WO2022010241A1 - 질환 세포-특이적인 mirna에 의해 세포 생리 활성 조절 물질의 활성을 조절하는 복합체 및 이를 crispr/cas 시스템에 적용한 질환 특이적 유전자 조작용 복합체 - Google Patents

질환 세포-특이적인 mirna에 의해 세포 생리 활성 조절 물질의 활성을 조절하는 복합체 및 이를 crispr/cas 시스템에 적용한 질환 특이적 유전자 조작용 복합체 Download PDF

Info

Publication number
WO2022010241A1
WO2022010241A1 PCT/KR2021/008609 KR2021008609W WO2022010241A1 WO 2022010241 A1 WO2022010241 A1 WO 2022010241A1 KR 2021008609 W KR2021008609 W KR 2021008609W WO 2022010241 A1 WO2022010241 A1 WO 2022010241A1
Authority
WO
WIPO (PCT)
Prior art keywords
nes
linker
complex
nls
cas
Prior art date
Application number
PCT/KR2021/008609
Other languages
English (en)
French (fr)
Inventor
이지민
박수찬
박일근
오승자
신철희
김상헌
Original Assignee
한국과학기술연구원
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원, 강원대학교산학협력단 filed Critical 한국과학기술연구원
Publication of WO2022010241A1 publication Critical patent/WO2022010241A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/09Fusion polypeptide containing a localisation/targetting motif containing a nuclear localisation signal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/095Fusion polypeptide containing a localisation/targetting motif containing a nuclear export signal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Definitions

  • the present invention relates to a complex for regulating the activity of a cell physiological activity regulator by disease cell-specific miRNA and a complex for disease-specific genetic manipulation applied to the CRISPR/Cas system.
  • CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
  • the CRISPR system stores a part of the DNA of the virus that the bacterium has previously invaded in its specific gene, a short palindromic repeat sequence, and then retrieves the information when the virus invades again and finds and cuts only the viral DNA. It was found that it works as a self-protection mechanism in bacteria.
  • Cas9 protein CRISPR associated protein 9
  • guide RNA gRNA: guide RNA
  • the gene editing system using the Cas9 plasmid vector which is an initial method, required verification of safety such as antibiotic resistance and various immune responses, and has a disadvantage in that it is complicated to use.
  • Korean Patent Registration No. 1795999 proposes a method in which only target genes can be specifically and accurately removed without affecting non-target genes.
  • the present inventors developed a complex capable of regulating the activity of a cell-bioactivity modulator in a disease cell-specific manner, and completed the present invention by applying it to the CRISPR/Cas system.
  • NLS nuclear localization signal
  • Cas protein CRISPR associated protein
  • NES nuclear export signal
  • an NLS-Cas-linker-NES complex comprising a linker connecting the Cas protein and the NES peptide, wherein the linker is cleaved by binding to a target microRNA (miRNA), NLS-Cas To provide the -linker-NES complex.
  • miRNA target microRNA
  • Another aspect is to provide a composition for disease-specific genetic manipulation comprising the NLS-Cas-linker-NES complex as an active ingredient.
  • Another aspect is to provide a pharmaceutical composition for preventing or treating a disease comprising the NLS-Cas-linker-NES complex as an active ingredient.
  • Another aspect is to provide a kit for genetic manipulation comprising the NLS-Cas-linker-NES complex.
  • Another aspect is to provide a method of engineering a gene comprising the step of using the NLS-Cas-linker-NES complex.
  • Another aspect is to provide a method for preventing or treating a disease comprising administering the NLS-Cas-linker-NES complex to an individual.
  • NLS nuclear localization signal
  • Cas protein CRISPR associated protein
  • NES nuclear export signal
  • NLS-Cas-linker-NES complex comprising a linker connecting the Cas protein and the NES peptide, wherein the linker is cleaved by binding to a target microRNA (miRNA), NLS-Cas Provides the -linker-NES complex.
  • miRNA target microRNA
  • CRISPR-associated protein CRISPR associated protein
  • Cas protein refers to a protein constituting a CRISPR system that can recognize, cut, and edit a specific nucleotide sequence to be used.
  • the Cas protein may be a protein that functions as a gene scissors capable of genetic manipulation, such as inserting a specific gene into a target site of the genome or stopping the activity of a specific gene.
  • Each wild-type CRISPR-Cas protein can interact with one or more polynucleotides (most typically RNA) to form a Cas protein-RNA hybrid.
  • the Cas protein is Cas1, Cas1B, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9, Cas10, Csy1, Csy2, Csy3, Cse1, Cse2, Csc1, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx10, Csx16, CsaX, Csx3, Csx1, Csx15, Csf2, homologue or homologue, Csf1, Csf3 may refer to, but not limited to, a CRISPR-associated protein.
  • the Cas protein may be a Cas9 protein (CRISPR associated protein 9).
  • the Cas9 protein may include a sequence related to Cas9 function as a minimum sequence and may additionally include other sequences, and preferably may consist of a sequence known in the art.
  • the Cas9 protein may include the amino acid sequence of SEQ ID NO: 1.
  • Cas9 protein (CRISPR associated protein 9) is one of CRISPR type II RNA-guided DNA endonuclease, RNA-guided endonuclease (RGEN), and the immune system of various prokaryotes. It refers to the Cas protein responsible for Cas9 gene and protein information can be obtained from GenBank of the National Center for Biotechnology Information (NCBI).
  • the Cas9 protein is Streptococcus sp. (Streptococcus sp.), such as a Cas9 protein from Streptococcus pyogenes or a Cas9 protein from Staphylococcus aureus or a Cas9 protein from Campylobacter jejuni or It may be a recombinant protein, but is not limited thereto.
  • recombination when used to refer to, for example, a cell, nucleic acid, protein or vector, etc., introduction of a heterologous nucleic acid or protein or alteration of a native nucleic acid or protein, or Refers to a cell, nucleic acid, protein, or vector modified by a cell derived from the modified cell.
  • a recombinant Cas protein can be made by reconstructing the nucleic acid molecule sequence encoding the Cas protein using a human codon table.
  • the Cas protein of the NLS-Cas-linker-NES complex has an NLS peptide linked to either end of both ends, and a biotin binding protein or biotin binding peptide (biotin) to the other end. binding peptide) may be linked.
  • nuclear localization signal (NLS) peptide refers to a peptide that is linked to the cell physiological activity regulator and serves to identify a nuclear localization.
  • the NLS peptide includes a sequence related to the NLS function as a minimum sequence, and may additionally include other sequences, and may preferably consist of a sequence known in the art. Specifically, the NLS peptide may include the amino acid sequence of SEQ ID NO: 21.
  • the complex to which the NLS peptide is linked to either end of both ends of the Cas protein and the biotin-binding protein or biotin-binding peptide is linked to the other end contains a gene consisting of a nucleotide sequence encoding the same , can be prepared by a recombinant vector having the nucleotide sequence of SEQ ID NO: 6.
  • the expression cassette of the recombinant vector comprising the nucleic acid molecule encoding the Cas9 protein includes regulatory sequences such as a promoter sequence for expressing the Cas9 protein, or in addition thereto, an NLS peptide sequence and a biotin-binding protein or biotin-binding peptide. sequence may be included.
  • vector refers to DNA that can be propagated by introducing a desired DNA fragment into a host bacteria or the like in a DNA recombination experiment.
  • the vector is also referred to as a cloning vehicle, and for DNA recombination, the vector DNA is cut with a restriction enzyme or the like to open the ring, and a target DNA fragment is inserted and linked thereto, and then introduced into the host bacteria.
  • the vector DNA linking the target DNA fragment is replicated as the host bacteria proliferates, and is distributed to each cystic cell along with the division of the fungus to maintain the target DNA fragment from generation to generation. Plasmids and phage chromosomes are mainly used.
  • the NLS-Cas-linker-NES complex may include a Cas protein (specifically, an NLS-Cas complex) linked to the NLS peptide and a linker connecting the NES peptide.
  • the linker may include an oligonucleotide that complementarily binds to a target miRNA.
  • oligonucleotide refers to a polymer in which several to several tens of nucleotide units are linked.
  • the oligonucleotide may be composed of deoxyribonucleotide or ribonucleotide, and may be artificially synthesized or manufactured through genetic recombination technology.
  • the linker may include a binding site to which the target miRNA can complementarily bind, and when the target miRNA binds to the binding site, the linker may be cleaved. Accordingly, the linker may take the form of an analog, mimic, or mimic of RNA, specifically, messenger RNA (mRNA), but is not limited thereto.
  • mRNA messenger RNA
  • the linker may include one or more, specifically, 1 to 10, preferably, 1 to 3 binding sites to which the target miRNA binds.
  • the binding site of the linker is a targeting sequence site including a nucleotide sequence capable of hybridizing with the target miRNA, and may be a site determined according to the target miRNA.
  • the nucleotides may be the same or different from each other, and the sugar constituting each nucleotide may be ribose or deoxyribose, and the base constituting each nucleotide is a purine adenine (A). ) and guanine (guanine: G), pyrimidine-based cytosine (cytosine: C), thymine (T), and uracil (U) may be each independently selected from the group consisting of.
  • micro RNA refers to a small non-coding RNA molecule of about 15 to about 50 nucleotides in length, preferably 17 to 23 nucleotides in length, that modulates the post-transcriptional expression of a target gene. refers to Biogenesis of miRNA can be achieved by a multi-step process that occurs in the cell nucleus and cytoplasm. Mature miRNAs can integrate into RNA-induced silencing complexes and bind to the untranslated region (UTR) of the 3' end of mRNA, which can induce mRNA degradation or translational repression. The miRNA can be processed from a hairpin precursor (pre-miRNA) of about 70 or more nucleotides derived from a primary transcript (pri-miRNA) through continuous cleavage by RNAse III enzyme in a cell.
  • pre-miRNA hairpin precursor
  • pri-miRNA primary transcript
  • the target miRNA may be specifically expressed in diseased cells.
  • the target miRNA is miR-21, miR-155, miR-221, miR-100, miR-125, miR-125b-1, miR-181, miR-181a, miR-181b, miR-181b-1 , miR-181b-2, miR-181c, miR-181d, miR-107, miR-424, miR-301, miR-212, miR-92, miR-92-1, miR-16, miR-16-1 , miR-15, miR-15b, miR-24, miR-24-1, miR-24-2, miR-376, miR-376a, miR-210, miR-223, miR-205, miR-143, miR -146, miR-146a, miR-31, miR-196, miR-196a, miR-196b, miR-150, miR-145, miR-18, miR-18a, miR-203, miR-224, miR-93
  • the binding site of the linker may include the nucleotide sequence of SEQ ID NO: 3, and miRNA 21 including the nucleotide sequence of SEQ ID NO: 4 may bind to the binding site.
  • miRNA 21 is called hsa-mir-21 and refers to a microRNA encoded by the MIR21 gene.
  • miRNA 21 is one of the most frequently upregulated miRNAs in solid cancers or tumors, and overall, miRNA 21 is considered to be a classic 'onco-miR', resulting in the expression of phosphatases that limit the activity of signaling pathways such as AKT and MAPK may work by inhibiting miRNA 21 can function as a biomarker of various solid carcinomas, such as breast cancer, ovarian cancer, cervical cancer, colon cancer, lung cancer, liver cancer, brain cancer, esophageal cancer, prostate cancer, pancreatic cancer, thyroid cancer, colorectal cancer, and kidney cancer.
  • the linker connects the NLS-Cas complex and the NES peptide, and an NES peptide may be connected to one end of the linker, and a Cas protein may be connected to the other end of the linker.
  • nuclear export signal (NES) peptide refers to a peptide that serves as a nuclear export signal, and uses nuclear transport to transfer a target substance from a cell nucleus through a nuclear pore complex. Refers to peptides capable of transporting into the cytoplasm.
  • the NLS peptide which is a nuclear localization signal, refers to a peptide capable of transporting a target substance located in the cytoplasm to the nucleus
  • the NES peptide may be a peptide causing an effect opposite to the NLS peptide.
  • the NLS-Cas-linker-NES complex in which the Cas protein and guide RNA of the NLS-Cas-linker-NES complex form a hybrid is injected into a cell, the hybrid is introduced into the cell nucleus by the linked NES peptide. It cannot migrate and can be located in the cytoplasm.
  • the linker of the NLS-Cas-linker-NES complex binds to a target miRNA and is cleaved, the hybrid of Cas protein and guide RNA separated from the NES peptide can move from the cytoplasm to the nucleus by the linked NLS peptide.
  • the NES peptide includes a sequence related to the NES function as a minimum sequence and may additionally include other sequences, and preferably may consist of a sequence known in the art. Specifically, the NES peptide may include the amino acid sequence of SEQ ID NO: 20.
  • the NLS-Cas-linker-NES complex may include one or more of the NES peptides.
  • the NLS-Cas-linker-NES complex may include 1 to 10, preferably, 1 to 3 NES peptides.
  • the NLS-Cas-linker-NES complex has an azide functional group connected to one end of the linker and a dibenzocyclooctyne (DBCO) functional group connected to the C-terminus of the NES peptide. Due to the click reaction of, the linker and the NES peptide may be connected.
  • DBCO dibenzocyclooctyne
  • the alkyne-azide chemical bond which is a type of the click reaction or click chemistry, has a very high thermodynamic driving force (generally 20 kcal/mol or more), so that the carbon-hetero of the azide compound and the alkyne compound in an efficient and high yield. Can form interatomic bonds.
  • the alkyne means alkyne, and may refer to one of chain-type unsaturated hydrocarbons in which a ring having a triple bond does not exist.
  • the general formula of an alkyne can be represented by C n H 2n-2.
  • the alkyne may be a cycloalkyne.
  • the cycloalkyne is a hydrocarbon in which several carbon atoms are bonded like a ring and hydrogen is bonded to each carbon atom, and may refer to a hydrocarbon having a triple bond in the ring but not aromatic. Specifically, the cycloalkyne may have 8 or more carbon atoms.
  • the DBCO may be referred to as aza-dibenzocyclooctyne (ADIBO).
  • ADIBO aza-dibenzocyclooctyne
  • a copper free click chemistry reaction, an alkyne-azide cycloaddition, may refer to one of the most reactive cycloalkynes for a click reaction.
  • the azide functional group or DBCO functional group respectively, PEG (polyethylene glycol), pluronic (pluronic), polyvinylpyrrolidone (polyvinylpyrolidone), and polyoxazoline (polyoxazolin) any one or more nonionic hydrophilic groups selected from the group consisting of polymer; or poly-L-lactic acid, poly-glycolic acid, poly-D-lactic-co-glycolic acid, poly- L-lactic acid-co-glycolic acid (poly-L-lactic-co-glycolic acid), poly-D,L-lactic acid-co-glycolic acid (poly-D,L-lactic-co-glycolic acid), poly- Any one or more biodegradable polyester-based polymers selected from the group consisting of caprolactone, poly-valerolactone, poly-hydroxybutyrate, and polyhydroxyvalerate; polymers can be formed.
  • the azide polymer may be linked to one end of the linker, and the DBCO polymer may be linked to the C-terminus of the NES peptide, and the linker and the NES peptide may be linked by an azide-DBCO click reaction.
  • the NLS-Cas-linker-NES complex may be one in which the Cas protein and the linker are linked by binding of a biotin binding protein linked to the Cas protein and biotin linked to the linker. have.
  • biotin refers to water-soluble B-vitamin (vitamin B7), also called vitamin H or coenzyme R, and is represented by the formula C 10 H 16 N 2 O 3 S.
  • the biotin may be composed of a ureido (tetrahydroimidizalone) ring fused with a tetrahydrothiophene ring.
  • Biotin may include valeric acid bonded to one carbon atom of the tetrahydrotyrophene ring.
  • Biotin is a coenzyme for a carboxylase enzyme and may be involved in the synthesis of fatty acids, isoleucine, and valine and gluconeogenesis.
  • Biotin has a dissociation constant Kd of 10 - 14 to 10 - 15 M in addition to the characteristics as a coenzyme described above, such as avidin (avidin), streptavidin (streptavidin), and neutravidin (or deglycosylated avidin) (neutravidin or deglycosylated avidin), etc. It can bind strongly to the protein of Since biotin is small in size and does not affect the activity of molecules including proteins, it can be used in biochemical assays by binding to various molecules. This process, that is, the process of binding biotin to a specific substance or molecule may be called biotinylation.
  • the biotinylated material can be immobilized on the beads by incubation with streptavidin/avidin beads, etc., and using this principle, biotin can be used to connect different kinds of molecules or materials.
  • biotin-binding protein refers to a protein linked to the Cas protein, which binds to biotin linked to the linker, thereby forming the Cas protein (specifically, NLS-Cas complex) and the linker. It refers to a protein that plays a role in connecting.
  • the biotin-binding protein may be selected from avidin family proteins consisting of avidin, streptavidin, traptavidin, and neutravidin.
  • avidin is a protein produced in the oviduct of birds, reptiles and amphibians and accumulated in the white of these eggs, and has a strong degree of binding ability to biotin.
  • streptavidin is a protein isolated from Streptomyces avidinii bacteria, and has a very strong degree of binding ability to biotin.
  • the biotin-binding protein may be or include an Avitag peptide consisting of the amino acid sequence of SEQ ID NO: 2.
  • the Avitag peptide is linked to the C-terminus or N-terminus of the Cas protein, specifically the Cas9 protein, and serves as a biotin acceptor peptide, thereby binding to the biotin linked to the linker.
  • the Cas protein specifically, the NLS-Cas complex
  • the linker may be linked to form the NLS-Cas-linker-NES complex.
  • any form of crosslinking agent, linker, functional group, chemical reaction other than the binding mode of the biotin binding protein-biotin including the Avitag peptide-biotin binding , a coupling reaction, etc. may be used, and may be appropriately selected by those skilled in the art.
  • the NLS-Cas-linker-NES complex may further include a guide RNA, and the guide RNA may form a hybrid with the Cas protein.
  • guide RNA refers to a target DNA-specific RNA (eg, RNA capable of hybridizing with a target site of DNA), capable of forming a hybrid with a Cas protein, and targeting the Cas protein RNA that is brought into DNA.
  • the guide RNA includes two guide RNAs, that is, a CRISPR RNA (crRNA) having a nucleotide sequence capable of hybridizing with a target site of the gene, and an additional trans-activating crRNA (tracrRNA) for desired gene editing, and the crRNA and
  • dual guide RNA which is a crRNA-tracrRNA complex to which tracrRNA is partially bound, or in the form of a single guide RNA (sgRNA) in which the crRNA (part or all) and tracrRNA (part or all) are linked
  • sgRNA single guide RNA
  • Any guide RNA may be used as long as the guide RNA includes essential parts of crRNA and tracrRNA and a nucleotide sequence complementary to the target gene.
  • the target DNA may be endogenous DNA or artificial DNA, for example, endogenous DNA for treatment, and artificial DNA for screening and DNA production.
  • the guide RNA may be modified using methods known in the art to achieve the purpose of improving affinity with a target DNA or improving binding ability with a Cas protein.
  • the guide RNA may further include one or more additional nucleotides (eg, guanine) at the 5' end of the crRNA of the single-stranded guide RNA or double RNA.
  • the guide RNA is a backbone modified nucleotide, such as a peptide nucleic acid (PNA), phosphorothioate DNA, phosphorodithioate DNA, phosphoroamidate DNA, amide-linked DNA, MMI-linked DNA, 2' -O-methyl RNA, alpha-DNA, and methylphosphonate DNA, sugar modified nucleotides such as 2′-O-methyl RNA, 2′-fluoro RNA, 2′-amino RNA, 2′-O-alkyl DNA, 2'-O-allyl DNA, 2'-O-alkynyl DNA, hexose DNA, pyranosyl RNA and anhydrohexitol DNA, and nucleotides with base modifications such as C-5 substituted pyrimidines (Substituents are fluoro-, bromo-, chloro-, iodo-, methyl-, ethyl-, vinyl-, formyl
  • the Cas protein and the guide RNA form a hybrid, and the hybridization may be in a form in which the guide RNA can move the Cas protein to the target DNA, for example, the guide RNA may be located on the surface of the Cas protein.
  • the guide RNA included in the hybrid may be hybridized with one type of target DNA or may be hybridized with two or more types of target DNA. It may include both the meaning that is not one type but two or more types, and the meaning that nucleotide sequences capable of hitting two types of target DNA in one type of guide RNA exist.
  • the NLS-Cas-linker-NES complex in which the guide RNA and the Cas protein form a hybrid may deliver the hybrid of the guide RNA and the Cas protein into a disease cell-specifically cell nucleus.
  • the hybrid forms a cell nucleus by the linked NES peptide. It cannot migrate into the cytoplasm and may be located in the cytoplasm.
  • the linker of the NLS-Cas-linker-NES complex binds to a target miRNA expressed specifically in a disease cell and is cleaved
  • the hybrid of Cas protein and guide RNA isolated from the NES peptide is linked to the disease by the NLS peptide. Cell-specific migration from the cytoplasm into the nucleus. Through this, it is possible to induce genetic manipulation of the CRISPR/Cas system that operates specifically for diseased cells.
  • compositions for disease-specific genetic manipulation comprising the NLS-Cas-linker-NES complex as an active ingredient.
  • Another aspect provides a pharmaceutical composition for preventing or treating a disease comprising the NLS-Cas-linker-NES complex as an active ingredient.
  • Another aspect provides a kit for genetic manipulation comprising the NLS-Cas-linker-NES complex.
  • the term "genetic modification” refers to a job of changing the properties of a gene by rearranging or mutating a gene, and specifically refers to gene editing technology.
  • editing a specific gene in the genome of an organism may mean editing a specific gene by recognizing and cutting a specific nucleotide sequence, adding a new base to the site, or subtracting an existing base.
  • genetic modification may include the meaning of terms such as gene regulation, gene editing, gene correction, gene rearrangement, gene recombination, and the like, and the terms are interchanged with the terms herein. can be used negatively.
  • compositions for genetic modification or "a pharmaceutical composition for disease prevention or treatment” refers to application or administration to a subject, typically a human. Suitable compositions are encompassed. In general, such compositions are safe, sterile, and preferably free of contaminants that could cause undesirable reactions in a subject (ie, the substance(s) of which the composition is made is pharmaceutically acceptable).
  • composition may be administered to a subject in need thereof orally (i.e., administered by mouth or gastrointestinal tract) or parenterally (e.g., buccal, rectal, transdermal, transmucosal, subcutaneous, intravenous, intraperitoneal, intradermal, intratracheal, may be formulated for application or administration by a number of different routes of administration, including intrathecal, pulmonary, etc.).
  • the disease may be a solid cancer or a tumor disease, but is not limited thereto.
  • the solid cancer or tumor is breast cancer, ovarian cancer, cervical cancer, colon cancer, lung cancer, liver cancer, brain cancer, esophageal cancer, prostate cancer, pancreatic cancer, thyroid cancer, colorectal cancer, kidney cancer, colon cancer, stomach cancer, colon adenocarcinoma, non-small cell lung cancer, periodontal cancer, It may be one or more selected from the group consisting of rectal cancer, oral cancer, uterine cancer, gallbladder cancer, bladder cancer, laryngeal cancer, salivary gland cancer, brain tumor, bone tumor, spinal tumor, gingivoma, granuloblastoma, ovarian tumor, and germ cell tumor, but is not limited thereto.
  • the pharmaceutical composition for preventing or treating a disease comprising the NLS-Cas-linker-NES complex as an active ingredient may be administered in combination with an anticancer agent. Therefore, the pharmaceutical composition for preventing or treating a disease comprising the NLS-Cas-linker-NES complex as an active ingredient may be used as an anticancer agent alone as well as as an anticancer adjuvant administered in combination with an anticancer agent.
  • the anticancer agent may be cisplatin, but is not limited thereto.
  • Another aspect provides a method of engineering a gene comprising using the NLS-Cas-linker-NES complex.
  • the step of using the NLS-Cas-linker-NES complex may include injecting the NLS-Cas-linker-NES complex into a cell or individual.
  • Another aspect provides a method for preventing or treating a disease comprising administering the NLS-Cas-linker-NES complex to an individual.
  • the disease may be a solid cancer or a tumor disease, but is not limited thereto.
  • the solid cancer or tumor is breast cancer, ovarian cancer, cervical cancer, colon cancer, lung cancer, liver cancer, brain cancer, esophageal cancer, prostate cancer, pancreatic cancer, thyroid cancer, colorectal cancer, kidney cancer, colon cancer, stomach cancer, colon adenocarcinoma, non-small cell lung cancer, periodontal cancer, It may be one or more selected from the group consisting of rectal cancer, oral cancer, uterine cancer, gallbladder cancer, bladder cancer, laryngeal cancer, salivary gland cancer, brain tumor, bone tumor, spinal tumor, gingivoma, granuloblastoma, ovarian tumor, and germ cell tumor, but is not limited thereto.
  • the subject may be a human or a mammal other than a human. More specifically, the subject may refer to mammals such as humans or non-human primates, mice, rats, dogs, cats, horses, apes, pigs, goats, and cattle.
  • the Cas of the NLS-Cas-linker-NES complex When the protein is injected into a diseased cell in a hybridized state with the guide RNA, the linker of the NLS-Cas-linker-NES complex may be cleaved by miRNA specifically expressed in the diseased cell. Through this, the NLS-Cas-linker-NES complex is separated, and the hybrid of the Cas protein and guide RNA from which the NES peptide has been removed moves into the cell nucleus by the linked NLS to manipulate the gene of the diseased cell.
  • the NLS-Cas-linker-NES complex prepared to bind to the target miRNA specifically expressed in diseased cells forms a hybrid with the guide RNA and is injected into the cytoplasm of normal cells that do not express the target miRNA.
  • the linker of the NLS-Cas-linker-NES complex is not cleaved because it does not bind to the target miRNA. Therefore, the NLS-Cas-linker-NES complex is located in the cytoplasm without moving into the nucleus by the linked NES peptide in normal cells, so that the genetically engineered function may be significantly reduced or not operated.
  • the structural linkage is stably maintained, so that the effect can be significantly increased.
  • FIG. 1 shows a schematic diagram of an Avitag-pET-Cas9-NLS-6xHis plasmid vector expressing a complex comprising Avitag, Cas9, and NLS according to an embodiment.
  • Figure 2a shows the result of SDS-PAGE gel confirming the purity after purifying the complex including Avitag, Cas9, and NLS according to an embodiment
  • M Protein marker
  • 1 Induced cell Sup.
  • 2 Flow- through
  • 3-5 Wash 1-3 (20 mM Imidazole); 6-10: Elute 1-5 (100 mM Imidazole); 11-14: Elute 1-4 (250 mM Imidazole)).
  • Figure 2b shows the results of the SDS-PAGE gel to confirm the purity after purifying the complex containing Avitag, Cas9, and NLS according to an embodiment
  • M protein marker
  • 1 100 mM Imidazole/PBS 1 ug
  • 2 100 mM Imidazole/PBS 2 ug
  • 3 BSA 2.0 ug
  • 4 BSA 1.0 ug
  • 5 BSA 0.5 ug
  • 6 250 mM Imidazole/PBS 1 ug
  • 7 250 mM Imidazole/PBS 2 ug
  • RNA targeting EGFP sgRNA green fluorescent protein (GFP)
  • GFP green fluorescent protein
  • Figure 4a shows the results of HPLC (High Performance Liquid Chromatograph) confirming the purity of the synthesized and purified, C-terminal DBCO-linked NES (NES-DBCO(C)) according to an embodiment.
  • Figure 4b shows a mass spectrum result confirming the mass of NES (NES-DBCO(C)) synthesized and purified according to an embodiment, DBCO is linked to the C-terminus.
  • FIG. 4c shows HPLC results confirming the purity of NES (NES-azide (C)) synthesized and purified according to an embodiment, with an azide functional group linked to the C-terminus.
  • 4D shows a mass spectrum result confirming the mass of NES (NES-azide (C)) synthesized and purified according to an embodiment, an azide functional group connected to the C-terminus.
  • FIG. 4e shows HPLC results confirming the purity of NES (NES-azide(N)) synthesized and purified according to an embodiment, with an azide functional group linked to the N-terminus.
  • 4f shows a mass spectrum result confirming the mass of NES (NES-azide (N)) synthesized and purified according to an embodiment, an azide functional group connected to the N-terminus.
  • FIG. 5 is a result of confirming whether the miRNA 21 binding site of the linker according to an embodiment is specifically cleaved by miRNA 21.
  • Intracellular luciferase using an expression vector (siCHECK2 miRNA 21) system including a miRNA 21 binding site. (Luciferase) The result of measuring the activity is shown.
  • MOCK was a cell that was not transfected with the siCHECK2 vector, and was used as a positive control.
  • cells transfected with a vector (siCHECK2 CTL) containing a CTL (control) miRNA binding site were used as a negative control
  • cells transfected with a vector containing a miRNA 294 binding site were used as a comparison control group. was used as
  • 6a shows the results of SDS-PAGE gel confirming whether the binding of DBCO and azide functional groups between NES and biotinylated linkers is maintained for each of the 12 linker-NES complexes in Table 4 according to an embodiment. .
  • 6b is a BCA assay (bicinchoninic acid assay) result confirming whether the binding of DBCO and azide functional group between NES and the biotinylated linker is maintained for each of the 12 linker-NES complexes of Table 4 according to an embodiment; indicates
  • Figure 6c shows the binding of DBCO and azide functional group between NES and the biotinylated linker for each of the linker-NES complexes 1 to 4 of Table 4 according to an embodiment, based on the BCA assay result of Figure 6b. It is a graph shown by analyzing the binding yield for the .
  • FIG. 7 shows the NLS-Cas9-linker-NES complex in order to confirm the disease-specific genetic manipulation function of the NLS-Cas9-linker-NES complex
  • the NLS-Cas9-linker-NES complex forms a hybrid with EGFP sgRNA and injected into cells The results of observing the expression of GFP in the cells are shown.
  • 7A is a confocal microscope image showing the expression level of GFP
  • FIG. 7B is an image as a result of western blot analysis showing the expression level of GFP
  • FIG. 7C is a graph quantifying the expression level of GFP.
  • FIG. 8 is a view showing the change in tumor size and tumor size after injection of the NLS-Cas9-linker-NES complex targeting EZH2 into tumor mice in order to confirm the cancer treatment effect of the NLS-Cas9-linker-NES complex according to an embodiment.
  • the results of analyzing the expression pattern of EZH2 in tissues are shown.
  • Fig. 8a is a graph quantifying the change in tumor size
  • Fig. 8b is an image showing the change in tumor size
  • Fig. 8c is an image showing the Western blot analysis result of analyzing the expression pattern of EZH2 in the tumor tissue.
  • 9 is an NLS-Cas9-linker-NES complex and cisplatin targeting EZH2 in tumor mice in order to confirm the cancer treatment effect of the NLS-Cas9-linker-NES complex according to an embodiment in combination with an anticancer agent.
  • 9A is a graph quantifying the change in tumor size
  • FIG. 9B is an image showing the change in tumor size.
  • 10 is an NLS-Cas9-linker-NES complex and cisplatin targeting EZH2 in tumor mice in order to confirm the cancer treatment effect of the NLS-Cas9-linker-NES complex according to an embodiment in combination with an anticancer agent.
  • the results of analyzing the expression pattern of EZH2 in tumor tissues after co-administration are shown.
  • 10A is a confocal microscopy image showing the results of immunofluorescence analysis of EZH2 expression in tumor tissue
  • FIG. 10B is a graph quantifying the expression level of EZH2 in tumor tissue.
  • Example 1 Preparation of a complex comprising Avitag, Cas9, and NLS
  • the Avitag nucleotide sequence (SEQ ID NO: 5) into the pET-Cas9-NLS-6xHis vector (Addgene, #62933), based on the PCR system, using a primer having an XbaI / NheI restriction site, A DNA fragment encoding the Avitag peptide (SEQ ID NO: 2) was amplified. After digestion and ligation of the Avitag DNA (SEQ ID NO: 5) fragment and the Cas9 expression vector using XbaI and NheI restriction enzymes from New England Biolabs (NEB), the Avitag DNA fragment was added to the Cas9 expression vector. inserted. Thereafter, the nucleotide sequence (SEQ ID NO: 6) of the Avitag-pET-Cas9-NLS-6xHis plasmid vector was confirmed through whole nucleotide sequencing.
  • an Avitag-pET-Cas9-NLS-6xHis plasmid vector expressing a complex including Avitag, Cas9, and NLS was obtained.
  • the complex including Avitag, Cas9, and NLS was expressed and extracted in a microorganism using an expression vector system.
  • E. coli BL21 (DE3) competent cells injected with the Avitag-pET-Cas9-NLS-6xHis plasmid vector obtained above containing ampicillin (100 ⁇ g/ml) Over-night incubation at 37 °C on LB (Luria-Bertani) agar plates. Selected transgenic-BL21 cells were cultured with shaking overnight in 3 L of LB-ampicillin liquid medium containing 1 mM isopropyl- ⁇ -D-thiogalactopyranoside (IPTG) (20 °C, 120 RPM).
  • IPTG isopropyl- ⁇ -D-thiogalactopyranoside
  • lysis buffer 50 mM NaH 2 PO 4 , 300 mM NaCl, 5 mM imidazole (pH 8.0)
  • the collected cells were lysed (lysis).
  • Ni-NTA Nickel-nitrilotriacetic acid
  • EGFP single-guide RNA SEQ ID NO: 7
  • GFP green fluorescent protein
  • Alt-R ® CRISPR-Cas9 sgRNA from Integrated DNA Technologies
  • IDT Integrated DNA Technologies
  • the complex prepared in Example 1 and the EGFP sgRNA were incubated in PBS buffer (37 °C, 30 min). Thereafter, the complex, which formed a Cas9-sgRNA hybrid in Hela cell line stably expressing GFP, was transfected using Neon ® transfection system (Thermo Fisher Scientific) or Lipofectamine 2000 transfection sample (Invitrogen). speculated. Thereafter, by observing the expression level of GFP in the cells, the genetic engineering function of the complex prepared in Example 1 was confirmed.
  • Neon ® transfection system Thermo Fisher Scientific
  • Lipofectamine 2000 transfection sample Invitrogen
  • Example 1 when the complex prepared in Example 1 was injected into cells to form a Cas9-EGFP sgRNA hybrid, compared to the control group, the expression of GFP in the cells was significantly reduced.
  • Example 1 formed a hybrid with the guide RNA to exert the genetic manipulation function in the cell.
  • NES to which DBCO or an azide functional group is linked was first synthesized.
  • 1X NES-DBCO (N) with DBCO linked to the N-terminus of NES 1X NES-DBCO (C) with DBCO linked to the C-terminus of NES
  • 1X NES- with an azide functional group linked to the N-terminus of NES azide (N) and 1X NES-azide (C) peptides with an azide functional group linked to the C-terminus of NES were synthesized.
  • the NES includes the amino acid sequence of SEQ ID NO: 20.
  • the three types of peptides obtained above were purified through a column (Shiseido capcell pak C18, 5 ⁇ m, 120 ⁇ (4.6 * 50 mm)) using SHIMADZU Prominence High Performance Liquid Chromatograph, and purified at 220 nm. After detection, mass spectrum analysis was performed.
  • Table 1 below shows the results of the HPLC analysis of NES-DBCO (C)
  • Table 2 below shows the results of the HPLC analysis of NES-azide (C)
  • Table 3 below shows the results of the HPLC analysis of NES-azide (N) was shown.
  • the measured mass value of NES-DBCO(C) is about 1299, and the measured mass value of NES-azide(C) is about 1094 (Negative mode M) -1), and the measured mass values of NES-azide (N) were confirmed to be about 966 (M-1) and 1080 (M+TFA Salt) (Negative mode).
  • the NES may later play a role in regulating the movement of the Cas9 protein from the cytoplasm to the nucleus.
  • the Cas9 protein when the Cas9 protein is linked to the NES by a linker, the Cas9 protein is located in the cytoplasm and the genetic manipulation function does not work, and when the Cas9 protein is separated from the NES by cleavage of the linker, the Cas9 protein and the guide The hybrid of RNA may move from the cytoplasm to the nucleus to allow genetic manipulation. This was demonstrated through the following examples and experimental examples.
  • the Integrated DNA Technologies (IDT) system was used to prepare a biotinylated linker including a binding site to which a target miRNA binds.
  • a linker containing an oligonucleotide having a binding site capable of binding to miRNA was created using the Integrated DNA Technologies (IDT) system at 100 nm scale. was synthesized with In addition, DBCO or an azide functional group was linked to the 5' end of the synthesized linker, and biotin was linked to the 3' end, followed by purification through HPLC.
  • the example has one or three miRNA 21 binding sites comprising the nucleotide sequence of SEQ ID NO: 3 or SEQ ID NO: 8; Biotin is linked at the 3' end; DBCO or azide functional group is linked to the 5' end; And to the binding site, miRNA 21 comprising the nucleotide sequence of SEQ ID NO: 4 can bind to, the following biotinylated linkers were obtained:
  • the prepared linker is cleaved by binding to miRNA 21, and by this cleavage, the Cas9 protein can move from the cytoplasm into the cell nucleus while being separated from the linkage with the NES later, and thereby genetic manipulation may be possible.
  • the prepared linker is specifically cleaved only in solid cancer and tumor disease cells, not in normal cells, thereby enabling disease cell-specific genetic manipulation of the Cas9 protein. can induce
  • miRNA 294 binding sites comprising the nucleotide sequence of SEQ ID NO: 9 or SEQ ID NO: 11; Biotin is linked at the 3' end; DBCO or azide functional group is linked to the 5' end; And at the binding site, miRNA 294 comprising the nucleotide sequence of SEQ ID NO: 10 can bind to, the following biotinylated linkers were obtained:
  • the prepared linker may be cleaved by binding to miRNA 294, but not cleaved by miRNA 21 because it does not bind to miRNA 21. Therefore, the prepared linker is injected into cells that express miRNA 21 but not miRNA 294, and can be used as a comparative control.
  • the NES peptides (a), (b), and (c) obtained in Example 2-1 and the biotinylated linker (d) obtained in Examples 2-2-1 and 2-2-2, (e), (f), (g), (h), (i), (j), and (k) were conjugated by incubation at 37 °C in PBS over-night.
  • a click reaction of DBCO and azide was induced between the NES and the biotinylated linker, and the connection of the NES and the biotinylated linker was induced.
  • an expression vector system was used to confirm that the target miRNA binding site of the linker prepared in 2-2 is specifically cleaved by the target miRNA.
  • the nucleotide of the linker having the target miRNA binding site was inserted into the multiple cloning region of the psiCHECKTM-2 vector (Promega, #C8021) using restriction enzymes (Xho1, EcoR1). Table 5 below shows the sequence including the nucleotide sequence inserted above.
  • the recombinant miRNA-psiCHECKTM-2 vector was transfected into Hela cells (Hela cells expressing miRNA 21 but not miRNA 294 were used) using a Lipofectamine 2000 transfection sample (Invitrogen). .
  • the dual-it was measured by a multi-detection system (GloMax-Multi Detection System) ( Promega) - Luciferase ® Reporter black systems (Dual-Luciferase ® Reporter Assay System ) using (Promega, # E1910) Glow Max.
  • GloMax-Multi Detection System Promega
  • Luciferase ® Reporter black systems Dual-Luciferase ® Reporter Assay System
  • a vector (siCHECK2 1X miRNA 21, or siCHECK2 3X miRNA 21) into which the nucleotide sequence of the linker having a miRNA 21 binding site (SEQ ID NOs: 12 and 13, or SEQ ID NOs: 14 and 15) was inserted.
  • the NLS-Cas9-linker-NES complex was prepared by linking the biotinylated linker-NES complex with the complex containing Avitag, Cas9, and NLS obtained above.
  • the complex containing Avitag, Cas9, and NLS obtained above and the biotinylated linker-NES complex were incubated together in PBS at 4 °C for over-night incubation to induce binding of the Avitag to the biotin.
  • NLS-Cas9-linker-NES complex name target miRNA target miRNA number of binding sites composition One Cas9-miRNA 21 1X-NES miRNA 21 (SEQ ID NO: 4) One NLS-(C)Cas9(N)-Avitag-Biotin-3'-miRNA 21 binding site 1X (SEQ ID NO:3) -azide-5'-DBCO-(C)NES(N) 2 Cas9-miRNA 21 3X-NES miRNA 21 (SEQ ID NO: 4) 3 NLS-(C)Cas9(N)-Avitag-Biotin-3'-miRNA 21 binding site 3X (SEQ ID NO: 8) -azide-5'-DBCO-(C)NES(N) 3 Cas9-miRNA 294 1X-NES miRNA 294 (SEQ ID NO: 10) One NLS-(C)Cas9(N)-Avitag-Biotin-3'-miRNA 294 binding site 1X (SEQ ID
  • the NLS-Cas9-linker-NES complex prepared in Table 6 and EGFP sgRNA were incubated in PBS buffer at 37 °C for 30 min.
  • Transfection was carried out using either the Sean System (Thermo Fisher Scientific) or Lipofectamine 2000 transfection sample (Invitrogen). Thereafter, the disease-specific genetic manipulation function of the NLS-Cas9-linker-NES complex was confirmed by confocal microscope and Western blot analysis.
  • NLS-Cas9-linker-NES complex No. 3 in Table 6 (Cas9-miRNA 294 1X-NES) and No. 4 NLS-Cas9-linker-
  • the NES complex (Cas9-miRNA 294 3X-NES) was injected, there was no significant decrease in the expression of GFP in the cells compared to the control group.
  • the prepared NLS-Cas9-linker-NES complex of Table 6 having different miRNA binding sites is specifically cleaved by a specific miRNA only by a specific miRNA binding site, thereby separating, and NES is The removed, hybrid of Cas9 protein and guide RNA moved into the cell nucleus, confirming that miRNA-specific genetic manipulation could be possible. That is, it was confirmed that the prepared NLS-Cas9-linker-NES complex of Table 6 can be operated specifically for miRNA in cells.
  • this NLS-Cas9-linker-NES complex can enable genetic manipulation that specifically works only in diseased cells while preventing damage to normal cells.
  • disease prevention, treatment, and reduction of side effects can be made, and the effect of disease treatment can be improved, thereby supplementing the problems of the existing CRISPR/Cas system.
  • lung cancer cells A549 cells were subcutaneously injected into 5-week-old immunodeficient nude mice (nu/nu) Orient Bio).
  • NLS-Cas9-linker-NES complex No. 1 of Table 6 (Cas9-miRNA 21 1X-NES) and No. 3 NLS-Cas9-linker-NES complex of Table 6 (Cas9-miRNA 294 1X-NES), respectively were incubated with EZH2 sgRNA and PBS buffer at 37 °C for 30 min.
  • EZH2 sgRNA and PBS buffer at 37 °C for 30 min.
  • each of the obtained samples was injected into the tumor of the mouse, and according to the administered sample, a total of four experimental groups were classified.
  • the administered samples are as follows, and tumor mice not administered with the NLS-Cas9-linker-NES complex were used as a control group:
  • Tumor volume (V) was calculated using the following modified ellipsoidal formula:
  • V 0.5 x length x (width) 2 .
  • NLS-Cas9-linker-NES complex (Cas9-miRNA 21 1X-NES) of Table 6 targeting EZH2 binds to and cleaves miRNA 21 in lung cancer cells expressing miRNA 21, It was confirmed that the EZH2 gene can be inhibited by moving from the cytoplasm to the nucleus, thereby reducing the tumor size and thus exhibiting the therapeutic effect of lung cancer. That is, the NLS-Cas9-linker-NES complex is genetically manipulated by a target miRNA that is specifically expressed only in diseased cells. It has been confirmed that cancer can be treated.
  • the NLS-Cas9-linker-NES complex can safely manipulate genes specifically for cancer cells, it can exhibit cancer treatment effects alone, and when administered in combination with anticancer agents, it can improve the resistance of cancer cells to anticancer agents. Blocking can increase the effectiveness of cancer treatment. Therefore, the NLS-Cas9-linker-NES complex can be utilized not only as a single cancer treatment agent, but also as a cancer treatment agent for anticancer drug combination therapy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 출원은 질환 세포-특이적인 miRNA에 의해 세포 생리 활성 조절 물질의 활성을 조절하는 복합체 및 이를 CRISPR/Cas 시스템에 적용한 질환 특이적 유전자 조작용 복합체에 관한 것이다.

Description

질환 세포-특이적인 MIRNA에 의해 세포 생리 활성 조절 물질의 활성을 조절하는 복합체 및 이를 CRISPR/CAS 시스템에 적용한 질환 특이적 유전자 조작용 복합체
본 발명은 질환 세포-특이적인 miRNA에 의해 세포 생리 활성 조절 물질의 활성을 조절하는 복합체 및 이를 CRISPR/Cas 시스템에 적용한 질환 특이적 유전자 조작용 복합체에 관한 것이다. 본 특허출원은 2020년 07월 06일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2020-0083088호에 대하여 우선권을 주장하며, 상기 특허출원의 개시 사항은 본 명세서에 참조로서 삽입된다.
불과 몇 년 전에 과학자들은 박테리아 유전물질로부터 '주기적으로 간격을 띄고 분포하는 짧은 회문구조 반복 서열'을 의미하는 크리스퍼 (CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats) 시스템을 발견하였다. 구체적으로, 크리스퍼 시스템은, 박테리아가 이전에 침입했던 바이러스의 DNA 일부를 자신의 특정 유전자인 짧은 회문구조 반복 서열에 저장해둔 후, 다시 바이러스가 침입할 때에 그 정보를 꺼내어 바이러스 DNA만을 찾아 절단하는 데 쓰이는, 박테리아의 자기보호 메커니즘으로써 작동된다는 것을 발견하였다.
이 과정에서, Cas9 단백질 (CRISPR associated protein 9) 및 가이드 RNA (gRNA: guide RNA)가 발견되었다. 구체적으로는, 상기 크리스퍼 시스템은, 박테리아에 기억된 바이러스 DNA가 RNA로 전사되고, 이 RNA와 Cas9 단백질이 결합해 외부에서 침투한 박테리아의 DNA를 자름으로써 작동된다는 것이 밝혀졌다. 즉, 상기 Cas9 단백질은 DNA를 절단할 수 있는 유전자 가위 역할을 하며, 상기 RNA는 Cas9 단백질과 결합하여, Cas9 단백질을 목표지점으로 유도하고, 원하는 특정 DNA 부위만을 절단하게 하는 가이드 RNA 역할을 한다는 것이 밝혀졌다.
이를 통해, 현재에는, Cas9 단백질과 가이드 RNA의 간단한 구성으로 이루어진 CRISPR/Cas9 시스템을 유전자 교정의 핵심도구로 활용한 연구들이 증가하고 있다. 또한, Cas9 단백질 외에 유전자 가위의 역할을 할 수 있는 여러 종류의 Cas 단백질 (CRISPR associated protein) 및 이러한 Cas 단백질과 결합하여 다양한 유전자 교정을 가능하게 하는 여러 종류의 가이드 RNA에 대한 연구도 증가하고 있다.
따라서, 다양하게 개발되고 있는, CRISPR/Cas 시스템은 이전의 DNA 편집 기술과는 비교할 수 없을 정도로 그 구성 및 사용이 간단하고, 비용 또한 저렴하기 때문에, 유전자 조작 동·식물 및 인간 질환 치료에 적용하기 위한 연구가 계속되고 있는 실정이다.
그러나 아직까지는 CRISPR/Cas 시스템을 실제로 인체에 적용하기에, 안전성 및 안정성과 관련된 여러 가지 문제들이 존재한다. 초기 방식인 Cas9 플라스미드 벡터 (plasmid vector)를 사용한 유전자 편집 시스템은 항생제 저항성, 여러 면역 반응 등의 안전성에 대한 검증이 필요하였고, 활용이 복잡한 단점이 있다.
또한, CRISPR/Cas 시스템에 의해 발생될 수 있는, 예상치 못한 돌연변이 또는 치명적인 부작용이 발생할 수 있는 위험을 제거하기 위해서는, 표적 유전자가 확실히 제거되어야 하며, 표적 유전자 외의 유전자는 영향을 받지 않아야 하는 바, 이러한 문제를 해결하기 위한 다양한 연구도 계속되고 있다. 대한민국 등록특허 제1795999호는 비 표적 유전자에는 영향을 주지 않으면서 표적 유전자만이 특이적으로 정확하게 제거될 수 있는 방안을 제시하였다.
그러나 여전히 문제가 되는 것은, CRISPR/Cas 시스템을 활용한 Cas 단백질 및 가이드 RNA의 혼성체를 생체 내로 주입할 경우, 질환 세포가 아닌 정상 세포의 유전자까지 조작하여, 정상 세포를 손상시킬 가능성이 존재하고, 이러한 문제점을 해결하기 위한 연구는 부족한 실정이다. 따라서, 정상 세포와 질환 세포를 구별하여 질환 세포 특이적으로 CRISPR/Cas 시스템이 작동될 수 있도록 하는 방안이 요구된다.
본 발명자들은 세포 생리 활성 조절 물질 (cell-bioactivity modulator)의 활성을 질환 세포 특이적으로 조절할 수 있는 복합체를 개발하였고, 이를 CRISPR/Cas 시스템에 적용하여 본 발명을 완성하였다.
일 양상은 핵 위치화 신호 (nuclear localization signal, NLS) 펩티드와 연결된 CRISPR 연관 단백질 (CRISPR associated protein, Cas 단백질); 핵 엑스포트 신호 (nuclear export signal, NES) 펩티드; 및 상기 Cas 단백질과 상기 NES 펩티드를 연결하는 링커 (linker)를 포함하는 NLS-Cas-linker-NES 복합체로서, 상기 링커는 표적 마이크로 RNA (miRNA)와 결합하는 것에 의하여 절단되는 것인, NLS-Cas-linker-NES 복합체를 제공하는 것이다.
다른 양상은 상기 NLS-Cas-linker-NES 복합체를 유효성분으로 포함하는 질환 특이적 유전자 조작용 조성물을 제공하는 것이다.
또 다른 양상은 상기 NLS-Cas-linker-NES 복합체를 유효성분으로 포함하는 질환 예방 또는 치료용 약제학적 조성물을 제공하는 것이다.
또 다른 양상은 상기 NLS-Cas-linker-NES 복합체를 포함하는 유전자 조작용 키트를 제공하는 것이다.
또 다른 양상은 상기 NLS-Cas-linker-NES 복합체를 이용하는 단계를 포함하는 유전자를 조작하는 방법을 제공하는 것이다.
또 다른 양상은 상기 NLS-Cas-linker-NES 복합체를 개체에게 투여하는 단계를 포함하는 질환을 예방 또는 치료하는 방법을 제공하는 것이다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업계에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
일 양상은 핵 위치화 신호 (nuclear localization signal, NLS) 펩티드와 연결된 CRISPR 연관 단백질 (CRISPR associated protein, Cas 단백질); 핵 엑스포트 신호 (nuclear export signal, NES) 펩티드; 및 상기 Cas 단백질과 상기 NES 펩티드를 연결하는 링커 (linker)를 포함하는 NLS-Cas-linker-NES 복합체로서, 상기 링커는 표적 마이크로 RNA (miRNA)와 결합하는 것에 의하여 절단되는 것인, NLS-Cas-linker-NES 복합체를 제공한다.
본 명세서의 용어, "CRISPR 연관 단백질 (CRISPR associated protein)" 또는 "Cas 단백질"은 CRISPR 시스템을 구성하는 단백질로서, 이용하고자 하는 특정 뉴클레오티드 서열을 인식하여 절단하고 편집할 수 있는 단백질을 지칭한다. 구체적으로, 상기 Cas 단백질은 게놈의 목적 장소에 특정 유전자를 삽입하거나 특정 유전자의 활동을 정지시키는 등의 유전자 조작이 가능한 유전자 가위 역할을 하는 단백질일 수 있다. 각각의 야생형 CRISPR-Cas 단백질은 하나 이상의 폴리뉴클레오티드 (가장 전형적으로 RNA)와 상호작용하여 Cas 단백질-RNA 혼성체를 형성할 수 있다.
상기 Cas 단백질은 Cas1, Cas1B, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9, Cas10, Csy1, Csy2, Csy3, Cse1, Cse2, Csc1, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx10, Csx16, CsaX, Csx3, Csx1, Csx15, Csf1, Csf2, Csf3, Csf4, 또는 이의 상동체 또는 변형물일 수 있으나, 이에 제한되지 않는 CRISPR-연합 단백질을 지칭할 수 있다.
일 실시예에서, 상기 Cas 단백질은 Cas9 단백질 (CRISPR associated protein 9)일 수 있다. 상기 Cas9 단백질은 Cas9 기능과 관련된 서열을 최소 서열로 포함하며 다른 서열을 추가적으로 포함할 수 있고, 바람직하게는 당업계에 공지된 서열로 구성될 수 있다. 구체적으로, 상기 Cas9 단백질은 서열번호 1의 아미노산 서열을 포함할 수 있다.
본 명세서의 용어, "Cas9 단백질 (CRISPR associated protein 9)"은 CRISPR type II RNA-guided DNA endonuclease의 하나로, RNA 가이드 엔도뉴클레아제 (RNA-guided endonuclease, RGEN)이며, 다양한 원핵생물의 면역체계를 담당하는 Cas 단백질을 지칭한다. Cas9 유전자 및 단백질의 정보는 국립생명공학정보센터 (national center for biotechnology information, NCBI)의 GenBank에서 구할 수 있다.
추가로, 상기 Cas9 단백질은 스트렙토코커스 sp. (Streptococcus sp.), 예컨대, 스트렙토코커스 피요젠스 (Streptococcus pyogenes) 유래의 Cas9 단백질 또는 스타필로코커스 아우레우스 (Staphylococcus aureus) 유래의 Cas9 단백질 또는 캄필로박터 제주니 (Campylobacter jejuni) 유래의 Cas9 단백질 또는 재조합 단백질일 수 있고, 이에 한정되지 않는다.
본 명세서의 용어, "재조합 (recombination)"은, 예컨대 세포, 핵산, 단백질 또는 벡터 등을 언급하며 사용될 때, 이종 (heterologous) 핵산 또는 단백질의 도입 또는 천연형 (native) 핵산 또는 단백질의 변경, 또는 변형된 세포로부터 유래한 세포에 의해 변형된 세포, 핵산, 단백질, 또는 벡터를 나타낸다. 따라서, 예컨대, 재조합 Cas 단백질은 인간 코돈표 (human codon table)를 이용하여 Cas 단백질을 암호화하는 핵산 분자 서열을 재구성함으로써 만들 수 있다.
일 실시예에서, 상기 NLS-Cas-linker-NES 복합체의 Cas 단백질은 양 말단 중 어느 한 쪽 말단에 NLS 펩티드가 연결되고, 다른 쪽 말단에 비오틴 결합 단백질 (biotin binding protein) 또는 비오틴 결합 펩티드 (biotin binding peptide)가 연결될 수 있다.
본 명세서의 용어, "핵 위치화 신호 (nuclear localization signal, NLS) 펩티드"는 상기 세포 생리 활성 조절 물질에 연결되어, 핵 위치를 파악하는 역할을 하는 펩티드를 지칭한다.
상기 NLS 펩티드는 NLS 기능과 관련된 서열을 최소 서열로 포함하며 다른 서열을 추가적으로 포함할 수 있고, 바람직하게는 당업계에 공지된 서열로 구성될 수 있다. 구체적으로, 상기 NLS 펩티드는 서열번호 21의 아미노산 서열을 포함할 수 있다.
일 실시예에서, 상기 Cas 단백질의 양 말단 중 어느 한 쪽 말단에 상기 NLS 펩티드가 연결되고, 다른 쪽 말단에 상기 비오틴 결합 단백질 또는 비오틴 결합 펩티드가 연결된 복합체는 이를 암호화하는 뉴클레오티드 서열로 이루어진 유전자를 포함하는, 서열번호 6의 뉴클레오티드 서열을 갖는 재조합 벡터에 의해 제조될 수 있다.
구체적으로, 상기 Cas9 단백질을 암호화하는 핵산 분자를 포함하는 재조합 벡터의 발현 카세트는 상기 Cas9 단백질을 발현시키기 위한 프로모터 서열 등의 조절 서열, 또는 여기에 더하여, NLS 펩티드 서열 및 비오틴 결합 단백질 또는 비오틴 결합 펩티드 서열을 포함할 수 있다.
본 명세서의 용어, "벡터 (vector)"는 DNA 재조합 실험에 있어서 목적하는 DNA 단편을 숙주균 등에 도입시켜 주고 증식할 수 있는 DNA를 지칭한다. 상기 벡터는 클로닝 운반체 (cloning vehicle)라고도 하며, DNA 재조합을 위해서는, 벡터 DNA를 제한효소 등으로 절단하여 개환하고 여기에 목적으로 하는 DNA 단편을 삽입하여 연결한 후 숙주균에 도입시킬 수 있다. 목적 DNA 단편을 연결한 벡터 DNA는 숙주균이 증식됨에 따라 복제하여 균의 분열과 더불어 각 낭세포로 분배되어 목적 DNA 단편을 대대로 유지하여 이어져 나가며, 플라스미드, 파지 염색체를 주로 사용한다.
일 실시예에서, 상기 NLS-Cas-linker-NES 복합체는 상기 NLS 펩티드와 연결된 Cas 단백질 (구체적으로는 NLS-Cas 복합체)과, NES 펩티드를 연결하는 링커를 포함할 수 있다.
상기 링커는 표적 miRNA와 상보적으로 결합하는 올리고뉴클레오티드를 포함할 수 있다.
본 명세서의 용어, "올리고뉴클레오티드 (oligonucleotide)"는 수 개에서 수십 개의 뉴클레오티드 단위체가 연결된 중합체를 의미한다. 상기 올리고뉴클레오티드는 데옥시리보뉴클레오티드 (deoxyribonucleotide) 또는 리보뉴클레오티드 (ribonucleotide)로 구성될 수 있고, 인위적으로 합성되거나 또는 유전자 재조합 기술을 통해 제조된 것일 수 있다.
상기 링커는 상기 표적 miRNA가 상보적으로 결합할 수 있는 결합 부위를 포함할 수 있고, 상기 표적 miRNA가 상기 결합 부위에 결합함으로써, 상기 링커는 절단될 수 있다. 따라서, 상기 링커는, RNA, 구체적으로는, 전령 RNA (mRNA)의 유사체, 모사체, 또는 모방체의 형태를 띌 수 있으나, 이에 한정되지 않는다.
상기 링커는 상기 표적 miRNA가 결합하는 결합 부위를 하나 이상, 구체적으로는, 1 내지 10 개, 바람직하게는, 1 내지 3 개 포함할 수 있다.
상기 링커의 결합 부위는 표적 miRNA와 혼성화 가능한 뉴클레오티드 서열을 포함하는 타겟팅 서열 부위로서, 표적 miRNA에 따라 결정되는 부위일 수 있다. 상기 뉴클레오티드들은 서로 같거나 다를 수 있으며, 각 뉴클레오티드를 구성하는 당 (sugar)은 리보오스 (ribose) 또는 디옥시리보오스 (deoxyribose)일 수 있고, 또한 각 뉴클레오티드를 구성하는 염기는 퓨린 계열의 아데닌 (adenine: A) 및 구아닌 (guanine: G), 피리미딘 계열의 시토신 (cytosine: C), 티민 (thymine: T), 및 우라실 (uracil: U)로 이루어진 군에서 각각 독립적으로 선택될 수 있다.
본 명세서의 용어, "마이크로 RNA (microRNA, miRNA)"는 표적 유전자의 전사 후 발현을 조절하는, 일반적으로 약 15 내지 약 50 뉴클레오티드 길이, 바람직하게는 17 내지 23 뉴클레오티드 길이의 작은 비-암호화 RNA 분자를 지칭한다. miRNA의 생물발생은 세포핵 및 세포질에서 발생하는 다단계의 과정에 의해 이루어질 수 있다. 성숙한 miRNA는 RNA-유도된 침묵화 복합체에 통합되어 mRNA의 3' 말단의 비번역 영역 (UTR)에 결합할 수 있고, 이는 mRNA 분해 또는 번역 억제를 유도할 수 있다. 상기 miRNA는 세포 내에서 RNAse III 효소에 의한 연속 절단을 통해 1차 전사물 (pri-miRNA)로부터 유래되는 약 70 개 이상 뉴클레오티드의 헤어핀 전구체 (pre-miRNA)로부터 가공될 수 있다.
상기 표적 miRNA는 질환 세포에서 특이적으로 발현되는 것일 수 있다. 구체적으로, 상기 표적 miRNA는 miR-21, miR-155, miR-221, miR-100, miR-125, miR-125b-1, miR-181, miR-181a, miR-181b, miR-181b-1, miR-181b-2, miR-181c, miR-181d, miR-107, miR-424, miR-301, miR-212, miR-92, miR-92-1, miR-16, miR-16-1, miR-15, miR-15b, miR-24, miR-24-1, miR-24-2, miR-376, miR-376a, miR-210, miR-223, miR-205, miR-143, miR-146, miR-146a, miR-31, miR-196, miR-196a, miR-196b, miR-150, miR-145, miR-18, miR-18a, miR-203, miR-224, miR-93, miR-222, miR-10, miR-10a, miR-10b, miR-199, miR-199a-1, miR-199a-2, miR-213, miR-103, miR-103-1, miR-103-2, miR-220, miR-125a, miR-99, miR-23, miR-23a, miR-23b, miR-139, miR-345, miR-142, miR-148, miR-148a, miR-148b, miR-375, miR-141, miR-96, miR-29, miR-29c, miR-130, miR-130b, miR-216, miR-217, 및 miR-294으로 이루어진 군으로부터 선택되는 어느 하나 이상일 수 있고, 이에 한정되지 않는다.
일 실시예에서, 상기 링커의 상기 결합 부위는 서열번호 3의 뉴클레오티드 서열을 포함하고, 상기 결합 부위에는 서열번호 4의 뉴클레오티드 서열을 포함하는 miRNA 21이 결합하는 것일 수 있다.
본 명세서의 용어, "miRNA 21"은 hsa-mir-21로 불리며, MIR21 유전자에 의해 인코딩되는 마이크로 RNA를 지칭한다. miRNA 21은 고형암 또는 종양에서 가장 빈번하게 상향 조절되는 miRNA 중 하나이고, 전반적으로, miRNA 21은 전형적인 'onco-miR'인 것으로 여겨지며, 이는 AKT 및 MAPK와 같은 신호 경로의 활성을 제한하는 포스파타제의 발현을 억제함으로써 작용할 수 있다. miRNA 21은 유방암, 난소암, 자궁경부암, 결장암, 폐암, 간암, 뇌암, 식도암, 전립선암, 췌장암, 갑상선암, 대장암, 신장암 등 다양한 고형암종의 바이오 마커로서 기능할 수 있다.
일 실시예에서, 상기 링커는 상기 NLS-Cas 복합체와 상기 NES 펩티드를 연결하는 것으로, 상기 링커의 어느 한 쪽 말단에 NES 펩티드가 연결되고, 다른 쪽 말단에 Cas 단백질이 연결될 수 있다.
본 명세서의 용어, "핵 엑스포트 신호 (nuclear export signal, NES) 펩티드"는 핵 수출 신호 역할을 하는 펩티드로서, 핵 수송을 사용하여 핵 공극 복합체 (nuclear pore complex)를 통해, 목적 물질을 세포 핵으로부터 세포질로 이송할 수 있는 펩티드를 지칭한다. 그에 반면, 핵 위치화 신호인 NLS 펩티드는 세포질에 위치한 목적 물질을 핵으로 이송할 수 있는 펩티드를 의미하는 바, 상기 NES 펩티드는 상기 NLS 펩티드와 대립되는 효과를 야기하는 펩티드일 수 있다.
따라서, 상기 NLS-Cas-linker-NES 복합체의 Cas 단백질과 가이드 RNA가 혼성체를 형성한 NLS-Cas-linker-NES 복합체를 세포에 주입하는 경우, 상기 혼성체는 연결된 NES 펩티드에 의하여 세포 핵 내로 이동하지 못하고, 세포질에 위치할 수 있다. 반면, NLS-Cas-linker-NES 복합체의 링커가 표적 miRNA와 결합하여 절단되면, NES 펩티드로부터 분리된, Cas 단백질과 가이드 RNA의 혼성체는 연결된 NLS 펩티드에 의하여 세포질에서 핵 내로 이동할 수 있다.
상기 NES 펩티드는 NES 기능과 관련된 서열을 최소 서열로 포함하며 다른 서열을 추가적으로 포함할 수 있고, 바람직하게는 당업계에 공지된 서열로 구성될 수 있다. 구체적으로, 상기 NES 펩티드는 서열번호 20의 아미노산 서열을 포함할 수 있다.
상기 NLS-Cas-linker-NES 복합체는 상기 NES 펩티드를 하나 이상 포함할 수 있다. 구체적으로, 상기 NLS-Cas-linker-NES 복합체는 상기 NES 펩티드를 1 내지 10 개, 바람직하게는, 1 내지 3 개 포함할 수 있다.
상기 NLS-Cas-linker-NES 복합체는, 상기 링커와 상기 NES 펩티드 사이에서 아지드 (azide) 작용기와 알킨 (alkyne) 작용기의 클릭반응 (click reaction)으로 인해, 상기 링커와 상기 NES 펩티드가 연결되어 있는 것일 수 있다.
구체적으로, 일 실시예에서, 상기 NLS-Cas-linker-NES 복합체는, 상기 링커의 한 쪽 말단에 연결된 아지드 작용기와 상기 NES 펩티드의 C-말단에 연결된 디벤조시클로옥틴 (dibenzocyclooctyne, DBCO) 작용기의 클릭반응으로 인해, 상기 링커와 상기 NES 펩티드가 연결되어 있는 것일 수 있다.
상기 클릭반응 또는 클릭화학 (click chemistry)의 한 종류인 알킨-아지드 화학결합은 열역학적 추진력이 매우 높아 (일반적으로 20 ㎉/㏖ 이상) 효율적이면서 높은 수율로 아지드 화합물과 알킨 화합물의 탄소-헤테로원자간 결합을 형성할 수 있다.
상기 알킨은 alkyne을 의미하며, 삼중결합을 갖는 고리가 존재하지 않는 사슬형의 불포화 탄화수소 중 하나를 지칭할 수 있다. 알킨의 일반식은 CnH2n-2로 나타낼 수 있다. 구체적으로, 상기 알킨은 시클로알킨 (cycloalkyne)일 수 있다.
상기 시클로알킨은 여러 개의 탄소 원자가 고리처럼 결합해 있고 각각의 탄소 원자에 수소가 결합한 탄화수소로, 삼중결합이 고리에 있지만 방향족이 아닌 것을 지칭할 수 있다. 구체적으로, 상기 시클로알킨은 탄소수가 8 개 이상일 수 있다.
상기 DBCO는 아자-디벤조시클로옥틴 (aza-dibenzocyclooctyne, ADIBO)으로 불릴 수 있으며. 구리가 없는 클릭화학 반응인 (a copper free click chemistry reaction), 알킨-아지드 고리 첨가 (cycloaddition) 클릭반응을 위한 가장 반응성이 높은 시클로알킨 중 하나를 지칭할 수 있다.
상기 아지드 작용기 또는 DBCO 작용기는, 각각 PEG (polyethylene glycol), 플루로닉 (pluronic), 폴리비닐피롤리돈 (polyvinylpyrolidone), 및 폴리옥사졸린 (polyoxazolin)으로 이루어진 군에서 선택된 어느 하나 이상의 비이온성 친수성 고분자; 또는 폴리 L-락트산 (poly-L-lactic acid), 폴리-글리콜산 (poly-glycolic acid), 폴리-D-락트산-co-글리콜산 (poly-D-lactic-co-glycolic acid), 폴리-L-락트산-co-글리콜산 (poly-L-lactic-co-glycolic acid), 폴리-D,L-락트산-co-글리콜산 (poly-D,L-lactic-co-glycolic acid), 폴리-카프로락톤 (polycaprolactone), 폴리-발레로락톤 (polyvalerolactone), 폴리-하이드록시 부티레이트 (polyhydroxybutyrate), 및 폴리-하이드록시 발러레이트 (polyhydroxyvalerate)로 이루어진 군에서 선택되는 어느 하나 이상의 생분해성 폴리에스테르계 고분자와 중합체를 이룰 수 있다.
상기 아지드 중합체는 상기 링커의 한 쪽 말단에 연결되고, 상기 DBCO 중합체는 상기 NES 펩티드의 C-말단에 연결되어, 아지드-DBCO 클릭반응에 의하여, 상기 링커와 상기 NES 펩티드가 연결될 수 있다.
상기 기술된, 상기 링커와 상기 NES 펩티드를 연결시킬 수 있다면, 상기 아지드-DBCO의 클릭반응을 포함한 상기 아지드-알킨의 화학결합 방식이 아닌, 어떠한 형태의 가교제, 링커, 작용기, 화학반응, 결합반응 등을 사용한 방식이라도 무방하며, 이는 당업자에 의해 적절히 선택될 수 있다.
일 실시예에서, 상기 NLS-Cas-linker-NES 복합체는, 상기 Cas 단백질에 연결된 비오틴 (biotin) 결합 단백질과 상기 링커에 연결된 비오틴의 결합에 의하여, 상기 Cas 단백질과 상기 링커가 연결되어 있는 것일 수 있다.
본 명세서의 용어, "비오틴 (biotin)"은 비타민 H 또는 조효소 R (coenzyme R)이라고도 하는 수용성 B-비타민 (vitamin B7)을 지칭하고, 화학식 C10H16N2O3S으로 표현된다. 상기 비오틴은 테트라히드로티오펜 고리와 융합된 우레이도 (테트라히드로이미디자론) 고리 (ureido (tetrahydroimidizalone) ring fused with a tetrahydrothiophene ring)로 구성되는 것일 수 있다. 비오틴은 테트라히드로티로펜 고리의 하나의 탄소원자에 결합된 발레르산 (Valeric acid)을 포함할 수 있다. 비오틴은 카르복실라제 효소에 대한 조효소로 지방산, 이소루신, 및 발린의 합성과 글루코스신합성 (gluconeogenesis)에 관여할 수 있다. 비오틴은 상기한 조효소로서의 특징 이외에 10 - 14 내지 10 - 15 M 수준의 해리상수 Kd로 아비딘 (avidin), 스트렙타비딘 (streptavidin), 및 뉴트라비딘 (또는 탈당화아비딘) (neutravidin or deglycosylated avidin) 등의 단백질과 강하게 결합할 수 있다. 비오틴은 크기가 작아 이를 포함하는 단백질 등의 분자의 활성에 영향을 주지 않으므로, 다양한 분자에 결합시켜 생화학적 에세이 등에 이용할 수 있다. 이러한 과정 즉, 특정 물질이나 분자에 비오틴을 결합시키는 과정을 비오틴화 (biotinylation)라고 할 수 있다. 이와 같이 비오틴화된 물질은 스트렙타비딘/아비딘 비드 등과 인큐베이션함으로써 상기 물질을 비드 상에 고정시킬 수 있고, 이러한 원리를 활용하여, 다른 종류의 분자 또는 물질을 연결하는데 비오틴이 사용될 수 있다.
본 명세서의 용어, "비오틴 결합 단백질 (biotin-binding protein)"은 상기 Cas 단백질에 연결된 단백질로써, 상기 링커에 연결된 비오틴과 결합하여, 상기 Cas 단백질 (구체적으로는 NLS-Cas 복합체)과 상기 링커를 연결하는 역할을 하는 단백질을 의미한다. 상기 비오틴 결합 단백질은 아비딘, 스트렙타비딘, 트랩타비딘 (traptavidin), 및 뉴트라비딘으로 구성된 아비딘 (avidin) 계열 단백질로부터 선택될 수 있다.
본 명세서에서 용어 "아비딘 (avidin)"은 조류, 파충류 및 양서류의 수란관에서 생성되어 이들 알 (egg)의 흰자위 (white)에 축적되는 단백질이며, 비오틴에 대해 강한 정도의 결합능을 갖는다. 용어 "스트렙타비딘 (streptavidin)"은 스트렙토마이세스 아비디니 (Streptomyces avidinii) 세균으로부터 분리된 단백질이며, 비오틴에 대해 매우 강한 정도의 결합능을 갖는다.
일 실시예에서, 상기 비오틴 결합 단백질은 서열번호 2의 아미노산 서열로 구성된 Avitag 펩티드이거나, 이를 포함할 수 있다.
상기 Avitag 펩티드는 상기 Cas 단백질, 구체적으로는 상기 Cas9 단백질의 C-말단 또는 N-말단에 연결되어, 비오틴 수용 펩티드 (biotin acceptor peptide)로써 역할을 하여, 상기 링커에 연결된 비오틴과 결합할 수 있다. 이 결합을 통해, 상기 Cas 단백질 (구체적으로는 NLS-Cas 복합체)과 상기 링커가 연결되어 상기 NLS-Cas-linker-NES 복합체가 형성될 수 있다.
상기 기술된, 상기 NLS-Cas 복합체와 상기 링커를 연결시킬 수 있다면, 상기 Avitag 펩티드-비오틴의 결합을 포함한 상기 비오틴 결합 단백질-비오틴의 결합 방식이 아닌, 어떠한 형태의 가교제, 링커, 작용기, 화학반응, 결합반응 등을 사용한 방식이라도 무방하며, 이는 당업자에 의해 적절히 선택될 수 있다.
일 실시예에서, 상기 NLS-Cas-linker-NES 복합체는 가이드 RNA를 더 포함할 수 있고, 상기 가이드 RNA는 상기 Cas 단백질과 혼성체를 형성할 수 있다.
본 명세서에서 용어, "가이드 RNA (guide RNA)"는 표적 DNA 특이적인 RNA (예컨대, DNA의 표적 부위와 혼성화 가능한 RNA)를 의미하고, Cas 단백질과 혼성체를 형성할 수 있고, Cas 단백질을 표적 DNA에 가져오는 RNA를 지칭한다.
상기 가이드 RNA는, 목적하는 유전자 교정을 위하여, 두 개의 가이드 RNA, 즉, 유전자의 표적 부위와 혼성화 가능한 뉴클레오티드 서열을 갖는 CRISPR RNA (crRNA)와 추가적인 trans-activating crRNA (tracrRNA)를 포함하며, crRNA와 tracrRNA가 부분적으로 결합된 crRNA-tracrRNA 복합체인 이중 가이드 RNA (dual guide RNA) 형태, 또는 상기 crRNA (일부 또는 전부)와 tracrRNA (일부 또는 전부)가 연결된 단일 가이드 RNA (single guide RNA: sgRNA)의 형태일 수 있다. 상기 가이드 RNA가 crRNA 및 tracrRNA의 필수적인 부분 및 표적 유전자와 상보적인 염기서열을 포함한다면, 어떠한 가이드 RNA라도 사용될 수 있다.
상기 표적 DNA는 내재적 DNA 또는 인위적 DNA일 수 있으며, 예컨대, 치료를 위하여는 내재적 DNA일 수 있고, 스크리닝, DNA 제작 등을 위하여는 인위적인 DNA일 수 있다.
상기 가이드 RNA는 표적 DNA와의 친화성 향상 또는 Cas 단백질과의 결합력 향상 등의 목적을 달성하기 위해 당 분야에 공지된 방법을 사용하여 개질될 수 있다. 예컨대, 가이드 RNA는 단일-사슬 가이드 RNA 또는 이중 RNA의 crRNA의 5' 말단에서 하나 또는 그 이상의 추가적인 뉴클레오티드 (예컨대, 구아닌)를 더 포함할 수 있다. 또한, 상기 가이드 RNA는 골격 변형된 뉴클레오티드, 예컨대, 펩타이드 핵산 (PNA), 포스포로티오에이트 DNA, 포스포로디티오에이트 DNA, 포스포로아미데이트 DNA, 아마이드-연결된 DNA, MMI-연결된 DNA, 2'-O-메틸 RNA, 알파-DNA, 및 메틸포스포네이트 DNA, 당 변형된 뉴클레오티드 예컨대, 2'-O-메틸 RNA, 2'-플루오로 RNA, 2'-아미노 RNA, 2'-O-알킬 DNA, 2'-O-알릴 DNA, 2'-O-알카이닐 DNA, 헥소스 DNA, 피라노실 RNA 및 안히드로헥시톨 DNA, 및 염기 변형을 갖는 뉴클레오티드 예컨대, C-5 치환된 피리미딘 (치환기는 플루오로-, 브로모-, 클로로-, 아이오도-, 메틸-, 에틸-, 비닐-, 포르밀-, 에티틸-, 프로피닐-, 알카이닐-, 티아조릴-, 이미다조릴-, 피리딜- 포함), C-7 치환기를 갖는 7-데아자퓨린 (치환기는 플루오로-, 브로모-, 클로로-, 아이오도-, 메틸-, 에틸-, 비닐-, 포르밀-, 알카이닐-, 알켄일-, 티아조릴-, 이미다조릴-, 피리딜-), 이노신, 디아미노퓨린 등으로 변형될 수 있으나, 이에 한정되지 않는다. 또한, 가이드 RNA는 자연 및/또는 비(非)-자연의 뉴클레오티드를 포함할 수 있다.
상기 Cas 단백질과 상기 가이드 RNA는 혼성체를 이루는데, 혼성화는 가이드 RNA가 Cas 단백질을 표적 DNA로 이동시킬 수 있는 형태로 이루어질 수 있고, 예컨대, 가이드 RNA가 Cas 단백질의 표면에 위치할 수 있다.
상기 혼성체에 포함되는 가이드 RNA는 한 종류의 표적 DNA와 혼성화될 수 있거나, 두 종류 이상의 표적 DNA와 혼성화될 수 있는 것일 수 있으며, 상기 "두 종류 이상의 표적 DNA와 혼성화될 수 있는"은 가이드 RNA가 한 종류가 아닌 두 종류 이상이라는 의미와, 한 종류의 가이드 RNA 내 두 종류의 표적 DNA를 적중할 수 있는 염기서열이 존재한다는 의미를 모두 포함할 수 있다.
일 실시예에서, 상기 가이드 RNA와 Cas 단백질이 혼성체를 형성한 NLS-Cas-linker-NES 복합체는 상기 가이드 RNA와 Cas 단백질의 혼성체를 질환 세포 특이적으로 세포 핵 내로 전달할 수 있다.
구체적으로, 상기 NLS-Cas-linker-NES 복합체의 Cas 단백질과 가이드 RNA가 혼성체를 형성한 NLS-Cas-linker-NES 복합체를 세포에 주입하는 경우, 상기 혼성체는 연결된 NES 펩티드에 의하여 세포 핵 내로 이동하지 못하고, 세포질에 위치할 수 있다. 반면, 상기 NLS-Cas-linker-NES 복합체의 링커가 질환 세포 특이적으로 발현되는 표적 miRNA와 결합하여 절단되면, NES 펩티드로부터 분리된, Cas 단백질과 가이드 RNA의 혼성체는 연결된 NLS 펩티드에 의하여 질환 세포 특이적으로 세포질에서 핵 내로 이동할 수 있다. 이를 통해, 질환 세포 특이적으로 작동되는 CRISPR/Cas 시스템의 유전자 조작을 유도할 수 있다.
다른 양상은, 상기 NLS-Cas-linker-NES 복합체를 유효성분으로 포함하는 질환 특이적 유전자 조작용 조성물을 제공한다.
또 다른 양상은, 상기 NLS-Cas-linker-NES 복합체를 유효성분으로 포함하는 질환 예방 또는 치료용 약제학적 조성물을 제공한다.
또 다른 양상은, 상기 NLS-Cas-linker-NES 복합체를 포함하는 유전자 조작용 키트를 제공한다.
본 명세서의 용어, "유전자 조작 (genetic modification)"은 유전자를 재배합하거나, 돌연변이를 일으켜서 유전자의 성질을 바꾸어 놓는 일을 총칭하고, 구체적으로는, 유전자 편집 기술을 총칭한다. 상세하게는, 생물의 유전체에서 특정 유전자를 편집하는 것으로, 특정 염기서열을 인식하여 절단하고, 그 부위에 새로운 염기를 더하거나 기존의 염기를 빼는 방법으로 특정 유전자를 편집하는 것을 의미할 수 있다.
또한 본 명세서의 용어, "유전자 조작 (genetic modification)"은 유전자 조절, 유전자 편집, 유전자 교정, 유전자 재배열, 유전자 재조합 등의 용어의 의미를 포함할 수 있고, 본 명세서에서 상기 용어들과 상호교환적으로 사용될 수 있다.
본 명세서의 용어, "유전자 조작용 조성물 (a composition for genetic modification)" 또는 "질환 예방 또는 치료용 약제학적 조성물 (pharmaceutical composition for disease prevention or treatment)"은 대상체, 전형적으로 인간에 대한 적용 또는 투여에 적합한 조성물을 망라한다. 일반적으로 그러한 조성물은 안전하고, 살균되고, 바람직하게는 대상체에서 바람직하지 않는 반응을 유발할 수 있는 오염물이 없다 (즉, 조성물을 구성하는 물질(들)은 약학적으로 허용 가능하다). 조성물은 그것을 필요로 하는 대상체에게 경구 (즉, 입 또는 소화관에 의해 투여됨) 또는 비경구 (예를 들어, 볼, 직장, 경피, 경점막, 피하, 정맥내, 복강내, 피내, 기관내, 척수강내, 폐 등)를 포함하는 다수의 상이한 투여 경로에 의해 적용 또는 투여하기 위해 제형화될 수 있다.
상기 질환은 고형암 또는 종양 질환일 수 있고, 이에 한정되지 않는다. 상기 고형암 또는 종양은 유방암, 난소암, 자궁경부암, 결장암, 폐암, 간암, 뇌암, 식도암, 전립선암, 췌장암, 갑상선암, 대장암, 신장암, 결장암, 위암, 결장선암, 비소세포폐암, 치종암, 직장암, 구강암, 자궁암, 쓸개암, 방광암, 후두암, 침샘암, 뇌종양, 골종양, 척수종양, 치은종, 육모상피종, 난소종양, 및 배아세포종으로 이루어진 군으로부터 선택된 하나 이상일 수 있고, 이에 한정되지 않는다.
상기 NLS-Cas-linker-NES 복합체를 유효성분으로 포함하는 질환 예방 또는 치료용 약제학적 조성물은 항암제와 병용 투여되는 것일 수 있다. 따라서, 상기 NLS-Cas-linker-NES 복합체를 유효성분으로 포함하는 질환 예방 또는 치료용 약제학적 조성물은 단독으로 항암제로서 사용될 수 있을 뿐만 아니라, 항암제와 병용 투여되는 항암 보조제로서 사용될 수 있다. 상기 항암제는 시스플라틴 (cisplatin)일 수 있고, 이에 제한되는 것은 아니다.
상기 조성물 또는 키트에서 언급된 용어 또는 요소 중 상기 NLS-Cas-linker-NES 복합체에 대한 설명에서 언급된 것과 같은 것은, 앞에서 상기 NLS-Cas-linker-NES 복합체에 대한 설명에서 언급된 바와 같은 것으로 이해된다.
또 다른 양상은, 상기 NLS-Cas-linker-NES 복합체를 이용하는 단계를 포함하는 유전자를 조작하는 방법을 제공한다. 일 실시예에서, 상기 방법에 의하는 경우, 정상 세포 유전자의 손상을 방지하면서, 질환 세포에서만 특이적으로 유전자를 조작할 수 있다. 상기 방법에 있어서, 상기 NLS-Cas-linker-NES 복합체를 이용하는 단계는 세포 또는 개체에 상기 NLS-Cas-linker-NES 복합체를 주입하는 단계를 포함할 수 있다.
또 다른 양상은, 상기 NLS-Cas-linker-NES 복합체를 개체에게 투여하는 단계를 포함하는 질환을 예방 또는 치료하는 방법을 제공한다.
상기 질환은 고형암 또는 종양 질환일 수 있고, 이에 한정되지 않는다. 상기 고형암 또는 종양은 유방암, 난소암, 자궁경부암, 결장암, 폐암, 간암, 뇌암, 식도암, 전립선암, 췌장암, 갑상선암, 대장암, 신장암, 결장암, 위암, 결장선암, 비소세포폐암, 치종암, 직장암, 구강암, 자궁암, 쓸개암, 방광암, 후두암, 침샘암, 뇌종양, 골종양, 척수종양, 치은종, 육모상피종, 난소종양, 및 배아세포종으로 이루어진 군으로부터 선택된 하나 이상일 수 있고, 이에 한정되지 않는다.
상기 개체는 사람 또는 사람을 제외한 포유동물일 수 있다. 보다 구체적으로는, 상기 개체는 사람, 또는 비-인간인 영장류, 생쥐 (mouse), 쥐 (rat), 개, 고양이, 말, 유인원, 돼지, 염소, 및 소 등의 포유류를 의미할 수 있다.
상기 방법에서 언급된 용어 또는 요소 중 상기 NLS-Cas-linker-NES 복합체, 조성물, 또는 키트에 대한 설명에서 언급된 것과 같은 것은, 앞에서 상기 NLS-Cas-linker-NES 복합체, 조성물, 또는 키트에 대한 설명에서 언급된 바와 같은 것으로 이해된다.
일 양상에 따른 NLS-Cas-linker-NES 복합체, 이를 포함하는 조성물 또는 키트, 또는 상기 NLS-Cas-linker-NES 복합체를 이용 또는 투여하는 방법에 의하면, 상기 NLS-Cas-linker-NES 복합체의 Cas 단백질이 가이드 RNA와 혼성체를 이룬 상태로, 질환 세포에 주입되는 경우, 질환 세포에서 특이적으로 발현하는 miRNA에 의해 상기 NLS-Cas-linker-NES 복합체의 링커가 절단될 수 있다. 이를 통해, 상기 NLS-Cas-linker-NES 복합체는 분리되고, NES 펩티드가 제거된 Cas 단백질과 가이드 RNA의 혼성체는 연결된 NLS에 의하여 세포 핵 내로 이동하여 질환 세포의 유전자를 조작할 수 있다.
반면, 질환 세포에서 특이적으로 발현하는 표적 miRNA와 결합할 수 있도록 제조된 상기 NLS-Cas-linker-NES 복합체가 가이드 RNA와 혼성체를 이루어 상기 표적 miRNA를 발현하지 않는 정상 세포의 세포질로 주입되는 경우에는, 상기 NLS-Cas-linker-NES 복합체의 링커는 상기 표적 miRNA와 결합하지 않으므로 절단되지 않는다. 따라서, 상기 NLS-Cas-linker-NES 복합체는 정상 세포에서, 연결된 NES 펩티드에 의하여 핵 내로 이동하지 않고 세포질에 위치하게 되어 유전자 조작 기능이 현저히 감소하거나 작동되지 않을 수 있다.
이를 통해, 정상 세포 유전자의 손상을 방지하면서, 질환 세포에서만 특이적으로 작동되는 유전자 조작이 가능하고, 궁극적으로 이러한 유전자 조작을 통해, 질환 예방, 치료, 및 부작용의 감소를 가능하게 할 수 있고, 질환 치료의 효과를 개선하여, 기존의 CRISPR/Cas 시스템의 문제점을 보완할 수 있다.
또한, 일 양상에 따른 NLS-Cas-linker-NES 복합체에 의하면, 구조적 연결이 안정적으로 유지되어 상기 효과가 현저히 증가될 수 있다.
도 1은 일 실시예에 따른 Avitag, Cas9, 및 NLS를 포함하는 복합체를 발현하는 Avitag-pET-Cas9-NLS-6xHis 플라스미드 벡터의 모식도를 나타낸다.
도 2a는 일 실시예에 따른 Avitag, Cas9, 및 NLS를 포함하는 복합체를 정제한 후 순도를 확인한 SDS-PAGE 겔의 결과를 나타낸다 (M: Protein marker; 1: Induced cell Sup.; 2: Flow-through; 3-5: Wash 1-3 (20 mM Imidazole); 6-10: Elute 1-5 (100 mM Imidazole); 11-14: Elute 1-4 (250 mM Imidazole)).
도 2b는 일 실시예에 따른 Avitag, Cas9, 및 NLS를 포함하는 복합체를 정제한 후 순도를 확인한 SDS-PAGE 겔의 결과를 나타낸다 (M: protein marker; 1: 100 mM Imidazole/PBS 1 ug; 2: 100 mM Imidazole/PBS 2 ug; 3: BSA 2.0 ug; 4: BSA 1.0 ug; 5: BSA 0.5 ug; 6: 250 mM Imidazole/PBS 1 ug; 7: 250 mM Imidazole/PBS 2 ug).
도 3은 일 실시예에 따른 Avitag, Cas9, 및 NLS를 포함하는 복합체의 유전자 조작 기능을 확인하기 위하여, 상기 복합체 (2.5 ug)가 EGFP sgRNA (GFP (green fluorescent protein)를 타겟팅하는 싱글-가이드 RNA) (1.25 ug)와 혼성체를 형성하여 세포에 주입된 경우의 세포 내 GFP의 발현을 관찰한 결과를 나타낸다. Cas9-EGFP sgRNA 혼성체를 형성하기 전의 Cas9만을 2.5 ug 주입한 경우 및 EGFP sgRNA만을 1.25 ug 주입한 경우를 대조군으로 사용하였다.
도 4a는 일 실시예에 따라 합성되어 정제된, C-말단에 DBCO가 연결된 NES (NES-DBCO(C))의 순도를 확인하는 HPLC (High Performance Liquid Chromatograph) 결과를 나타낸다.
도 4b는 일 실시예에 따라 합성되어 정제된, C-말단에 DBCO가 연결된 NES (NES-DBCO(C))의 질량을 확인하는 Mass spectrum 결과를 나타낸다.
도 4c는 일 실시예에 따라 합성되어 정제된, C-말단에 azide 작용기가 연결된 NES (NES-azide(C))의 순도를 확인하는 HPLC 결과를 나타낸다.
도 4d는 일 실시예에 따라 합성되어 정제된, C-말단에 azide 작용기가 연결된 NES (NES-azide(C))의 질량을 확인하는 Mass spectrum 결과를 나타낸다.
도 4e는 일 실시예에 따라 합성되어 정제된, N-말단에 azide 작용기가 연결된 NES (NES-azide(N))의 순도를 확인하는 HPLC 결과를 나타낸다.
도 4f는 일 실시예에 따라 합성되어 정제된, N-말단에 azide 작용기가 연결된 NES (NES-azide(N))의 질량을 확인하는 Mass spectrum 결과를 나타낸다.
도 5는 일 실시예에 따른 링커의 miRNA 21 결합 부위가 miRNA 21에 의해 특이적으로 절단되는지를 확인한 결과로서, miRNA 21 결합 부위를 포함한 발현 벡터 (siCHECK2 miRNA 21) 시스템을 활용한 세포 내 루시퍼라제 (Luciferase) 활성을 측정한 결과를 나타낸다. MOCK은 siCHECK2 벡터가 트랜스펙션되지 않은 세포로서, 양성 대조군으로 사용되었다. 또한, CTL (control) miRNA 결합 부위를 포함한 벡터 (siCHECK2 CTL)가 트랜스펙션된 세포는 음성 대조군으로 사용되었고, miRNA 294 결합 부위를 포함한 벡터 (siCHECK2 miRNA 294)가 트랜스펙션된 세포는 비교 대조군으로 사용되었다.
도 6a는 일 실시예에 따른 표 4의 12 종의 링커-NES 복합체 각각에 대하여, NES와 비오틴화된 링커 사이에서의 DBCO와 azide 작용기의 결합이 유지되는지 확인하는 SDS-PAGE 겔의 결과를 나타낸다.
도 6b는 일 실시예에 따른 표 4의 12 종의 링커-NES 복합체 각각에 대하여, NES와 비오틴화된 링커 사이에서의 DBCO와 azide 작용기의 결합이 유지되는지 확인하는 BCA 검정 (bicinchoninic acid assay) 결과를 나타낸다.
도 6c는 일 실시예에 따른 표 4의 1 내지 4번 링커-NES 복합체 각각에 대하여, 상기 도 6b의 BCA 검정 결과를 바탕으로, NES와 비오틴화된 링커사이에서의 DBCO와 azide 작용기의 결합에 대한 결합 수율을 분석하여 나타낸 그래프이다.
도 7은 일 실시예에 따른 NLS-Cas9-linker-NES 복합체의 질환 특이적 유전자 조작 기능을 확인하기 위하여, 상기 NLS-Cas9-linker-NES 복합체가 EGFP sgRNA와 혼성체를 형성하여 세포에 주입된 경우의 세포 내 GFP의 발현을 관찰한 결과를 나타낸다. 도 7a는 GFP의 발현 수준을 보여주는 공초점 현미경 촬영 (confocal microscope) 이미지이고, 도 7b는 GFP의 발현 수준을 보여주는 웨스턴 블랏 분석 결과 이미지이고, 도 7c는 GFP의 발현 수준을 수치화한 그래프이다. miRNA 21 결합 부위를 포함하는 NLS-Cas9-linker-NES 복합체 (Cas9-miRNA 21-NES)의 유전자 조작 기능을 확인하기 위하여, MOCK (NLS-Cas9-linker-NES 복합체를 주입하지 않은 실험군)을 음성 대조군으로 사용하였고, Cas9만을 주입한 경우를 양성 대조군으로 사용하였으며, miRNA 294 결합 부위를 포함하는 NLS-Cas9-linker-NES 복합체 (Cas9-miRNA 294-NES)를 주입한 경우를 비교 대조군으로 사용하였다.
도 8은 일 실시예에 따른 NLS-Cas9-linker-NES 복합체의 암 치료 효과를 확인하기 위하여, 종양 마우스에 EZH2를 타겟팅하는 NLS-Cas9-linker-NES 복합체를 주사한 후 종양 크기의 변화 및 종양 조직에서의 EZH2의 발현 양상을 분석한 결과를 나타낸다. 도 8a는 종양 크기의 변화를 수치화한 그래프이고, 도 8b는 종양 크기의 변화를 보여주는 이미지이고, 도 8c는 종양 조직에서의 EZH2의 발현 양상을 분석한 웨스턴 블랏 분석 결과를 나타내는 이미지이다.
도 9는 일 실시예에 따른 NLS-Cas9-linker-NES 복합체의 항암제와의 병용 투여에 의한 암 치료 효과를 확인하기 위하여, 종양 마우스에 EZH2를 타겟팅하는 NLS-Cas9-linker-NES 복합체 및 시스플라틴을 병용 투여한 후 종양 크기의 변화를 분석한 결과를 나타낸다. 도 9a는 종양 크기의 변화를 수치화한 그래프이고, 도 9b는 종양 크기의 변화를 보여주는 이미지이다.
도 10은 일 실시예에 따른 NLS-Cas9-linker-NES 복합체의 항암제와의 병용 투여에 의한 암 치료 효과를 확인하기 위하여, 종양 마우스에 EZH2를 타겟팅하는 NLS-Cas9-linker-NES 복합체 및 시스플라틴을 병용 투여한 후 종양 조직에서의 EZH2의 발현 양상을 분석한 결과를 나타낸다. 도 10a는 종양 조직에서의 EZH2의 발현 양상을 분석한 면역 형광 분석 (Immunofluorescence) 결과를 나타내는 공초점 현미경 촬영 이미지이고, 도 10b는 종양 조직에서의 EZH2의 발현 수준을 수치화한 그래프이다.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1. Avitag, Cas9, 및 NLS를 포함하는 복합체의 제조
1-1. Avitag, Cas9, 및 NLS를 포함하는 복합체를 발현하는 벡터의 제조
본 실시예에서는, Avitag, Cas9, 및 NLS를 포함하는 복합체를 제조하기 위하여, 발현 벡터를 제조하였다.
구체적으로, Avitag 뉴클레오티드 서열 (서열번호: 5)을 pET-Cas9-NLS-6xHis 벡터 (Addgene, #62933)에 클로닝하기 위해, PCR 시스템을 기반으로, XbaⅠ/NheⅠ제한 부위를 갖는 프라이머를 이용하여, Avitag 펩티드 (서열번호: 2)를 코딩하는 DNA 절편을 증폭하였다. New England Biolabs (NEB)의 XbaⅠ와 NheⅠ 제한효소를 이용하여 Avitag DNA (서열번호: 5) 절편과 Cas9 발현 벡터를 분해 (digestion) 및 라이게이션 (ligation)한 후, Avitag DNA 절편을 Cas9 발현 벡터에 삽입하였다. 그 후, 전체 뉴클레오티드 서열분석을 통하여 제조된 Avitag-pET-Cas9-NLS-6xHis 플라스미드 벡터의 뉴클레오티드 서열 (서열번호: 6)을 확인하였다.
그 결과, 도 1에 나타낸 바와 같이, Avitag, Cas9, 및 NLS를 포함하는 복합체를 발현하는 Avitag-pET-Cas9-NLS-6xHis 플라스미드 벡터를 수득하였다.
1-2. Avitag, Cas9, 및 NLS를 포함하는 복합체의 발현 및 추출
본 실시예에서는, Avitag, Cas9, 및 NLS를 포함하는 복합체를 제조하기 위하여, 발현 벡터 시스템을 활용하여 미생물에서 Avitag, Cas9, 및 NLS를 포함하는 복합체를 발현시키고, 추출하였다.
구체적으로, 상기에서 수득된 Avitag-pET-Cas9-NLS-6xHis 플라스미드 벡터가 주입된 E. coli BL21(DE3) 컴피턴트 세포 (competent cell)를 앰피실린 (ampicillin)(100 μg/ml)을 포함하는 LB (Luria-Bertani) 아가 (agar) 플레이트에서 37°C 조건으로 오버-나잇 배양하였다. 선별된 형질전환-BL21 세포는 1 mM의 IPTG (isopropyl-β-D-thiogalactopyranoside)을 포함하는 LB-앰피실린 액체 배지 3 L에서 오버-나잇 진탕 배양하였다 (20°C, 120 RPM). 그 후, 배양액을 초고속 원심분리 (ultra-centrifugation)하여 세포를 수집하였고, 라이시스 버퍼 (lysis buffer)(50 mM NaH2PO4, 300 mM NaCl, 5 mM 이미다졸 (imidazole)(pH 8.0))로 수집된 세포를 라이시스 (lysis)하였다.
그 결과, 세포로부터 Avitag, Cas9, 및 NLS를 포함하는 복합체가 포함된 산물이 추출되었다.
1-3. 추출된 Avitag, Cas9, 및 NLS를 포함하는 복합체의 정제
본 실시예에서는, Avitag, Cas9, 및 NLS를 포함하는 복합체를 제조하기 위하여, 상기에서 추출된 산물을 정제하였다.
구체적으로, 초고속 원심분리 (4°C, 18,000 rpm, 40 분) 후 용해된 라이세이트 (lysate)를 니켈-니트릴로트리아세트산 (Ni-NTA: Nickel-nitrilotriacetic acid) 레진 컬럼 (Thermo Fisher Scientific) 을 이용하여 인큐베이션 (4°C, 2 시간)하였고, 그 후, 워싱 버퍼 (washing buffer)(50 mM NaH2PO4, 300 mM NaCl, 20 mM 이미다졸 (pH 8.0))로 워싱하였다. 그 후, 두 종류의 일루션 버퍼 (elution buffer)(50 mM NaH2PO4, 300 mM NaCl, 100 mM 이미다졸 (pH 8.0) / 50 mM NaH2PO4, 300 mM NaCl, 250 mM 이미다졸 (pH 8.0))로 일루션하여 농축하였고, PBS (Phosphate Buffered Saline)로 버퍼-체인지 하였다. 이때, 총 농도는 PBS (pH 7.4) 2.3 mg/ml에 100 mM의 이미다졸 (총 20.7 mg), PBS (pH 7.4) 2.7 mg/ml에 250 mM의 이미다졸 (총 6.8 mg)이었다. 그 후, 정제된, Avitag, Cas9, 및 NLS를 포함하는 복합체의 순도를 SDS-PAGE 겔을 통해 확인하였다.
그 결과, 도 2a 및 도 2b에서 나타낸 바와 같이, 높은 순도의 Avitag, Cas9, 및 NLS를 포함하는 복합체를 수득하였음을 확인하였다. 또한, 상기 복합체의 Cas9 단백질은 서열번호 1의 아미노산 서열로 구성됨을 확인하였다.
실험예 1. 제조된 Avitag, Cas9, 및 NLS를 포함하는 복합체의 기능 확인
본 실험예에서는, 상기 실시예 1에서 제조된 복합체의 유전자 조작 기능을 확인하기 위하여, 가이드 RNA를 활용하여 세포 내에서의 상기에서 제조된 복합체의 작용에 대하여 분석하였다.
구체적으로, GFP (green fluorescent protein)를 타겟팅하는 가이드 RNA인, EGFP 싱글-가이드 RNA (sgRNA) (서열번호: 7)를 획득하기 위해, Integrated DNA Technologies (IDT)사의 Alt-R® CRISPR-Cas9 sgRNA를 10 nm 스케일로 합성하였다. Cas9-sgRNA 혼성체를 생성하기 위해, 상기 실시예 1에서 제조된 복합체와 상기 EGFP sgRNA를 PBS 버퍼에서 인큐베이션 (37°C, 30 분)하였다. 그 후, GFP를 안정적으로 발현하는 Hela 세포주에 Cas9-sgRNA 혼성체를 형성한 상기 복합체를 Neon® 트랜스펙션 시스템 (Thermo Fisher Scientific) 또는 리포펙타민 2000 트랜스펙션 시료 (Invitrogen)를 사용하여 트랜스펙션하였다. 그 후, 세포에서 GFP의 발현 정도를 관찰함으로써, 상기 실시예 1에서 제조된 복합체의 유전자 조작 기능을 확인하였다.
그 결과, 도 3에 나타낸 바와 같이, 상기 실시예 1에서 제조된 복합체가 Cas9-EGFP sgRNA 혼성체를 형성하여 세포에 주입된 경우에, 대조군에 비하여, 세포 내 GFP의 발현이 유의하게 감소하였다.
따라서, 본 실험예를 통하여, 상기 실시예 1에서 제조된 복합체는 가이드 RNA와 혼성체를 형성하여 세포 내에서 유전자 조작 기능을 발휘함을 확인하였다.
실시예 2. 링커-NES 복합체의 제조
2-1. DBCO 또는 azide 작용기가 연결된 NES의 합성 및 정제
본 실시예에서는, miRNA 결합 부위를 갖는 올리고뉴클레오티드를 포함하는 링커와 NES를 연결하기 위하여, 먼저 DBCO 또는 azide 작용기가 연결된 NES를 합성하였다.
구체적으로, NES의 N-말단에 DBCO가 연결된 1X NES-DBCO(N), NES의 C-말단에 DBCO가 연결된 1X NES-DBCO(C), NES의 N-말단에 azide 작용기가 연결된 1X NES-azide(N), 및 NES의 C-말단에 azide 작용기가 연결된 1X NES-azide(C) 펩티드를 합성하였다. 상기 NES는 서열번호 20의 아미노산 서열을 포함한다.
그 결과, 1X NES-DBCO(N)를 제외한, 1X NES-DBCO(C), 1X NES-azide(C), 및 1X NES-azide(N) 펩티드를 수득하였다.
또한, 상기에서 수득된 3 종류의 펩티드를 SHIMADZU 프로미넌스 HPLC (Prominence High Performance Liquid Chromatograph)를 사용하여 컬럼 (Shiseido capcell pak C18, 5 μm, 120 Å (4.6 * 50 mm))을 통해 정제하고, 220nm에서 검출한 후, Mass spectrum 분석하였다.
그 결과, 표 1 내지 표 3에 나타낸 바와 같이, 순도 약 96% 이상의, 하기의 DBCO 또는 azide 작용기가 연결된 NES 펩티드 3 종류를 수득하였다:
(a) NES-DBCO(C)
(b) NES-azide(C)
(c) NES-azide(N).
하기 표 1에는 NES-DBCO(C)의 HPLC 분석 결과를 나타내었고, 하기 표 2에는 NES-azide(C)의 HPLC 분석 결과를 나타내었으며, 하기 표 3에는 NES-azide(N)의 HPLC 분석 결과를 나타내었다.
Pk# Retention Time Area Area % Height Height %
1 5.317 17576 0.169 1603 0.130
2 7.433 9453 0.091 1670 0.136
3 7.650 2302 0.022 507 0.041
4 8.100 95774 0.923 8996 0.732
5 8.367 10053666 96.862 1186565 96.554
6 8.633 97367 0.938 17638 1.435
7 8.767 73681 0.710 9224 0.751
8 9.683 29580 0.285 2710 0.221
Totals 10379399 100.000 1228913 100.000
Pk# Retention Time Area Area % Height Height %
1 7.667 13585 0.363 2203 0.449
2 8.092 50316 1.343 6711 1.369
3 8.267 28024 0.748 6193 1.264
4 8.417 3597978 96.010 470928 96.088
5 12.042 57608 1.537 4066 0.830
Totals 3747511 100.000 490101 100.000
Pk# Retention Time Area Area % Height Height %
1 6.725 28954 0.755 3597 0.640
2 7.092 3741864 97.542 550872 97.966
3 8.533 65347 1.703 7838 1.394
Totals 3836165 100.000 562307 100.000
또한, 도 4a 내지 도 4f에 나타낸 바와 같이, Mass spectrum 분석결과, NES-DBCO(C)의 측정된 Mass 값은 약 1299, NES-azide(C)의 측정된 Mass 값은 약 1094 (Negative mode M-1), 및 NES-azide(N)의 측정된 Mass 값은 약 966 (M-1) 및 1080 (M+TFA Salt)(Negative mode)로 확인되었다.
상기의 NES는 후에, Cas9 단백질이 세포질에서 핵 내로 이동하는 것을 조절하는 역할을 할 수 있다. 구체적으로, Cas9 단백질이 링커에 의해 NES와 연결된 경우에, Cas9 단백질은 세포질에 위치하여 유전자 조작 기능이 작동되지 않고, Cas9 단백질이 상기 링커의 절단에 의하여 NES로부터 분리된 경우에는, Cas9 단백질과 가이드 RNA의 혼성체는, 세포질에서 핵 내로 이동하여 유전자 조작이 가능할 수 있다. 이는 하기의 실시예 및 실험예를 통해서 증명되었다.
2-2. 표적 miRNA가 결합하는 결합 부위를 포함하는 비오틴화된 링커의 합성 및 정제
본 실시예에서는, 표적 miRNA가 결합하는 결합 부위를 포함하는 비오틴화된 링커를 제조하기 위하여, Integrated DNA Technologies (IDT) 시스템을 활용하였다.
구체적으로, miRNA (hsa-miR-21-5p, mmu-miR-294-3p)가 결합할 수 있는 결합 부위를 갖는 올리고뉴클레오티드를 포함하는 링커를 Integrated DNA Technologies (IDT) 시스템을 활용하여 100 nm 스케일로 합성하였다. 또한, 상기에서 합성된 링커의 5' 말단에 DBCO 또는 azide 작용기를 연결하고, 3' 말단에 비오틴을 연결한 후, HPLC를 통해 정제하였다.
그 결과는 하기 실시예 2-2-1 및 2-2-2에 기재하였다.
2-2-1. 고형암 및 종양 질환 세포에서 특이적으로 발현되는, miRNA 21 (hsa-miR-21-5p)과 결합하는 비오틴화된 링커의 수득
본 실시예를 통해, 서열번호 3 또는 서열번호 8의 뉴클레오티드 서열을 포함하는, 1 개 또는 3 개의 miRNA 21 결합 부위를 갖고; 3' 말단에 비오틴이 연결되고; 5' 말단에 DBCO 또는 azide 작용기가 연결되고; 및 상기 결합 부위에는, 서열번호 4의 뉴클레오티드 서열을 포함하는 miRNA 21이 결합할 수 있는, 하기의 비오틴화된 링커 4 종류를 수득하였다:
(d) 5'-azide-miRNA 21 결합 부위 1X (서열번호: 3)-3'-Biotin
(e) 5'-azide-miRNA 21 결합 부위 3X (서열번호: 8)-3'-Biotin
(f) 5'-DBCO-miRNA 21 결합 부위 1X (서열번호: 3)-3'-Biotin
(g) 5'-DBCO-miRNA 21 결합 부위 3X (서열번호: 8)-3'-Biotin.
상기의 제조된 링커는 miRNA 21과 결합하여 절단되는데, 이러한 절단에 의하여, 후에 Cas9 단백질이 NES와의 연결로부터 분리되면서 세포질에서 세포 핵 내로 이동할 수 있고, 그로 인해 유전자 조작이 가능할 수 있다.
따라서, 상기 miRNA 21은 고형암 및 종양 질환 세포에서 특이적으로 발현되므로, 상기의 제조된 링커는 정상 세포가 아닌 고형암 및 종양 질환 세포에서만 특이적으로 절단되어, Cas9 단백질의 질환 세포 특이적인 유전자 조작을 유도할 수 있다.
2-2-2. miRNA 294 (mmu-miR-294-3p)와 결합하는 비오틴화된 링커의 수득
본 실시예를 통해, 서열번호 9 또는 서열번호 11의 뉴클레오티드 서열을 포함하는, 1 개 또는 3 개의 miRNA 294 결합 부위를 갖고; 3' 말단에 비오틴이 연결되고; 5' 말단에 DBCO 또는 azide 작용기가 연결되고; 및 상기 결합 부위에는, 서열번호 10의 뉴클레오티드 서열을 포함하는 miRNA 294가 결합할 수 있는, 하기의 비오틴화된 링커 4 종류를 수득하였다:
(h) 5'-azide-miRNA 294 결합 부위 1X (서열번호: 9)-3'-Biotin
(i) 5'-azide-miRNA 294 결합 부위 3X (서열번호: 11)-3'-Biotin
(j) 5'-DBCO-miRNA 294 결합 부위 1X (서열번호: 9)-3'-Biotin
(k) 5'-DBCO-miRNA 294 결합 부위 3X (서열번호: 11)-3'-Biotin.
상기의 제조된 링커는 miRNA 294와 결합하여 절단될 수 있으나, miRNA 21과는 결합하지 않으므로, miRNA 21에 의해서는 절단되지 않는다. 따라서, 상기의 제조된 링커는 miRNA 21은 발현하나, miRNA 294는 발현하지 않는 세포에 주입되어, 비교 대조군으로 사용될 수 있다.
2-3. DBCO 또는 azide 작용기가 연결된 NES와 표적 miRNA 결합 부위를 포함하는 비오틴화된 링커의 연결을 통한 링커-NES 복합체의 제조
본 실시예에서는, 상기에서 합성된 NES와 비오틴화된 링커를 연결하여 링커-NES 복합체를 제조하기 위하여, DBCO와 azide 사이에서의 클릭반응을 이용하였다.
구체적으로, 상기 실시예 2-1에서 얻어진 NES 펩티드 (a), (b), 및 (c)와 상기 실시예 2-2-1 및 2-2-2에서 얻어진 비오틴화된 링커 (d), (e), (f), (g), (h), (i), (j), 및 (k)를 PBS에서 37°C 조건으로, 오버-나잇 인큐베이션하여 컨쥬게이션 (conjugation)하였다. 이를 통해, NES와 비오틴화된 링커 사이에서의 DBCO와 azide의 클릭반응을 유도하여, NES와 비오틴화된 링커의 연결을 유도하였다.
그 결과, 하기 표 4에 나타낸 바와 같이, 총 12 종류의 링커-NES 복합체를 수득하였다.
번호 연결 링커-NES 복합체
명칭
표적 miRNA 표적 miRNA
결합 부위 수
구성
1 (a)+(d) NES-DBCO(C)+azide Oligo 1 miRNA 21
(서열번호: 4)
1 NES-(C)-DBCO-5'-azide-miRNA 21 결합 부위 1X (서열번호: 3)-3'-Biotin
2 (a)+(e) NES-DBCO(C)+azide Oligo 2 miRNA 21
(서열번호: 4)
3 NES-(C)-DBCO-5'-azide-miRNA 21 결합 부위 3X (서열번호: 8)-3'-Biotin
3 (a)+(h) NES-DBCO(C)+azide Oligo 3 miRNA 294
(서열번호: 10)
1 NES-(C)-DBCO-5'-azide-miRNA 294 결합 부위 1X (서열번호: 9)-3'-Biotin
4 (a)+(i) NES-DBCO(C)+azide Oligo 4 miRNA 294
(서열번호: 10)
3 NES-(C)-DBCO-5'-azide-miRNA 294 결합 부위 3X (서열번호: 11)-3'-Biotin
5 (b)+(f) NES-azide(C)+DBCO Oligo 1 miRNA 21
(서열번호: 4)
1 NES-(C)-azide-5'-DBCO-miRNA 21 결합 부위 1X (서열번호: 3)-3'-Biotin
6 (b)+(g) NES-azide(C)+DBCO Oligo 2 miRNA 21
(서열번호: 4)
3 NES-(C)-azide-5'-DBCO-miRNA 21 결합 부위 3X (서열번호: 8)-3'-Biotin
7 (b)+(j) NES-azide(C)+DBCO Oligo 3 miRNA 294
(서열번호: 10)
1 NES-(C)-azide-5'-DBCO-miRNA 294 결합 부위 1X (서열번호: 9)-3'-Biotin
8 (b)+(k) NES-azide(C)+DBCO Oligo 4 miRNA 294
(서열번호: 10)
3 NES-(C)-azide-5'-DBCO-miRNA 294 결합 부위 3X (서열번호: 11)-3'-Biotin
9 (c)+(f) NES-azide(N)+DBCO Oligo 1 miRNA 21
(서열번호: 4)
1 NES-(N)-azide-5'-DBCO-miRNA 21 결합 부위 1X (서열번호: 3)-3'-Biotin
10 (c)+(g) NES-azide(N)+DBCO Oligo 2 miRNA 21
(서열번호: 4)
3 NES-(N)-azide-5'-DBCO-miRNA 21 결합 부위 3X (서열번호: 8)-3'-Biotin
11 (c)+(j) NES-azide(N)+DBCO Oligo 3 miRNA 294
(서열번호: 10)
1 NES-(N)-azide-5'-DBCO-miRNA 294 결합 부위 1X (서열번호: 9)-3'-Biotin
12 (c)+(k) NES-azide(N)+DBCO Oligo 4 miRNA 294
(서열번호: 10)
3 NES-(N)-azide-5'-DBCO-miRNA 294 결합 부위 3X (서열번호: 11)-3'-Biotin
실험예 2. 제조된 링커가 miRNA 특이적으로 절단되는지 확인
본 실험예에서는, 상기 2-2에서 제조된 링커의 표적 miRNA 결합 부위가 표적 miRNA에 의해 특이적으로 절단되는지 확인하기 위하여, 발현 벡터 시스템을 활용하였다.
구체적으로, psiCHECK™-2 벡터 (Promega, #C8021)의 다중 클로닝 부위 (multiple cloning region)에 표적 miRNA 결합 부위를 지닌 링커의 뉴클레오티드를 제한효소 (Xho1, EcoR1)를 사용하여 삽입하였다. 하기 표 5는 상기에서 삽입된 뉴클레오티드 서열이 포함된 시퀀스를 나타낸다. 재조합된 miRNA-psiCHECK™-2 벡터를 Hela 세포 (miRNA 21은 발현하지만, miRNA 294는 발현하지 않는 Hela 세포를 사용하였음)에 리포펙타민 2000 트랜스펙션 시료 (Invitrogen)를 사용하여 트랜스펙션하였다. 그 후, 듀얼-루시퍼라제® 리포터 검정 시스템 (Dual-Luciferase® Reporter Assay System) (Promega, #E1910)을 사용하여 글로맥스-멀티 디텍션 시스템 (GloMax-Multi Detection System)(Promega)으로 측정하였다.
그 결과, 도 5에 나타낸 바와 같이, miRNA 21 결합 부위를 지닌 링커의 뉴클레오티드 서열 (서열번호 12 및 13, 또는 서열번호 14 및 15)이 삽입된 벡터 (siCHECK2 1X miRNA 21, 또는 siCHECK2 3X miRNA 21)를 세포에 트랜스펙션한 경우에, CTL miRNA 결합 부위를 지닌 링커의 뉴클레오티드 서열이 삽입된 벡터 (siCHECK2 CTL) 및 miRNA 294 결합 부위를 지닌 링커의 뉴클레오티드 서열 (서열번호 16 및 17, 또는 서열번호 18 및 19)이 삽입된 벡터 (siCHECK2 1X miRNA 294, 또는 siCHECK2 3X miRNA 294)를 세포에 트랜스펙션한 경우와 비교하여, 세포 내에서 루시퍼라제 활성이 현저하게 감소하였음을 확인하였다.
본 실험예를 통해, 상기 2-2에서 제조된 링커는 표적 miRNA와의 특이적인 결합에 의하여 절단될 수 있음을 확인하였다.
벡터에 삽입된 링커 서열 명칭 뉴클레오티드 서열 (5' -> 3')
XhoI-1xhmiR21-F 서열번호 : 12
EcoRI-1xhmiR21-R 서열번호 : 13
XhoI-3xhmiR21-F 서열번호 : 14
EcoRI-3xhmiR21-R 서열번호 : 15
XhoI-1xmmiR294-F 서열번호 : 16
EcoRI-1xmmiR294-R 서열번호 : 17
XhoI-3xmmiR294-F 서열번호 : 18
EcoRI-3xmmiR294-R 서열번호 : 19
실험예 3. 링커-NES 복합체의 안정성 증가를 위한 조건의 확립
본 실험예에서는 상기 표 4의 12 종의 링커-NES 복합체 중 NES와 비오틴화된 링커 사이에서의 DBCO-azide 클릭반응에 의한 연결이 가장 안정적인 링커-NES 복합체의 조건을 분석하였다.
구체적으로, 상기 제조된 표 4의 12 종의 링커-NES 복합체 각각에 대하여, 링커에 연결된 비오틴과 Dynabeads™ M-280 스트렙타비딘 (Thermo Fisher Scientific)을 결합시킨 후, 풀-다운 (Pull-down) 하여, SDS-PAGE 겔과 BCA 검정 (bicinchoninic acid assay)을 통해 분석하였다. 이를 통해, 상기 제조된 표 4의 12 종의 링커-NES 복합체 각각에 대하여, NES와 비오틴화된 링커 사이에서의 DBCO-azide 클릭반응에 의한 결합 수율을 확인하였고, DBCO-azide 클릭반응에 의한 결합 수율을 증가시키기 위한, 링커-NES 복합체의 조건을 도출하였다.
그 결과, 도 6a 및 도 6b에 나타낸 바와 같이, NES의 C-말단에 연결된 DBCO와 링커 (Oligo)의 5' 말단에 연결된 azide 작용기가 결합되어 생성된 링커-NES 복합체의 경우에 (NES-DBCO(C)+azide Oligo), DBCO-azide 클릭반응에 의한 결합이 가장 안정적으로 유지되었음을 확인하였다.
또한, 도 6c에 나타낸 바와 같이, NES의 C-말단에 연결된 DBCO와 링커 (Oligo)의 5' 말단에 연결된 azide 작용기가 결합되어 생성된 링커-NES 복합체 중에서도, 표적 miRNA 결합 부위를 3 개 포함하는 링커-NES 복합체 (NES-DBCO(C)+azide Oligo 2, NES-DBCO(C)+azide Oligo 4)에서, DBCO-azide 클릭반응에 의한 결합이 가장 안정적으로 유지되었음을 확인하였다.
따라서, 본 실험예를 통해, 하기에 나타낸 바와 같이, 링커-NES 복합체의 연결을 안정적으로 유지하기 위한 조건을 확립하였다:
NES-(C)-DBCO-5'-azide-링커 (표적 miRNA 결합 부위 3X)-3'-비오틴.
실시예 3. NLS-Cas9-linker-NES 복합체의 제조
본 실시예에서는, 상기에서 얻어진 Avitag, Cas9, 및 NLS를 포함하는 복합체와 비오틴화된 링커-NES 복합체를 연결하여, NLS-Cas9-linker-NES 복합체를 제조하였다.
구체적으로, 상기에서 얻어진 Avitag, Cas9, 및 NLS를 포함하는 복합체와 비오틴화된 링커-NES 복합체를 함께 PBS에서 4°C 조건으로 오버-나잇 인큐베이션하여, 상기 Avitag와 상기 비오틴의 결합을 유도하였다.
그 결과, 상기 Avitag, Cas9, 및 NLS를 포함하는 복합체와 상기 표 4의 1, 2, 3, 및 4 번의 링커-NES 복합체가 각각 연결된 하기 표 6과 같은 총 4 종류의 NLS-Cas9-linker-NES 복합체를 수득하였다.
번호 NLS-Cas9-linker-NES 복합체 명칭 표적 miRNA 표적 miRNA
결합 부위 수
구성
1 Cas9-miRNA 21 1X-NES miRNA 21
(서열번호: 4)
1 NLS-(C)Cas9(N)-Avitag-Biotin-3'-miRNA 21 결합 부위 1X (서열번호:3)
-azide-5'-DBCO-(C)NES(N)
2 Cas9-miRNA 21 3X-NES miRNA 21
(서열번호: 4)
3 NLS-(C)Cas9(N)-Avitag-Biotin-3'-miRNA 21 결합 부위 3X (서열번호: 8)
-azide-5'-DBCO-(C)NES(N)
3 Cas9-miRNA 294 1X-NES miRNA 294
(서열번호: 10)
1 NLS-(C)Cas9(N)-Avitag-Biotin-3'-miRNA 294 결합 부위 1X (서열번호: 9)
-azide-5'-DBCO-(C)NES(N)
4 Cas9-miRNA 294 3X-NES miRNA 294
(서열번호: 10)
3 NLS-(C)Cas9(N)-Avitag-Biotin-3'-miRNA 294 결합 부위 3X (서열번호: 11)
-azide-5'-DBCO-(C)NES(N)
실험예 4. 제조된 NLS-Cas9-linker-NES 복합체의 질환 특이적 유전자 조작 기능 확인
본 실험예에서는, 상기 표 6의 제조된 NLS-Cas9-linker-NES 복합체의 질환 특이적 유전자 조작 기능을 확인하기 위하여, GFP를 타겟팅하는 가이드 RNA인, EGFP sgRNA 를 활용하였다.
구체적으로, 상기 표 6의 제조된 NLS-Cas9-linker-NES 복합체와 EGFP sgRNA를 PBS 버퍼에서 30 분 동안 37°C 조건으로 인큐베이션하였다. 그 결과 얻어진 NLS-Cas9-linker-NES 복합체와 EGFP sgRNA의 혼성체를 GFP를 안정적으로 발현하는 Hela 세포 (miRNA 21은 발현하지만, miRNA 294는 발현하지 않는 Hela 세포를 사용하였음)에 Neon® 트랜스펙션 시스템 (Thermo Fisher Scientific) 또는 리포펙타민 2000 트랜스펙션 시료 (Invitrogen)를 사용하여 트랜스펙션 하였다. 그 후, 공초점 현미경 촬영 (confocal microscope)과 웨스턴 블랏 분석으로 NLS-Cas9-linker-NES 복합체의 질환 특이적 유전자 조작 기능을 확인하였다.
그 결과, 도 7a 내지 도 7c에 나타낸 바와 같이, miRNA 21은 발현하지만, miRNA 294는 발현하지 않는 Hela 세포에, EGFP sgRNA와 혼성체를 이룬, 상기 표 6의 1번 NLS-Cas9-linker-NES 복합체 (Cas9-miRNA 21 1X-NES) 및 상기 표 6의 2번 NLS-Cas9-linker-NES 복합체 (Cas9-miRNA 21 3X-NES)를 주입한 경우, 대조군에 비하여 세포에서 GFP의 발현이 유의하게 감소하였음을 확인하였다. 특히, 3 개의 miRNA 결합 부위를 포함하는 상기 표 6의 2번 NLS-Cas9-linker-NES 복합체 (Cas9-miRNA 21 3X-NES)와 EGFP sgRNA의 혼성체를 주입한 경우, 세포에서 GFP의 발현이 가장 감소하였다.
반면, Hela 세포에, EGFP sgRNA와 혼성체를 이룬, 상기 표 6의 3번 NLS-Cas9-linker-NES 복합체 (Cas9-miRNA 294 1X-NES) 및 상기 표 6의 4번 NLS-Cas9-linker-NES 복합체 (Cas9-miRNA 294 3X-NES)를 주입한 경우, 대조군에 비하여 세포에서 GFP의 발현의 감소가 뚜렷하지 않았다.
이를 통해, 표적 miRNA에 따라, 상이한 miRNA 결합 부위를 갖는 상기 표 6의 제조된 NLS-Cas9-linker-NES 복합체는 특정 miRNA에 의해서만 특이적으로 miRNA 결합 부위가 절단되고, 그로 인해 분리되어, NES가 제거된, Cas9 단백질과 가이드 RNA의 혼성체가 세포 핵 내로 이동하여 miRNA 특이적인 유전자 조작이 가능할 수 있다는 것을 확인하였다. 즉, 상기 표 6의 제조된 NLS-Cas9-linker-NES 복합체는 세포 내의 miRNA 특이적으로 작동될 수 있다는 것을 확인하였다.
본 실험예를 통하여, miRNA 21 은 고형암 및 종양 질환 세포에서 특이적으로 발현된다는 점에 비추어, miRNA 21을 발현하는 고형암 및 종양 질환 세포에 miRNA 21 결합 부위를 갖는 표 6의 1번 및 2번의 제조된 NLS-Cas9-linker-NES 복합체를 주입하는 경우, 주입된 NLS-Cas9-linker-NES 복합체의 링커는 세포질에서 miRNA 21과 결합하여 절단될 수 있다. 이 경우, 상기 NLS-Cas9-linker-NES 복합체는 분리되어, NES가 제거된 Cas9 단백질과 가이드 RNA의 혼성체가 연결된 NLS 에 의해, 세포질에서 핵 내로 이동하여 유전자 조작을 할 수 있음을 확인하였다.
이러한 결과는, miRNA 21을 발현하지 않는 정상 세포에 miRNA 21 결합 부위를 갖는 표 6의 1번 및 2번의 제조된 NLS-Cas9-linker-NES 복합체와 가이드 RNA의 혼성체를 주입하는 경우, 주입된 복합체는 세포질에서 절단되지 않아, 연결되어 있는 NES에 의하여 핵 내로 이동하지 않고, 세포질에 위치하게 되어, 정상 세포에서는 유전자 조작 기능이 현저히 감소하거나 작동되지 않음을 지지한다.
따라서, 이러한 NLS-Cas9-linker-NES 복합체는 정상 세포의 손상을 방지하면서, 질환 세포에서만 특이적으로 작동되는 유전자 조작을 가능하게 할 수 있다. 궁극적으로 이러한 유전자 조작을 통해, 질환 예방, 치료, 및 부작용의 감소를 가능하게 할 수 있고, 질환 치료의 효과를 개선하여, 기존의 CRISPR/Cas 시스템의 문제점을 보완할 수 있다.
실험예 5. 제조된 NLS-Cas9-linker-NES 복합체의 암 치료 효과 확인
본 실험예에서는, 상기 표 6의 제조된 NLS-Cas9-linker-NES 복합체의 암 치료 효과를 확인하기 위하여, 종양 유전자로 알려진 EZH2를 타겟팅하는 가이드 RNA인, EZH2 sgRNA를 활용하였다.
구체적으로, 5 주령 면역 결핍 누드 마우스 (nu/nu) Orient Bio)에 폐암 세포인 A549 세포 (약 1 × 107)를 피하 주사하였다. 한편, 상기 표 6의 1번 NLS-Cas9-linker-NES 복합체 (Cas9-miRNA 21 1X-NES) 및 상기 표 6의 3번 NLS-Cas9-linker-NES 복합체 (Cas9-miRNA 294 1X-NES) 각각을 EZH2 sgRNA와 PBS 버퍼에서 30 분 동안 37°C 조건으로 인큐베이션하였다. 그 결과 얻어진 시료 각각을 상기 마우스의 종양 내로 주사하였고, 투여된 시료에 따라 총 4 그룹의 실험군으로 분류하였다. 투여된 시료는 하기와 같고, NLS-Cas9-linker-NES 복합체를 투여하지 않은 종양 마우스를 대조군으로 사용하였다:
i) 상기 표 6의 1번 NLS-Cas9-linker-NES 복합체 (Cas9-miRNA 21 1X-NES)와 EZH2 sgRNA의 혼성체
ii) 상기 표 6의 3번 NLS-Cas9-linker-NES 복합체 (Cas9-miRNA 294 1X-NES)와 EZH2 sgRNA의 혼성체
iii) 항암제인 시스플라틴 (cisplatin)
vi) 시스플라틴 및 상기 표 6의 1번 NLS-Cas9-linker-NES 복합체 (Cas9-miRNA 21 1X-NES)와 EZH2 sgRNA의 혼성체.
주사 직후, 종양 부피를 측정한 후, 정기적으로 종양 부피의 변화를 모니터링하였다. 종양 부피 (V)는 하기의 수정된 타원 공식 (ellipsoidal formula)을 사용하여 계산되었다:
<계산식>
V = 0.5 x 길이 x (폭)2.
또한, 분리된 종양 조직에 대하여, 항-EZH2 항체 (Cell Signaling Technology, #3147S)를 이용한 웨스턴 블랏 분석을 수행하여 EZH2의 발현 양상을 분석하였다. 더하여, 분리된 종양 조직으로부터 수득된 종양 절편을 항-EZH2 항체 (Cell Signaling Technology, #3147S)와 함께 배양한 후, Alexa Fluor 488 goat 항-mouse IgG 항체 (Invitrogen, A11001; 1:100)에 의해 검출하였다. 섹션은 DAPI mounting medium (Vector, H-1200)으로 마운팅되었다. 형광 신호는 공초점 현미경 (Carl Zeiss, LSM700)을 사용하여 시각화되었다.
그 결과, 도 8에 나타낸 바와 같이, 상기 표 6의 1번 NLS-Cas9-linker-NES 복합체 (Cas9-miRNA 21 1X-NES) 및 EZH2 sgRNA의 혼성체를 종양 마우스의 종양 내 투여한 경우, 대조군에 비해 종양의 크기가 현저하게 감소하였고 (도 8a 및 도 8b), 종양 조직 내 EZH2의 발현이 현저하게 감소하였음을 확인하였다 (도 8c). 반면, 상기 표 6의 3번 NLS-Cas9-linker-NES 복합체 (Cas9-miRNA 294 1X-NES) 및 EZH2 sgRNA의 혼성체를 종양 마우스의 종양 내 투여한 경우, 대조군과 비교하여 종양의 크기에 있어서 큰 차이가 없고 (도 8a 및 도 8b), 종양 조직 내 EZH2의 발현 수준 역시 대조군과 비교하여 큰 차이가 없음을 확인하였다 (도 8c).
또한, 도 9a 및 도 9b에 나타낸 바와 같이, 상기 표 6의 1번 NLS-Cas9-linker-NES 복합체 (Cas9-miRNA 21 1X-NES)와 EZH2 sgRNA의 혼성체; 및 시스플라틴을 병용 투여한 경우, 단독 투여의 경우와 비교하여, 종양의 크기가 현저하게 감소하였음을 확인하였다.
더하여, 도 10a 및 도 10b에 나타낸 바와 같이, 상기 표 6의 1번 NLS-Cas9-linker-NES 복합체 (Cas9-miRNA 21 1X-NES)와 EZH2 sgRNA의 혼성체; 및 시스플라틴을 병용 투여한 경우, 시스플라틴 단독 투여의 경우와 비교하여, 종양 조직 내 EZH2의 발현 수준이 현저하게 감소하였음을 확인하였다. 반면, 시스플라틴 단독 투여의 경우, 종양 조직 내 EZH2의 발현 수준이 오히려 증가하였음을 확인하였다.
본 실험예를 통해, EZH2를 타겟팅하는 상기 표 6의 1번 NLS-Cas9-linker-NES 복합체 (Cas9-miRNA 21 1X-NES)만이 miRNA 21을 발현하는 폐암 세포에서 miRNA 21과 결합하여 절단되고, 세포질에서 핵 내로 이동하여 EZH2 유전자를 억제할 수 있고, 그로 인해, 종양 크기를 감소시켜 폐암 치료 효과를 나타낼 수 있음을 확인하였다. 즉, 상기 NLS-Cas9-linker-NES 복합체는 질환 세포에서만 특이적으로 발현되는 표적 miRNA에 의하여 유전자 조작이 이루어지므로, 정상 세포의 유전자 손상을 방지하면서, 안전하게 암 세포에서만 특이적으로 유전자를 조작하여 암을 치료할 수 있음을 확인하였다.
또한, 항암제 시스플라틴에 대한 폐암 세포의 내성과 EZH2 유전자의 관련성에 비추어, 본 실험예를 통해, 시스플라틴 투여에 의해 EZH2의 발현이 증가되고, 그로 인해, 시스플라틴에 대한 폐암 세포의 내성이 유발될 수 있음을 확인하였다. 더하여, EZH2를 타겟팅하는 상기 NLS-Cas9-linker-NES 복합체와 시스플라틴을 병용 투여하는 경우, 암 세포 특이적으로 EZH2의 발현이 억제되는 유전자 조작이 가능하고, 이로 인해, 시스플라틴에 대한 폐암 세포의 내성이 감소되는 등, 상기 NLS-Cas9-linker-NES 복합체와 시스플라틴의 시너지 효과가 발생하여 더욱 효과적으로 폐암을 치료할 수 있음을 확인하였다.
종합하면, 상기 NLS-Cas9-linker-NES 복합체는 암 세포 특이적으로 안전하게 유전자를 조작할 수 있으므로, 단독으로 암 치료 효과를 나타낼 수 있을 뿐만 아니라 항암제와 병용 투여되어 항암제에 대한 암 세포의 내성을 차단하면서 암 치료 효과를 증가시킬 수 있다. 따라서, 상기 NLS-Cas9-linker-NES 복합체는 단독 암 치료제로 활용될 수 있을 뿐만 아니라 항암제 병용 요법을 위한 암 치료제로도 활용될 수 있다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.

Claims (17)

  1. 핵 위치화 신호 (nuclear localization signal, NLS) 펩티드와 연결된 CRISPR 연관 단백질 (CRISPR associated protein, Cas 단백질);
    핵 엑스포트 신호 (nuclear export signal, NES) 펩티드; 및
    상기 Cas 단백질과 상기 NES 펩티드를 연결하는 링커 (linker)를 포함하는 NLS-Cas-linker-NES 복합체로서,
    상기 링커는 표적 마이크로 RNA (miRNA)와 결합하는 것에 의하여 절단되는 것인, NLS-Cas-linker-NES 복합체.
  2. 청구항 1에 있어서, 상기 링커는 상기 표적 miRNA와 상보적으로 결합하는 올리고뉴클레오티드를 포함하는 것인, NLS-Cas-linker-NES 복합체.
  3. 청구항 1에 있어서, 상기 Cas 단백질은 Cas1, Cas1B, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9, Cas10, Csy1, Csy2, Csy3, Cse1, Cse2, Csc1, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx10, Csx16, CsaX, Csx3, Csx1, Csx15, Csf1, Csf2, Csf3, Csf4, 또는 이의 상동체 또는 변형물인 것인, NLS-Cas-linker-NES 복합체.
  4. 청구항 1에 있어서, 상기 링커는 상기 표적 miRNA가 상보적으로 결합하는 결합 부위를 1 내지 3 개 포함하는 것인, NLS-Cas-linker-NES 복합체.
  5. 청구항 1에 있어서, 상기 표적 miRNA는 질환 세포에서 특이적으로 발현되는 것인, NLS-Cas-linker-NES 복합체.
  6. 청구항 4에 있어서, 상기 링커의 상기 결합 부위는 서열번호 3의 뉴클레오티드 서열을 포함하고, 상기 결합 부위에는 서열번호 4의 뉴클레오티드 서열을 포함하는 miRNA 21이 결합하는 것인, NLS-Cas-linker-NES 복합체.
  7. 청구항 1에 있어서, 상기 NLS-Cas-linker-NES 복합체는 상기 NES 펩티드를 하나 이상 포함하는 것인, NLS-Cas-linker-NES 복합체.
  8. 청구항 1에 있어서, 상기 NLS-Cas-linker-NES 복합체는, 상기 링커와 상기 NES 펩티드 사이에서 아지드 (azide) 작용기와 알킨 (alkyne) 작용기의 클릭반응 (click reaction)으로 인해, 상기 링커와 상기 NES 펩티드가 연결되어 있는 것인, NLS-Cas-linker-NES 복합체.
  9. 청구항 1에 있어서, 상기 NLS-Cas-linker-NES 복합체는, 상기 링커의 한 쪽 말단에 연결된 아지드 작용기와 상기 NES 펩티드의 C-말단에 연결된 디벤조시클로옥틴 (dibenzocyclooctyne, DBCO) 작용기의 클릭반응으로 인해, 상기 링커와 상기 NES 펩티드가 연결되어 있는 것인, NLS-Cas-linker-NES 복합체.
  10. 청구항 1에 있어서, 상기 NLS-Cas-linker-NES 복합체는, 상기 Cas 단백질에 연결된 비오틴 (biotin) 결합 단백질과 상기 링커에 연결된 비오틴의 결합에 의하여, 상기 Cas 단백질과 상기 링커가 연결되어 있는 것인, NLS-Cas-linker-NES 복합체.
  11. 청구항 1에 있어서, 상기 NLS-Cas-linker-NES 복합체는 가이드 RNA (guide RNA)를 더 포함하고, 상기 가이드 RNA는 상기 Cas 단백질과 혼성체를 형성하는 것인, NLS-Cas-linker-NES 복합체.
  12. 청구항 11에 있어서, 상기 가이드 RNA와 Cas 단백질이 혼성체를 형성한 NLS-Cas-linker-NES 복합체는 상기 가이드 RNA와 Cas 단백질의 혼성체를 질환 세포 특이적으로 세포 핵 내로 전달하는 것인, NLS-Cas-linker-NES 복합체.
  13. 청구항 1 내지 12 중 어느 한 항의 NLS-Cas-linker-NES 복합체를 유효성분으로 포함하는 질환 특이적 유전자 조작용 조성물.
  14. 청구항 13에 있어서, 상기 질환은 고형암 또는 종양 질환인 것인, 질환 특이적 유전자 조작용 조성물.
  15. 청구항 1 내지 12 중 어느 한 항의 NLS-Cas-linker-NES 복합체를 유효성분으로 포함하는 질환 예방 또는 치료용 약제학적 조성물.
  16. 청구항 15에 있어서, 상기 질환은 고형암 또는 종양 질환인 것인, 질환 예방 또는 치료용 약제학적 조성물.
  17. 청구항 1 내지 12 중 어느 한 항의 NLS-Cas-linker-NES 복합체를 포함하는 유전자 조작용 키트.
PCT/KR2021/008609 2020-07-06 2021-07-06 질환 세포-특이적인 mirna에 의해 세포 생리 활성 조절 물질의 활성을 조절하는 복합체 및 이를 crispr/cas 시스템에 적용한 질환 특이적 유전자 조작용 복합체 WO2022010241A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0083088 2020-07-06
KR20200083088 2020-07-06

Publications (1)

Publication Number Publication Date
WO2022010241A1 true WO2022010241A1 (ko) 2022-01-13

Family

ID=79342070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008609 WO2022010241A1 (ko) 2020-07-06 2021-07-06 질환 세포-특이적인 mirna에 의해 세포 생리 활성 조절 물질의 활성을 조절하는 복합체 및 이를 crispr/cas 시스템에 적용한 질환 특이적 유전자 조작용 복합체

Country Status (2)

Country Link
KR (1) KR20220005411A (ko)
WO (1) WO2022010241A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140697A1 (ko) * 2022-01-24 2023-07-27 주식회사 툴젠 Cas 단백질 또는 이의 변이체의 스크리닝 방법, 및 이를 이용하여 제조된 Cas 단백질 또는 이의 변이체

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180029953A (ko) * 2015-03-31 2018-03-21 엑셀리겐 사이언티픽, 인코포레이티드 세포 또는 유기체의 게놈으로의 DNA 서열의 표적화 혼입을 위한 Cas 9 레트로바이러스 인테그라제 시스템 및 Cas 9 재조합효소 시스템
KR20190004662A (ko) * 2017-07-04 2019-01-14 주식회사 인투셀 절단성 링커를 포함하는 화합물 및 이들의 용도

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180029953A (ko) * 2015-03-31 2018-03-21 엑셀리겐 사이언티픽, 인코포레이티드 세포 또는 유기체의 게놈으로의 DNA 서열의 표적화 혼입을 위한 Cas 9 레트로바이러스 인테그라제 시스템 및 Cas 9 재조합효소 시스템
KR20190004662A (ko) * 2017-07-04 2019-01-14 주식회사 인투셀 절단성 링커를 포함하는 화합물 및 이들의 용도

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MEGAN E. GOECKEL, ERIANNA M. BASGALL, ISABEL C. LEWIS, SAMANTHA C. GOETTING, YAO YAN, MEGAN HALLORAN , GREGORY C. FINNIGAN: "Modulating CRISPR gene drive activity through nucleocytoplasmic localization of Cas9 in S. cerevisiae", FUNGAL BIOLOGY AND BIOTECHNOLOGY, vol. 6, no. 1, 4 February 2019 (2019-02-04), London, UK , pages 1 - 11, XP009533215, ISSN: 2054-3085, DOI: 10.1186/s40694-019-0065-x *
PATUTINA O. A., BAZHENOV M. A., MIROSHNICHENKO S. K., MIRONOVA N. L., PYSHNYI D. V., VLASSOV V. V., ZENKOVA M. A.: "Peptide-oligonucleotide conjugates exhibiting pyrimidine-X cleavage specificity efficiently silence miRNA target acting synergistically with RNase H", SCIENTIFIC REPORTS, vol. 8, no. 1, 1 December 2018 (2018-12-01), pages 1 - 15, XP055886291, DOI: 10.1038/s41598-018-33331-z *
WANG XI-WEN; HU LU-FENG; HAO JING; LIAO LE-QI; CHIU YA-TZU; SHI MING; WANG YANGMING: "A microRNA-inducible CRISPR-Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool", NATURE CELL BIOLOGY, vol. 21, no. 4, 25 February 2019 (2019-02-25), London, pages 522 - 530, XP036745999, ISSN: 1465-7392, DOI: 10.1038/s41556-019-0292-7 *

Also Published As

Publication number Publication date
KR20220005411A (ko) 2022-01-13

Similar Documents

Publication Publication Date Title
US11844759B2 (en) Compositions comprising circular polyribonucleotides and uses thereof
US8754203B2 (en) Human microRNAs and methods for inhibiting same
DK1798285T3 (en) Method and drug for inhibiting the expression of a given gene
JP2023548584A (ja) オリゴヌクレオチド組成物及びその方法
WO2013103249A1 (ko) 고효율 나노입자형 이중나선 올리고 rna 구조체 및 그의 제조방법
WO2022124345A1 (ja) 化学修飾核酸を導入した安定型標的編集ガイドrna
JP4517061B2 (ja) ダンベル型dnaの効率的な製造方法
WO2022010241A1 (ko) 질환 세포-특이적인 mirna에 의해 세포 생리 활성 조절 물질의 활성을 조절하는 복합체 및 이를 crispr/cas 시스템에 적용한 질환 특이적 유전자 조작용 복합체
WO2021155175A1 (en) Compositions for translation and methods of use thereof
US9399773B2 (en) Production and extraction of MicroRNA precursor as drug for cancer therapy
JP2023002469A (ja) 抗ウイルス及び抗がんワクチンに用いる新規なmRNA組成物及びその製造方法
JP2012515532A (ja) Mir−21プロモーター駆動性標的がん治療
WO2022261115A1 (en) Peptide nucleic acids for spatiotemporal control of crispr-cas binding
US20170342418A1 (en) Use of microrna precursors as drugs for inducing cd34-positive adult stem cell expansion
WO2021194179A1 (ko) Stat3 및 mtor를 이중 특이적으로 표적하는 핵산서열을 포함한 항암 바이러스
JP2022546302A (ja) ダンベル型dnaベクターを作出するための方法
JP6956995B2 (ja) ゲノム編集方法
WO2017188707A1 (en) Dicer substrate rna nanostructures with enhanced gene silencing effect and preparation method thereof
WO2020235936A1 (ko) Pd-1의 발현을 억제하는 비대칭 sirna
WO2024054047A1 (ko) 자가 환형화 rna 구조체
WO2022131883A1 (ko) HBV 발현을 억제하는 RNAi 제제 및 이의 용도
WO2022131398A1 (ko) 유전자 발현 및 억제가 동시에 가능한 핵산 구조체
WO2023008887A1 (ko) 염기 편집기 및 이의 용도
Gutierrez Aguirregabiria Using synthetic oligonucleotides to modify cellular IRES structures and control gene expression
Apostolopoulos et al. dCas13-mediated translational repression for accurate gene silencing in mammalian cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837250

Country of ref document: EP

Kind code of ref document: A1