站天线
CN107819198A (zh) * 2017-09-19 2018-03-20 上海华为技术有限公司 一种基站天线的馈电网络,基站天线及基站
CN210430115U (zh) * 2019-05-13 2020-04-28 华为技术有限公司 移相器、阵列天线及基站
CN111525248A (zh) * 2020-05-09 2020-08-11 京信通信技术(广州)有限公司 一种天线
CN111525230A (zh) * 2020-05-09 2020-08-11 京信通信技术(广州)有限公司 天线

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116744143A (zh) * 2023-07-25 2023-09-12 广州旭杰电子有限公司 一种便于安装的通信网络基站
CN116744143B (zh) * 2023-07-25 2024-01-26 广州旭杰电子有限公司 一种便于安装的通信网络基站

Similar Documents

Publication Publication Date Title
US20180294550A1 (en) Antenna element preferably for a base station antenna
US20200412002A1 (en) Antenna Element and Array Antenna
CN111934089B (zh) 天线装置及移动终端
CN111585006B (zh) 辐射单元及阵列天线
US20030112200A1 (en) Horizontally polarized printed circuit antenna array
US11557839B2 (en) Double frequency vertical polarization antenna and television
CN112803157A (zh) 一种一体化基站天线
WO2022001068A1 (zh) 小型化天线
US10797408B1 (en) Antenna structure and method for manufacturing the same
WO2020155723A1 (zh) 移相馈电装置及基站天线
TWI682603B (zh) 射頻傳輸設置及在射頻傳輸設置中將一第一傳輸線連接至一第二傳輸線之方法
WO2022160094A1 (zh) 一种一体化基站天线
WO2019041838A1 (zh) 一种新型耦合移相器
CN116093596B (zh) 毫米波宽带封装天线
WO2011145894A1 (en) Phase shifter element
CN114678668B (zh) 天线装置与移相器
CN216251118U (zh) 一种5g宽带双圆极化贴片天线
EP4340124A1 (en) Radiation unit and base station antenna
CN214672959U (zh) 一种一体化基站天线
US20130321105A1 (en) Stripline connection apparatus
CN214625341U (zh) 一种转接板、转接网络和天线
CN213546564U (zh) 基于pifa天线的mimo系统中多天线间隔离的改善结构
WO2022095981A1 (zh) 多频段融合天线组件
US20230064306A1 (en) Connection assembly for antenna and base station antenna
US10439296B2 (en) Antenna device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921715

Country of ref document: EP

Kind code of ref document: A1