WO2022009820A1 - 圧電セラミックス素子の駆動回路及びその使用方法 - Google Patents

圧電セラミックス素子の駆動回路及びその使用方法 Download PDF

Info

Publication number
WO2022009820A1
WO2022009820A1 PCT/JP2021/025243 JP2021025243W WO2022009820A1 WO 2022009820 A1 WO2022009820 A1 WO 2022009820A1 JP 2021025243 W JP2021025243 W JP 2021025243W WO 2022009820 A1 WO2022009820 A1 WO 2022009820A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric ceramic
ceramic element
pulse
drive circuit
piezoelectric
Prior art date
Application number
PCT/JP2021/025243
Other languages
English (en)
French (fr)
Inventor
茂雄 石井
弘志 岸
隆幸 後藤
浩一郎 森田
純明 岸本
寛之 清水
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2022009820A1 publication Critical patent/WO2022009820A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions

Definitions

  • the present invention relates to a drive circuit for a piezoelectric ceramic element and a method for using the same.
  • a piezoelectric ceramic element is an electronic component having a structure in which ceramics having piezoelectricity (piezoelectric ceramics) are sandwiched between a pair or more electrodes.
  • piezoelectricity is a property that can mutually convert electrical energy and mechanical energy.
  • the piezoelectric ceramic element is used as an actuator that moves another object by converting the voltage applied between the opposing electrodes into physical motion by utilizing the above-mentioned properties of the piezoelectric ceramic.
  • the polarization process refers to a process in which a voltage (electric field) is applied to the piezoelectric ceramics in a specific direction to align the directions of spontaneous polarization. If the spontaneous polarization is not sufficiently aligned, sufficient displacement characteristics cannot be obtained when used as an actuator. Therefore, the polarization treatment is usually performed by applying a sufficiently large electric field for a sufficiently long time. Yes, and it is done while heating the piezoelectric ceramics as needed.
  • force feedback means transmitting some information by applying an external force such as vibration or impact to the operator.
  • Such input devices are often placed in a high temperature environment, and in this case, the mounted piezoelectric ceramic elements are also exposed to high temperatures. Further, when generating vibration, a voltage is often applied to the piezoelectric ceramic element in the direction opposite to the direction in which the electric field is applied during polarization (polarization direction). Since all of these events act in a direction that disturbs the direction of spontaneous polarization in the piezoelectric ceramic element, the displacement characteristics of the piezoelectric ceramic element deteriorate after long-term use of the input device, and the desired feedback cannot be obtained. There was something.
  • a temperature detecting means is provided in a liquid injection device provided with a piezoelectric element, and when the temperature detecting means detects a temperature outside the normal operating temperature range of the piezoelectric element, a repolarization waveform is generated in the piezoelectric element.
  • the technical idea to be applied is disclosed.
  • the repolarization waveform a waveform is shown in which each step of the voltage rise step, the voltage holding step, and the voltage drop step takes about 6 seconds and the holding voltage is 30 to 40 V.
  • Patent Document 2 it is assumed that the absolute value of the forward maximum voltage applied in the polarization direction of the drive AC voltage of the piezoelectric element is larger than the absolute value of the reverse maximum voltage applied in the direction opposite to the polarization direction. As a result, the technical idea of increasing the displacement while preventing the loss of polarization of the piezoelectric element is disclosed.
  • the temperature detected by the temperature detecting means is the normal operating temperature in addition to the temperature detecting means and the circuit to which the repolarizing waveform is applied. It is necessary to provide a means for determining whether or not the temperature is within the range, and a means for connecting a circuit for applying the repolarization waveform to the piezoelectric element according to the determination result by the means, which complicates the circuit. Is the problem. Further, when the repolarization waveform is such that a DC voltage is applied for a short time, the spontaneous polarization cannot be sufficiently realigned, and the effect of suppressing the deterioration of the characteristics may be insufficient.
  • the present invention solves the above-mentioned problems, and has a relatively simple structure, and can efficiently obtain the displacement while suppressing the deterioration of the displacement characteristic of the piezoelectric ceramic element with time.
  • the purpose is to provide a drive circuit for.
  • the present inventor has conducted various studies to solve the above problems, and found that the drive circuit of the piezoelectric ceramic element is normally driven after applying a pulse voltage for polarization to the piezoelectric ceramic element at the time of starting the circuit.
  • the problem can be solved by configuring the control so as to perform control, and have completed the present invention.
  • one aspect of the present invention for solving the above problems is to provide a drive control unit that generates a voltage for controlling the drive of the piezoelectric ceramic element, a pulse voltage generation unit that generates a pulse voltage, and a piezoelectric ceramic element. It is a drive circuit of a piezoelectric ceramic element including a switch unit for switching to a connection to the drive control unit after being connected to the pulse voltage generation unit when the circuit is started.
  • a drive circuit for a piezoelectric ceramic element which has a relatively simple structure and can obtain a large displacement while suppressing a decrease in displacement characteristics of the piezoelectric ceramic element over time.
  • the conceptual diagram which shows the structure of the drive circuit of the piezoelectric ceramic element which concerns on one aspect of this invention.
  • Explanatory drawing which shows the waveform of the AC triangular wave pulse applied to the piezoelectric ceramics in Examples 1-48.
  • a graph showing the relationship between the number of cycles in which an AC triangular wave pulse is applied during polarization processing and the displacement ratio of the obtained piezoelectric ceramic element, which was created based on the results of Examples 1 to 48.
  • Explanatory drawing which shows the waveform of the unipolar triangular wave pulse applied to the piezoelectric ceramics in Examples 49-66.
  • the drive circuit (hereinafter, may be referred to as “drive circuit according to this aspect”) 100 is for controlling the drive of the piezoelectric ceramic element 1.
  • the drive control unit 10 After connecting the drive control unit 10 that generates the voltage of the above, the pulse voltage generation unit 20 that generates the pulse voltage, and the piezoelectric ceramic element 1 to the pulse voltage generation unit 20 at the time of starting the circuit, the drive control unit 10 is connected.
  • a switch unit 30 for switching to a connection is provided.
  • the drive control unit 10 applies a drive voltage to the piezoelectric ceramic element 1 at an desired timing according to an input from the outside or according to a preset pattern to operate the piezoelectric ceramic element 1.
  • the magnitude of the applied voltage and the timing of the application are determined according to the shape and structure of the piezoelectric ceramic element 1, the characteristics of the piezoelectric material constituting the piezoelectric ceramic element 1, the required operation, and the like.
  • the circuit configuration of the drive control unit 10 any one that can be adopted by those skilled in the art according to the pattern of the voltage applied to the piezoelectric ceramic element 1 can be adopted.
  • the pulse voltage generation unit 20 generates a pulse voltage to be applied to the piezoelectric ceramic element 1 when the circuit is started.
  • a pulse voltage By applying a pulse voltage to the piezoelectric ceramic element 1, it is possible to repolarize the piezoelectric ceramic element 1 and suppress a decrease in displacement characteristics.
  • the waveform of the pulse voltage to be generated is not particularly limited, and examples thereof include a sine wave, a rectangular wave, and a triangular wave. Above all, the triangular wave is preferable in that the repolarization of the piezoelectric ceramic element can be efficiently performed. Further, the magnitude, generation time, frequency, etc.
  • the pulse voltage generation unit 20 any one that can be adopted by those skilled in the art according to the pattern of the generated pulse voltage can be adopted.
  • the pulse voltage generated by the pulse voltage generation unit 20 is preferably a unipolar pulse.
  • the unipolar pulse means a pulse having either positive or negative polarity.
  • the pulse frequency is preferably 0.1 to 1 kHz, more preferably 0.2 to 500 Hz, and further preferably 1 to 300 Hz. preferable.
  • the pulse frequency is preferably 0.1 to 1 kHz, more preferably 0.2 to 500 Hz, and further preferably 1 to 300 Hz. preferable.
  • the switch unit 30 connects the piezoelectric ceramic element 1 and the pulse voltage generation unit 20 when the drive circuit 100 of the piezoelectric ceramic element is started, and then connects the piezoelectric ceramic element 1 and the drive control unit 10. By connecting to the pulse voltage generating unit 20 at the time of starting the circuit, the pulse voltage is applied to the piezoelectric ceramic element 1 and the repolarization process is performed. When the repolarization process is completed, the switch unit 30 is switched, the piezoelectric ceramic element 1 and the drive control unit 10 are connected, and the piezoelectric ceramic element 1 is put into a driving state.
  • Examples of the switch unit 30 include circuits for mechanically switching switches, those using Schottky diodes, and the like, but the switch unit 30 is not limited to these, and any circuit can be switched at the desired timing. Just do it.
  • the drive circuit according to this embodiment can be used for driving a piezoelectric ceramic element that has been polarized, but it can also be used by mounting unpolarized piezoelectric ceramics on which electrodes are formed.
  • the piezoelectric ceramics are polarized by the pulse voltage applied from the pulse voltage generation unit to become a piezoelectric ceramic element, which is driven by the voltage applied from the drive control unit. It becomes.
  • the shape, structure, constituent materials, etc. of the piezoelectric ceramics used and the electrodes formed on them are not particularly limited. However, when the distance between the electrodes is too large, it is necessary to apply a high voltage between the electrodes in order to obtain an electric field strength capable of aligning the directions of spontaneous polarization, and the performance of the pulse voltage generating portion is high. It is necessary to take measures against short-circuiting and short-circuiting. Therefore, in order to enable polarization processing without forming the pulse voltage generating portion with a special structure, the distance between the electrodes of the piezoelectric ceramics is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and more preferably 50 ⁇ m. The following is more preferable.
  • the value of the specific examples of the coercive field E c is preferably at least 1.0 kV / mm, more preferably at least 1.5 kV / mm, still more preferably at least 2.0 kV / mm.
  • the value of the ratio P r / P max of the residual polarization P r with respect to the maximum value P max of polarization in the hysteresis loop described above can be applied to large piezoelectric ceramics, a pulse voltage This is preferable because the variation in characteristics due to the application conditions of is reduced. Examples of the pulse voltage application condition include the number of cycles in which the voltage is applied, the pulse frequency, and the like.
  • the value of the ratio Pr / P max in the piezoelectric ceramics is preferably 0.80 or more, more preferably 0.85 or more, still more preferably 0.90 or more.
  • the value of the residual polarization Pr and the value of the above-mentioned maximum polarization value P max may be actually measured or may be a value obtained through a manufacturer or the like, as in the above-mentioned coercive electric field E c. ..
  • a rectangular composite sintered body in which 10 layers were laminated in the thickness direction was prepared.
  • the upper and lower surfaces in the stacking direction are covered from the peripheral edge with a desired margin, and the internal electrodes exposed every other layer on the side surface thereof and the electrodes covering the upper and lower surfaces.
  • An electrode was formed by printing and baking a silver paste so as to connect to either one of them.
  • the electrodes formed on the upper and lower surfaces of the piezoelectric ceramics in the stacking direction are connected to the circuit for the pulse voltage generating unit 20 in the drive circuit 100 of the piezoelectric ceramic element shown in FIG. 1, and the peak has a frequency of 0.1 Hz at room temperature.
  • a piezoelectric triangular wave pulse having a voltage of 104 V was applied for one cycle (10 seconds) to perform a polarization treatment to obtain a piezoelectric ceramic element according to Example 1.
  • An image of the waveform of the applied AC triangular wave pulse is shown in FIG. However, in FIG. 2, a triangular wave for three cycles is shown.
  • the piezoelectric characteristics of the obtained piezoelectric ceramic device were evaluated by the following method. First, the piezoelectric ceramic element was driven at 2 to 5 kV / mm and 10 Hz, and the displacement in the longitudinal direction (direction of the side of 10 mm) of the element was measured with a laser displacement meter (aixACCT Systems TF Analyzer 2000). Next, the amount of displacement per voltage was calculated by dividing the obtained displacement by the drive voltage. Next, a piezoelectric ceramic having the same shape and structure as the above-mentioned piezoelectric ceramic was prepared, and a reference element obtained by applying a DC voltage of 104 V for 2 hours at room temperature between the electrodes formed on the upper and lower surfaces in the stacking direction.
  • the displacement amount per voltage was calculated by the same procedure. Finally, the ratio of the displacement amount per voltage of the piezoelectric ceramic element according to Example 1 to the displacement amount per voltage of the reference element (hereinafter, simply referred to as “displacement amount ratio”) was calculated. The value of the obtained displacement amount ratio was 0.679. Since the value of the displacement amount ratio was not zero, it can be said that in the first embodiment, the piezoelectric ceramics were polarized to obtain the piezoelectric ceramic element.
  • Examples 2-48 Examples 2 to the same method as in Example 1 except that the number of cycles in which the AC triangular wave pulse is applied to the piezoelectric ceramics and the frequency of the AC triangular wave pulse applied to the piezoelectric ceramics are set to the values shown in Tables 1 and 2, respectively.
  • a piezoelectric ceramic element according to 48 was manufactured, and the displacement ratio was calculated. The values of the obtained displacement ratios are shown in Tables 1 and 2, respectively, together with the number and frequency of the AC triangular wave pulses.
  • the piezoelectric ceramics can be polarized by applying various AC triangular wave pulses.
  • these results show that the piezoelectric ceramic element is repolarized by incorporating a pulse voltage generator into the drive circuit of the piezoelectric ceramic element and applying the pulse voltage to the piezoelectric ceramic element at the desired timing to perform displacement characteristics. It can be said that it suggests that the decrease in the amount of ceramics can be suppressed.
  • FIG. 3 is a graph showing the relationship between the number of cycles in which an AC triangular wave pulse is applied during the polarization process and the displacement ratio of the obtained piezoelectric ceramic element, which was created based on the results of Examples 1 to 48. From this figure, it can be seen that a piezoelectric ceramic device having a large displacement ratio can be obtained by applying a relatively small number of pulses of 10 cycles or less. Further, focusing on the frequency of the AC triangular wave pulse to be applied, it can be seen that a piezoelectric ceramic element having a large displacement ratio can be obtained by applying a pulse having a relatively low frequency of 50 Hz or less. The largest displacement ratio was obtained when two 10 Hz pulses (2 cycles) were applied, and from that value (0.988), an element having displacement characteristics comparable to that of the reference element was obtained. It can be said that it is.
  • Example 49 to 66 The same method as in Example 1 was used except that the pulse applied to the piezoelectric ceramics was changed to a unipolar triangular wave pulse, and the number of cycles to which the pulse was applied and the frequency of the applied pulse were set to the values shown in Table 3, respectively.
  • the piezoelectric ceramic elements according to 49 to 66 were manufactured, and the displacement amount ratio was calculated.
  • An example of the waveform of the applied unipolar triangular wave pulse is shown in FIG. However, in FIG. 4, a triangular wave for 6 cycles is shown. The frequency of the applied pulse was twice that of the case where the AC triangular wave pulse was applied, and the duration of the triangular wave was the same.
  • the values of the obtained displacement ratios are shown in Table 3 together with the number and frequency of the unipolar triangular wave pulses.
  • the piezoelectric ceramics can be polarized by applying various unipolar triangular wave pulses.
  • these results show that the piezoelectric ceramic element is repolarized and displaced by incorporating a pulse voltage generator in the drive circuit of the piezoelectric ceramic element and applying a unipolar triangular wave pulse to the piezoelectric ceramic element at the desired timing. It can be said that it suggests that the deterioration of the characteristics can be suppressed.
  • FIG. 5 is a graph showing the relationship between the number of cycles in which a unipolar triangular wave pulse is applied during the polarization process and the displacement ratio of the obtained piezoelectric ceramic element, which was created based on the results of Examples 49 to 66. From this figure, it can be seen that a piezoelectric ceramic device having a large displacement ratio can be obtained with a small number of cycles of 100 cycles or less by applying a pulse having a relatively low frequency of 200 Hz or less. In particular, when a pulse of 2 to 200 Hz was applied, some elements had a displacement amount per voltage exceeding the reference element. Therefore, by applying an AC triangular wave pulse near this frequency range, piezoelectricity with excellent displacement characteristics was obtained. It can be said that a ceramic element can be obtained.
  • the piezoelectric ceramics made of PZT-based piezoelectric material can also be polarized or repolarized by applying an AC triangular wave pulse.
  • FIG. 6 is a graph showing the relationship between the number of cycles in which an AC triangular wave pulse is applied during the polarization process and the displacement ratio of the obtained piezoelectric ceramic element, which was created based on the results of Examples 67 to 96. From this figure, it can be seen that when a pulse is applied for 20 cycles or less, a displacement ratio of 0.85 or more can be obtained regardless of the pulse frequency. It can also be seen that the displacement ratio exceeds 1 depending on the pulse application condition, and the displacement performance superior to that of the reference element can be obtained. Further, when these results are compared with the results of Examples 1 to 48 shown in FIG. 3, the piezoelectric ceramic element according to Examples 67 to 96 has a smaller variation in the displacement amount ratio depending on the application condition of the pulse voltage. I also understand.
  • Comparative Example 1 As shown in FIG. 7, the mode of applying the voltage during the polarization treatment is boosted to 52 V in 3 seconds, boosted to 104 V in 3 seconds, held at the voltage for 1 second, and then stepped down to 0 V in 3 seconds.
  • the piezoelectric ceramic element according to Comparative Example 1 was produced by the same method as in Example 1 except that the voltage was changed, and the displacement ratio was calculated. The displacement ratio obtained was 0.574.
  • the piezoelectric ceramic element according to Comparative Example 1 Since the displacement performance of the piezoelectric ceramic element according to Comparative Example 1 was significantly inferior to that of the reference element, it was difficult to obtain the piezoelectric ceramic element having the desired characteristics by the polarization treatment in which the DC voltage was applied for a short time. I can say. Therefore, the fact that the piezoelectric ceramic element according to each of the above-described embodiments has excellent characteristics is that, as described above, the electric field in the piezoelectric ceramic is instantaneously greatly changed, and charged particles such as ions and electrons are charged. It is considered that the action of the pulse voltage, which activates the ceramics, contributes greatly.
  • a drive circuit for a piezoelectric ceramic element having a relatively simple structure which can obtain a large displacement while suppressing a decrease in displacement characteristics of the piezoelectric ceramic element over time. Therefore, the present invention is useful as a drive circuit for piezoelectric ceramics in place of conventional products. Further, the drive circuit of the piezoelectric ceramic element according to the present invention can be started by mounting the unpolarized piezoelectric ceramics to perform the polarization treatment of the piezoelectric ceramics. Therefore, according to the present invention, it is also useful in that the polarization treatment step, which has been indispensable in the past, can be omitted.
  • Piezoelectric ceramic element drive circuit 1 Piezoelectric ceramic element 10 Drive control unit 20 Pulse voltage generator 30 Switch unit

Abstract

本発明の一態様に係る圧電セラミックス素子の駆動回路は、圧電セラミックス素子の駆動を制御するための電圧を発生する駆動制御部と、パルス電圧を発生するパルス電圧発生部と、圧電セラミックス素子を、回路起動時に前記パルス電圧発生部に接続した後、前記駆動制御部への接続に切り替えるスイッチ部とを備えるものである。

Description

圧電セラミックス素子の駆動回路及びその使用方法
 本発明は、圧電セラミックス素子の駆動回路及びその使用方法に関する。
 圧電セラミックス素子は、圧電性を有するセラミックス(圧電セラミックス)を、一対またはそれ以上の電極で挟み込んだ構造を有する電子部品である。ここで、圧電性とは、電気エネルギーと機械エネルギーとを相互に変換可能な性質である。
 圧電セラミックス素子は、前述した圧電セラミックスの性質を利用して、相対する電極間に印加された電圧を物理的運動に変換し、他の物体を動かすアクチュータとして利用されている。
 圧電セラミックスから圧電セラミックス素子を得るためには、分極処理が必須である。ここで、分極処理とは、圧電セラミックスに対して特定方向に電圧(電界)を印加して、自発分極の向きを揃える処理をいう。自発分極の揃い方が不十分であると、アクチュータとして使用した際に十分な変位特性が得られないため、分極処理は、十分に大きな電界を十分に長い時間印加して行われることが通常であり、また必要に応じて圧電セラミックスを加熱しながら行われている。
 近年、アクチュエータは、フォースフィードバックを行う入力装置に搭載されており、圧電セラミックス素子も、こうした装置にアクチュエータとして用いられている。ここで、フォースフィードバックとは、操作者に対して振動や衝撃といった外力を与えることで、何らかの情報を伝えることをいう。
 こうした入力装置は、高温環境下に置かれることも多く、この場合には搭載されている圧電セラミックス素子も高温に晒されることとなる。また、振動を発生させる際に、圧電セラミックス素子に対して、分極時の電界の印加方向(分極方向)と逆向きの電圧が印加されることも多い。これらの事象はいずれも、圧電セラミックス素子における自発分極の向きを乱す方向に作用するため、入力装置を長期間使用するうちに圧電セラミックス素子の変位特性が低下し、所期のフィードバックが得られなくなることがあった。
 このような圧電セラミックス素子の変位特性の低下は、該素子を用いたアクチュエータに共通する課題であり、これを解決するために種々の対策が講じられている。例えば、特許文献1では、圧電素子を備えた液体噴射装置に温度検出手段を設け、該温度検出手段が圧電素子の正常使用温度範囲外の温度を検出した場合に、圧電素子に再分極波形を印加する技術思想が開示されている。そして、再分極波形の例として、電圧上昇工程、電圧保持工程及び電圧降下工程の各工程を6秒程度で、保持電圧を30~40Vとした波形が示されている。また、特許文献2では、圧電素子の駆動交流電圧を、分極方向に印加する順方向最大電圧の絶対値が、分極方向と逆方向に印加する逆方向最大電圧の絶対値よりも大きいものとすることで、圧電素子の分極消失を防止しつつ変位を増大させる技術思想が開示されている。
特開2013-132832号公報 特開2006-66655号公報
 正常使用温度範囲外の温度の検出により圧電素子に再分極波形を印加する場合には、温度検出手段及び再分極波形を印加する回路に加えて、温度検出手段で検出された温度が正常使用温度範囲内にあるか否かを判定する手段や、該手段での判定結果に応じて、再分極波形を印加する回路を圧電素子へと接続する手段を設ける必要があり、回路が複雑になることが問題である。また、再分極波形が直流電圧を短時間印加するものである場合には、自発分極を十分に揃え直すことができず、特性低下の抑制効果が不十分となる場合があった。
 圧電素子に印加する駆動交流電圧を、分極方向(順方向)に大きくする場合には、順方向及び逆方向に対して同様に電圧を振る通常の交流駆動に比べて、効率が悪くなることが問題であった。
 そこで、本発明は、前述の問題点を解決し、比較的簡単な構造で、圧電セラミックス素子の変位特性の経時的な低下を抑制しつつ、効率的に変位を得ることができる、圧電セラミックス素子の駆動回路の提供を目的とする。
 本発明者は、前記課題を解決するために種々の検討を行ったところ、圧電セラミックス素子の駆動回路を、回路起動時に圧電セラミックス素子に対して分極用のパルス電圧を印加した後、通常の駆動制御を行うように構成することで、当該課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、前記課題を解決するための本発明の一態様は、圧電セラミックス素子の駆動を制御するための電圧を発生する駆動制御部と、パルス電圧を発生するパルス電圧発生部と、圧電セラミックス素子を、回路起動時に前記パルス電圧発生部に接続した後、前記駆動制御部への接続に切り替えるスイッチ部とを備える圧電セラミックス素子の駆動回路である。
 本発明によれば、比較的簡単な構造で、圧電セラミックス素子の変位特性の経時的な低下を抑制しつつ大きな変位を得ることができる、圧電セラミックス素子の駆動回路が提供される。
本発明の一態様に係る圧電セラミックス素子の駆動回路の構成を示す概念図 実施例1~48で圧電セラミックスに印加した交流三角波パルスの波形を示す説明図 実施例1~48の結果を基に作成した、分極処理時の交流三角波パルスを印加するサイクル数と、得られる圧電セラミックス素子の変位量比との関係を示すグラフ 実施例49~66で圧電セラミックスに印加したユニポーラ三角波パルスの波形を示す説明図 実施例49~66の結果を基に作成した、分極処理時のユニポーラ三角波パルスを印加するサイクル数と、得られる圧電セラミックス素子の変位量比との関係を示すグラフ 実施例67~96の結果を基に作成した、分極処理時の交流三角波パルスを印加するサイクル数と、得られる圧電セラミックス素子の変位量比との関係を示すグラフ 比較例1で圧電セラミックスに印加した電圧の経時変化を示すグラフ
 以下、図面を参照しながら、本発明の構成及び作用効果について、技術的思想を交えて説明する。但し、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。また、以下の実施態様における構成要素のうち、最上位概念を示す請求項に記載されていないものについては、任意の構成要素として説明される。なお、数値範囲の記載(2つの数値を「~」でつないだ記載)については、下限及び上限として記載された数値をも含む意味である。
 図1に例示する、本発明の一態様に係る圧電セラミックス素子の駆動回路(以下、「本態様に係る駆動回路」と記載することがある)100は、圧電セラミックス素子1の駆動を制御するための電圧を発生する駆動制御部10と、パルス電圧を発生するパルス電圧発生部20と、圧電セラミックス素子1を、回路起動時に前記パルス電圧発生部20に接続した後、前記駆動制御部10への接続に切り替えるスイッチ部30とを備える。
 駆動制御部10は、外部からの入力に応じて、又は予め設定されたパターンに従って、圧電セラミックス素子1に対して所期のタイミングで駆動電圧を印加してこれを動作させる。印加する電圧の大きさ及び印加のタイミングは、圧電セラミックス素子1の形状・構造及びこれを構成する圧電材料の特性、並びに要求される動作等に応じて決定される。駆動制御部10の回路構成としては、圧電セラミックス素子1に印加する電圧のパターンに応じて当業者が採用しうる、あらゆるものが採用可能である。
 パルス電圧発生部20は、回路起動時に圧電セラミックス素子1に印加するパルス電圧を発生させる。圧電セラミックス素子1に対してパルス電圧を印加することで、圧電セラミックス素子1を再分極処理し、変位特性の低下を抑制することが可能となる。発生させるパルス電圧の波形は特に限定されず、正弦波、矩形波及び三角波等が例示される。中でも三角波は、圧電セラミックス素子の再分極を効率的に実施できる点で好ましい。また、パルス電圧の大きさ、発生時間及び周波数等は、該パルス電圧を印加する圧電セラミックス素子1の形状・構造及びこれを構成する圧電材料の特性、並びに使用環境等に応じて決定される。パルス電圧発生部20の回路構成としては、発生させるパルス電圧のパターンに応じて当業者が採用しうる、あらゆるものが採用可能である。
 パルス電圧発生部20で発生させるパルス電圧は、ユニポーラパルスであることが好ましい。ここで、ユニポーラパルスとは、正又は負のいずれか一方のみの極性をもつパルスをいう。ユニポーラパルスを圧電セラミックス素子1に印加して再分極を行うことで、パルス電圧の印加条件による特性のばらつきを抑えることができる。この場合、ユニポーラパルスの極性は、圧電セラミックス素子1の極性に一致させることがより好ましい。
 パルス電圧発生部20で三角波のユニポーラパルスを発生させる場合、パルスの周波数は0.1~1kHzであることが好ましく、0.2~500Hzであることがより好ましく、1~300Hzであることがさらに好ましい。パルスの周波数をこの範囲とすることで、少数のパルスで、換言すれば短時間で、圧電セラミックス素子1の再分極処理を完了し、変位特性の低下を抑制することができる。
 スイッチ部30は、圧電セラミックス素子の駆動回路100を起動した際に圧電セラミックス素子1とパルス電圧発生部20とを接続し、その後圧電セラミックス素子1と駆動制御部10とを接続する。回路起動時のパルス電圧発生部20との接続により、圧電セラミックス素子1にパルス電圧が印加され、再分極処理が行われる。そして、再分極処理が完了すると、スイッチ部30が切り替わり、圧電セラミックス素子1と駆動制御部10とが接続されて圧電セラミックス素子1が駆動状態となる。スイッチ部30としては、機械的にスイッチを切り替える回路やショットキーダイオードを利用したもの等が例示されるが、これらに限定されず、回路同士の接続を所期のタイミングで切替可能なものであればよい。
 パルス電圧発生部20から駆動制御部10へのスイッチ部30の接続切替は、待機時間を短くする点から、圧電セラミックス素子の駆動回路100の起動時からなるべく短時間のうちに行うことが好ましい。一例として、起動時から10秒以内が挙げられ、好ましくは5秒以内、より好ましくは1秒以内である。
 本態様に係る駆動回路は、分極処理済みの圧電セラミックス素子の駆動に使用できるのはもちろんであるが、電極が形成された未分極の圧電セラミックスを搭載して使用することもできる。この場合には、駆動回路を起動した際に、パルス電圧発生部から印加されるパルス電圧で圧電セラミックスが分極処理されて圧電セラミックス素子となり、これが駆動制御部から印加される電圧で駆動されることとなる。
 使用する圧電セラミックス及びこれに形成される電極の形状・構造及び構成材料等は特に限定されない。しかし、電極間距離が大きすぎる場合には、自発分極の向きを揃えることが可能な電界強度を得るために、該電極間に高電圧を印加することを要し、パルス電圧発生部の高性能化や短絡対策が必要となってくる。このため、パルス電圧発生部を特殊な構造とすることなく分極処理を可能とするためには、圧電セラミックスの電極間距離を100μm以下とすることが好ましく、80μm以下とすることがより好ましく、50μm以下とすることがさらに好ましい。
 本態様に係る駆動回路は、抗電界Eが大きく自発分極の向きを揃えにくい材料で構成された圧電セラミックスに対しても、パルス電圧の作用により、室温かつ短時間での分極処理が可能である。これは、圧電セラミックス中の電界が瞬時に大きく変動することで、イオンや電子等の荷電粒子が刺激を受けて活性化されるためと推測される。このため、圧電セラミックスとして、従来の分極方法では高温・高電界下で長時間の処理が必要であった、抗電界Eの大きな材料で構成されたものを使用すると、本態様に係る駆動回路による分極処理の利点をより多く享受できる。具体例な抗電界Eの値は、1.0kV/mm以上が好ましく、1.5kV/mm以上がより好ましく、2.0kV/mm以上がさらに好ましい。
 ここで、圧電セラミックスの抗電界Eの値は、圧電セラミックスについて分極(P)と電界(E)との関係をプロットして得たP-E曲線(ヒステリシスループ)から算出される。すなわち、P-E曲線が電界(E)軸と交わる点(P=0)における電界の値が抗電界Eである。したがって、新規な材料で形成された圧電セラミックス等で、抗電界Eの値が不明な場合には、この方法で実測する。他方、市販の材料で形成された圧電セラミックスで、該材料の製造業者等を通じて抗電界Eの値を知ることができる場合には、その値を用いてもよい。
 また、本態様に係る駆動回路を利用した分極処理を、前述したヒステリシスループにおける分極の最大値Pmaxに対する残留分極Pの比P/Pmaxの値が大きな圧電セラミックスに適用すると、パルス電圧の印加条件による特性のばらつきが低減されるため好ましい。パルス電圧の印加条件としては、電圧を印加するサイクル数や、パルスの周波数等が例示される。圧電セラミックスにおける前記比P/Pmaxの値は、0.80以上が好ましく、0.85以上がより好ましく、0.90以上がさらに好ましい。
 ここで、圧電セラミックスの残留分極Pの値は、前述したヒステリシスループが分極(P)軸と交わる点(E=0)における分極の値である。この残留分極Pの値、及び前述した分極の最大値Pmaxの値は、前述した抗電界Eと同様に、実測してもよく、製造業者等を通じて知得した値を用いてもよい。
 以下、実施例により本発明をさらに具体的に説明するが、本発明は該実施例に限定されるものではない。
(実施例1)
 圧電セラミックスとして、アルカリニオブ系材料(E=25kV/cm、P/Pmax=0.75)にて形成された、縦横寸法が10mm×5mmで厚さ26μmの圧電セラミックス層が、内部電極を介して厚さ方向に10層積層された矩形の複合焼結体を準備した。この複合焼結体に対して、その積層方向の上下面を、周縁から所期の余白を残して覆うように、及びその側面に1層おきに露出する内部電極同士と前記上下面を覆う電極のいずれか一方とを接続するように、銀ペーストを印刷・焼付けして電極を形成した。
 この圧電セラミックスの積層方向の上下面に形成された電極を、図1に示す圧電セラミックス素子の駆動回路100における、パルス電圧発生部20用の回路に接続し、室温で、周波数0.1Hz、ピーク電圧104Vの交流三角波パルスを1サイクル(10秒間)印加して分極処理を行い、実施例1に係る圧電セラミックス素子を得た。印加した交流三角波パルスの波形のイメージを図2に示す。ただし、図2では、3サイクル分の三角波が示されている。
 得られた圧電セラミックス素子について、圧電特性を以下の方法で評価した。まず、圧電セラミックス素子を、2~5kV/mm、10Hzで駆動し、該素子の長手方向(10mmの辺の方向)の変位を、レーザー変位計(aixACCT Systems TF Analyzer 2000)で測定した。次に、得られた変位を駆動電圧で割ることで、電圧あたりの変位量を算出した。次に、前述した圧電セラミックスと同様の形状・構造を有する圧電セラミックスを準備し、積層方向の上下面に形成した電極間に、室温で、104Vの直流電圧を2時間印加して得た基準素子について、同様の手順で電圧あたりの変位量を算出した。最後に、基準素子の電圧あたりの変位量に対する、実施例1に係る圧電セラミックス素子の電圧あたりの変位量の比(以下、単に「変位量比」と記載する)を算出した。得られた変位量比の値は、0.679であった。変位量比の値がゼロではなかったことから、実施例1では、圧電セラミックスが分極されて圧電セラミックス素子が得られたといえる。
(実施例2~48)
 圧電セラミックスに交流三角波パルスを印加するサイクル数、及び圧電セラミックスに印加する交流三角波パルスの周波数をそれぞれ表1及び表2に示す値とした以外は実施例1と同様の方法で、実施例2~48に係る圧電セラミックス素子を作製し、変位量比を算出した。得られた変位量比の値を、交流三角波パルスの数及び周波数と共に表1及び表2にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 これらの結果と実施例1の結果とから、種々の交流三角波パルスの印加によって、圧電セラミックスの分極が可能であるといえる。また、これらの結果は、圧電セラミックス素子の駆動回路にパルス電圧発生部を組み込んで、所期のタイミングで圧電セラミックス素子にパルス電圧を印加することで、圧電セラミックス素子を再分極処理して変位特性の低下を抑制できることを示唆しているといえる。
 図3は、実施例1~48の結果を基に作成した、分極処理時の交流三角波パルスを印加するサイクル数と、得られる圧電セラミックス素子の変位量比との関係を示すグラフである。この図からは、10サイクル以下の比較的少数のパルスの印加によって、大きな変位量比を有する圧電セラミックス素子が得られることが判る。また、印加する交流三角波パルスの周波数に着目すると、50Hz以下の比較的低い周波数のパルスの印加によって、大きな変位量比を有する圧電セラミックス素子が得られることも判る。最も大きな変位量比が得られたのは、10Hzのパルスを2個(2サイクル)印加した場合であり、その値(0.988)から、基準素子に匹敵する変位特性を有する素子が得られているといえる。
(実施例49~66)
 圧電セラミックスに印加するパルスをユニポーラ三角波パルスに変更すると共に、パルスを印加するサイクル数、及び印加するパルスの周波数をそれぞれ表3に示す値とした以外は実施例1と同様の方法で、実施例49~66に係るに係る圧電セラミックス素子を作製し、変位量比を算出した。印加したユニポーラ三角波パルスの波形の例を図4に示す。ただし、図4では、6サイクル分の三角波が示されている。印加するパルスの周波数は、交流三角波パルスを印加する場合の2倍とし、三角波のデュレーションを同一とした。得られた変位量比の値を、ユニポーラ三角波パルスの数及び周波数と共に表3にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000003
 これらの結果から、種々のユニポーラ三角波パルスの印加によって、圧電セラミックスの分極が可能であるといえる。また、これらの結果は、圧電セラミックス素子の駆動回路にパルス電圧発生部を組み込んで、所期のタイミングで圧電セラミックス素子にユニポーラ三角波パルスを印加することで、圧電セラミックス素子を再分極処理して変位特性の低下を抑制できることを示唆しているといえる。
 図5は、実施例49~66の結果を基に作成した、分極処理時のユニポーラ三角波パルスを印加するサイクル数と、得られる圧電セラミックス素子の変位量比との関係を示すグラフである。この図からは、200Hz以下の比較的低い周波数のパルスの印加によって、100サイクル以下の少ないサイクル数で大きな変位量比を有する圧電セラミックス素子が得られることが判る。特に、2~200Hzのパルスを印加した場合には、電圧あたりの変位量が基準素子を超える素子も得られたことから、この周波数範囲近傍の交流三角波パルスの印加により、変位特性に優れた圧電セラミックス素子が得られるといえる。
(実施例67~96)
 圧電セラミックスとして、PZT系材料(E=19kV/cm、P/Pmax=0.94)にて形成されたものを使用したこと、並びに圧電セラミックスに交流三角波パルスを印加するサイクル数、及び圧電セラミックスに印加する交流三角波パルスの周波数をそれぞれ表4に示す値とした以外は実施例1と同様の方法で、実施例67~96に係る圧電セラミックス素子を作製し、変位量比を算出した。得られた変位量比の値を、交流三角波パルスの数及び周波数と共に表4にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000004
 これらの結果から、PZT系の圧電材料で形成された圧電セラミックスについても、交流三角波パルスの印加によって分極ないし再分極が可能であるといえる。
 図6は、実施例67~96の結果を基に作成した、分極処理時の交流三角波パルスを印加するサイクル数と、得られる圧電セラミックス素子の変位量比との関係を示すグラフである。この図からは、20サイクル以下のパルス印加では、パルスの周波数によらず0.85以上の変位量比が得られることが判る。また、パルスの印加条件によっては変位量比が1を超え、基準素子よりも優れた変位性能が得られることも判る。さらに、これらの結果を、図3に示す実施例1~48の結果と比較すると、実施例67~96に係る圧電セラミックス素子の方が、パルス電圧の印加条件による変位量比のばらつきが小さいことも判る。
 実施例67~96に係る圧電セラミックス素子において、このような好ましい結果が得られたことには、これを構成する圧電材料における上述したP/Pmax比の値が大きいことが影響していると推察される。すなわち、当該比の値が大きいことは、電界が印加された状態から該電界をゼロにした際の分極の変化が小さく、電界の変化に対して電荷の移動量が少ないことを意味する。このため、パルス電圧が印加された場合のように、電界の急激な変化が生じ、該変化に電荷の移動が追従できなくなった場合でも、分極Pの値がそれほど大きくは変化しない結果、変位量比のばらつきが抑えられたと考えられる。
(比較例1)
 分極処理時の電圧の印加態様を、図7に示すように、52Vまで3秒かけて昇圧後に104Vまで3秒かけて昇圧し、該電圧で1秒保持した後、0Vまで3秒で降圧するものとした以外は実施例1と同様の方法で、比較例1に係る圧電セラミックス素子を作製し、変位量比を算出した。得られた変位量比は0.574であった。
 比較例1に係る圧電セラミックス素子の変位性能が、基準素子に比べて著しく劣っていたことから、直流電圧を短時間印加する分極処理では、所期の特性の圧電セラミックス素子を得ることは困難といえる。したがって、前述の各実施例に係る圧電セラミックス素子が特性に優れたものとなったことには、上述したように、圧電セラミックス中の電界を瞬時に大きく変動させて、イオンや電子等の荷電粒子を活性化するという、パルス電圧の作用が大きく寄与していると考えられる。
 本発明によれば、圧電セラミックス素子の変位特性の経時的な低下を抑制しつつ大きな変位を得ることが可能な、比較的簡単な構造の圧電セラミックス素子の駆動回路が提供される。このため、本発明は、従来品に代わる圧電セラミックスの駆動回路として有用である。また、本発明に係る圧電セラミックス素子の駆動回路は、未分極の圧電セラミックスを搭載して起動することで、該圧電セラミックスの分極処理を行うこともできる。このため、本発明によれば、従来は必須であった分極処理工程を省略することができる点でも有用なものである。
 100 圧電セラミックス素子の駆動回路
 1   圧電セラミックス素子
 10  駆動制御部
 20  パルス電圧発生部
 30  スイッチ部

Claims (4)

  1.   圧電セラミックス素子の駆動を制御するための電圧を発生する駆
     動制御部と、
      パルス電圧を発生するパルス電圧発生部と、
      圧電セラミックス素子を、回路起動時に前記パルス電圧発生部に
     接続した後、前記駆動制御部への接続に切り替えるスイッチ部と
    を備える圧電セラミックス素子の駆動回路。
  2.  前記パルス電圧発生部が、ユニポーラパルスを発生するように構成された、請求項1に記載の圧電セラミックス素子の駆動回路。
  3.  前記ユニポーラパルスが、周波数0.1~500Hzの三角波である、請求項2に記載の圧電セラミックス素子の駆動回路。
  4.   表面に少なくとも一対の電極が形成された未分極の圧電セラミッ
     クスを、請求項1~3のいずれか1項に記載の駆動回路に搭載する
     こと、
      前記駆動回路を作動させて、前記パルス電圧発生部で発生させた
     パルス電圧を前記圧電セラミックスに印加して分極処理し、圧電セ
     ラミックス素子とすること、及び
      前記圧電セラミックス素子に前記駆動制御部で発生させた電圧を
     印加して該圧電セラミックス素子を駆動すること
    を含む、圧電セラミックス素子の駆動回路の使用方法。
PCT/JP2021/025243 2020-07-06 2021-07-05 圧電セラミックス素子の駆動回路及びその使用方法 WO2022009820A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-116387 2020-07-06
JP2020116387A JP2022014184A (ja) 2020-07-06 2020-07-06 圧電セラミックス素子の駆動回路

Publications (1)

Publication Number Publication Date
WO2022009820A1 true WO2022009820A1 (ja) 2022-01-13

Family

ID=79553122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025243 WO2022009820A1 (ja) 2020-07-06 2021-07-05 圧電セラミックス素子の駆動回路及びその使用方法

Country Status (2)

Country Link
JP (1) JP2022014184A (ja)
WO (1) WO2022009820A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388246A (ja) * 1986-09-30 1988-04-19 Nippon Denso Co Ltd 燃料噴射装置
JPH10299606A (ja) * 1997-04-22 1998-11-10 Nissan Motor Co Ltd 内燃機関の燃料噴射装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388246A (ja) * 1986-09-30 1988-04-19 Nippon Denso Co Ltd 燃料噴射装置
JPH10299606A (ja) * 1997-04-22 1998-11-10 Nissan Motor Co Ltd 内燃機関の燃料噴射装置

Also Published As

Publication number Publication date
JP2022014184A (ja) 2022-01-19

Similar Documents

Publication Publication Date Title
Uchino Materials issues in design and performance of piezoelectric actuators: an overview
Zhou et al. Uniaxial compressive stress dependence of the high-field dielectric and piezoelectric performance of soft PZT piezoceramics
JP2009212167A (ja) 可変容量素子とその制御方法、電子デバイス及び通信モバイル機器
JP5743532B2 (ja) 圧電デバイスの駆動方法
KR101417855B1 (ko) 플렉서블 압전 복합체 및 이를 이용한 캔틸레버형 압전 에너지 하베스터
WO2022009820A1 (ja) 圧電セラミックス素子の駆動回路及びその使用方法
JP3839898B2 (ja) 振動型アクチュエータの駆動装置および振動型アクチュエータを駆動源とする装置
JP2005110488A (ja) 超音波アクチュエータ駆動装置及び超音波アクチュエータ駆動方法
JP2006340493A (ja) 振動波アクチュエータ及びその駆動方法
JP5313904B2 (ja) 積層型圧電/電歪素子の分極処理方法
WO2021256370A1 (ja) 駆動方法、駆動回路及び変位駆動装置
JP6577667B2 (ja) 圧電トランス
JPH04315484A (ja) 圧電アクチュエータの駆動方法
JP2018187596A (ja) 触覚呈示装置
JP5321036B2 (ja) 振動アクチュエータ、レンズ鏡筒、および光学装置
JPS62230068A (ja) 圧電素子の駆動方法
Uchino Piezoelectric actuators 2004
JP5427835B2 (ja) 圧電駆動素子及び圧電駆動装置
Heywang et al. Piezoelectric motors and transformers
JP4375103B2 (ja) 圧電バイモルフ素子の駆動回路および駆動方法
JP2002017094A (ja) 超音波モータ駆動装置
JPH03293980A (ja) 磁歪アクチュエータ
JP2011096763A (ja) 圧電アクチュエータ装置
JP2011188720A (ja) 駆動装置
JPH10135529A (ja) 圧電トランスの駆動回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837725

Country of ref document: EP

Kind code of ref document: A1