WO2022010266A1 - 전자파 차폐재 및 이의 제조 방법 - Google Patents

전자파 차폐재 및 이의 제조 방법 Download PDF

Info

Publication number
WO2022010266A1
WO2022010266A1 PCT/KR2021/008668 KR2021008668W WO2022010266A1 WO 2022010266 A1 WO2022010266 A1 WO 2022010266A1 KR 2021008668 W KR2021008668 W KR 2021008668W WO 2022010266 A1 WO2022010266 A1 WO 2022010266A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
shielding material
wave shielding
thin film
electromagnetic
Prior art date
Application number
PCT/KR2021/008668
Other languages
English (en)
French (fr)
Inventor
최재원
손성욱
Original Assignee
경상국립대학교산학협력단
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200112844A external-priority patent/KR102388449B1/ko
Application filed by 경상국립대학교산학협력단, 성균관대학교산학협력단 filed Critical 경상국립대학교산학협력단
Publication of WO2022010266A1 publication Critical patent/WO2022010266A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to an electromagnetic wave shielding material and a method for manufacturing the same. Specifically, after forming a porous organic polymer layer modified with an amine functional group on a polymer fiber thin film, a metal thin film is formed to provide an electromagnetic wave shielding material having excellent flexibility and high electromagnetic wave shielding efficiency.
  • Electromagnetic wave shielding consists of a combination of external reflection, internal reflection and absorption effects, and electromagnetic wave shielding by electromagnetic wave reflection using materials with excellent electrical conductivity, such as metal nanopowders and carbon nanotubes, which are known until now as electromagnetic wave shielding materials.
  • the prior patent Publication No. 10-2017-0064216 discloses a metal/carbon hybrid particle for electromagnetic wave reflection.
  • a material having an electromagnetic wave absorption mechanism rather than a material having an electromagnetic wave reflection mechanism is absolutely required as a material for electromagnetic wave shielding.
  • the present application relates to an electromagnetic wave shielding material for solving the problems of the prior art described above, while maintaining or increasing the efficiency of electromagnetic wave shielding while reducing the metal content.
  • the efficiency reduction rate of electromagnetic wave shielding is 1% or less after the flexibility evaluation 1,000 times, the electromagnetic wave shielding performance can be maintained.
  • Electromagnetic wave shielding material of the present invention for achieving the above technical problem is a polymer fiber thin film; a porous organic polymer layer formed on the polymer fiber thin film; and a metal thin film formed on the porous organic polymer layer.
  • the porous organic polymer layer includes tetra(4-ethynylphenyl)methane, 1-amino-2,5-dibromobenzene, tri(4-ethynylphenyl)amine, tri(4-iodophenyl)amine, It may include a material selected from the group consisting of tetrakis(4-ethynylphenyl)porphyrin, diiodobenzene, 1,3,5-triethynylbenzene, and combinations thereof, but is not limited thereto.
  • the electromagnetic wave shielding material may have an electromagnetic wave shielding efficiency of 50 dB to 80 dB in the range of 5 GHz to 20 GHz, but is not limited thereto.
  • the electromagnetic shielding material may have a reduction in electromagnetic wave shielding efficiency of 1% or less compared to the initial efficiency after 1,000 bending tests using a bending tester having a diameter of 5 mm, but is not limited thereto.
  • the metal thin film may be included in an amount of 10 to 60 parts by weight, but is not limited thereto.
  • the thickness of the metal thin film may be 200 nm to 800 nm, but is not limited thereto.
  • the porous organic polymer layer may be included in an amount of 1 to 5 parts by weight, but is not limited thereto.
  • the method of manufacturing an electromagnetic wave shielding material of the present invention comprises the steps of forming a porous organic polymer layer on a polymer fiber thin film; and forming a metal thin film on the porous organic polymer layer.
  • the step of forming a first catalyst on the polymer fiber thin film before the step of forming the porous organic polymer layer may be further included, but is not limited thereto.
  • the forming of the metal thin film may be performed by an electroless plating method, but is not limited thereto.
  • the metal thin film may be included in an amount of 10 to 60 parts by weight, but is not limited thereto.
  • the disclosed technology may have the following effects. However, this does not mean that a specific embodiment should include all of the following effects or only the following effects, so the scope of the disclosed technology should not be construed as being limited thereby.
  • the electromagnetic wave shielding material according to the present application has the porous organic polymer layer modified with an amine functional group to increase the bonding force between the polymer fiber thin film and the metal thin film to prevent metal separation according to flexibility evaluation.
  • the electromagnetic shielding material of the present application uses a small amount of metal, so it is lighter and has good formability compared to the conventional electromagnetic shielding material, so it can be applied to various uses.
  • the electromagnetic wave shielding material of the present application can be easily applied in the 5G environment mobile communication field using a high frequency of 10 GHz or more by blocking electromagnetic waves by an absorption mechanism.
  • FIG. 1 is a diagram of a porous organic polymer layer according to an embodiment of the present application.
  • FIG. 2 is a flowchart of a method of manufacturing an electromagnetic wave shielding material according to an exemplary embodiment of the present application.
  • FIG. 3 is a view showing a method of manufacturing an electromagnetic wave shielding material according to an embodiment of the present application.
  • SEM scanning electron microscopic
  • IR Infrared
  • NMR 7 is a Nuclear Magnetic Resonance (NMR) spectrum of MOP-A according to an embodiment of the present application.
  • FIG 9 is a graph showing the volume of pores according to the pore size of MOP-A prepared according to the present embodiment.
  • XPS 10 is an X-ray photoelectron spectroscopy (XPS) graph of the electromagnetic wave shielding material manufactured according to the present embodiment.
  • FIGS. 11 (a) to (d) are photographs of the electromagnetic wave shielding material manufactured according to this Example and Comparative Example
  • FIGS. 11 (e) to (h) are electromagnetic wave shielding materials manufactured according to the present Example and Comparative Example.
  • SEM scanning electron microscopic
  • 12A to 12D are scanning electron microscopic (SEM) images of cross-sections of electromagnetic wave shielding materials prepared according to the present Example and Comparative Example.
  • XPS X-ray photoelectron spectroscopy
  • FIG. 15A is a graph showing the resistance according to the bending angle of the electromagnetic shielding material manufactured according to the present embodiment
  • FIG. 15B is a graph showing the resistance according to the humidity of the electromagnetic shielding material manufactured according to the present embodiment
  • FIG. 15C is the present embodiment It is a graph showing the resistance according to the temperature of the electromagnetic wave shielding material manufactured according to the example.
  • 16 is a graph showing the electromagnetic wave shielding efficiency of the electromagnetic wave shielding material prepared according to the present Example and Comparative Example.
  • 17 is a graph showing the electromagnetic shielding efficiency of the electromagnetic shielding material manufactured according to the present Example and Comparative Example.
  • 19 is a graph showing the electromagnetic wave efficiency of the electromagnetic wave shielding material manufactured according to the present Example and Comparative Example.
  • Figure 20 (a) is a view showing when the electromagnetic wave shielding material manufactured according to this embodiment is bent
  • Figure 20 (b) is the resistance according to the number of bending the electromagnetic wave shielding material manufactured according to this embodiment It is a graph.
  • 21 is a graph showing the electromagnetic wave shielding efficiency according to the number of bending the electromagnetic wave shielding material manufactured according to the present embodiment.
  • a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component.
  • the term “and/or” includes a combination of a plurality of related listed items or any of a plurality of related listed items.
  • a polymer fiber thin film a porous organic polymer layer formed on the polymer fiber thin film; and a metal thin film formed on the porous organic polymer layer.
  • an electromagnetic wave shielding material using only metal, its use is limited due to high processing cost and limitations in formability.
  • a metal is simply coated on a polymer thin film, the metal is separated according to repeated flexibility tests, and there is a problem in that the electromagnetic wave shielding efficiency decreases as it is used.
  • the porous organic polymer layer modified with an amine functional group may increase the bonding force between the polymer fiber thin film and the metal thin film, thereby preventing metal detachment according to flexibility evaluation.
  • the electromagnetic shielding material of the present application uses a small amount of metal, so it is lighter and has good formability compared to the conventional electromagnetic shielding material, so it can be applied to various uses.
  • the electromagnetic wave shielding material may have an electromagnetic wave shielding efficiency of 50 dB to 80 dB in the range of 5 GHz to 20 GHz, but is not limited thereto.
  • Equation 1 the electromagnetic wave shielding efficiency
  • SE R is the shielding efficiency by reflection
  • SE A is the shielding efficiency by absorption
  • SE B is the shielding efficiency by internal reflection
  • is the volume resistivity
  • f is the electromagnetic wave frequency
  • t is the thickness of the shielding material.
  • the unit of electromagnetic wave efficiency is decibel (dB). If the electromagnetic wave absorption mechanism is 10 dB or more, the internal reflection mechanism can be ignored.
  • Equation 1 As the frequency of the electromagnetic wave increases, the efficiency due to external reflection decreases and the efficiency by absorption increases. In other words, as mobile communication develops into 5G, it gradually progresses to higher frequencies, which means that materials that absorb electromagnetic waves are absolutely necessary for materials required for electromagnetic wave shielding.
  • the electromagnetic wave shielding material of the present application can be easily applied in the 5G environment mobile communication field using a high frequency of 10 GHz or more by blocking electromagnetic waves by an absorption mechanism.
  • the polymer fiber thin film comprises a material selected from the group consisting of PET (Poly Ethylene Terephalate), PEN (Poly Ethylene Naphthelate), PC (PolyCarbonate), PI (Poly Imide), PES (Poly Ether Surfone), and combinations thereof.
  • PET Poly Ethylene Terephalate
  • PEN Poly Ethylene Naphthelate
  • PC PolyCarbonate
  • PI Poly Imide
  • PES Poly Ether Surfone
  • the polymer fiber thin film may have a form in which polymer fibers are entangled, but is not limited thereto.
  • the porous organic polymer layer may be formed by forming a network of organic polymers, but is not limited thereto.
  • the porous organic polymer layer may be modified with an amine functional group, but is not limited thereto.
  • FIG. 1 is a diagram of a porous organic polymer layer according to an embodiment of the present application.
  • organic polymers form a network while forming fine pores.
  • the pores have a high surface area, and the high surface area increases the amount of amine functional groups located on the surface. Accordingly, the amount of the second catalyst (metal ion, M + ) coordinated with the amine functional group may increase.
  • the organic polymer is tetra(4-ethynylphenyl)methane, 1-amino-2,5-dibromobenzene, tri(4-ethynylphenyl)amine, tri(4-iodophenyl)amine, tetrakis (4-ethynylphenyl) a substance selected from the group consisting of porphyrin, diiodobenzene, 1,3,5-triethynylbenzene, and combinations thereof.
  • the metal thin film may include a metal made of Cu, Ag, Au, Pd, Pt, Ni, Cp, Sn, Fe, Zn, and combinations thereof, but is not limited thereto.
  • the electromagnetic shielding material may have a reduction in electromagnetic wave shielding efficiency of 1% or less compared to the initial efficiency after 1,000 bending tests using a bending tester having a diameter of 5 mm, but is not limited thereto.
  • the efficiency of electromagnetic shielding is hardly reduced even after repeated flexibility evaluation. Accordingly, when applied as a flexible electromagnetic wave shielding material, high durability and electromagnetic wave shielding efficiency can be guaranteed.
  • the metal thin film may be included in an amount of 10 to 60 parts by weight, but is not limited thereto.
  • the efficiency of the electromagnetic shielding material may be lowered.
  • the metal content may increase, thereby increasing the weight and cost.
  • the thickness of the metal thin film may be 200 nm to 800 nm, but is not limited thereto.
  • the efficiency of the electromagnetic wave shielding material may be lowered, and when the thickness of the metal thin film is more than 800 nm, the flexibility of the electromagnetic wave shielding material may be reduced.
  • the porous organic polymer layer may be included in an amount of 1 to 5 parts by weight, but is not limited thereto.
  • the present application comprises the steps of forming a porous organic polymer layer on a polymer fiber thin film; and forming a metal thin film on the porous organic polymer layer.
  • FIG. 2 is a flowchart of a method of manufacturing an electromagnetic wave shielding material according to an exemplary embodiment of the present application.
  • a porous organic polymer layer is formed on the polymer fiber thin film (S100).
  • the step of forming a first catalyst on the polymer fiber thin film before the step of forming the porous organic polymer layer may be further included, but is not limited thereto.
  • the formation of the first catalyst on the surface of the polymer fiber thin film may promote the formation of the porous organic polymer layer on the polymer fiber thin film.
  • the first catalyst may include a material selected from the group consisting of Pd, Cu, and combinations thereof, but is not limited thereto.
  • the first catalyst may be, for example, (PPh 3 )PdCl 2 , bis(triphenylphosphine)palladium(II)dichloride, CuI.
  • the forming of the porous organic polymer layer may include adding a mixed solution of an organic polymer to the polymer fiber thin film and then reacting at a temperature of 60° C. to 100° C. for 10 hours to 30 hours.
  • the organic polymer is tetra(4-ethynylphenyl)methane, 1-amino-2,5-dibromobenzene, tri(4-ethynylphenyl)amine, tri(4-iodophenyl)amine, tetrakis It may include a material selected from the group consisting of (4-ethynylphenyl)porphyrin, diiodobenzene, 1,3,5-triethynylbenzene, and combinations thereof.
  • the porous organic polymer layer may be modified with an amine functional group, but is not limited thereto.
  • the second catalyst may be coordinated with the amine functional group and is not particularly limited as long as it is a material that acts as a catalyst for the electroless plating method.
  • the second catalyst may be Ag.
  • the forming of the metal thin film may be performed by an electroless plating method, but is not limited thereto.
  • the metal thin film may be included in an amount of 10 to 60 parts by weight, but is not limited thereto.
  • the electroless plating method may be performed for 15 to 50 minutes, but is not limited thereto.
  • the metal thin film may not be sufficiently formed, and thus the efficiency of the electromagnetic wave shielding material may be lowered.
  • the metal content may increase and thus weight and cost may increase.
  • the time of the electroless plating method may be adjusted according to the concentration of the solution containing the metal for forming the metal thin film.
  • concentration of the solution When the concentration of the solution is high, the time of the electroless plating method may be reduced, and if the concentration of the solution is low, the time of the electroless plating method may be reduced. That is, the time is not limited to the above-described time, and the electromagnetic wave shielding material may be formed to include a predetermined weight of metal by adjusting according to the concentration of the solution.
  • FIG. 3 is a view showing a method of manufacturing an electromagnetic wave shielding material according to an embodiment of the present application.
  • PET fibers Fiber diameter: 13.8 ⁇ m, thin film thickness: 100 ⁇ m, area 6 cm X 7 cm was put, and the catalyst was adsorbed on the surface of the PET fiber.
  • the PET fiber with the porous organic polymer layer was immersed in a solution of AgNO 3 (0.10 g, 5.9 mmol) dissolved in 100 ml of water for 10 minutes to form Ag + on the porous organic polymer layer (PET@MOP) -A@Ag + ).
  • a copper plating solution was prepared by mixing 5.0 g of CuSO 4 5H 2 O (20 mmol), 25 g of sodium potassium tartrate (89 mmol), 7.0 g of NaOH (0.18 mol) and 500 ml of water.
  • the Ag + formed PET fiber PET@MOP-A@Ag +
  • the electromagnetic wave A shielding material PET@MOP-A@Cu-20
  • An electromagnetic wave shielding material (PET@MOP-A@Cu-40) was prepared in the same manner as in Example 1, except that the plating time was 40 minutes, and the Cu content of the electromagnetic wave shielding material was 41%.
  • a silver plating solution [(AgNO 3 (3.40 g), ammonia solution (28-30%, 6.36 ml) and a first mixed solution of 35 ml of water (500 ml) and potassium sodium tartrate (44.4 g)
  • An electromagnetic wave shielding material (PET@MOP-A@Au-40) was prepared in the same manner as in Example 1, except that a second mixed solution of MgSO 4 (3.06 g) and water (500 ml)] was used. and the Ag content of the electromagnetic wave shielding material was 14.2%.
  • An electromagnetic wave shielding material (PET@MOP-A@Cu-5) was prepared in the same manner as in Example 1, except that the plating time was 5 minutes, and the Cu content of the electromagnetic wave shielding material was 1.4%.
  • An electromagnetic wave shielding material (PET@MOP-A@Cu-10) was prepared in the same manner as in Example 1, except that the plating time was 10 minutes, and the Cu content of the electromagnetic wave shielding material was 3.0%.
  • PET@Cu-20 an electromagnetic wave shielding material
  • PET fibers Fiber diameter: 13.8 ⁇ m, thin film thickness: 100 ⁇ m, area 6 cm X 7 cm was put, and the catalyst was adsorbed on the surface of the PET fiber.
  • the PET fiber with the porous organic polymer layer was immersed in a solution of AgNO 3 (0.10 g, 5.9 mmol) dissolved in 100 ml of water for 10 minutes to form Ag + on the porous organic polymer layer (PET@MOP) @Ag + ).
  • a copper plating solution was prepared by mixing 5.0 g of CuSO 4 5H 2 O (20 mmol), 25 g of sodium potassium tartrate (89 mmol), 7.0 g of NaOH (0.18 mol) and 500 ml of water.
  • a solution of 70 ml of the copper plating solution and formaldehyde (1.0 ml, 36 mmol) as a reducing agent the Ag + formed PET fiber (PET@MOP@Ag + ) was put and plated at room temperature for 20 minutes to obtain an electromagnetic wave shielding material ( PET@MOP@Cu-20) was prepared.
  • FIG. 4 is the surface of PET fiber
  • (b) of FIG. 4 is the surface of PET@MOP-A in which a porous organic polymer modified with an amine functional group is formed on PET
  • FIG. 4(c) is the surface of the electromagnetic wave shielding material of Example 2.
  • the surface of the PET fiber is smooth.
  • FIG. 4(b) it can be observed that an island shape is formed on the surface, and it can be confirmed that a porous organic polymer modified with an amine functional group is formed on the surface of the PET fiber.
  • 4C it can be seen that copper is evenly distributed over the entire surface.
  • SEM scanning electron microscopic
  • FIG. 5 is a cross-section of PET@MOP-A, and it can be seen that a porous organic polymer modified with an amine functional group is formed on the surface of the PET fiber to a thickness of 234 ⁇ 14 nm.
  • IR Infrared
  • PET@MOP-A in FIG. 6 is a porous organic polymer modified with an amine functional group on a polymer fiber thin film, and MOP-A is obtained by etching the polymer fiber thin film (PET) of PET@MOP-A. .
  • the peak appearing in the porous organic polymer (MOP-A) modified with an amine functional group does not appear in PET@MOP-A in which the porous organic polymer modified with an amine functional group is formed on the polymer fiber thin film.
  • MOP-A ratio is 1.94 wt%, which occupies a very small weight, so that the peak does not appear significantly.
  • NMR 7 is a Nuclear Magnetic Resonance (NMR) spectrum of MOP-A according to an embodiment of the present application.
  • the MOP-A has an aromatic peak at 145.6 ppm, 129.6 ppm and 120.2 ppm, a methylene peak at 64.1 ppm, and an alkyne peak at ⁇ 85 ppm.
  • the MOP-A is well formed on the polymer fiber thin film (PET).
  • FIG. 8 is a nitrogen gas adsorption isotherm measured at a temperature of 77K.
  • the surface area and total pore volume of MOP-A prepared according to Examples calculated by the Brunaer-Emmett-Teller (BET) theory were 1,007 m 2 /g and 0.35 cm 3 /g, respectively.
  • the amine functional groups are evenly distributed, so that the catalyst amount of metal ions that can be coordinated with the amine functional groups can be increased.
  • FIG 9 is a graph showing the volume of pores according to the pore size of MOP-A prepared according to the present embodiment.
  • FIG. 9 shows the pore size distribution calculated by the density functional theory (DFT) theory.
  • the pore size of MOP-A of the present application is distributed to 2 nm or less.
  • XPS 10 is an X-ray photoelectron spectroscopy (XPS) graph of the electromagnetic wave shielding material manufactured according to the present embodiment.
  • PET@MOP-A@Ag + in FIG. 10 is Ag + ions formed on the porous organic polymer layer in which the amine functional group is modified
  • PET@MOP@Ag + is the porous organic polymer layer (in which the amine functional group is not modified).
  • Ag + ions are formed on the polymer layer
  • PET@Ag + is Ag + ions formed on the polymer fiber thin film.
  • the amine functional group modified on the porous organic polymer layer plays an important role in adsorbing Ag + ions. Moreover, when the Ag + ions are sufficiently formed, metals (copper, silver, etc.) can be plated by the electroless plating method. That is, since the porous organic polymer layer is modified with an amine functional group, a metal, which is an active layer of the electromagnetic wave shielding material, can be successfully formed.
  • FIGS. 11 (a) to (d) are photographs of the electromagnetic wave shielding material manufactured according to this Example and Comparative Example
  • FIGS. 11 (e) to (h) are electromagnetic wave shielding materials manufactured according to the present Example and Comparative Example.
  • SEM scanning electron microscopic
  • FIG. 11(a) is a photograph of Comparative Example 1
  • FIG. 11(b) is a photograph of Comparative Example 2
  • FIG. 11(c) is a photograph of Example 1
  • FIG. 11(d) is a photograph of Example 2
  • FIG. 11 (e) is an SEM image of Comparative Example 1
  • FIG. 11 (f) is an SEM image of Comparative Example 2
  • FIG. 11 (g) is an SEM image of Example 1 image
  • (h) of FIG. 11 is an SEM image of Example 2.
  • the scale bar of FIGS. 11 (a) to (d) is 0.5 cm.
  • 12A to 12D are scanning electron microscopic (SEM) images of cross-sections of electromagnetic wave shielding materials prepared according to the present Example and Comparative Example.
  • Fig. 12 (a) is the SEM image of Comparative Example 1
  • Fig. 12 (b) is the SEM image of Comparative Example 2
  • Fig. 12 (c) is the SEM image of Example 1
  • Fig. 12 (d) is an SEM image of Example 2.
  • the copper thickness was measured to be 330 nm and 625 nm, respectively.
  • the thickness of copper could not be measured, which is because copper was not sufficiently formed in the electromagnetic wave shielding materials of Comparative Examples 1 and 2, so that it was attached to the porous organic polymer layer only in the form of an island. Because.
  • the peak intensity increases as the amount of copper deposited at 43.2°, 50.4°, and 74.2°, which are the (111), (200) and (220) peaks of copper increases. .
  • XPS X-ray photoelectron spectroscopy
  • the peak intensity increases as the amount of copper deposited at 952.1 eV and 932.2 eV , which are Cu 2p 1/2 and Cu 2p 3/2 peaks, increases.
  • the resistance value could not be measured because the resistance was so great that it could not be measured.
  • the electromagnetic wave shielding efficiency was also measured to be 0dB.
  • the resistances of Examples 1 to 3 were 0.218 ⁇ /sq, 0.086 ⁇ /sq, and 4.814 ⁇ /sq, respectively, which means that the electrical conductivity of Examples 1 to 3 was high.
  • the electromagnetic wave shielding efficiencies of Examples 1 to 3 were 64.6 dB, 71.7 dB, and 18.6 dB, respectively. In particular, it can be seen that the electromagnetic wave shielding efficiency of Examples 1 and 2 is very high.
  • FIG. 15A is a graph showing the resistance according to the bending angle of the electromagnetic shielding material manufactured according to the present embodiment
  • FIG. 15B is a graph showing the resistance according to the humidity of the electromagnetic shielding material manufactured according to the present embodiment
  • FIG. 15C is the present embodiment It is a graph showing the resistance according to the temperature of the electromagnetic wave shielding material manufactured according to the example.
  • FIG. 15A is a graph showing the resistance according to the bending angle of the electromagnetic shielding material at a temperature of 25°C and a humidity of 35%
  • FIG. 15B is a graph showing the resistance according to the humidity of the electromagnetic shielding material at a temperature of 25°C.
  • Figure 15c is a graph showing the resistance according to the temperature of the electromagnetic wave shielding material under the condition of humidity of 35%.
  • the resistance value does not change significantly according to the change in the bending angle, humidity, and temperature of the electromagnetic shielding material. This means that the durability of the electromagnetic wave shielding material of the present application is high.
  • 16 is a graph showing the electromagnetic wave shielding efficiency of the electromagnetic wave shielding material prepared according to the present Example and Comparative Example.
  • FIG. 16 is a graph showing the electromagnetic wave shielding efficiency in the range of 7.5 GHz to 12 GHz.
  • 17 is a graph showing the electromagnetic shielding efficiency of the electromagnetic shielding material manufactured according to the present Example and Comparative Example.
  • FIG. 17 is a graph showing electromagnetic wave shielding efficiency in the range of 12 GHz to 18 GHz.
  • FIG. 18 is a graph showing the electromagnetic wave shielding efficiency in the range of 7.5 GHz to 12 GHz.
  • the electromagnetic wave shielding efficiency of Example 3 at 12 GHz was found to be 18.6 dB.
  • Comparative Example 1 When the weight of the plated copper of the electromagnetic shielding material prepared according to this Example and Comparative Example was analyzed, Comparative Example 1 was 1.4%, Comparative Example 2 was 3.0%, Example 1 was 29.0%, compared to the total weight of the electromagnetic shielding material Example 2 was found to be 41.0%, and Example 3 was found to be 14.2%. From the weight analysis results and the results shown in FIGS. 16 to 18 , it can be confirmed that the electromagnetic wave shielding efficiency increases as the amount of metal plated on the electromagnetic wave shielding material increases.
  • 19 is a graph showing the electromagnetic wave efficiency of the electromagnetic wave shielding material manufactured according to the present Example and Comparative Example.
  • FIG. 19 is a graph showing the electromagnetic wave shielding efficiency in the range of 7.5 GHz to 12 GHz.
  • Comparative Example 3 in which copper is plated on the polymer thin film but also Comparative Example 4 in which copper is plated on the porous organic polymer layer in which the amine functional group is not modified does not show electromagnetic wave shielding efficiency.
  • the amine functional group modified in the porous organic polymer layer serves to effectively plated metal on the polymer thin film.
  • Example 2 The electromagnetic wave shielding material efficiency of Example 2 and Comparative Examples 5 to 14 was analyzed, and it is shown in Table 2.
  • Example 2 According to the results shown in Table 2, the electromagnetic wave shielding efficiency (71.7 dB) of Example 2 of the present application was found to be similar to the electromagnetic wave shielding efficiency (70 dB) of Comparative Example 5, which is a copper film. At this time, the thickness of copper as the active layer was 10 ⁇ m in Comparative Example 5, whereas the thickness of Example 2 was 0.64 ⁇ m, indicating similar electromagnetic wave efficiency. In general, it is known that the higher the thickness of the electromagnetic wave shielding material, the higher the efficiency. If the thickness of Example 2 is thicker, it can be expected that the electromagnetic wave shielding efficiency is further increased. Moreover, compared with Comparative Examples 5 and 6, Example 2 exhibits such efficiency when the content of copper as the active material is 41%.
  • Figure 20 (a) is a view showing when the electromagnetic wave shielding material manufactured according to this embodiment is bent
  • Figure 20 (b) is the resistance according to the number of bending the electromagnetic wave shielding material manufactured according to this embodiment It is a graph.
  • Fig. 20 (a) is a view showing the shape of the electromagnetic wave shielding material when bent by a bending tester having a diameter of 5 mm
  • Fig. 20 (b) is the number of bending the electromagnetic wave shielding material of Example 2 This is a graph showing the resistance.
  • the resistance of Example 2 before bending is 0.609 ⁇ 0.058 ⁇
  • the resistance after bending 1 to 1,000 times is 0.069 ⁇ to 0.677 ⁇ . It can be seen that the resistance value of the electromagnetic shielding material of the present application hardly changes even when bent 1,000 times for flexibility evaluation.
  • 21 is a graph showing the electromagnetic wave shielding efficiency according to the number of bending the electromagnetic wave shielding material manufactured according to the present embodiment.
  • FIG. 21 is a graph showing the electromagnetic wave shielding efficiency according to the number of bending the electromagnetic wave shielding material of Example 2.
  • the electromagnetic wave shielding efficiency is 69.5 dB to 73.3 dB. This is a value not significantly different from the electromagnetic wave shielding efficiency of 64.3 dB to 73.8 dB of Example 2 before bending.
  • the electromagnetic shielding material of the present application maintains the electromagnetic shielding efficiency even after 1,000 flexibility evaluations. This means that the electromagnetic shielding efficiency of the present application can be maintained even when the electromagnetic shielding material of the present application is used in various shapes and uses and repeatedly deformed.
  • the electromagnetic wave shielding material of the present application is intended to solve this problem, and the amine group modified on the porous organic polymer layer improves the bonding force between the porous organic polymer and the metal. Accordingly, even when the deformation is repeatedly applied, the metal is not separated, so that the electromagnetic wave shielding efficiency can be maintained.
  • the electromagnetic wave shielding material according to the present embodiment has the highest absorption efficiency in all frequency domains.
  • the efficiency due to external reflection decreases while the efficiency by absorption increases.
  • a material that absorbs electromagnetic waves is absolutely necessary.
  • the electromagnetic shielding material manufactured according to the present embodiment which effectively absorbs electromagnetic waves even in a high-frequency range, may be applied to various electronic devices in the future 5G era.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

본 발명은 전자파 차폐재에 대한 것으로, 고분자 섬유 박막; 상기 고분자 섬유 박막 상에 형성된 다공성 유기 고분자 층; 및 상기 다공성 유기 고분자 층 상에 형성된 금속 박막;을 포함하는 것을 특징으로 한다. 특히, 상기 다공성 유기 고분자 층과 상기 금속 박막 간의 결합력이 높아, 반복적인 유연성 평가 이후에도 전자파 차폐 효율이 유지될 수 있다.

Description

전자파 차폐재 및 이의 제조 방법
본 발명은 전자파 차폐재 및 이의 제조 방법에 관한 것이다. 구체적으로 고분자 섬유 박막 상에 아민 작용기로 개질된 다공성 유기 고분자 층을 형성한 후, 금속 박막을 형성하여 유연성이 뛰어나고 전자파 차폐 효율이 높은 전자파 차폐재를 제공할 수 있다.
통신 기술의 발달, 이동 물체의 전파 유도 기술의 고도화가 진행되고 있고, 전자공학 및 통신공학의 급격한 발달로 인하여 전자파의 주파수는 점차 높아진 반면, 전자 장비간의 설치 간격은 좁아졌다. 이에 따라 불요 복사는 쉬워지게 되었고, 이웃의 전자 장비에 간섭 신호나 잡음을 가하여 해로운 영향을 주거나 또는 이웃 장비로부터 영향을 받는 것이 비일비재하게 되었다.
특히, 5G 환경 이동통신은 10 GHz 이상의 고주파수를 사용하여, 전자파 간섭이 심하게 일어나며, 이러한 전자파 간섭 현상으로 인해 전자기기들의 정보 손실 및 오작동이 나타난다. 전자파 간섭이 없도록 하거나 전자파 간섭에 대해서 적절한 내성을 가지도록 전자 장비를 설계하는 것이 최근 필수적인 요건이 되었고, 이를 위해서 차폐 재료 및 기술 개발의 필요성이 대두되고 있다.
전자파 차폐는 외부반사, 내부반사 및 흡수 효과의 조합으로 이루어지며, 현재까지 전자파 차폐 소재로 알려진 물질들, 즉, 금속 나노분말, 탄소나노튜브 등 우수한 전기전도성을 가지는 물질을 이용한 전자파 반사로 전자파 차폐를 달성하고자 하고 있고, 선행특허(공개번호 10-2017-0064216)는 전자파 반사용 금속/탄소 하이브리드 입자를 개시하고 있다. 하지만, 향후 5G의 고주파 영역에서는 전자파 차폐의 물질로서 전자파 반사 메커니즘을 갖는 소재보다 전자파 흡수 메커니즘을 갖는 소재가 절대적으로 필요하다.
종래에는 전자파 차폐 효율이 높은 금속을 전자파 차폐재로서 주로 사용하였다. 하지만 금속은 무겁고 비싼 단점이 있다.
[선행기술문헌]
[특허문헌]
대한민국 공개특허 제10-2017-0064216호
본원은 전술한 종래 기술의 문제점을 해결하기 위한 전자파 차폐재에 대한 것으로, 금속 함량을 줄이면서 전자파 차폐의 효율을 유지하거나 상승시킨 것이다. 특히, 1,000번의 유연성 평가 이후 전자파 차폐의 효율 감소율이 1% 이하로서, 전자파 차폐 성능이 유지될 수 있다.
상기한 기술적 과제를 달성하기 위한 본 발명의 전자파 차폐재는 고분자 섬유 박막; 상기 고분자 섬유 박막 상에 형성된 다공성 유기 고분자 층; 및 상기 다공성 유기 고분자 층 상에 형성된 금속 박막;을 포함하는 것을 특징으로 한다.
상기 다공성 유기 고분자 층은 테트라(4-에틴일페닐)메테인, 1-아미노-2,5-디브로모벤젠, 트리(4-에틴일페닐)아민, 트리(4-아이오도페닐)아민, 테트라키스(4-에틴일페닐)포르피린, 디아이오도벤젠, 1,3,5-트리에틴일벤젠 및 이들의 조합들로 이루어진 군에서 선택된 물질을 포함하는 것 일 수 있으나, 이에 제한되는 것은 아니다.
상기 전자파 차폐재는 5 GHz 내지 20 GHz의 범위에서 50 dB 내지 80dB의 전자파 차폐 효율을 가지는 것 일 수 있으나, 이에 제한되는 것은 아니다.
상기 전자파 차폐재는 직경이 5 mm인 벤딩테스트기를 이용한 1,000회 벤딩 테스트 후의 초기효율 대비 전자파 차폐 효율 감소율이 1% 이하인 것 일 수 있으나, 이에 제한되는 것은 아니다.
상기 전자파 차폐재 100 중량부에 있어서, 상기 금속 박막은 10 중량부 내지 60 중량부로 포함되는 것 일 수 있으나, 이에 제한되는 것은 아니다.
상기 금속 박막의 두께는 200 nm 내지 800 nm인 것 일 수 있으나, 이에 제한되는 것은 아니다.
상기 전자파 차폐재 100 중량부에 있어서, 상기 다공성 유기 고분자 층은 1 중량부 내지 5 중량부로 포함되는 것 일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 전자파 차폐재의 제조 방법은 고분자 섬유 박막 상에 다공성 유기 고분자 층을 형성하는 단계; 및 상기 다공성 유기 고분자 층 상에 금속 박막을 형성하는 단계;를 포함하는 것을 특징으로 한다.
상기 다공성 유기 고분자 층을 형성하는 단계 이전에 상기 고분자 섬유 박막 상에 제 1 촉매를 형성하는 단계를 더 포함하는 것 일 수 있으나, 이에 제한되는 것은 아니다.
상기 금속 박막을 형성하는 단계 이전에 상기 다공성 유기 고분자 층 상에 제 2 촉매를 형성하는 단계를 더 포함하는 것 일 수 있으나, 이에 제한되는 것은 아니다.
상기 금속 박막을 형성하는 단계는 무전해 도금법에 의해 수행되는 것 일 수 있으나, 이에 제한되는 것은 아니다.
상기 전자파 차폐재 100 중량부에 있어서, 상기 금속 박막은 10 중량부 내지 60 중량부로 포함되는 것 일 수 있으나, 이에 제한되는 것은 아니다.
상술한 과제 해결 수단은 단지 예시적인 것으로서, 본원을 제한하려는 의도로 해석되지 않아야 한다. 상술한 예시적인 실시예 외에도, 도면 및 발명의 상세한 설명에 추가적인 실시예가 존재할 수 있다.
개시된 기술은 다음의 효과를 가질 수 있다. 다만, 특정 실시예가 다음의 효과를 전부 포함하여야 한다거나 다음의 효과 만을 포함하여야 한다는 의미는 아니므로, 개시된 기술의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.
전술한 본원의 과제 해결 수단에 의하면, 본원에 따른 전자파 차폐재는 아민 작용기로 개질된 상기 다공성 유기 고분자 층이 상기 고분자 섬유 박막과 상기 금속 박막 간의 결합력을 상승시켜 유연성 평가에 따른 금속의 이탈을 방지할 수 있다.
또한, 종래의 금속으로 이루어진 전자파 차폐재와 비교했을 때, 적은 금속량으로 경량, 높은 성형성, 원가 절감의 효과를 발휘할 수 있는 동시에 높은 전자파 차폐 효율을 나타낼 수 있다. 특히, 본원의 전자파 차폐재는 금속을 적게 사용하여, 종래의 전자파 차폐재 대비 가볍고 성형성이 좋아 다양한 용도에 응용될 수 있다.
나아가, 본원의 전자파 차폐재는 흡수 메커니즘에 의해 전자파를 차단하여 10 GHz 이상의 고주파수를 사용하는 5G 환경 이동통신분야에서 용이하게 응용될 수 있다.
도 1은 본원의 일 구현예에 따른 다공성 유기 고분자 층의 도면이다.
도 2는 본원의 일 구현예에 따른 전자파 차폐재의 제조 방법의 순서도이다.
도 3은 본원의 일 실시예에 따른 전자파 차폐재의 제조 방법을 나타낸 도면이다.
도 4의 (a) 내지 (c)는 본원의 일 실시예에 따른 전자파 차폐재의 SEM(Scanning electron microscopic) 이미지이다.
도 5는 본원의 일 실시예에 따른 전자파 차폐재 단면의 SEM(Scanning electron microscopic) 이미지이다.
도 6은 본원의 일 실시예에 따른 전자파 차폐재의 IR(Infrared) 흡수 스펙트럼이다.
도 7은 본원의 일 실시예에 따른 MOP-A의 NMR(Nuclear Magnetic Resonance) 스펙트럼이다.
도 8은 본 실시예에 따라 제조된 MOP-A의 질소가스 흡착 등온선을 나타낸 그래프이다.
도 9는 본 실시예에 따라 제조된 MOP-A의 의 공극 사이즈에 따른 공극의 부피를 나타낸 그래프이다.
도 10은 본 실시예에 따라 제조한 전자파 차폐재의 XPS(X-ray photoelectron spectroscopy) 그래프이다.
도 11의 (a) 내지 (d)는 본 실시예 및 비교예에 따라 제조한 전자파 차폐재의 사진이고, 도 11의 (e) 내지 (h)는 본 실시예 및 비교예에 따라 제조한 전자파 차폐재의 SEM(Scanning electron microscopic) 이미지이다.
도 12의 (a) 내지 (d)는 본 실시예 및 비교예에 따라 제조한 전자파 차폐재 단면의 SEM(Scanning electron microscopic) 이미지이다.
도 13은 본 실시예 및 비교예에 따라 제조한 전자파 차폐재의 PXRD(Power X-ray diffraction) 그래프이다.
도 14는 본 실시예 및 비교예에 따라 제조한 전자파 차폐재의 XPS(X-ray photoelectron spectroscopy) 그래프이다.
도 15a는 본 실시예에 따라 제조한 전자파 차폐재의 굽힌 각도에 따른 저항을 나타낸 그래프이고, 도 15b는 본 실시예에 따라 제조한 전자파 차폐재의 습도에 따른 저항을 나타낸 그래프이고, 도 15c는 본 실시예에 따라 제조한 전자파 차폐재의 온도에 따른 저항을 나타낸 그래프이다.
도 16은 본 실시예 및 비교예에 따라 제조한 전자파 차폐재의 전자파 차폐 효율을 나타낸 그래프이다.
도 17은 본 실시예 및 비교예에 따라 제조한 전자파 차폐재의 전자파 차폐 효율을 나타낸 그래프이다.
도 18은 본 실시예에 따라 제조한 전자파 차폐재의 전자파 효율을 나타낸 그래프이다.
도 19는 본 실시예 및 비교예에 따라 제조한 전자파 차폐재의 전자파 효율을 나타낸 그래프이다.
도 20의 (a)는 본 실시예에 따라 제조한 전자파 차폐재를 구부렸을 때를 나타낸 도면이고, 도 20의 (b)는 본 실시예에 따라 제조한 전자파 차폐재를 구부리는 횟수에 따른 저항을 나타낸 그래프이다.
도 21은 본 실시예에 따라 제조한 전자파 차폐재를 구부리는 횟수에 따른 전자파 차폐 효율을 나타낸 그래프이다.
도 22의 (a) 및 (b)는 본 실시예에 따른 전자파 차폐재의 흡수, 반사 및 투과 효율의 비율을 나타낸 그래프이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 상세한 설명에 구체적으로 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용한다. 제 1, 제 2등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제 2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 명명될 수 있다. "및/또는" 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미가 있는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않아야 한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에", "상부에", "상단에", "하에", "하부에", "하단에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 또한, 본원 명세서 전체에서, "~ 하는 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
이하에서는 본원의 전자파 차폐재 및 이의 제조 방법에 대하여 구현예 및 실시예와 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본원이 이러한 구현예 및 실시예와 도면에 제한되는 것은 아니다.
본원은, 고분자 섬유 박막; 상기 고분자 섬유 박막 상에 형성된 다공성 유기 고분자 층; 및 상기 다공성 유기 고분자 층 상에 형성된 금속 박막;을 포함하는 전자파 차폐재에 관한 것이다. 금속만을 이용하여 전자파 차폐 소재를 구현할 경우 높은 가공비용과 성형성의 제약으로 용도가 한정된다. 하지만, 단순히 고분자 박막 상에 금속을 코팅하는 경우, 반복적인 유연성 테스트에 따라 상기 금속이 이탈되어, 사용할수록 전자파 차폐 효율이 감소하는 문제점이 있다.
본원의 전자파 차폐재는 아민 작용기로 개질된 상기 다공성 유기 고분자 층이 상기 고분자 섬유 박막과 상기 금속 박막 간의 결합력을 상승시켜 유연성 평가에 따른 금속의 이탈을 방지할 수 있다.
또한, 종래의 금속으로 이루어진 전자파 차폐재와 비교했을 때, 적은 금속량으로 경량, 높은 성형성, 원가 절감의 효과를 발휘할 수 있는 동시에 높은 전자파 차폐 효율을 나타낼 수 있다. 특히, 본원의 전자파 차폐재는 금속을 적게 사용하여, 종래의 전자파 차폐재 대비 가볍고 성형성이 좋아 다양한 용도에 응용될 수 있다.
상기 전자파 차폐재는 5 GHz 내지 20 GHz의 범위에서 50 dB 내지 80dB의 전자파 차폐 효율을 가지는 것 일 수 있으나, 이에 제한되는 것은 아니다.
전자파가 물체에 도달하면, 전자파는 흡수, 외부반사, 내부반사 및 투과 메커니즘으로 진행된다. 이 때, 전자파를 투과시키지 않는 효과의 총계를 차폐효율(SE, Shielding Effectiveness)이라고 하는데, 전자파 차폐효율은 흡수, 외부반사 효율, 내부반사 효율 및 투과 효율의 총합으로 나타낼 수 있다. 이를 식으로 표기하면 하기의 수학식 1과 같다.
Figure PCTKR2021008668-appb-img-000001
SER 는 반사에 의한 차폐 효율, SEA 는 흡수에 의한 차폐 효율, SEB 는 내부반사에 의한 차폐 효율을 나타내며, ρ는 체적고유저항, f는 전자파 주파수, t는 차폐재의 두께를 나타낸다.
전자파 효율의 단위는 데시벨(dB)인데, 전자파 흡수 메커니즘이 10dB 이상인 경우, 내부반사 메커니즘은 무시할 수 있다. 또한, 상기 수학식 1에 의하면 전자파의 주파수가 증가할수록 외부반사에 의한 효율은 감소하고, 흡수에 의한 효율이 증가한다. 즉, 이동통신이 5G로 발전함에 따라, 점점 고주파화로 진행하여 전자파 차폐에 요구되는 소재는 전자파를 흡수하는 물질이 절대적으로 필요하다는 것을 의미한다.
본원의 전자파 차폐재는 흡수 메커니즘에 의해 전자파를 차단하여 10 GHz 이상의 고주파수를 사용하는 5G 환경 이동통신분야에서 용이하게 응용될 수 있다.
상기 고분자 섬유 박막은 PET(Poly Ethylene Terephalate), PEN(Poly Ethylene Naphthelate), PC(PolyCarbonate), PI(Poly Imide), PES(Poly Ether Surfone) 및 이들의 조합들로 이루어진 군에서 선택된 물질을 포함하는 것 일 수 있다.
상기 고분자 섬유 박막은 고분자 섬유들이 얽혀 있는 형태인 것 일 수 있으나, 이에 제한되는 것은 아니다.
상기 다공성 유기 고분자 층은 유기 고분자들이 네트워크를 이루어 형성된 것 일 수 있으나, 이에 제한되는 것은 아니다.
상기 다공성 유기 고분자 층은 아민 작용기로 개질된 것 일 수 있으나, 이에 제한되는 것은 아니다.
도 1은 본원의 일 구현예에 따른 다공성 유기 고분자 층의 도면이다.
도 1을 참고하면, 유기 고분자들이 네트워크를 이루면서 미세한 공극을 형성한다. 상기 공극으로 인해 높은 표면적을 갖게 되고, 높은 표면적으로 인해 표면에 위치한 아민 작용기의 양이 증가하게 된다. 이에 따라 상기 아민 작용기에 배위되는 제 2 촉매(금속 이온, M+)의 양이 증가할 수 있다. 상기 다공성 유기 고분자 층 상에 상기 제 2 촉매가 많이 형성되어 있을수록 도금법에 의해 형성될 수 있는 금속 박막이 균일하게 도입될 수 있다.
상기 유기 고분자는 테트라(4-에틴일페닐)메테인, 1-아미노-2,5-디브로모벤젠, 트리(4-에틴일페닐)아민, 트리(4-아이오도페닐)아민, 테트라키스(4-에틴일페닐)포르피린, 디아이오도벤젠, 1,3,5-트리에틴일벤젠 및 이들의 조합들로 이루어진 군에서 선택된 물질을 하는 것 일 수 있다.
상기 금속 박막은 Cu, Ag, Au, Pd, Pt, Ni, Cp, Sn, Fe, Zn 및 이들의 조합들로 이루어진 금속을 포함하는 것 일 수 있으나, 이에 제한되는 것은 아니다.
상기 전자파 차폐재는 직경이 5 mm인 벤딩테스트기를 이용한 1,000회 벤딩 테스트 후의 초기효율 대비 전자파 차폐 효율 감소율이 1% 이하인 것 일 수 있으나, 이에 제한되는 것은 아니다.
본원에 따른 전자파 차폐재는 반복적인 유연성 평가 이후에도 전자파 차폐의 효율이 거의 감소되지 않는다. 이에 따라, 유연한 전자파 차폐재로서 응용될 때, 높은 내구성과 전자파 차폐 효율이 보장될 수 있다.
상기 전자파 차폐재 100 중량부에 있어서, 상기 금속 박막은 10 중량부 내지 60 중량부로 포함되는 것 일 수 있으나, 이에 제한되는 것은 아니다.
상기 전자파 차폐재 100 중량부에 있어서, 상기 금속 박막이 10 중량부 미만으로 포함될 경우, 상기 전자파 차폐재의 효율이 낮아질 수 있다. 또한, 상기 전자파 차폐재 100 중량부에 있어서, 상기 금속 박막이 60 중량부 초과로 포함되는 경우, 금속 함량이 증가하여 중량 및 비용이 증가될 수 있다.
상기 금속 박막의 두께는 200 nm 내지 800 nm인 것 일 수 있으나, 이에 제한되는 것은 아니다.
상기 금속 박막의 두께가 200 nm 미만일 경우, 상기 전자파 차폐재의 효율이 낮아질 수 있고, 상기 금속 박막의 두께가 800 nm 초과일 경우, 상기 전자파 차폐재의 유연성이 저하될 수 있다.
상기 전자파 차폐재 100 중량부에 있어서, 상기 다공성 유기 고분자 층은 1 중량부 내지 5 중량부로 포함되는 것 일 수 있으나, 이에 제한되는 것은 아니다.
본원은 고분자 섬유 박막 상에 다공성 유기 고분자 층을 형성하는 단계; 및 상기 다공성 유기 고분자 층 상에 금속 박막을 형성하는 단계;를 포함하는 것인 전자파 차폐재의 제조 방법에 관한 것이다.
도 2는 본원의 일 구현예에 따른 전자파 차폐재의 제조 방법의 순서도이다.
먼저, 고분자 섬유 박막 상에 다공성 유기 고분자 층을 형성한다(S100).
상기 다공성 유기 고분자 층을 형성하는 단계 이전에 상기 고분자 섬유 박막 상에 제 1 촉매를 형성하는 단계를 더 포함하는 것 일 수 있으나, 이에 제한되는 것은 아니다.
상기 고분자 섬유 박막의 표면 상에 상기 제 1 촉매가 형성됨으로써 상기 고분자 섬유 박막 상에 상기 다공성 유기 고분자 층이 형성되는 것이 촉진되는 것 일 수 있다.
상기 제 1 촉매는 Pd, Cu 및 이들의 조합들로 이루어진 군에서 선택된 물질을 포함하는 것 일 수 있으나, 이에 제한되는 것은 아니다.
상기 제 1 촉매는 예를 들면, (PPh3)PdCl2, 비스(트리페닐포스핀)팔라듐(Ⅱ)디클로라이드, CuI 인 것 일 수 있다.
상기 다공성 유기 고분자 층을 형성하는 단계는 상기 고분자 섬유 박막에 유기 고분자의 혼합 용액을 첨가한 후 60℃ 내지 100℃의 온도에서 10 시간 내지 30시간동안 반응시키는 것 일 수 있다.
상기 유기 고분자는 테트라(4-에틴일페닐)메테인, 1-아미노-2,5-디브로모벤젠, 트리(4-에틴일페닐)아민, 트리(4-아이오도페닐)아민, 테트라키스(4-에틴일페닐)포르피린, 디아이오도벤젠, 1,3,5-트리에틴일벤젠 및 이들의 조합들로 이루어진 군에서 선택된 물질을 포함하는 것 일 수 있다.
상기 다공성 유기 고분자 층은 아민 작용기로 개질된 것 일 수 있으나, 이에 제한되는 것은 아니다.
이어서, 상기 다공성 유기 고분자 층 상에 금속 박막을 형성한다(S200).
상기 금속 박막을 형성하는 단계 이전에 상기 다공성 유기 고분자 층 상에 제 2 촉매를 형성하는 단계를 더 포함하는 것 일 수 있으나, 이에 제한되는 것은 아니다.
상기 제 2 촉매는 상기 아민 작용기와 배위될 수 있고, 무전해 도금법의 촉매로 작용하는 물질이면 특별히 제한되지 않는다.
상기 제 2 촉매는 Ag인 것 일 수 있다.
상기 금속 박막을 형성하는 단계는 무전해 도금법에 의해 수행되는 것 일 수 있으나, 이에 제한되는 것은 아니다.
상기 전자파 차폐재 100 중량부에 있어서, 상기 금속 박막은 10 중량부 내지 60 중량부로 포함되는 것 일 수 있으나, 이에 제한되는 것은 아니다.
상기 무전해 도금법은 15분 내지 50분동안 이루어지는 것 일 수 있으나, 이에 제한되는 것은 아니다.
상기 무전해 도금법이 15분 미만으로 이루어질 경우, 상기 금속 박막이 충분히 형성되지 않아 전자파 차폐재의 효율이 낮아질 수 있다. 또한, 상기 무전해 도금법이 50분 초과로 이루어질 경우 금속 함량이 증가하여 중량 및 비용이 증가될 수 있다.
상기 무전해 도금법의 시간은 상기 금속 박막을 형성하기 위한 상기 금속을 포함하는 용액의 농도에 따라 조절될 수 있다. 상기 용액의 농도가 높을 경우 무전해 도금법의 시간이 줄어들고, 상기 용액의 농도가 낮을 경우 무전해 도금법의 시간이 감소될 수 있다. 즉, 상기에 개시한 시간에 한정되지 않으며, 상기 용액의 농도에 따라 조절하여 상기 전자파 차폐재가 일정한 금속 중량부를 포함하도록 형성하면 된다.
이하 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 하나, 하기의 실시예는 단지 설명의 목적을 위한 것이며 본원의 범위를 한정하고자 하는 것은 아니다.
[실시예 1]
도 3은 본원의 일 실시예에 따른 전자파 차폐재의 제조 방법을 나타낸 도면이다.
먼저, 14 mg의 (PPh3)2PdCl2(20 μmol), 4.0 mg의 CuI(20 μmol), 100 ml의 톨루엔 및 80 ml의 트리에틸아민을 혼합한 혼합용액에 고분자 섬유 박막으로서 PET 섬유(섬유의 직경: 13.8 μm, 박막의 두께: 100 μm, 면적 6 cm X 7 cm) 를 넣어, 상기 PET 섬유의 표면에 촉매를 흡착시켰다.
이어서, 상기 촉매가 흡착된 PET 섬유를 포함하는 혼합 용액에 85 mg의 테트라(4-에틴일페닐)메테인(0.20 mmol) 및 102 mg의 1-아미노-2,5-디브로모벤젠(0.408 mmol)을 첨가하여 80℃의 온도에서 18시간동안 반응시켜 상기 PET 섬유 상에 다공성 유기 고분자 층을 형성(PET@MOP-A)하였다.
이어서, 100 ml의 물에 용해된 AgNO3(0.10 g, 5.9 mmol) 용액에 상기 다공성 유기 고분자 층이 형성된 PET 섬유를 10분동안 담가두어 상기 다공성 유기 고분자 층 상에 Ag+를 형성(PET@MOP-A@Ag+)시켰다.
이어서, 5.0 g의 CuSO45H2O(20 mmol), 25 g의 타르타르산 나트륨 칼륨(89 mmol), 7.0 g의 NaOH(0.18 mol) 및 500 ml의 물을 혼합한 구리 도금 용액을 제조하였다. 상기 구리 도금 용액 70 ml, 환원제로서 포름알데하이드(1.0 ml, 36 mmol)를 혼합한 용액에 상기 Ag+가 형성된 PET 섬유(PET@MOP-A@Ag+)를 넣어 상온에서 20분동안 도금시켜 전자파 차폐재(PET@MOP-A@Cu-20)를 제조하였으며, 상기 전자파 차폐재의 Cu 함량은 29%이다.
[실시예 2]
도금시키는 시간이 40분인 것을 제외하고, 상기 실시예 1과 같은 방법으로 전자파 차폐재(PET@MOP-A@Cu-40)를 제조하였으며, 상기 전자파 차폐재의 Cu 함량은 41%이다.
[실시예 3]
상기 구리 도금 용액 대신 은 도금 용액[(AgNO3(3.40 g), 암모니아 용액(28~30%, 6.36 ml) 및 물(500 ml)의 제 1 혼합 용액 35 ml와 타르타르산 나트륨 칼륨(44.4 g), MgSO4(3.06 g) 및 물(500 ml)의 제 2 혼합용액 35 ml]을 사용하는 것을 제외하고, 상기 실시예 1과 같은 방법으로 전자파 차폐재(PET@MOP-A@Au-40)를 제조하였으며, 상기 전자파 차폐재의 Ag 함량은 14.2%이다.
[비교예 1]
도금시키는 시간이 5분인 것을 제외하고, 상기 실시예 1과 같은 방법으로 전자파 차폐재(PET@MOP-A@Cu-5)를 제조하였으며, 상기 전자파 차폐재의 Cu 함량은 1.4%이다.
[비교예 2]
도금시키는 시간이 10분인 것을 제외하고, 상기 실시예 1과 같은 방법으로 전자파 차폐재(PET@MOP-A@Cu-10)를 제조하였으며, 상기 전자파 차폐재의 Cu 함량은 3.0%이다.
[비교예 3]
고분자 섬유 박막으로서 PET 섬유(섬유의 직경: 13.8 μm, 박막의 두께: 100 μm, 면적 6 cm X 7 cm) 상에 구리를 도금하여 전자파 차폐재(PET@Cu-20)를 제조하였다.
[비교예 4]
먼저, 14 mg의 (PPh3)2PdCl2(20 μmol), 4.0 mg의 CuI(20 μmol), 100 ml의 톨루엔 및 80 ml의 트리에틸아민을 혼합한 혼합용액에 고분자 섬유 박막으로서 PET 섬유(섬유의 직경: 13.8 μm, 박막의 두께: 100 μm, 면적 6 cm X 7 cm) 를 넣어, 상기 PET 섬유의 표면에 촉매를 흡착시켰다.
이어서, 상기 촉매가 흡착된 PET 섬유를 포함하는 혼합 용액에 85 mg의 테트라(4-에틴일페닐)메테인(0.20 mmol)을 첨가하여 80℃의 온도에서 18시간동안 반응시켜 상기 PET 섬유 상에 다공성 유기 고분자 층을 형성(PET@MOP)하였다.
이어서, 100 ml의 물에 용해된 AgNO3(0.10 g, 5.9 mmol) 용액에 상기 다공성 유기 고분자 층이 형성된 PET 섬유를 10분동안 담가두어 상기 다공성 유기 고분자 층 상에 Ag+를 형성(PET@MOP@Ag+)시켰다.
이어서, 5.0 g의 CuSO45H2O(20 mmol), 25 g의 타르타르산 나트륨 칼륨(89 mmol), 7.0 g의 NaOH(0.18 mol) 및 500 ml의 물을 혼합한 구리 도금 용액을 제조하였다. 상기 구리 도금 용액 70 ml, 환원제로서 포름알데하이드(1.0 ml, 36 mmol)를 혼합한 용액에 상기 Ag+가 형성된 PET 섬유(PET@MOP@Ag+)를 넣어 상온에서 20분동안 도금시켜 전자파 차폐재(PET@MOP@Cu-20)를 제조하였다.
[비교예 5]
Y. Science 2016, 353, 1137-1140 논문의 Cu 필름을 참고하였다.
[비교예 6]
J. Electron.Mater. 1997 , 26, 928-934 논문의 구리 벌크를 참고하였다.
[비교예 7]
J. Nanomater. 2015 , 2015, 320306 논문의 Ni-Co/왁스를 참고하였다.
[비교예 8]
J. Appl. Polym.Sci. 2015 , 132, 42306 논문의 Ag-CF/에폭시를 참고하였다.
[비교예 9]
U. RSC Adv. 2015 , 5, 56590-56598 논문의 Cu 나노와이어/PS를 참고하였다.
[비교예 10]
Y. ACS Appl. Mater. Interfaces 2017, 9, 33059-33070 논문의 Co-Ni/PANI를 참고하였다.
[비교예 11]
Y. Appl. Surf. Sci. 2018, 455, 856-863 논문의 Ni/나일론을 참고하였다.
[비교예 12]
J. Mater. Chem. C 2017, 5, 1095-1105 논문의 Au/PIPD-g-PDDA를 참고하였다.
[비교예 13]
J. Mater. Chem. C 2020, 8, 500-509 논문의 Ni-탄소/PVDF를 참고하였다.
[비교예 14]
J. Mater. Chem. C 2019, 7, 10331-10337 논문의 GaIn-Ni/PVC를 참고하였다.
[평가]
1. 전자파 차폐재의 특성 분석
본 실시예 1 및 2, 비교예 1 및 2에 따라 제조된 전자파 차폐재의 특성을 분석하였고, 이를 도 4 내지 도 14로서 나타내었다.
도 4의 (a) 내지 (c)는 본원의 일 실시예에 따른 전자파 차폐재의 SEM(Scanning electron microscopic) 이미지이다.
구체적으로, 도 4의 (a)는 PET 섬유의 표면이고, 도 4의 (b)는 PET 상에 아민 작용기로 개질된 다공성 유기 고분자가 형성된 PET@MOP-A의 표면이고, 도 4의 (c)는 실시예 2의 전자파 차폐재의 표면이다.
도 4의 (a)를 보면, PET 섬유의 표면은 매끈한 것을 확인할 수 있다. 도 4의 (b)는 표면 상의 아일랜드 형태가 형성된 것을 관찰할 수 있어, 상기 PET 섬유의 표면 상에 아민 작용기로 개질된 다공성 유기 고분자가 형성된 것을 확인할 수 있다. 도 4의 (c)는 표면 전체에 구리가 골고루 분포되어 있는 것을 확인할 수 있다.
도 5는 본원의 일 실시예에 따른 전자파 차폐재 단면의 SEM(Scanning electron microscopic) 이미지이다.
구체적으로, 도 5는 PET@MOP-A의 단면으로서, PET 섬유 의 표면에 아민 작용기로 개질된 다공성 유기 고분자가 234±14 nm의 두께로 형성된 것을 확인할 수 있다.
도 6은 본원의 일 실시예에 따른 전자파 차폐재의 IR(Infrared) 흡수 스펙트럼이다.
구체적으로 도 6의 PET@MOP-A는 고분자 섬유 박막 상에 아민 작용기로 개질된 다공성 유기 고분자가 형성된 것이고, MOP-A는 상기 PET@MOP-A의 고분자 섬유 박막(PET)를 에칭시켜서 얻은 것이다.
도 6에 나타난 결과에 따르면, 아민 작용기로 개질된 다공성 유기 고분자(MOP-A)에서 나타나는 피크가 고분자 섬유 박막 상에 아민 작용기로 개질된 다공성 유기 고분자가 형성된 PET@MOP-A에서는 거의 나타나지 않는다. 이는, 상기 MOP-A의 비율이 1.94 wt%로 매우 적은 중량을 차지하고 있어 피크가 크게 나타나지 않는 것이다.
도 7은 본원의 일 실시예에 따른 MOP-A의 NMR(Nuclear Magnetic Resonance) 스펙트럼이다.
도 7에 나타난 결과에 따르면, 상기 MOP-A는 145.6 ppm, 129.6 ppm 및 120.2 ppm에서 아로마틱 피크, 64.1 ppm에서 메틸렌 피크, ~85 ppm에서 알카인 피크가 나타나는 것을 확인할 수 있다.
도 4 내지 7에서 상기 MOP-A는 고분자 섬유 박막(PET) 상에 잘 형성되어 있는 것을 확인할 수 있다.
도 8은 본 실시예에 따라 제조된 MOP-A의 질소가스 흡착 등온선을 나타낸 그래프이다.
구체적으로 도 8은 77K의 온도에서 측정한 질소가스 흡착 등온선이다.
도 8에 나타난 결과에 따르면, 낮은 압력 구간(P/P0<0.1)에서 질소 흡착 량이 급격하게 증가하는 것을 확인할 수 있다. 이는 실시예에 따라 제조된 MOP-A가 마이크로 공극을 가지고 있다는 것을 나타낸다.
BET(Brunaer-Emmett-Teller) 이론으로 계산한 실시예에 따라 제조된 MOP-A의 표면적 및 총 공극의 부피는 각각 1,007 m2/g, 0.35cm3/g이다.
상기 MOP-A의 표면적은 1,007 m2/g로 매우 크기 때문에 아민 작용기가 골고루 분포되어 있어, 상기 아민 작용기에 배위될 수 있는 금속 이온의 촉매 양이 증가될 수 있다.
도 9는 본 실시예에 따라 제조된 MOP-A의 의 공극 사이즈에 따른 공극의 부피를 나타낸 그래프이다.
구체적으로, 도 9는 DFT(density functional theory) 이론에 의해 계산된 공극 사이즈 분포를 나타낸 것이다.
도 9에 나타난 결과에 따르면, 본원의 MOP-A의 의 공극 사이즈가 2nm 이하로 분포되어 있는 것을 확인할 수 있다.
도 10은 본 실시예에 따라 제조한 전자파 차폐재의 XPS(X-ray photoelectron spectroscopy) 그래프이다.
구체적으로 도 10의 PET@MOP-A@Ag+는 아민 작용기가 개질된 다공성 유기 고분자 층 상에 Ag+이온을 형성한 것이고, PET@MOP@Ag+는 (아민 작용기가 개질 되지 않은)다공성 유기 고분자 층 상에 Ag+이온을 형성한 것이고, PET@Ag+는 고분자 섬유 박막 상에 Ag+이온을 형성한 것이다.
도 10에 나타난 결과에 따르면, PET@MOP-A@Ag+에서 Ag+이온의 피크인 373.83 eV 및 367.78 eV 피크가 나타나있는 것을 확인할 수 있다. 하지만, PET@Ag+에서는 거의 나타나지 않는 것을 확인할 수 있다. 또한, PET@MOP@Ag+에서 Ag+이온의 피크가 나타나긴 하지만 인텐시티가 매우 작게 나타난 것을 확인할 수 있다.
이는, 상기 다공성 유기 고분자 층에 개질된 아민 작용기가 Ag+이온을 흡착하는 데에 중요한 역할을 하는 것을 의미한다. 더욱이, 상기 Ag+이온이 충분히 형성되어 있어야, 무전해 도금법으로 금속(구리, 은 등)이 도금될 수 있다. 즉, 상기 다공성 유기 고분자 층이 아민 작용기로 개질되어 있음으로써 전자파 차폐재의 활성층인 금속이 성공적으로 형성될 수 있다.
도 11의 (a) 내지 (d)는 본 실시예 및 비교예에 따라 제조한 전자파 차폐재의 사진이고, 도 11의 (e) 내지 (h)는 본 실시예 및 비교예에 따라 제조한 전자파 차폐재의 SEM(Scanning electron microscopic) 이미지이다.
구체적으로 도 11의 (a)는 비교예 1의 사진이고, 도 11의 (b)는 비교예 2의 사진이고, 도 11의 (c)는 실시예 1의 사진이고, 도 11의 (d)는 실시예 2의 사진이고, 도 11의 (e)는 비교예 1의 SEM 이미지이고, 도 11의 (f)는 비교예 2의 SEM 이미지이고, 도 11의 (g)는 실시예 1의 SEM 이미지이고, 도 11의 (h)는 실시예 2의 SEM 이미지이다. 또한 도 11의 (a) 내지 (d)의 스케일바는 0.5 cm이다.
도 11의 (a) 내지 (d)에 나타난 결과에 따르면, 도금을 진행하는 시간이 증가할수록 구리가 증착되는 양이 증가하여 색이 변화되는 것을 확인할 수 있다.
도 11의 (e) 내지 (h)에 나타난 결과에 따르면, 도금을 진행하는 시간이 증가할수록 섬유의 표면 상에 증착된 구리의 양이 증가한 것을 확인할 수 있다.
도 12의 (a) 내지 (d)는 본 실시예 및 비교예에 따라 제조한 전자파 차폐재 단면의 SEM(Scanning electron microscopic) 이미지이다.
구체적으로, 도 12의 (a)는 비교예 1의 SEM 이미지이고, 도 12의 (b)는 비교예 2의 SEM 이미지이고, 도 12의 (c)는 실시예 1의 SEM 이미지이고, 도 12의 (d)는 실시예 2의 SEM 이미지이다.
도 12의 (c) 및 (d)에서 구리의 두께는 각각 330 nm 및 625 nm인 것으로 측정되었다. 하지만, 도 12의 (a) 및 (b)에서는 구리의 두께를 측정할 수 없었는데, 이는 비교예 1 및 2의 전자파 차폐재에서 구리가 충분히 형성되지 않아 아일랜드 형태로만 상기 다공성 유기고분자 층 상에 붙어있기 때문이다.
도 13은 본 실시예 및 비교예에 따라 제조한 전자파 차폐재의 PXRD(Power X-ray diffraction) 그래프이다.
도 13에 나타난 결과에 따르면, 구리의 (111), (200) 및 (220) 피크인 43.2°, 50.4° 및 74.2°에서 증착된 구리의 양이 증가할수록 피크의 세기가 크게 나타나는 것을 확인할 수 있다.
도 14는 본 실시예 및 비교예에 따라 제조한 전자파 차폐재의 XPS(X-ray photoelectron spectroscopy) 그래프이다.
도 14에 나타난 결과에 따르면, Cu 2p1/2 및 Cu 2p3/2 피크인 952.1 eV 및 932.2 eV에서 증착된 구리의 양이 증가할수록 피크의 세기가 크게 나타나는 것을 확인할 수 있다.
도 11 내지 도 14에 나타난 결과에 따르면, 도금시키는 시간이 증가할수록 도금되는 금속의 양이 증가한다.
2. 전자파 차폐재의 전기적 측성 및 전자파 차폐 효율 분석
본 실시예 1 내지 3, 비교예 1 내지 4에 따라 제조된 전자파 차폐재의 전기적 특성 및 전자파 차폐 효율을 분석하였고, 이를 표 1, 도 15 내지 도 19로서 나타내었다.
본 실시예 및 비교예에 따라 제조한 전자파 차폐재의 저항 및 전자파 차폐 효율을 측정하였고, 이를 표 1로서 나타내었다.
Sheet Resistance (Ω/sq) EMI SE (dB) at 12 GHz
비교예 1 Could not be measured 0
비교예 2 Could not be measured 0
실시예 1 0.218 ± 0.055 64.6
실시예 2 0.086 ± 0.012 71.7
실시예 3 4.814 ± 1.618 18.6
표 1에 나타난 결과에 따르면, 비교예 1 및 2는 저항이 측정할 수 없을 정도로 매우 크기 때문에 저항 값을 측정할 수 없었다. 또한, 전자파 차폐 효율 도 0dB로 측정되었다. 반면에, 실시예 1 내지 3의 저항은 각각 0.218 Ω/sq, 0.086 Ω/sq, 4.814 Ω/sq로 나타났으며, 이는 상기 실시예 1 내지 3의 전기전도도가 높은 것을 의미한다. 또한, 실시예 1 내지 3의 전자파 차폐 효율은 각각 64.6 dB, 71.7 dB, 18.6 dB로 나타났다. 특히, 실시예 1 및 2의 전자파 차폐 효율이 매우 높은 것을 확인 할 수 있다. 이는, 실시예 3의 은이 전자파 차폐재의 14% 정도의 질량, 즉, 상대적으로 낮은 함량을 갖고 있기 때문에 실시예 1 및 2의 전자파 차폐 효율보다 낮은 것으로 볼 수 있다. 만약, 실시예 3의 은을 무전해 도금 시간을 늘려 은의 함량을 높이게 되면, 전자파 차폐의 효율 역시 증가할 것으로 예상할 수 있다.
도 15a는 본 실시예에 따라 제조한 전자파 차폐재의 굽힌 각도에 따른 저항을 나타낸 그래프이고, 도 15b는 본 실시예에 따라 제조한 전자파 차폐재의 습도에 따른 저항을 나타낸 그래프이고, 도 15c는 본 실시예에 따라 제조한 전자파 차폐재의 온도에 따른 저항을 나타낸 그래프이다.
구체적으로, 도 15a는 25℃의 온도, 35%의 습도 조건에서 전자파 차폐재의 굽힌 각도에 따른 저항을 나타낸 그래프이고, 도 15b는 25℃의 온도 조건에서 전자파 차폐재의 습도에 따른 저항을 나타낸 그래프이고, 도 15c는 습도 35%의 조건에서 전자파 차폐재의 온도에따른 저항을 나타낸 그래프이다.
도 15a 내지 15c에 나타난 결과에 따르면, 전자파 차폐재의 굽힌 각도, 습도 및 온도의 변화에 따라 저항 값이 크게 변화되지 않는 것을 확인할 수 있다. 이는 본원의 전자파 차폐재의 내구성이 높다는 것을 의미한다.
도 16은 본 실시예 및 비교예에 따라 제조한 전자파 차폐재의 전자파 차폐 효율을 나타낸 그래프이다.
구체적으로, 도 16은 7.5 GHz 내지 12 GHz의 범위에서의 전자파 차폐 효율을 나타낸 그래프이다.
도 16에 나타난 결과에 따르면, 비교예 1 및 2의 전자파 차폐 효율은 거의 나타나지 않으나, 실시예 1및 2의 전자파 차폐 효율은 각각 59.5 dB 내지 65.2 dB, 64.3 dB 내지 73.8 dB의 효율을 나타내는 것을 확인할 수 있다.
도 17은 본 실시예 및 비교예에 따라 제조한 전자파 차폐재의 전자파 차폐 효율을 나타낸 그래프이다.
구체적으로, 도 17은 12 GHz 내지 18 GHz의 범위에서의 전자파 차폐 효율을 나타낸 그래프이다.
도 17에 나타난 결과에 따르면, 고주파 영역에서도 비교예 1 및 2의 전자파 차폐 효율은 거의 나타나지 않으나, 실시예 1및 2의 전자파 차폐 효율은 7.5 GHz 내지 12 GHz의 범위에서 보다는 줄어들었으나, 50 dB 내지 70 dB 정도를 나타내는 것을 확인할 수 있다.
도 18은 본 실시예에 따라 제조한 전자파 차폐재의 전자파 효율을 나타낸 그래프이다.
구체적으로, 도 18은 7.5 GHz 내지 12 GHz의 범위에서의 전자파 차폐 효율을 나타낸 그래프이다.
도 18에 나타난 결과에 따르면, 12 GHz에서 실시예 3의 전자파 차폐 효율은 18.6 dB인 것으로 나타났다.
본 실시예 및 비교예에 따라 제조된 전자파 차폐재의 도금된 구리의 중량을 분석하였을 때, 전자파 차폐재 총 중량 대비 비교예 1은 1.4 %, 비교예 2는 3.0%, 실시예 1은 29.0%, 실시예 2는 41.0%, 실시예 3은 14.2%인 것으로 나타났다. 상기 중량 분석 결과와 도 16 내지 18에 나타난 결과에서 전자파 차폐재에 도금된 금속 량이 증가할수록 전자파 차폐 효율이 증가하는 것을 확인할 수 있다.
도 19는 본 실시예 및 비교예에 따라 제조한 전자파 차폐재의 전자파 효율을 나타낸 그래프이다.
구체적으로, 도 19는 7.5 GHz 내지 12 GHz의 범위에서의 전자파 차폐 효율을 나타낸 그래프이다.
도 19에 나타난 결과에 따르면, 고분자 박막 상에 구리를 도금한 비교예 3뿐만 아니라 아민 작용기가 개질 되지 않은 다공성 유기 고분자 층 상에 구리를 도금한 비교예 4 또한 전자파 차폐 효율이 나타나지 않는 것을 확인할 수 있다. 이는, 상기 다공성 유기 고분자 층에 개질된 아민 작용기가 고분자 박막 상에 금속이 효과적으로 도금되는 역할을 하는 것을 의미한다.
본 실시예 2, 비교예 5 내지 14의 전자파 차폐재 효율을 분석하였고, 이를 표 2로서 나타내었다.
전자파 차폐재 차폐재의 두께
(mm)
활성층의 두께
(μm)
활성 물질의 함량(wt%) 주파수
(GHz)
EMI SE
(dB)
실시예 2 0.1 0.64 41 12 71.7
비교예 5 0.01 10 100 8.2~12.4 70
비교예 6 3.1 3100 100 1-4 90
비교예 7 2.5 30 8.2~12.4 41.2
비교예 8 2.5 4.5 8.2~12.4 38
비교예 9 0.2 2.1(vol%) 8.2~12.4 33
비교예 10 8.2~12.4 33.95-46.22
비교예 11 0.1 10 8.2~12.4 77
비교예 12 0.02 0.25~1.5 64.9
비교예 13 0.3 2-3 22 43.7
비교예 14 50 8-12 45
표 2에 나타난 결과에 따르면, 본원의 실시예 2의 전자파 차폐 효율(71.7 dB)은 구리 필름인 비교예 5의 전자파 차폐 효율(70 dB)과 비슷한 것으로 나타났다. 이때, 활성층인 구리의 두께가 비교예 5는 10 um인 반면, 실시예 2는 0.64 um로 얇은 두께로도 비슷한 전자파 효율을 나타내고 있다. 일반적으로, 전자파 차폐재의 경우 두께가 두꺼울수록 효율이 증가하는 것으로 알려져 있다. 만약, 실시예 2의 두께가 더 두꺼울 경우 전자파 차폐 효율은 더 증가할 것으로 예상할 수 있다. 더욱이, 비교예 5 및 6과 비교했을 때, 실시예 2는 활성 물질인 구리의 함량이 41%일 때에 이와 같은 효율을 나타내는 것이다. 이는 전자파 차폐재로서 활용할 때, 저비용으로 다양한 용도에 사용할 수 있으면서도 높은 전자파 차폐 효율을 보일 수 있는 것을 의미한다. 비교예 7 내지 14와 비교했을 때에도, 본 실시예 2의 전자파 차폐 효율이 높은 것을 확인할 수 있다. 다만, 비교예 11의 전자파 효율이 77 dB로서, 실시예 2의 전자파 차폐 효율 보다 높은 것으로 나타났으나, 이는 비교예 11의 활성층의 두께가 더 두꺼워서 높게 나타난 것이다.
3. 전자파 차폐재의 유연성 평가
본 실시예 1에서 제조한 전자파 차폐재의 유연성 평가를 실시하였고, 이를 도 20 내지 도 22로서 나타내었다.
도 20의 (a)는 본 실시예에 따라 제조한 전자파 차폐재를 구부렸을 때를 나타낸 도면이고, 도 20의 (b)는 본 실시예에 따라 제조한 전자파 차폐재를 구부리는 횟수에 따른 저항을 나타낸 그래프이다.
구체적으로, 도 20의 (a)는 직경이 5 mm인 벤딩테스트기에 의해 구부려졌을 때의 전자파 차폐재의 모양을 나타낸 도면이고, 도 20의 (b)는 실시예 2의 전자파 차폐재를 구부리는 횟수에 따른 저항을 나타낸 그래프이다.
도 20의 (b)에 나타난 결과에 따르면, 구부리기 전의 실시예 2의 저항은 0.609±0.058 Ω이고, 1 내지 1,000회 구부렸을 때의 저항은 0.069 Ω 내지 0.677 Ω이다. 본원의 전자파 차폐재는 유연성 평가를 위해 1,000회 구부렸을 때에도 저항 값이 거의 변화하지 않는 것을 확인할 수 있다.
도 21은 본 실시예에 따라 제조한 전자파 차폐재를 구부리는 횟수에 따른 전자파 차폐 효율을 나타낸 그래프이다.
구체적으로, 도 21은 실시예 2의 전자파 차폐재를 구부리는 횟수에 따른 전자파 차폐 효율을 나타낸 그래프이다.
도 21에 나타난 결과에 따르면, 전자파 차폐재를 1 내지 1,000회 구부렸을 때의 전자파 차폐 효율은 69.5 dB 내지 73.3 dB로 나타났다. 이는 구부리기 전의 실시예 2의 전자파 차폐 효율인 64.3 dB 내지 73.8 dB과 큰 차이가 없는 값이다.
본원의 전자파 차폐재는 1,000번의 유연성 평가 이후에도 전자기 차폐 효율이 유지된다. 이는 본원의 전자파 차폐재를 다양한 형태 및 용도로서 사용하고 반복적으로 변형을 가했을 때에도 전자파 차폐 효율을 유지할 수 있음을 의미한다.
최근 전자파 차폐재의 금속 함량을 줄이고 유연성을 높이기 위해 금속과 고분자를 이용한 전자파 차폐재의 연구가 지속되고 있다. 하지만 금속과 고분자 간의 결합력이 좋지 않아, 반복적인 유연성 평가 이후에 금속이 이탈되어, 반복적으로 변형을 가할 때에 전자파 차폐 효율이 점점 감소하는 문제가 있었다. 본원의 전자파 차폐재는 이러한 문제를 해결하기 위한 것으로서, 다공성 유기 고분자 층 상에 개질된 아민기가 상기 다공성 유기 고분자와 금속 간의 결합력을 향상시켰다. 이에, 반복적으로 변형을 가했을 때에도 상기 금속이 이탈되지 않아 전자파 차폐 효율이 유지될 수 있다.
도 22의 (a) 및 (b)는 본 실시예에 따른 전자파 차폐재의 흡수, 반사 및 투과 효율의 비율을 나타낸 그래프이다.
도 22의 (a) 및 (b)에 나타난 결과에 따르면, 본 실시예에 따른 전자파 차폐재는 모든 주파수 영역에서 흡수 효율이 가장 높은 것을 확인할 수 있다. 일반적으로 전자파의 주파수가 증가할수록 외부반사에 의한 효율은 감소하는 반면 흡수에 의한 효율이 증가하게 되어 이동통신이 5G로 발전함에 따라 전자파를 흡수하는 물질이 절대적으로 필요한 상황이다. 이러한 상황에서 고주파 범위에서도 효과적으로 전자파를 흡수하는 본 실시예에 따라 제조된 전자파 차폐재는 앞으로의 5G 시대에 다양한 전자 기기에 응용될 수 있을 것이다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.

Claims (12)

  1. 고분자 섬유 박막;
    상기 고분자 섬유 박막 상에 형성된 다공성 유기 고분자 층; 및
    상기 다공성 유기 고분자 층 상에 형성된 금속 박막;을 포함하는 것인, 전자파 차폐재.
  2. 제 1 항에 있어서,
    상기 다공성 유기 고분자 층은 테트라(4-에틴일페닐)메테인, 1-아미노-2,5-디브로모벤젠, 트리(4-에틴일페닐)아민, 트리(4-아이오도페닐)아민, 테트라키스(4-에틴일페닐)포르피린, 디아이오도벤젠, 1,3,5-트리에틴일벤젠 및 이들의 조합들로 이루어진 군에서 선택된 물질을 포함하는 것인, 전자파 차폐재.
  3. 제 1 항에 있어서,
    상기 전자파 차폐재는 5 GHz 내지 20 GHz의 범위에서 50 dB 내지 80dB의 전자파 차폐 효율을 가지는 것인, 전자파 차폐재.
  4. 제 1 항에 있어서,
    상기 전자파 차폐재는 직경이 5 mm인 벤딩테스트기를 이용한 1,000회 벤딩 테스트 후의 초기효율 대비 전자파 차폐 효율 감소율이 1% 이하인 것인, 전자파 차폐재.
  5. 제 1 항에 있어서,
    상기 전자파 차폐재 100 중량부에 있어서, 상기 금속 박막은 10 중량부 내지 60 중량부로 포함되는 것인, 전자파 차폐재.
  6. 제 1 항에 있어서,
    상기 금속 박막의 두께는 200 nm 내지 800 nm인 것인, 전자파 차폐재.
  7. 제 1 항에 있어서,
    상기 전자파 차폐재 100 중량부에 있어서, 상기 다공성 유기 고분자 층은 1 중량부 내지 5 중량부로 포함되는 것인, 전자파 차폐재.
  8. 고분자 섬유 박막 상에 다공성 유기 고분자 층을 형성하는 단계; 및
    상기 다공성 유기 고분자 층 상에 금속 박막을 형성하는 단계;를 포함하는 것인, 전자파 차폐재의 제조 방법.
  9. 제 8 항에 있어서,
    상기 다공성 유기 고분자 층을 형성하는 단계 이전에 상기 고분자 섬유 박막 상에 제 1 촉매를 형성하는 단계를 더 포함하는 것인, 전자파 차폐재의 제조 방법.
  10. 제 8 항에 있어서,
    상기 금속 박막을 형성하는 단계 이전에 상기 다공성 유기 고분자 층 상에 제 2 촉매를 형성하는 단계를 더 포함하는 것인, 전자파 차폐재의 제조 방법.
  11. 제 8 항에 있어서,
    상기 금속 박막을 형성하는 단계는 무전해 도금법에 의해 수행되는 것인, 전자파 차폐재의 제조 방법.
  12. 제 8 항에 있어서,
    상기 전자파 차폐재 100 중량부에 있어서, 상기 금속 박막은 10 중량부 내지 60 중량부로 포함되는 것인, 전자파 차폐재의 제조 방법.
PCT/KR2021/008668 2020-07-08 2021-07-07 전자파 차폐재 및 이의 제조 방법 WO2022010266A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200084295 2020-07-08
KR10-2020-0084295 2020-07-08
KR10-2020-0112844 2020-09-04
KR1020200112844A KR102388449B1 (ko) 2020-07-08 2020-09-04 전자파 차폐재 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2022010266A1 true WO2022010266A1 (ko) 2022-01-13

Family

ID=79553404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008668 WO2022010266A1 (ko) 2020-07-08 2021-07-07 전자파 차폐재 및 이의 제조 방법

Country Status (1)

Country Link
WO (1) WO2022010266A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120086540A (ko) * 2011-01-26 2012-08-03 (주) 파카알지비 전자파 차폐재
KR20130136386A (ko) * 2012-06-04 2013-12-12 주식회사 아모그린텍 전자파 차폐시트, 그 제조방법 및 이를 구비한 내장형 안테나
KR101424030B1 (ko) * 2014-01-13 2014-07-28 톱텍에이치앤에스 주식회사 전자파 차폐막
KR20170136064A (ko) * 2016-05-30 2017-12-11 주식회사 아모그린텍 플렉시블 전자파 차폐시트 및 그를 구비한 전자기기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120086540A (ko) * 2011-01-26 2012-08-03 (주) 파카알지비 전자파 차폐재
KR20130136386A (ko) * 2012-06-04 2013-12-12 주식회사 아모그린텍 전자파 차폐시트, 그 제조방법 및 이를 구비한 내장형 안테나
KR101424030B1 (ko) * 2014-01-13 2014-07-28 톱텍에이치앤에스 주식회사 전자파 차폐막
KR20170136064A (ko) * 2016-05-30 2017-12-11 주식회사 아모그린텍 플렉시블 전자파 차폐시트 및 그를 구비한 전자기기

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KANG CHANG WAN, CHOI JAEWON, KO YOON-JOO, LEE SANG MOON, KIM HAE JIN, KIM JONG PIL, SON SEUNG UK: "Thin Coating of Microporous Organic Network Makes a Big Difference: Sustainability Issue of Ni Electrodes on the PET Textile for Flexible Lithium-Ion Batteries", APPLIED MATERIALS & INTERFACES, vol. 9, no. 42, 25 October 2017 (2017-10-25), US , pages 36936 - 36943, XP055886440, ISSN: 1944-8244, DOI: 10.1021/acsami.7b12653 *

Similar Documents

Publication Publication Date Title
WO2011142565A2 (ko) 광대역 전자기파 흡수체 및 그 제조방법
WO2017111254A1 (ko) 전자파 차폐 필름 및 이의 제조방법
WO2020116779A1 (ko) 플렉서블 면발광 조명 장치
WO2017217759A1 (ko) 열전도성 박막 시트 및 이를 포함하는 물품
WO2021201376A1 (ko) 3차원 회로 프린팅이 가능한 연신성 전극회로, 그를 이용한 스트레인 센서 및 그의 제조방법
WO2019066543A1 (ko) 인조 흑연 분말을 이용한 열전도성 박막의 제조방법
WO2017179900A1 (ko) 그래핀 섬유 및 그 제조 방법
WO2019124624A1 (ko) 전자파 차폐필름, 인쇄회로기판 제조방법 및 전자파 차폐필름 제조방법
WO2019135533A1 (ko) 전자파 차폐 필름의 제조 방법
WO2015105340A1 (ko) 연성 인쇄회로기판용 전자파 차폐 필름 및 이의 제조방법
WO2019194386A1 (ko) 연성금속박적층판 제조용 폴리이미드 필름 및 이를 포함하는 연성금속박적층판
WO2016105131A1 (ko) 연성 인쇄회로기판용 전자파 차폐 필름의 제조방법
WO2015046956A1 (ko) 변성 폴리페닐렌 옥사이드 및 이를 이용하는 동박 적층판
WO2020226292A1 (ko) 적층 구조체, 이를 포함하는 연성동박적층필름, 및 상기 적층 구조체의 제작방법
WO2022010266A1 (ko) 전자파 차폐재 및 이의 제조 방법
WO2021145664A1 (ko) 회로기판
WO2023027367A1 (ko) 전도성 와이어가 포함된 전자파 흡수 복합소재 및 이에 대한 제조방법
WO2020180149A1 (ko) 패키징 기판 및 이를 포함하는 반도체 장치
WO2020189882A1 (ko) 대전방지 실리콘 이형필름
WO2015046953A1 (ko) 변성 폴리페닐렌 옥사이드를 이용한 동박적층판
WO2015099451A1 (ko) 연성 인쇄회로기판 형성용 절연 수지 시트 및 이의 제조방법, 이를 포함하는 인쇄회로기판
WO2018093127A1 (ko) 복합 용도의 자성 시트 및 이를 포함하는 안테나 장치
WO2022220349A1 (ko) 양면 대전방지 실리콘 이형필름
WO2022158831A1 (ko) 동박적층필름, 이를 포함하는 전자소자, 및 상기 동박적층필름의 제조방법
WO2021182925A1 (ko) 회로기판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21838777

Country of ref document: EP

Kind code of ref document: A1