WO2022009700A1 - Liquid supply device and polishing device - Google Patents

Liquid supply device and polishing device Download PDF

Info

Publication number
WO2022009700A1
WO2022009700A1 PCT/JP2021/024136 JP2021024136W WO2022009700A1 WO 2022009700 A1 WO2022009700 A1 WO 2022009700A1 JP 2021024136 W JP2021024136 W JP 2021024136W WO 2022009700 A1 WO2022009700 A1 WO 2022009700A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
polishing
swing arm
cover
discharge port
Prior art date
Application number
PCT/JP2021/024136
Other languages
French (fr)
Japanese (ja)
Inventor
都章 山口
壮一 磯部
健史 新海
大 吉成
元成 田村
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Publication of WO2022009700A1 publication Critical patent/WO2022009700A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/017Devices or means for dressing, cleaning or otherwise conditioning lapping tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/06Dust extraction equipment on grinding or polishing machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • This disclosure relates to a liquid supply device and a polishing device.
  • a chemical mechanical polishing (CMP) device generally includes a polishing table to which a polishing pad is attached, a top ring (polishing head) for holding a wafer, and a slurry ejection nozzle for supplying a polishing liquid (slurry) onto the polishing pad.
  • a polishing table to which a polishing pad is attached
  • a top ring polishing head
  • a slurry ejection nozzle for supplying a polishing liquid (slurry) onto the polishing pad.
  • a mist-like cleaning fluid (liquid or a mixture of liquid and gas) is polished from an atomizer having at least one injection nozzle that injects liquid or a mixed fluid of liquid and gas toward the polishing pad. It is sprayed onto the pad to remove foreign matter on the polishing pad.
  • the slurry discharge nozzle it is necessary to arrange the slurry discharge nozzle at a height higher than the atomizer so that the slurry discharge nozzle provided at the tip of the swing arm does not interfere with the atomizer arranged on the polishing pad. there were. Therefore, when the slurry is discharged from the slurry discharge nozzle while swinging the swing arm, the position where the slurry is dropped tends to shift, and it is difficult to drop the slurry required for polishing the wafer at the optimum timing and position. Met.
  • Japanese Patent Application Laid-Open No. 2018-6549 describes that the swing arm is configured to be rotatable around a horizontal axis extending in the horizontal direction, and is a swing arm when the slurry discharge nozzle is moved between the slurry drop position and the retracted position. Discloses a technique for retracting a slurry discharge nozzle above the atomizer by rotating the slurry around a horizontal axis.
  • the liquid supply device is A swing arm that can swing horizontally above the polishing table, A slurry tube extending along the longitudinal direction of the swing arm and discharging slurry onto the polishing table from a slurry discharge port at the tip thereof.
  • a plurality of injection nozzles provided side by side along the longitudinal direction of the swing arm to inject a cleaning fluid onto the polishing table. Equipped with The slurry discharge port is positioned at the tip of the swing arm.
  • the injection nozzle located at the tip of the swing arm is diagonally provided so that the dropping position of the slurry discharged from the slurry discharge port on the polishing table can be washed.
  • the polishing device includes a liquid supply device.
  • the liquid supply device is A swing arm that can swing horizontally above the polishing table, A slurry tube extending along the longitudinal direction of the swing arm and discharging slurry onto the polishing table from a slurry discharge port at the tip thereof. A plurality of injection nozzles provided side by side along the longitudinal direction of the swing arm to inject a cleaning fluid onto the polishing table. Have, The slurry discharge port is positioned at the tip of the swing arm. The injection nozzle located at the tip of the swing arm is diagonally provided so that the dropping position of the slurry discharged from the slurry discharge port on the polishing table can be washed.
  • FIG. 1 is a plan view showing a schematic configuration of a polishing apparatus according to an embodiment.
  • FIG. 2 is an enlarged perspective view showing a liquid supply device included in the polishing device shown in FIG. 1.
  • FIG. 3 is a vertical sectional view of the liquid supply device shown in FIG.
  • FIG. 4 is a front view of the swing arm of the liquid supply device shown in FIG. 2 as viewed from the tip side.
  • FIG. 5 is a view of the tip of the swing arm of the liquid supply device shown in FIG. 2 viewed from diagonally below.
  • FIG. 6 is a vertical cross-sectional view showing an outline of the polishing apparatus shown in FIG.
  • FIG. 7 is a system configuration diagram of the polishing apparatus shown in FIG.
  • FIG. 8 is a predicted flow diagram of the simulation by the simulator.
  • FIG. 1 is a plan view showing a schematic configuration of a polishing apparatus according to an embodiment.
  • FIG. 2 is an enlarged perspective view showing a liquid supply device included in the polishing device shown in FIG
  • FIG. 9A is a plan view showing the relationship between the polishing surface, the swing arm, and the slurry discharge port (polishing liquid supply position) in the simulation by the simulator.
  • FIG. 9B is a front view showing the relationship between the polishing surface, the swing arm, and the slurry discharge port (polishing liquid supply position) in the simulation by the simulator.
  • the liquid supply device is A swing arm that can swing horizontally above the polishing table, A slurry tube extending along the longitudinal direction of the swing arm and discharging slurry onto the polishing table from a slurry discharge port at the tip thereof.
  • a plurality of injection nozzles provided side by side along the longitudinal direction of the swing arm to inject a cleaning fluid onto the polishing table. Equipped with The slurry discharge port is positioned at the tip of the swing arm.
  • the injection nozzle located at the tip of the swing arm is diagonally provided so that the dropping position of the slurry discharged from the slurry discharge port on the polishing table can be washed.
  • the slurry discharge port and the injection nozzle are arranged on the same swing arm, the slurry discharge port interferes with the injection nozzle even if the height position of the slurry discharge port is lowered. There is nothing to do. Therefore, it is possible to lower the height position of the slurry discharge port, which shortens the distance and time from the slurry being discharged from the slurry discharge port to reaching the polishing table, and makes the swing arm.
  • the position where the slurry is dropped is less likely to shift, and the slurry required for polishing the wafer can be dropped at the optimum timing and position.
  • the injection nozzle located at the tip of the swing arm is diagonally provided so that the dropping position of the slurry discharged from the slurry discharge port on the polishing table can be cleaned, for example, the polishing table is provided from the slurry discharge port. Even when the slurry is dropped near the center of the polishing table, the cleaning fluid can be sprayed near the center of the polishing table for cleaning, and the particles remaining on the polishing table can be reduced. Further, since the injection nozzle and the slurry discharge port are arranged on the same swing arm, the space in the polishing device can be saved.
  • the liquid supply device is the liquid supply device according to the first aspect.
  • the periphery of the slurry tube is covered with a cover for preventing the liquid bounced off the polishing table from entering and staying between the tubes.
  • the slurry discharge port and the injection nozzle are arranged on the same swing arm, not only the slurry discharged from the slurry discharge port and bounced off the polishing table, but also the cleaning sprayed from the injection nozzle and bounced off the polishing table.
  • the fluid also tends to infiltrate and stay between the slurry tube and the tube, but according to such an embodiment, the circumference of the slurry supply tube is covered with a cover, so that the liquid bounced off the polishing table can be transferred to the tube. It is possible to prevent it from infiltrating and staying between the tube and the tube.
  • the liquid supply device is the liquid supply device according to the second aspect.
  • the cover has a lower surface facing the polishing table, and the tip end portion of the slurry tube penetrates the lower surface downward and protrudes to the outside of the cover.
  • the periphery of the tip of the slurry tube is covered more tightly, and the liquid bounced off the polishing table is more surely infiltrated and stays between the tubes. Can be prevented.
  • the liquid supply device is the liquid supply device according to the second or third aspect.
  • a cover cleaning nozzle for supplying a cleaning liquid is provided on the cover at the base end portion of the swing arm.
  • the cover can be cleaned by supplying the cleaning liquid onto the cover from the cover cleaning nozzle. This makes it possible to prevent particles adhering to the cover from falling onto the polishing table and contaminating the wafer during polishing of the wafer.
  • the liquid supply device is the liquid supply device according to the fourth aspect.
  • the cover cleaning nozzle includes a first nozzle that supplies a cleaning liquid to the upper surface of the cover, a second nozzle that supplies the cleaning liquid to the right side surface of the cover, and a third nozzle that supplies the cleaning liquid to the left side surface of the cover.
  • the cleaning liquid can be supplied to the upper surface, the right side surface, and the left side surface of the cover for cleaning, the amount of particles adhering to the upper surface, the right side surface, and the left side surface of the cover and the method of adhering are different.
  • the cleaning efficiency of the cover can be improved.
  • the liquid supply device is the liquid supply device according to any one of the second to fifth aspects.
  • the inner surface of the cover is provided with a plurality of ribs so as to protrude toward the slurry tube that crawls along the surface of the swing arm.
  • the rib provided on the inner surface of the cover presses the slurry tube toward the swing arm side, so that pressure is applied to the slurry tube. It is possible to suppress / prevent problems such as the tube floating and interfering with the inner wall of the cover that was not in contact with the tube, and causing the tube to flutter or swing back. As a result, it is possible not only to prevent the slurry tube from rubbing against the inner wall of the cover, but also to prevent the slurry discharged from the slurry discharge port from pulsating due to the floating of the slurry tube and to prevent the slurry dropping position from becoming unstable.
  • the ribs provided on the inner surface of the cover eliminate the holding of the slurry tube, so the slurry tube replacement work is compared to the case where the slurry tube is passed through a pipe or the like. Can be easily performed.
  • the structure is such that the slurry tube is laid on the surface of the swing arm and covered by the swing arm to hold it against the swing arm, so that the slurry tube and the injection nozzle are separated and can be replaced separately. Further, even when the number of slurry tubes is multiple, it is easy to replace the tubes and set the proper use (different types of slurry or pure water).
  • the liquid supply device is the liquid supply device according to any one of the first to sixth aspects.
  • the slurry discharge port is arranged closer to the object to be polished than the injection nozzle. That is, the slurry discharge port is not located at the extension of the arrangement of the injection nozzles (the position is shifted toward the object to be polished with respect to the extension of the arrangement of the injection nozzles). In other words, the slurry discharge port is located between the injection nozzle located at the tip of the swing arm and the object to be polished.
  • the polishing apparatus according to the eighth aspect of the embodiment is the polishing apparatus according to any one of the first to seventh aspects.
  • the drive mechanism of the swing arm includes a servomotor and a speed reducer.
  • the polishing device includes the liquid supply device according to any one of the first to eighth aspects.
  • FIG. 1 is a plan view showing a schematic configuration of a polishing apparatus 10 according to an embodiment.
  • the polishing apparatus 10 holds a polishing table 11 to which a polishing pad (not shown) is attached, and a wafer W for polishing while pressing the wafer W against the polishing pad on the polishing table 11.
  • the top ring (polishing head) 12 of the above, a dresser 13 for dressing the polishing pad, and a liquid supply device 20 are provided.
  • the top ring 12 is supported by the top ring head 14.
  • a polishing pad (not shown) is attached to the upper surface of the polishing table 11, and the upper surface of the polishing pad constitutes a polishing surface for polishing the wafer W.
  • a fixed grindstone can be used instead of the polishing pad.
  • the top ring 12 and the polishing table 11 are configured to be rotatable around their respective axes.
  • the wafer W is held on the lower surface of the top ring 12 by vacuum suction.
  • a polishing liquid slurry
  • the wafer W to be polished is pressed against the polishing surface by the top ring 12 to be polished.
  • FIG. 2 is an enlarged perspective view of the liquid supply device 20
  • FIG. 3 is a vertical sectional view of the liquid supply device 20.
  • the liquid supply device 20 discharges slurry onto the polishing table 11 from a swing arm 21 capable of horizontally swinging above the polishing table 11 and a slurry discharge port 22 at the tip thereof.
  • a swing arm 21 capable of horizontally swinging above the polishing table 11 and a slurry discharge port 22 at the tip thereof.
  • One or more (four in the example shown in FIG. 5) slurry tubes 27 and a cleaning fluid (liquid (eg, pure water or deionized water), or liquid and gas (eg, nitrogen gas) on the polishing table 11. It has a plurality of injection nozzles 231 to 238 (eight in the illustrated example) for injecting a mixture of (such an inert gas).
  • the swing arm 21 is arranged so as to extend horizontally above the polishing table 11, and a swing means 26 is provided at the base end portion of the swing arm 21.
  • the swinging means 26 has a swinging shaft 261 extending in the vertical direction and a drive mechanism 262 (for example, a servomotor and a speed reducer) provided at the lower end of the swinging shaft 261.
  • the base end portion of the swing arm 21 is fixed to the swing shaft 261.
  • the swing shaft 261 is rotated around the vertical central axis by the power received from the drive mechanism 262, so that the swing arm 21 swings horizontally around the swing shaft 261 above the polishing table 11. (Swirl).
  • the position, speed, and the like can be controlled by the servo mechanism, so that the position accuracy of the swing arm 21 is high and stable. Therefore, feedback control using the measured value of the polishing amount of the wafer becomes possible, and based on the measured polishing amount, the slurry can be dropped accurately at the position where polishing is required by the required amount of slurry.
  • the feedback control using the measured value of the polishing amount of the wafer for example, the polishing head based on the measured value of the eddy current type or the optical type film thickness sensor proposed by the applicant in Japanese Patent Application Laid-Open No. 2015-193068.
  • Servo motors are used for accurate positioning and reducers are used for torque increase. For example, if a 1/100 speed reducer is used, the movement of one rotation of the motor becomes 1/100, so that even finer operation can be performed. In this case, a precision reducer without backlash may be used.
  • a motor having a large capacity is required to rotate the weight of the structure in which the slurry nozzle and the atomizer are integrated, but since the torque can be increased if there is a reducer, it can be driven by a motor having a small capacity.
  • the reaction force at the time of injecting the cleaning liquid from the injection nozzles 231 to 238 is measured as the servomotor load, so that the discharge flow rate of the injection nozzles 231 to 238 is measured. Can be fed back, and flow rate control is possible without using a flow meter.
  • the flow rate control is performed, for example, by adjusting the opening degree of the control valve 23c (for example, an electric flow rate adjusting valve) shown in FIG. Therefore, it is possible to control the discharge flow rate of the injection nozzles 231 to 238, that is, the pad cleaning position and the flow rate control for each movement angle of the swing arm 21 (positions of the injection nozzles 231 to 238).
  • the slurry discharge port 22 and the injection nozzles 231 to 238 are separate arms, and the rigidity of the slurry tube 27 itself is low, so that appropriate position control cannot be performed. Since the slurry discharge port 22 and the injection nozzles 231 to 238 are arranged on the same swing arm 21, and the swing arm 21 has higher rigidity than the slurry tube 27, the slurry and cleaning liquid are discharged by using a servomotor. (Injection) The start position and end position can be controlled.
  • the slurry discharge port 22 is positioned at the tip of the swing arm 21, and a plurality of injection nozzles 231 to 238 are arranged side by side along the longitudinal direction of the swing arm 21. It is provided.
  • the tip of the swing arm 21 referred to here may be any of the tip of the arm, and may be either the tip of the axis of the arm or both side surfaces thereof.
  • the slurry discharge port 22 is on the side surface of the tip of the arm facing the object to be polished.
  • the injection nozzles 231 to 238 are arranged in a recess formed on the bottom surface of the swing arm 21. Each injection nozzle 231 to 238 has a slit-shaped fluid outlet, atomizes the cleaning fluid, and sprays the atomized cleaning fluid onto the polishing table 11.
  • a liquid flow path 23a is formed inside the swing arm 21, and each injection nozzle 231 to 238 communicates with the liquid flow path 23a.
  • a liquid supply inlet 23b is formed at the end of the liquid flow path 23a.
  • the liquid (for example, pure water) supplied from the liquid supply inlet 23b is supplied to the injection nozzles 231 to 238 through the liquid flow path 23a.
  • one liquid flow path 23a is branched into a plurality of (here, eight) injection nozzles 231 to 238, but the present invention is not limited to this, and a plurality of (here, eight) injection nozzles 23a are branched.
  • Eight) separate pipes may be directly connected to different injection nozzles 231 to 238, or several injection nozzles may be grouped and connected to each group.
  • valves may be provided in each of the injection nozzles 231 to 238 so that ON / OFF adjustment of the individual nozzle discharge can be performed separately or in a single branch.
  • the number of liquid flow paths 23a may be not limited to one but may be multiple, but the liquid supply inlet 23b is not limited to the position shown in FIG. It is also possible to crawl through the inside of the swaying shaft 261 or along the outside thereof. Further, there may be a plurality of injection nozzles corresponding to each injection nozzle or a group of several injection nozzles.
  • a plurality of slurry tubes 27 are laid on the surface of the swing arm 21 along the longitudinal direction of the swing arm 21, and a slurry discharge port at the tip of each slurry tube 27 is provided. 22 is positioned at the tip of the swing arm 21.
  • the liquid (slurry or pure water) flowing through each slurry tube 27 is discharged from different slurry discharge ports 22.
  • the tip end portion (near the outlet) of the slurry tube 27 is fixed to the main body of the swing arm 21 by the slurry tube fixing bracket.
  • the tip end portion (near the outlet) of the slurry tube 27 is fixed to the atomizer main body having high rigidity, it is possible to suppress the blurring of the slurry discharge port 22 at the tip end of the slurry tube 27. Further, since the tip of the slurry tube 27 is fixed by the slurry tube fixing bracket, the height position of the tube tip can be adjusted, and the height of each tube can be changed from the table surface of the tube tip. Is possible. In addition, it is easy to change the type of tube (considering the difference in material and diameter) and the number of tubes (currently described as multiple (4)).
  • the slurry tube 27 is crawled not only on the upper surface and the side surface of the swing arm 21 but also along the arm surface, and the tip end portion of the slurry tube 27 is fixed to the swing arm 21 main body by the slurry tube fixing bracket. Therefore, it is easy to change the positional relationship of the slurry discharge port 22 when viewed in a plane.
  • the slurry discharge port 22 at the tip portion of the slurry tube 27 is positioned further downward and stopped. be able to.
  • the height of the slurry discharge port 22 from the polishing table 11 can be adjusted to the height of the injection nozzles 231 to 238, the height from the polishing table 11 to the slurry discharge port 22 can be increased from about 100 mm so far. It can be approached up to about 30 mm.
  • the swing shaft 261 with an air cylinder or an electric actuator, the position can be moved in the vertical direction, and the distance between the polishing table 11 and the slurry discharge port 22 can be adjusted according to the application.
  • the slurry tube 27 may be arranged (crawled) along the outer peripheral surface of the swing shaft 261 that supports the swing arm 21. As a result, the slurry tube 27 can be replaced.
  • the slurry tube 27 arranged along the swing shaft 261 may be arranged inside the cover 24. Further, in order to prevent air from entering the slurry tube 27 when the slurry discharge from the slurry discharge port 22 is stopped, the slurry tube 27 is once extended upward along the swing shaft 261 and then extended upward. It may be set by being bent downward and lowered, and then extended sideways along the swing arm 21 (crawled).
  • the slurry discharge port 22 Since the slurry discharge port 22 and the injection nozzles 231 to 238 are arranged on the same swing arm 21, the slurry discharge port 22 has the injection nozzles 231 to 23 even if the height position of the slurry discharge port 22 is lowered. Does not interfere with 238. Therefore, it is possible to lower the height position of the slurry discharge port 22, thereby shortening the distance and time from the slurry being discharged from the slurry discharge port 22 to reaching the polishing table 11, and shaking.
  • the position where the slurry is dropped is less likely to shift, and the slurry required for polishing the wafer can be dropped at the optimum timing and position. It has become.
  • the slurry discharge port 22 is arranged closer to the object to be polished (wafer) W than the injection nozzles 231 to 238. That is, the slurry discharge port 22 is not located at the extension of the arrangement of the injection nozzles 231 to 238 (the slurry discharge port 22 is located offset to the polishing target (wafer) W side from the extension of the arrangement of the injection nozzles 231 to 238. ). In other words, the slurry discharge port 22 is located between the injection nozzle 231 located at the tip of the swing arm 21 and the object to be polished (wafer) W. As a result, the slurry can be discharged to a position closer to the object to be polished (wafer) W, and the slurry required for polishing the wafer W can be dropped to a more optimum timing and position.
  • FIG. 4 is a front view of the swing arm 21 as viewed from the tip side.
  • FIG. 5 is a view of the tip of the swing arm 21 as viewed from diagonally below.
  • the injection nozzle 231 located at the tip of the swing arm 21 is diagonally provided so that the dropping position of the slurry discharged from the slurry discharge port 22 on the polishing table 11 can be washed. Has been done. That is, when viewed from the tip side of the swing arm 21, the injection nozzle 231 located at the tip of the swing arm 21 has an extension line in the discharge direction with respect to an extension line in the discharge direction of the slurry discharge port 22. It is installed diagonally so as to form an acute angle.
  • the injection nozzle 231 located at the tip of the swing arm 21 is diagonally provided so that the dropping position of the slurry discharged from the slurry discharge port 22 can be washed. Even when the slurry is dropped from the slurry discharge port 22 near the center of the polishing table 11, it is possible to sufficiently inject the cleaning fluid near the center of the polishing table 11 for cleaning, and the cleaning is performed on the polishing table 11. Particles remaining in the table can be reduced.
  • the injection nozzle 231 is not a nozzle having a circular fluid outlet, but a spray nozzle having a slit-shaped fluid outlet, and the cleaning liquid is applied onto the polishing table 11 as if a horizontally long brush was applied so as to cover the center of the polishing table 11. It is desirable that it is designed to drip. This is because when the slurry is dropped from the circular slurry supply port 22, the figure drawn by the slurry on the polishing table 11 tries to spread concentrically from the dropping position, and the concentric circles are rotated in the rotation direction due to the rotation of the polishing table 11. Oval to the outside. The same applies to the dripping of the cleaning liquid from the circular fluid outlet.
  • the spread of the slurry and the spread of the cleaning liquid are such that the spread centers are mutually exclusive. As long as they are different, there are overlapping parts, but different parts occur.
  • the injection nozzle 231 is a spray nozzle having a slit-shaped fluid outlet, as long as the shape of the sprayed cleaning liquid is brush-like, the slurry of the portion on which the sprayed cleaning liquid is applied is removed.
  • the shape of the cleaning liquid sprayed when viewed from above is not on the radius line from the center of the polishing table 11 to the outer periphery, and is slightly. It is desirable that it is tilted. In this case, the flow of the cleaning liquid to the outer periphery can be promoted according to the rotation of the polishing table 11, and the desired removal of slurry can be promoted.
  • the periphery of the slurry tube 27 is covered with a cover 24 for preventing the liquid bounced off by the polishing table 11 from entering and staying between the tubes 27 and the tubes 27. There is.
  • the cleaning fluid sprayed from the injection nozzles 231 to 238 and bounced off at the polishing table 11 also easily infiltrates between the slurry supply tube 27 and the tube 27 and stays there, but the periphery of the slurry supply tube 27 is covered 24. By being covered with the above, it is possible to prevent the liquid bounced off by the polishing table 11 from entering and staying between the tubes 27 and the tubes 27.
  • the cover 24 has a lower surface 24b facing the polishing table 11, and the tip end portion of the slurry tube 27 penetrates the lower surface 24b downward and protrudes to the outside of the cover 24. ..
  • the periphery of the tip of the slurry tube 27 is covered even more tightly, and the liquid bounced off by the polishing table 11 is more reliably prevented from entering and staying between the tubes 27. can.
  • a plurality of (three in the illustrated example) ribs 24a are provided on the inner surface of the cover 24 so as to protrude toward the slurry supply tube 27.
  • the rib 24a provided on the inner surface of the cover 24 presses the slurry tube 27 toward the swing arm 21, so that the tube is subjected to pressure due to the pressure applied to the slurry tube 27. It is possible to suppress / prevent problems such as the 27 rising and interfering with the inner wall of the cover 24 which was not in contact with the tube 27, and the tube 27 fluttering or swinging back.
  • the number of ribs 24a is three in the example shown in FIG. 3, but the number of ribs 24a is not limited to three, and may be one or two, or four or more.
  • the cover 24 and the rib 24a may be integrated or separate.
  • the rib 24a is provided on the main body of the swing arm 21, and when the cover 24 is mounted on the swing arm 21, the rib 24a provided on the main body of the swing arm 21 provides the slurry tube 27. It may be pressed against the inner wall side of the cover 24 and along the inner wall of the cover 24. Even in such an embodiment, the same function and effect as in the embodiment in which the rib 24a is provided on the inner surface of the cover 24 can be obtained.
  • the cover 24 when the cover 24 is removed from the swing arm 21, the holding of the slurry tube 27 by the rib 24a provided on the inner surface of the cover 24 is eliminated, so that the slurry tube 27 is not passed through a pipe or the like. , The slurry tube can be easily replaced. Further, by laying the slurry tube 27 on the surface of the swing arm 21 and pressing the slurry tube 27 on the swing arm 21 by the cover 24, the slurry tube 27 and the injection nozzles 231 to 238 are separately united. , Can be exchanged separately. Further, even when the number of slurry tubes 27 is plurality, it is easy to replace the tubes and set the proper use (different types of slurry or pure water).
  • a cover cleaning nozzle 25 for supplying a cleaning liquid (for example, pure water) is provided on the cover 24 at the base end portion of the swing arm 21.
  • the cover cleaning nozzle 25 communicates with the liquid flow path 23a formed inside the swing arm 21. Therefore, the liquid (for example, pure water) supplied from the liquid supply inlet 23b is supplied to the atomizer nozzles 231 to 238 through the liquid flow path 23a, and is also supplied to the cover cleaning nozzle 25.
  • the atomizer nozzles 231 to 238 spray a mist-like cleaning fluid (liquid or a mixture of liquid and gas) onto the polishing table 11 to clean the polishing table 11.
  • a cleaning liquid is supplied from the cover cleaning nozzle 25 onto the cover 23, and the cover 24 can be cleaned at the same time.
  • the supply pipe to the cover cleaning nozzle 25 and the supply pipe to the injection nozzles 231 to 237 may be configured so that their respective discharges are controlled and discharged at the same time if necessary.
  • the upper surface of the cover 24 may have a curved surface shape having a semi-cylindrical shape (arc-shaped cross section).
  • the cover cleaning nozzle 25 may be a spray nozzle.
  • the cover cleaning nozzle 25 has a first nozzle 251 that supplies a cleaning liquid to the upper surface of the cover 24 and a second nozzle that supplies the cleaning liquid to the right side surface of the cover 24. It has a 252 and a third nozzle 253 that supplies a cleaning liquid to the left side surface of the cover 24.
  • the first to third nozzles 251 to 253 are spray nozzles, respectively, and the spread of the cleaning liquid (spray) sprayed from the first to third nozzles 251 to 253 can cover from the base to the tip of the cover 24. You may have.
  • the first to third nozzles 251 to 253 are not limited to the spray nozzles as long as the nozzles can cover the cover 24 from the base to the tip with the cleaning liquid.
  • the orientation of the first to third nozzles 251 to 253 with respect to the cover 24 may be variable.
  • the first to third nozzles 251 to 253 may be able to rotate the direction of the spray around the center of each axis.
  • the flow rates of the first to third nozzles 251 to 253 may be different and / or variable from each other.
  • the desired flow rate of the cleaning liquid can be concentrated and applied to the portion of the surface of the cover 24 where the degree of adhesion is high.
  • the swing arm 21 is positioned so that the slurry can be dropped from the slurry discharge port 22 to the vicinity of the center of the polishing table 11, and the wafer W is polished from the slurry discharge port 22.
  • the slurry is discharged onto the table 11, and the wafer W to be polished is pressed onto the polishing table 11 by the top ring 12 to be polished.
  • the slurry discharge port 22 and the injection nozzles 231 to 238 are arranged on the same swing arm 21, it is possible to lower the height position of the slurry discharge port 22. As a result, the distance and time from when the slurry is discharged from the slurry discharge port 22 to when it reaches the polishing table 11 is shortened, and when the slurry is discharged from the slurry discharge nozzle 22 while swinging the swing arm 21. The dropping position of the slurry is less likely to shift, and the slurry required for polishing the wafer can be dropped at the optimum timing and position.
  • the swing arm 21 is capable of injecting the cleaning fluid from the injection nozzles 231 to 238 onto the entire surface of the polishing table 11.
  • the liquid for example, pure water
  • the swing arm 21 is capable of injecting the cleaning fluid from the injection nozzles 231 to 238 onto the entire surface of the polishing table 11.
  • the liquid for example, pure water supplied from the liquid supply inlet 23b is supplied to the injection nozzles 231 to 238 and the cover cleaning nozzle 25 through the liquid flow path 23a, and is supplied to each injection nozzle 231.
  • a mist-like cleaning fluid is sprayed onto the polishing table 11 from 238 to clean the polishing table 11, and a cleaning liquid is supplied from the cover cleaning nozzle 25 onto the cover 23 to clean the cover 24.
  • the swing arm 21 may be swung to control the injection position of the cleaning fluid injected from each of the injection nozzles 231 to 238.
  • the injection of the cleaning fluid from the atomizer injection nozzles 231 to 238 and the cover cleaning nozzle 25 is performed until the start of polishing of the next wafer W (until the end of the dressing work).
  • the injection nozzle 231 located at the tip of the swing arm 21 can clean the dropping position of the slurry discharged from the slurry discharge port 22 on the polishing table 11. Since it is provided at an angle, even if the slurry is dropped from the slurry discharge port 22 near the center of the polishing table 11, it is possible to sufficiently inject the cleaning fluid near the center of the polishing table 11 for cleaning. It is possible and the particles remaining on the polishing table 11 can be reduced. When particles adhere to the surface of the wafer, they cause defects. By improving the dischargeability of the slurry in this way, the defect reducing effect of the wafer is improved.
  • the slurry discharge nozzle provided at the tip of the swing arm does not interfere with the atomizer arranged on the polishing pad. Needed to be placed at a higher height than the atomizer. Therefore, when the slurry is discharged from the slurry discharge nozzle while swinging the swing arm, the position where the slurry is dropped tends to shift, and it is difficult to drop the slurry required for polishing the wafer at the optimum timing and position. Met.
  • the height position of the slurry discharge port 22 is lowered.
  • the slurry discharge port 22 does not interfere with the injection nozzle. Therefore, it is possible to lower the height position of the slurry discharge port 22, thereby shortening the distance and time from the slurry being discharged from the slurry discharge port 22 to reaching the polishing table 11, and shaking.
  • the position where the slurry is dropped is less likely to shift, and the slurry required for polishing the wafer W can be dropped at the optimum timing and position. It will be possible.
  • the injection nozzle 231 located at the tip of the swing arm 21 is diagonally provided so that the dropping position of the slurry discharged from the slurry discharge port 22 on the polishing table 11 can be washed. Therefore, for example, even when the slurry is dropped from the slurry discharge port 22 near the center of the polishing table 11, it is possible to inject a cleaning fluid near the center of the polishing table 11 for cleaning. Particles remaining on the polishing table 11 can be reduced.
  • the injection nozzles 231 to 238 and the slurry discharge port 22 are arranged on the same swing arm 21, so that the space in the polishing device can be saved. Further, since the injection nozzles 231 to 238 and the slurry discharge port 22 are arranged on the same swing arm 21, when the slurry discharge port 22 is retracted from the table surface of the polishing table 11, the injection nozzles 22 are also injected. Nozzles 231 to 238 can also be cleaned.
  • the slurry discharge port 22 and the injection nozzles 231 to 238 are arranged on the same swing arm 21, not only the slurry discharged from the slurry discharge port 22 and rebounded by the polishing table 11 but also the injection nozzle 231
  • the cleaning fluid sprayed from and rebounded on the polishing table 11 also easily infiltrates and stays between the slurry supply tube 27 and the tube 27, but according to the present embodiment, the periphery of the slurry supply tube 27 is covered with the cover 24. Therefore, it is possible to prevent the liquid bounced off by the polishing table 11 from entering and staying between the tubes 27 and the tubes 27.
  • the cover 24 has a lower surface 24b facing the polishing table 11, and the tip end portion of the slurry tube 27 penetrates the lower surface 24b downward and protrudes to the outside of the cover 24. Therefore, the periphery of the tip of the slurry tube 27 is covered even more tightly, and the liquid bounced off by the polishing table 11 can be more reliably prevented from entering and staying between the tubes 27. ..
  • the cover cleaning nozzle 25 is provided at the base end portion of the swing arm 21, and the cover 24 can be cleaned by supplying the cleaning liquid from the cover cleaning nozzle 25 onto the cover 24. .. This makes it possible to prevent particles adhering to the cover 24 from falling onto the polishing table 11 and contaminating the wafer W during polishing of the wafer W.
  • a plurality of ribs 24a are provided on the inner surface of the cover 24 so as to protrude toward the slurry tube 27 extending along the longitudinal direction of the swing arm 21. Therefore, when the cover 24 is mounted on the swing arm 21, the rib 24a provided on the inner surface of the cover 24 presses the slurry tube 27 toward the swing arm 21, and pressure is applied to the slurry tube 27. Problems such as the tube 27 floating up and interfering with the inner wall of the cover 24 that was not in contact with the tube 27, and the tube 27 fluttering or swinging back are suppressed / prevented.
  • the slurry discharge port 22 is arranged closer to the wafer W than the injection nozzles 231 to 238, so that the slurry is discharged to a position closer to the wafer W. This is possible, and the slurry required for polishing the wafer W can be dropped at a more optimum timing and position.
  • the slurry tube 27 is fixed to the atomizer main body (that is, the swing arm 21), the rigidity is increased and the runout of the tip portion of the slurry tube 27 is reduced.
  • the slurry discharge port 22 is arranged closer to the wafer W than the injection nozzles 231 to 238 in the swing arm 21, and the slurry discharge port 22 is located closer to the wafer W.
  • the outlet 22 faces vertically downward, it is easy to control the position of the slurry dropping position.
  • the injection position calculation of the injection nozzles 232 to 238 also maintains the relative positional relationship with the slurry discharge port 22 in that it drops vertically downward, so that it passes through the same trajectory as the slurry discharge port 22. You just have to control it.
  • FIG. 6 is a vertical cross-sectional view showing a part of the polishing device 10, and FIG. 7 is a system configuration diagram of the polishing device 10.
  • the polishing table 11 of the polishing apparatus 10 is connected to a motor 50 arranged below the polishing table 11, and is rotatable around its axis as shown by an arrow.
  • a polishing pad (polishing cloth) 52 having a polishing surface 52a is attached to the upper surface of the polishing table 11.
  • the top ring 12 is connected to the top ring shaft 54, and a retainer ring 56 for holding the outer peripheral edge of the semiconductor wafer W is provided on the lower outer peripheral portion of the top ring 12.
  • the top ring 12 is connected to a motor (not shown) and to an elevating cylinder (not shown). As a result, the top ring 12 can be raised and lowered as shown by an arrow and can rotate around its axis, and the semiconductor wafer W can be pressed against the polishing surface 52a of the polishing pad 52 with an arbitrary pressure. You can do it.
  • an eddy current sensor 58 as a film thickness monitor for measuring the film thickness of a metal thin film such as a copper film formed on the surface of the semiconductor wafer W is embedded.
  • the wiring 60 from the eddy current sensor (film thickness monitor) 58 passes through the polishing table 22 and the support shaft 62, and passes through the rotary connector (or slip ring) 64 provided at the shaft end of the support shaft 62, and the controller 66. It is connected to the. While the eddy current sensor 58 passes under the semiconductor wafer W, it has become possible to continuously measure the film thickness of a conductive film such as a copper film formed on the surface of the semiconductor wafer W on the passing locus. There is.
  • the control target and installation location of the controller 66 may be the controller in the polishing module related to the work in the polishing module in the polishing module, or the polishing related to the work of the entire polishing device including the cleaning / drying device. It may be the controller of the device. Furthermore, the controller 66 may be located in the cleaning / drying module of the polishing device. Further, it may be located outside the housing in the factory where the substrate processing system is installed. Further, the controller 66 is composed of a plurality of computers, and the plurality of computers may be distributed and arranged in the factory.
  • At least one computer constituting the controller 66 may be arranged in one line of a plurality of substrate processing systems in a semiconductor substrate manufacturing factory. Further, the plurality of computers constituting the controller 66 may be arranged on a plurality of lines of the plurality of board processing systems. Further, at least one computer constituting the controller 66 may be arranged in a line control / monitoring place in a factory or a line control / monitoring system. Further, it may be arranged in a plurality of factory monitoring locations of a semiconductor substrate manufacturing company, in a factory monitoring system, or in a company that manufactures and installs a CMP device.
  • the eddy current sensor is used to measure the thickness of a metal thin film such as a copper film formed on the surface of a semiconductor wafer, but an optical sensor is used instead of the vortex current sensor. It may be used to measure the thickness of an optically transparent thin film such as an oxide thin film provided on the surface of a semiconductor wafer during polishing.
  • a polishing profile monitor for measuring the post-polishing profile of the surface of the semiconductor wafer may be provided, and the measurement result of this polishing profile monitor may be input to the simulator 72 as an actual polishing profile.
  • the swing arm 24 swings above the polishing surface 52a along a horizontal plane with the rotation of the servomotor 262 as a drive mechanism, and the swing arm 24 swings with the swing. Therefore, the slurry discharge port 22 facing downward at the tip, that is, the polishing liquid supply position moves along the substantially radial direction of the polishing surface 52a.
  • the servomotor (drive mechanism) 262 is connected to the controller 66.
  • the controller 66 has a relationship between the slurry discharge port (polishing liquid supply position) 22 of the swing arm 24 and the polishing profile when polishing is performed while supplying the polishing liquid to the polishing surface 52a at this polishing liquid supply position.
  • a simulator 72 that predicts and performs a simulation based on, for example, a desired polishing profile is connected.
  • the database stored in the simulator 72 contains a plurality of polishing liquid supply positions: ⁇ (°), which are positions along the extension line of the arc shown in FIG. 7 of the slurry discharge port 22 of the swing arm 24, and this polishing liquid.
  • ⁇ (°) are positions along the extension line of the arc shown in FIG. 7 of the slurry discharge port 22 of the swing arm 24, and this polishing liquid.
  • the polishing profile when polishing is performed for a certain period of time while supplying the polishing liquid from ⁇ can be known. That is, in this database, the polishing rate also represents the polishing profile when polishing is continuously performed for a certain period of time.
  • the semiconductor wafer W is held on the lower surface of the top ring 12, and the semiconductor wafer W is pressed against the polishing pad 52 on the upper surface of the rotating polishing table 11 by the elevating cylinder. Then, by swinging the swing arm 24 to supply the polishing liquid Q from the slurry discharge port 22 onto the polishing pad 52, the polishing liquid Q is between the surface to be polished (lower surface) of the semiconductor wafer W and the polishing pad 52. The surface of the semiconductor wafer W is polished in the presence of.
  • the controller 66 swings the swing arm 24 while controlling the servomotor 262 to move the supply position (polishing liquid supply position) of the polishing liquid Q supplied from the slurry discharge port 22 to a predetermined position. Move along the pattern.
  • the movement pattern of the polishing liquid supply position is predicted by the simulator 72, input to the controller 66, and determined.
  • the simulator 72 has a swingable range of the swing arm 24, that is, a movable range A of the slurry discharge port (polishing liquid supply position) 22 shown in FIG. 9B, the minimum and maximum speed change points, and the acceleration / deceleration at the time of speed change.
  • Read the calculation parameters such as (step 1).
  • the simulator 72 reads the correlation between the polishing liquid supply position of the swing arm 24 and the actual polishing profile as experimental data from past data, immediately preceding data, and the like (step 2).
  • the database showing the relationship between the polishing liquid supply positions of the plurality of points of the swing arm 24 and the polishing rate (polishing profile) obtained from this experimental data, and if necessary, Nth order regression, Fourier transform, spline regression and spline regression.
  • the relationship between an arbitrary polishing liquid supply position and a polishing rate (polishing profile) is predicted and stored by at least one method of wavelet transform (step 3).
  • the desired polishing profile after polishing is input to the simulator 70 directly or from the polishing device (CMP) (step 4).
  • the simulator 70 refers to the database and obtains a polishing profile (polishing rate) when polishing is performed while moving the polishing liquid supply position in a temporary polishing liquid supply position moving pattern (step). 7).
  • step 8 the difference between the desired polishing profile and the polishing profile obtained in the calculation in step 7 is calculated (step 8), and this difference is within the allowable profile error set in step 6, or the maximum number of repetitions. Is not reached (step 9).
  • step 11 the process returns to step 7 in order to recalculate the temporary polishing liquid supply position movement pattern (step 10). .. Then, by repeating this, when the difference between the desired polishing profile and the calculated polishing profile is within the allowable profile error, or the difference between the desired polishing profile and the calculated polishing profile is acceptable. Even if it is not within the range of the profile error, when the maximum number of repetitions set in step 6 is reached, the movement pattern of the polishing supply position, which is the polishing profile calculated in step 7, is displayed and saved, and is input to the controller 66. (Step 11).
  • the controller 66 receives an input from the simulator 70 and controls the servomotor 70 as a moving mechanism so that the slurry discharge port 22 of the swing arm 24 moves along the moving pattern of the polishing liquid supply position during polishing. Then, the swing arm 24 is swung.
  • the film thickness distribution (polishing profile) of a metal thin film such as a copper film formed on the surface of the semiconductor wafer is acquired by the eddy current sensor 58 and input to the simulator 72.
  • the simulator 72 instantly compares the desired polishing profile input in step 4 of FIG. 8 with the film thickness distribution (polishing profile) acquired by the eddy current sensor 58 during polishing to obtain the difference, and obtains the desired polishing. Simulate the polishing conditions required to create a profile. Based on the polishing conditions obtained by the simulation, the swing pattern of the swing arm 24, that is, the movement pattern of the slurry discharge port (polishing liquid supply position) 22 is updated so as to have a desired profile.
  • the film thickness distribution (polishing profile) of the metal thin film such as a copper film formed on the surface of the semiconductor wafer after polishing becomes a desired profile. Polishing is performed to complete the polishing.
  • the injection nozzles 231 to 238 are used for the purpose of spraying a cleaning fluid (liquid or a mixed fluid of gas and liquid) toward the polishing table 11 to remove foreign substances on the polishing table 11.
  • a cleaning fluid liquid or a mixed fluid of gas and liquid
  • the present invention is not limited to this, and the injection nozzles 231 to 238 may be used for the purpose of spraying a temperature-adjusted liquid toward the polishing table 11 to adjust the temperature of the surface of the polishing table 11.

Abstract

This liquid supply device comprises: a rocking arm that can horizontally rock the upper side of a polishing table; a slurry tube that extends in the longitudinal direction of the rocking arm and discharges slurry onto the polishing table from a slurry discharge port at a tip section thereof; and a plurality of spray nozzles which are provided to be aligned in the longitudinal direction of the rocking arm and spray a cleaning fluid onto the polishing table. The spray nozzles positioned at the tip section of the rocking arm are provided obliquely so as to be capable of cleaning a drop position of slurry onto the polishing table, the slurry being discharged from the slurry discharge nozzles.

Description

液体供給装置および研磨装置Liquid supply equipment and polishing equipment
 本開示は、液体供給装置および研磨装置に関する。 This disclosure relates to a liquid supply device and a polishing device.
 近年、半導体デバイスの高集積化が進むにつれて回路の配線が微細化し、配線間距離もより狭くなりつつある。半導体デバイスの製造では、シリコンウェハの上に多くの種類の材料が膜状に繰り返し形成され、積層構造が形成される。この積層構造を形成するためには、ウェハの表面を平坦にする技術が重要となっている。このようなウェハの表面を平坦化する一手段として、化学機械研磨(CMP)を行う研磨装置(化学的機械的研磨装置ともいう)が広く用いられている。 In recent years, as the integration of semiconductor devices has progressed, the wiring of circuits has become finer and the distance between wirings has become narrower. In the manufacture of semiconductor devices, many types of materials are repeatedly formed on a silicon wafer in the form of a film to form a laminated structure. In order to form this laminated structure, a technique for flattening the surface of the wafer is important. As a means for flattening the surface of such a wafer, a polishing apparatus (also referred to as a chemical mechanical polishing apparatus) for performing chemical mechanical polishing (CMP) is widely used.
 化学機械研磨(CMP)装置は、一般に、研磨パッドが取り付けられた研磨テーブルと、ウェハを保持するトップリング(研磨ヘッド)と、研磨液(スラリ)を研磨パッド上に供給するスラリ吐出ノズルとを備えている。スラリ吐出ノズルから研磨液を研磨パッド上に供給しながら、トップリングによりウェハを研磨パッドに押し付け、さらにトップリングと研磨テーブルとを相対移動させることにより、ウェハを研磨してその表面を平坦にする。 A chemical mechanical polishing (CMP) device generally includes a polishing table to which a polishing pad is attached, a top ring (polishing head) for holding a wafer, and a slurry ejection nozzle for supplying a polishing liquid (slurry) onto the polishing pad. I have. While supplying the polishing liquid onto the polishing pad from the slurry discharge nozzle, the wafer is pressed against the polishing pad by the top ring, and the top ring and the polishing table are moved relative to each other to polish the wafer and flatten its surface. ..
 ウェハの研磨を行った後には、研磨屑や研磨液に含まれる砥粒などのパーティクルが研磨パッド上に残留する。そこで、ウェハの研磨後には、研磨パッドに向けて液体または気体と液体の混合流体を噴射する少なくとも1つの噴射ノズルを有するアトマイザから霧状の洗浄流体(液体、または液体と気体の混合)が研磨パッド上に噴霧され、研磨パッド上の異物が除去される。 After polishing the wafer, particles such as polishing debris and abrasive grains contained in the polishing liquid remain on the polishing pad. Therefore, after polishing the wafer, a mist-like cleaning fluid (liquid or a mixture of liquid and gas) is polished from an atomizer having at least one injection nozzle that injects liquid or a mixed fluid of liquid and gas toward the polishing pad. It is sprayed onto the pad to remove foreign matter on the polishing pad.
 従来のCMP装置では、揺動アームの先端部に設けられたスラリ吐出ノズルが、研磨パッド上に配置されたアトマイザと干渉しないように、スラリ吐出ノズルをアトマイザより高い高さ位置に配置する必要があった。そのため、揺動アームを揺動させながらスラリ吐出ノズルからスラリを吐出させる際に、スラリの滴下位置が位置ずれしやすく、ウェハの研磨に必要なスラリを最適なタイミングと位置に滴下することが困難であった。 In the conventional CMP device, it is necessary to arrange the slurry discharge nozzle at a height higher than the atomizer so that the slurry discharge nozzle provided at the tip of the swing arm does not interfere with the atomizer arranged on the polishing pad. there were. Therefore, when the slurry is discharged from the slurry discharge nozzle while swinging the swing arm, the position where the slurry is dropped tends to shift, and it is difficult to drop the slurry required for polishing the wafer at the optimum timing and position. Met.
 特開2018-6549号公報には、揺動アームが水平方向に延びる水平軸回りに回転可能に構成され、スラリ吐出ノズルをスラリ滴下位置と退避位置との間で移動させる際に、揺動アームを水平軸回りに回転させることで、スラリ吐出ノズルをアトマイザより上方に待避させる技術が開示されている。 Japanese Patent Application Laid-Open No. 2018-6549 describes that the swing arm is configured to be rotatable around a horizontal axis extending in the horizontal direction, and is a swing arm when the slurry discharge nozzle is moved between the slurry drop position and the retracted position. Discloses a technique for retracting a slurry discharge nozzle above the atomizer by rotating the slurry around a horizontal axis.
 ウェハの研磨に必要なスラリの滴下位置の位置ずれを低減できる液体供給装置および研磨装置を提供することが望まれる。 It is desired to provide a liquid supply device and a polishing device that can reduce the misalignment of the dropping position of the slurry required for polishing the wafer.
 本開示の一態様に係る液体供給装置は、
 研磨テーブルの上方を水平に揺動可能な揺動アームと、
 前記揺動アームの長手方向に沿って延ばされており先端部のスラリ吐出口から前記研磨テーブル上にスラリを吐出するスラリチューブと、
 前記揺動アームの長手方向に沿って並んで設けられ前記研磨テーブル上に洗浄流体を噴射する複数の噴射ノズルと、
を備え、
 前記スラリ吐出口は前記揺動アームの先端部に位置決めされており、
 前記揺動アームの先端部に位置する噴射ノズルは、前記スラリ吐出口から吐出されたスラリの前記研磨テーブル上における滴下位置を洗浄できるように斜めに設けられている。
 本開示の一態様に係る研磨装置は、液体供給装置を備え、
 前記液体供給装置は、
 研磨テーブルの上方を水平に揺動可能な揺動アームと、
 前記揺動アームの長手方向に沿って延ばされており先端部のスラリ吐出口から前記研磨テーブル上にスラリを吐出するスラリチューブと、
 前記揺動アームの長手方向に沿って並んで設けられ前記研磨テーブル上に洗浄流体を噴射する複数の噴射ノズルと、
を有し、
 前記スラリ吐出口は前記揺動アームの先端部に位置決めされており、
 前記揺動アームの先端部に位置する噴射ノズルは、前記スラリ吐出口から吐出されたスラリの前記研磨テーブル上における滴下位置を洗浄できるように斜めに設けられている。
The liquid supply device according to one aspect of the present disclosure is
A swing arm that can swing horizontally above the polishing table,
A slurry tube extending along the longitudinal direction of the swing arm and discharging slurry onto the polishing table from a slurry discharge port at the tip thereof.
A plurality of injection nozzles provided side by side along the longitudinal direction of the swing arm to inject a cleaning fluid onto the polishing table.
Equipped with
The slurry discharge port is positioned at the tip of the swing arm.
The injection nozzle located at the tip of the swing arm is diagonally provided so that the dropping position of the slurry discharged from the slurry discharge port on the polishing table can be washed.
The polishing device according to one aspect of the present disclosure includes a liquid supply device.
The liquid supply device is
A swing arm that can swing horizontally above the polishing table,
A slurry tube extending along the longitudinal direction of the swing arm and discharging slurry onto the polishing table from a slurry discharge port at the tip thereof.
A plurality of injection nozzles provided side by side along the longitudinal direction of the swing arm to inject a cleaning fluid onto the polishing table.
Have,
The slurry discharge port is positioned at the tip of the swing arm.
The injection nozzle located at the tip of the swing arm is diagonally provided so that the dropping position of the slurry discharged from the slurry discharge port on the polishing table can be washed.
図1は、一実施の形態に係る研磨装置の概略構成を示す平面図である。FIG. 1 is a plan view showing a schematic configuration of a polishing apparatus according to an embodiment. 図2は、図1に示す研磨装置が備える液体供給装置を拡大して示す斜視図である。FIG. 2 is an enlarged perspective view showing a liquid supply device included in the polishing device shown in FIG. 1. 図3は、図2に示す液体供給装置の縦断面図である。FIG. 3 is a vertical sectional view of the liquid supply device shown in FIG. 図4は、図2に示す液体供給装置の揺動アームを先端側から見た正面図である。FIG. 4 is a front view of the swing arm of the liquid supply device shown in FIG. 2 as viewed from the tip side. 図5は、図2に示す液体供給装置の揺動アームの先端部を斜め下方から見た図である。FIG. 5 is a view of the tip of the swing arm of the liquid supply device shown in FIG. 2 viewed from diagonally below. 図6は、図1に示す研磨装置の概要を示す縦断面図である。FIG. 6 is a vertical cross-sectional view showing an outline of the polishing apparatus shown in FIG. 図7は、図6に示す研磨装置のシステム構成図である。FIG. 7 is a system configuration diagram of the polishing apparatus shown in FIG. 図8は、シミュレータによるシミュレーションの予想フロー図である。FIG. 8 is a predicted flow diagram of the simulation by the simulator. 図9Aは、シミュレータによるシミュレーションにおける研磨面、揺動アーム及びスラリ吐出口(研磨液供給位置)の関係を示す平面図である。FIG. 9A is a plan view showing the relationship between the polishing surface, the swing arm, and the slurry discharge port (polishing liquid supply position) in the simulation by the simulator. 図9Bは、シミュレータによるシミュレーションにおける研磨面、揺動アーム及びスラリ吐出口(研磨液供給位置)の関係を示す正面図である。FIG. 9B is a front view showing the relationship between the polishing surface, the swing arm, and the slurry discharge port (polishing liquid supply position) in the simulation by the simulator.
 実施形態の第1の態様に係る液体供給装置は、
 研磨テーブルの上方を水平に揺動可能な揺動アームと、
 前記揺動アームの長手方向に沿って延ばされており先端部のスラリ吐出口から前記研磨テーブル上にスラリを吐出するスラリチューブと、
 前記揺動アームの長手方向に沿って並んで設けられ前記研磨テーブル上に洗浄流体を噴射する複数の噴射ノズルと、
を備え、
 前記スラリ吐出口は前記揺動アームの先端部に位置決めされており、
 前記揺動アームの先端部に位置する噴射ノズルは、前記スラリ吐出口から吐出されたスラリの前記研磨テーブル上における滴下位置を洗浄できるように斜めに設けられている。
The liquid supply device according to the first aspect of the embodiment is
A swing arm that can swing horizontally above the polishing table,
A slurry tube extending along the longitudinal direction of the swing arm and discharging slurry onto the polishing table from a slurry discharge port at the tip thereof.
A plurality of injection nozzles provided side by side along the longitudinal direction of the swing arm to inject a cleaning fluid onto the polishing table.
Equipped with
The slurry discharge port is positioned at the tip of the swing arm.
The injection nozzle located at the tip of the swing arm is diagonally provided so that the dropping position of the slurry discharged from the slurry discharge port on the polishing table can be washed.
 このような態様によれば、スラリ吐出口と噴射ノズルとが同一の揺動アーム上に配置されているため、スラリ吐出口の高さ位置を低くしても、スラリ吐出口が噴射ノズルと干渉することがない。したがって、スラリ吐出口の高さ位置を低くすることが可能であり、これにより、スラリがスラリ吐出口から吐出されてから研磨テーブル上に到達するまでの距離および時間が短縮され、揺動アームを揺動させながらスラリ吐出口からスラリを吐出させる際に、スラリの滴下位置が位置ずれしにくくなり、ウェハの研磨に必要なスラリを最適なタイミングと位置に滴下することが可能となる。また、揺動アームの先端部に位置する噴射ノズルが、スラリ吐出口から吐出されたスラリの研磨テーブル上における滴下位置を洗浄できるように斜めに設けられているため、たとえばスラリ吐出口から研磨テーブルの中心付近にスラリが滴下される場合であっても、研磨テーブルの中心付近に洗浄流体を噴射して洗浄することが可能であり、研磨テーブル上に残留するパーティクルを低減できる。また、噴射ノズルとスラリ吐出口とが同一の揺動アーム上に配置されていることにより研摩装置内の省スペース化が図られる。 According to such an aspect, since the slurry discharge port and the injection nozzle are arranged on the same swing arm, the slurry discharge port interferes with the injection nozzle even if the height position of the slurry discharge port is lowered. There is nothing to do. Therefore, it is possible to lower the height position of the slurry discharge port, which shortens the distance and time from the slurry being discharged from the slurry discharge port to reaching the polishing table, and makes the swing arm. When the slurry is discharged from the slurry discharge port while swinging, the position where the slurry is dropped is less likely to shift, and the slurry required for polishing the wafer can be dropped at the optimum timing and position. Further, since the injection nozzle located at the tip of the swing arm is diagonally provided so that the dropping position of the slurry discharged from the slurry discharge port on the polishing table can be cleaned, for example, the polishing table is provided from the slurry discharge port. Even when the slurry is dropped near the center of the polishing table, the cleaning fluid can be sprayed near the center of the polishing table for cleaning, and the particles remaining on the polishing table can be reduced. Further, since the injection nozzle and the slurry discharge port are arranged on the same swing arm, the space in the polishing device can be saved.
 実施形態の第2の態様に係る液体供給装置は、第1の態様に係る液体供給装置であって、
 前記スラリチューブの周囲は、前記研磨テーブルで跳ね返った液体がチューブとチューブとの間に浸入して滞留することを防ぐためのカバーにより覆われている。
The liquid supply device according to the second aspect of the embodiment is the liquid supply device according to the first aspect.
The periphery of the slurry tube is covered with a cover for preventing the liquid bounced off the polishing table from entering and staying between the tubes.
 スラリ吐出口と噴射ノズルとが同一の揺動アーム上に配置されている場合、スラリ吐出口から吐出されて研磨テーブルで跳ね返ったスラリだけでなく、噴射ノズルから噴霧されて研磨テーブルで跳ね返った洗浄流体も、スラリチューブとチューブとの間に浸入して滞留しやすいが、このような態様によれば、スラリ供給チューブの周囲がカバーにより覆われているため、研磨テーブルで跳ね返った液体がチューブとチューブとの間に浸入して滞留することを防止できる。 When the slurry discharge port and the injection nozzle are arranged on the same swing arm, not only the slurry discharged from the slurry discharge port and bounced off the polishing table, but also the cleaning sprayed from the injection nozzle and bounced off the polishing table. The fluid also tends to infiltrate and stay between the slurry tube and the tube, but according to such an embodiment, the circumference of the slurry supply tube is covered with a cover, so that the liquid bounced off the polishing table can be transferred to the tube. It is possible to prevent it from infiltrating and staying between the tube and the tube.
 実施形態の第3の態様に係る液体供給装置は、第2の態様に係る液体供給装置であって、
 前記カバーは、前記研磨テーブルと対向する下面を有し、前記スラリチューブの先端部は当該下面を下向きに貫通して当該カバーの外側に突き出されている。
The liquid supply device according to the third aspect of the embodiment is the liquid supply device according to the second aspect.
The cover has a lower surface facing the polishing table, and the tip end portion of the slurry tube penetrates the lower surface downward and protrudes to the outside of the cover.
 このような態様によれば、スラリチューブの先端部の周囲が一層隙間なくカバーされることになり、研磨テーブルで跳ね返った液体がチューブとチューブとの間に浸入して滞留することをより確実に防止できる。 According to such an embodiment, the periphery of the tip of the slurry tube is covered more tightly, and the liquid bounced off the polishing table is more surely infiltrated and stays between the tubes. Can be prevented.
 実施形態の第4の態様に係る液体供給装置は、第2または3の態様に係る液体供給装置であって、
 前記揺動アームの基端部には前記カバー上に洗浄液を供給するカバー洗浄ノズルが設けられている。
The liquid supply device according to the fourth aspect of the embodiment is the liquid supply device according to the second or third aspect.
A cover cleaning nozzle for supplying a cleaning liquid is provided on the cover at the base end portion of the swing arm.
 このような態様によれば、カバー洗浄ノズルからカバー上に洗浄液を供給することで、カバーを洗浄できる。これにより、ウェハの研磨中に、カバーに付着していたパーティクルが研磨テーブル上に落下してウェハを汚染することを防止できる。 According to such an aspect, the cover can be cleaned by supplying the cleaning liquid onto the cover from the cover cleaning nozzle. This makes it possible to prevent particles adhering to the cover from falling onto the polishing table and contaminating the wafer during polishing of the wafer.
 実施形態の第5の態様に係る液体供給装置は、第4の態様に係る液体供給装置であって、
 前記カバー洗浄ノズルは、前記カバーの上面に洗浄液を供給する第1ノズルと、前記カバーの右側面に洗浄液を供給する第2ノズルと、前記カバーの左側面に洗浄液を供給する第3ノズルとを有する。
The liquid supply device according to the fifth aspect of the embodiment is the liquid supply device according to the fourth aspect.
The cover cleaning nozzle includes a first nozzle that supplies a cleaning liquid to the upper surface of the cover, a second nozzle that supplies the cleaning liquid to the right side surface of the cover, and a third nozzle that supplies the cleaning liquid to the left side surface of the cover. Have.
 このような態様によれば、カバーの上面と右側面と左側面にそれぞれ洗浄液を供給して洗浄できるため、カバーの上面・右側面・左側面とで付着するパーティクル量や付着の仕方が相違しても、カバーの洗浄効率を向上できる。 According to such an aspect, since the cleaning liquid can be supplied to the upper surface, the right side surface, and the left side surface of the cover for cleaning, the amount of particles adhering to the upper surface, the right side surface, and the left side surface of the cover and the method of adhering are different. However, the cleaning efficiency of the cover can be improved.
 実施形態の第6の態様に係る液体供給装置は、第2~5のいずれかの態様に係る液体供給装置であって、
 前記カバーの内面には、前記揺動アームの表面に沿って這わされている前記スラリチューブに向かって突き出るように複数のリブが設けられている。
The liquid supply device according to the sixth aspect of the embodiment is the liquid supply device according to any one of the second to fifth aspects.
The inner surface of the cover is provided with a plurality of ribs so as to protrude toward the slurry tube that crawls along the surface of the swing arm.
 このような態様によれば、揺動アーム上にカバーを取り付ける際に、カバーの内面に設けられたリブがスラリチューブを揺動アーム側に押さえることになるため、スラリチューブに圧力が加わることによりチューブが浮き上がって接していなかったカバー内壁に干渉したり、チューブにバタツキ、揺り返しが生じたりするといった問題を抑制・防止できる。これにより、スラリチューブのカバー内壁との擦れ防止だけでなく、スラリチューブの浮き上がりによってスラリ吐出口から吐出されるスラリが脈動して、スラリの滴下位置が不安定になることを抑制できる。また揺動アーム上からカバーを取り外す際に、カバーの内面に設けられたリブによるスラリチューブの押さえが解消されるため、スラリチューブをパイプ等の中に通す場合に比べて、スラリチューブの交換作業を容易に行うことができる。揺動アーム表面にスラリチューブを這わせてその上をカバーする事により揺動アームに押さえる構造としたことで、スラリチューブと噴射ノズルとが別々にまとまることになり、交換を別々に行える。さらに、スラリチューブの数が複数の場合であっても、チューブ交換や使い分け(異なる種類のスラリや純水)の設定作業が容易になる。 According to such an aspect, when the cover is mounted on the swing arm, the rib provided on the inner surface of the cover presses the slurry tube toward the swing arm side, so that pressure is applied to the slurry tube. It is possible to suppress / prevent problems such as the tube floating and interfering with the inner wall of the cover that was not in contact with the tube, and causing the tube to flutter or swing back. As a result, it is possible not only to prevent the slurry tube from rubbing against the inner wall of the cover, but also to prevent the slurry discharged from the slurry discharge port from pulsating due to the floating of the slurry tube and to prevent the slurry dropping position from becoming unstable. In addition, when the cover is removed from the swing arm, the ribs provided on the inner surface of the cover eliminate the holding of the slurry tube, so the slurry tube replacement work is compared to the case where the slurry tube is passed through a pipe or the like. Can be easily performed. The structure is such that the slurry tube is laid on the surface of the swing arm and covered by the swing arm to hold it against the swing arm, so that the slurry tube and the injection nozzle are separated and can be replaced separately. Further, even when the number of slurry tubes is multiple, it is easy to replace the tubes and set the proper use (different types of slurry or pure water).
 実施形態の第7の態様に係る液体供給装置は、第1~6のいずれかの態様に係る液体供給装置であって、
 前記揺動アームにおいて、前記スラリ吐出口は、前記噴射ノズルよりも研磨対象物に近い側に配置されている。すなわち、スラリ吐出口は、噴射ノズルの並びの延長には位置していない(噴射ノズルの並びの延長よりも研磨対象物側にずれて位置している)。さらに言い換えれば、スラリ吐出口は、揺動アームの先端部に位置する噴射ノズルと研磨対象物との間に位置している。
The liquid supply device according to the seventh aspect of the embodiment is the liquid supply device according to any one of the first to sixth aspects.
In the swing arm, the slurry discharge port is arranged closer to the object to be polished than the injection nozzle. That is, the slurry discharge port is not located at the extension of the arrangement of the injection nozzles (the position is shifted toward the object to be polished with respect to the extension of the arrangement of the injection nozzles). In other words, the slurry discharge port is located between the injection nozzle located at the tip of the swing arm and the object to be polished.
 このような態様によれば、研磨対象物により近い位置にスラリを吐出することが可能であり、ウェハの研磨に必要なスラリをより最適なタイミングと位置に滴下することが可能となる。 According to such an aspect, it is possible to discharge the slurry to a position closer to the object to be polished, and it is possible to drop the slurry required for polishing the wafer at a more optimum timing and position.
 実施形態の第8の態様に係る研磨装置は、第1~7のいずれかの態様に係る研磨装置であって、
 前記揺動アームの駆動機構は、サーボモータと減速機から構成されている。
The polishing apparatus according to the eighth aspect of the embodiment is the polishing apparatus according to any one of the first to seventh aspects.
The drive mechanism of the swing arm includes a servomotor and a speed reducer.
 実施形態の第9の態様に係る研磨装置は、第1~8のいずれかの態様に係る液体供給装置を備える。 The polishing device according to the ninth aspect of the embodiment includes the liquid supply device according to any one of the first to eighth aspects.
 以下、実施形態の具体例について、図面を参照しながら説明する。なお、以下の説明および以下の説明で用いる図面では、同一に構成され得る部分について、同一の符号を用いるとともに、重複する説明を省略する。 Hereinafter, specific examples of the embodiments will be described with reference to the drawings. In the following description and the drawings used in the following description, the same reference numerals are used for parts that can be configured in the same manner, and duplicate description is omitted.
 図1は、一実施の形態に係る研磨装置10の概略構成を示す平面図である。 FIG. 1 is a plan view showing a schematic configuration of a polishing apparatus 10 according to an embodiment.
 図1に示すように、研磨装置10は、研磨パッド(不図示)が取り付けられた研磨テーブル11と、ウェハWを保持しかつウェハWを研磨テーブル11上の研磨パッドに押圧しながら研磨するためのトップリング(研磨ヘッド)12と、研磨パッドのドレッシングを行うためのドレッサ13と、液体供給装置20とを備えている。 As shown in FIG. 1, the polishing apparatus 10 holds a polishing table 11 to which a polishing pad (not shown) is attached, and a wafer W for polishing while pressing the wafer W against the polishing pad on the polishing table 11. The top ring (polishing head) 12 of the above, a dresser 13 for dressing the polishing pad, and a liquid supply device 20 are provided.
 このうちトップリング12は、トップリングヘッド14に支持されている。研磨テーブル11の上面には研磨パッド(不図示)が貼付されており、この研磨パッドの上面はウェハWを研磨する研磨面を構成している。なお、研磨パッドに代えて固定砥石を用いることもできる。トップリング12および研磨テーブル11は、各々の軸心周りに回転できるように構成されている。ウェハWは、トップリング12の下面に真空吸着により保持される。研磨時には、液体供給装置20から研磨パッドの研磨面に研磨液(スラリ)が供給され、研磨対象であるウェハWがトップリング12により研磨面に押圧されて研磨される。 Of these, the top ring 12 is supported by the top ring head 14. A polishing pad (not shown) is attached to the upper surface of the polishing table 11, and the upper surface of the polishing pad constitutes a polishing surface for polishing the wafer W. A fixed grindstone can be used instead of the polishing pad. The top ring 12 and the polishing table 11 are configured to be rotatable around their respective axes. The wafer W is held on the lower surface of the top ring 12 by vacuum suction. At the time of polishing, a polishing liquid (slurry) is supplied from the liquid supply device 20 to the polishing surface of the polishing pad, and the wafer W to be polished is pressed against the polishing surface by the top ring 12 to be polished.
 図2は、液体供給装置20を拡大して示す斜視図であり、図3は、液体供給装置20の縦断面図である。 FIG. 2 is an enlarged perspective view of the liquid supply device 20, and FIG. 3 is a vertical sectional view of the liquid supply device 20.
 図1~図3に示すように、液体供給装置20は、研磨テーブル11の上方を水平に揺動可能な揺動アーム21と、先端部のスラリ吐出口22から研磨テーブル11上にスラリを吐出する1または複数(図5に示された例では4つ)のスラリチューブ27と、研磨テーブル11上に洗浄流体(液体(たとえば純水や脱イオン水)、または液体と気体(たとえば窒素ガスのような不活性ガス)の混合)を噴射する複数(図示された例では8つ)の噴射ノズル231~238とを有している。 As shown in FIGS. 1 to 3, the liquid supply device 20 discharges slurry onto the polishing table 11 from a swing arm 21 capable of horizontally swinging above the polishing table 11 and a slurry discharge port 22 at the tip thereof. One or more (four in the example shown in FIG. 5) slurry tubes 27 and a cleaning fluid (liquid (eg, pure water or deionized water), or liquid and gas (eg, nitrogen gas) on the polishing table 11. It has a plurality of injection nozzles 231 to 238 (eight in the illustrated example) for injecting a mixture of (such an inert gas).
 揺動アーム21は、研磨テーブル11の上方に水平に延びるように配置されており、揺動アーム21の基端部には、揺動手段26が設けられている。揺動手段26は、鉛直方向に延びる揺動軸261と、揺動軸261の下端部に設けられた駆動機構262(たとえばサーボモータおよび減速機)とを有している。揺動アーム21の基端部は、揺動軸261に固定されている。駆動機構262から受ける動力により揺動軸261が鉛直な中心軸線回りに回動されることにより、揺動アーム21は、研磨テーブル11の上方において、揺動軸261を中心に水平に揺動(旋回)される。駆動機構262がサーボモータと減速機から構成される場合、サーボ機構において位置、速度等を制御できるので揺動アーム21の位置精度が高くかつ安定化する。そのため、ウェハの研摩量測定値を利用するフィードバック制御が可能になり、測定された研摩量に基づき、研磨を必要とする位置に、必要とするスラリ量だけ精度よくスラリを滴下できる。ここで、ウェハの研磨量測定値を利用するフィードバック制御としては、たとえば、本件出願人により特開2015-193068にて提案された渦電流式または光学式の膜厚センサの測定値に基づく研磨ヘッドの圧力制御を利用することが可能であり、その研磨ヘッドの圧力制御に付帯してスラリが研磨ヘッドの圧力を高める部分に供給されるように揺動アーム21の位置制御を行う。サーボモータは精度の良い位置決めのために用いられ、減速機はトルク増大のために用いられる。たとえば1/100の減速機を使用すると、モータ1回転の動きが1/100になるため、さらに細かい動作をさせることができる。この場合、バックラッシの無い精密減速機を使用してもよい。後述するようにスラリノズルとアトマイザとが一体化した構造物の重量を回転させるには容量の大きいモータが必要であるが、減速機があるとトルクを増大できるため、小容量のモータで駆動できる。 The swing arm 21 is arranged so as to extend horizontally above the polishing table 11, and a swing means 26 is provided at the base end portion of the swing arm 21. The swinging means 26 has a swinging shaft 261 extending in the vertical direction and a drive mechanism 262 (for example, a servomotor and a speed reducer) provided at the lower end of the swinging shaft 261. The base end portion of the swing arm 21 is fixed to the swing shaft 261. The swing shaft 261 is rotated around the vertical central axis by the power received from the drive mechanism 262, so that the swing arm 21 swings horizontally around the swing shaft 261 above the polishing table 11. (Swirl). When the drive mechanism 262 is composed of a servomotor and a speed reducer, the position, speed, and the like can be controlled by the servo mechanism, so that the position accuracy of the swing arm 21 is high and stable. Therefore, feedback control using the measured value of the polishing amount of the wafer becomes possible, and based on the measured polishing amount, the slurry can be dropped accurately at the position where polishing is required by the required amount of slurry. Here, as the feedback control using the measured value of the polishing amount of the wafer, for example, the polishing head based on the measured value of the eddy current type or the optical type film thickness sensor proposed by the applicant in Japanese Patent Application Laid-Open No. 2015-193068. It is possible to utilize the pressure control of the above, and the position of the swing arm 21 is controlled so that the slurry is supplied to the portion where the pressure of the polishing head is increased in addition to the pressure control of the polishing head. Servo motors are used for accurate positioning and reducers are used for torque increase. For example, if a 1/100 speed reducer is used, the movement of one rotation of the motor becomes 1/100, so that even finer operation can be performed. In this case, a precision reducer without backlash may be used. As will be described later, a motor having a large capacity is required to rotate the weight of the structure in which the slurry nozzle and the atomizer are integrated, but since the torque can be increased if there is a reducer, it can be driven by a motor having a small capacity.
 また、駆動機構262がサーボモータと減速機から構成される場合には、噴射ノズル231~238からの洗浄液噴射時の反力をサーボモータ負荷として測定することで、噴射ノズル231~238の吐出流量をフィードバックでき、流量計を用いずに流量制御が可能となる。流量制御は、例えば、図3に示す制御弁23c(たとえば電動流量調整弁など)の開度を調整することにより行われる。そのため、揺動アーム21の移動角度(噴射ノズル231~238の位置)毎に噴射ノズル231~238の吐出流量制御、つまりパッド洗浄位置と流量制御も可能となる。また、従来はスラリ吐出口22と噴射ノズル231~238とが別々のアームであり、スラリチューブ27自体の剛性が低いために適切な位置制御ができなかったのに対し、本実施の形態では、スラリ吐出口22と噴射ノズル231~238とが同一の揺動アーム21上に配置され、揺動アーム21はスラリチューブ27に比して剛性が高いため、サーボモータの利用によりスラリや洗浄液の吐出(噴射)開始位置、終了位置を制御できる。 When the drive mechanism 262 is composed of a servomotor and a speed reducer, the reaction force at the time of injecting the cleaning liquid from the injection nozzles 231 to 238 is measured as the servomotor load, so that the discharge flow rate of the injection nozzles 231 to 238 is measured. Can be fed back, and flow rate control is possible without using a flow meter. The flow rate control is performed, for example, by adjusting the opening degree of the control valve 23c (for example, an electric flow rate adjusting valve) shown in FIG. Therefore, it is possible to control the discharge flow rate of the injection nozzles 231 to 238, that is, the pad cleaning position and the flow rate control for each movement angle of the swing arm 21 (positions of the injection nozzles 231 to 238). Further, conventionally, the slurry discharge port 22 and the injection nozzles 231 to 238 are separate arms, and the rigidity of the slurry tube 27 itself is low, so that appropriate position control cannot be performed. Since the slurry discharge port 22 and the injection nozzles 231 to 238 are arranged on the same swing arm 21, and the swing arm 21 has higher rigidity than the slurry tube 27, the slurry and cleaning liquid are discharged by using a servomotor. (Injection) The start position and end position can be controlled.
 図1~図3に示すように、スラリ吐出口22は、揺動アーム21の先端部に位置決めされており、複数の噴射ノズル231~238は、揺動アーム21の長手方向に沿って並んで設けられている。ここで言う、揺動アーム21の先端部とはアームの先端部であれば良く、アームの軸線の先端やその両側面どちらかであっても良い。図2、3では、スラリ吐出口22は、アームの先端部のうち研摩対象物に面する側面にある。各噴射ノズル231~238は、揺動アーム21の底面に形成された凹部内に配置されている。各噴射ノズル231~238は、スリット状の流体出口を有しており、洗浄流体を霧状にして該霧状の洗浄流体を研磨テーブル11上に噴霧する。 As shown in FIGS. 1 to 3, the slurry discharge port 22 is positioned at the tip of the swing arm 21, and a plurality of injection nozzles 231 to 238 are arranged side by side along the longitudinal direction of the swing arm 21. It is provided. The tip of the swing arm 21 referred to here may be any of the tip of the arm, and may be either the tip of the axis of the arm or both side surfaces thereof. In FIGS. 2 and 3, the slurry discharge port 22 is on the side surface of the tip of the arm facing the object to be polished. The injection nozzles 231 to 238 are arranged in a recess formed on the bottom surface of the swing arm 21. Each injection nozzle 231 to 238 has a slit-shaped fluid outlet, atomizes the cleaning fluid, and sprays the atomized cleaning fluid onto the polishing table 11.
 図3に示すように、揺動アーム21の内部には、液体流路23aが形成されており、各噴射ノズル231~238は液体流路23aに連通されている。液体流路23aの端部には液体供給入口23bが形成されている。液体供給入口23bから供給される液体(たとえば純水)は、液体流路23aを通って各噴射ノズル231~238へと供給される。各噴射ノズル231~238から洗浄流体が噴射されることにより、研磨テーブル11全体を洗うことができる。なお、図3に示す例では、1本の液体流路23aが複数(ここでは8本)の噴射ノズル231~238に分岐されているが、これに限定されるものではなく、複数(ここでは8本)の別々の配管が直接それぞれ異なる噴射ノズル231~238につながれる、あるいはいくつかの噴射ノズルをグループ化してそれぞれのグループにつながれていてもよい。また、別々や一本の分岐であれ、個別ノズル吐出のON・OFF調整できるよう、各噴射ノズル231~238にバルブが設けられていてもよい。また、液体流路23aが1本だけでなく複数本であっても良い旨を述べたが、液体供給入口23bも、図3に示す位置に限らず搖動アーム21aや搖動軸261のどこにあっても良く、搖動軸261内部を通る、あるいはその外部に沿って這わせても良い。さらに、各噴射ノズルあるいはグループ化されたいくつかの噴射ノズルのまとまりに対応する複数あっても良い。 As shown in FIG. 3, a liquid flow path 23a is formed inside the swing arm 21, and each injection nozzle 231 to 238 communicates with the liquid flow path 23a. A liquid supply inlet 23b is formed at the end of the liquid flow path 23a. The liquid (for example, pure water) supplied from the liquid supply inlet 23b is supplied to the injection nozzles 231 to 238 through the liquid flow path 23a. By injecting the cleaning fluid from each of the injection nozzles 231 to 238, the entire polishing table 11 can be washed. In the example shown in FIG. 3, one liquid flow path 23a is branched into a plurality of (here, eight) injection nozzles 231 to 238, but the present invention is not limited to this, and a plurality of (here, eight) injection nozzles 23a are branched. Eight) separate pipes may be directly connected to different injection nozzles 231 to 238, or several injection nozzles may be grouped and connected to each group. Further, valves may be provided in each of the injection nozzles 231 to 238 so that ON / OFF adjustment of the individual nozzle discharge can be performed separately or in a single branch. Further, it was stated that the number of liquid flow paths 23a may be not limited to one but may be multiple, but the liquid supply inlet 23b is not limited to the position shown in FIG. It is also possible to crawl through the inside of the swaying shaft 261 or along the outside thereof. Further, there may be a plurality of injection nozzles corresponding to each injection nozzle or a group of several injection nozzles.
 また、図3に示すように、揺動アーム21の表面には、複数のスラリチューブ27が揺動アーム21の長手方向に沿って這わされており、各スラリチューブ27の先端部のスラリ吐出口22は揺動アーム21の先端部に位置決めされている。各スラリチューブ27を流れる液体(スラリまたは純水)がそれぞれ異なるスラリ吐出口22から吐出される。
スラリチューブ27の先端部(出口付近)はスラリチューブ固定金具によって揺動アーム21本体に固定されている。スラリチューブ27の先端部(出口付近)が剛性の高いアトマイザ本体に固定されていることにより、スラリチューブ27の先端のスラリ吐出口22のブレを抑えることができる。また、スラリチューブ27の先端部がスラリチューブ固定金具によって固定されていることで、チューブ先端の高さ位置調整が可能であり、さらにチューブ毎のチューブ先端のテーブル面から高さを変えて留めることが可能である。また、チューブの種類(材質・口径の相違まで考慮して)や本数(現状複数(4本)と記載しているが)を替えやすい。また、スラリチューブ27が揺動アーム21の上面や側面に限らずアーム表面に沿って這わされており、かつスラリチューブ27の先端部がスラリチューブ固定金具によって揺動アーム21本体に固定されていることで、平面的に見た場合のスラリ吐出口22の位置関係を変更しやすい。
Further, as shown in FIG. 3, a plurality of slurry tubes 27 are laid on the surface of the swing arm 21 along the longitudinal direction of the swing arm 21, and a slurry discharge port at the tip of each slurry tube 27 is provided. 22 is positioned at the tip of the swing arm 21. The liquid (slurry or pure water) flowing through each slurry tube 27 is discharged from different slurry discharge ports 22.
The tip end portion (near the outlet) of the slurry tube 27 is fixed to the main body of the swing arm 21 by the slurry tube fixing bracket. Since the tip end portion (near the outlet) of the slurry tube 27 is fixed to the atomizer main body having high rigidity, it is possible to suppress the blurring of the slurry discharge port 22 at the tip end of the slurry tube 27. Further, since the tip of the slurry tube 27 is fixed by the slurry tube fixing bracket, the height position of the tube tip can be adjusted, and the height of each tube can be changed from the table surface of the tube tip. Is possible. In addition, it is easy to change the type of tube (considering the difference in material and diameter) and the number of tubes (currently described as multiple (4)). Further, the slurry tube 27 is crawled not only on the upper surface and the side surface of the swing arm 21 but also along the arm surface, and the tip end portion of the slurry tube 27 is fixed to the swing arm 21 main body by the slurry tube fixing bracket. Therefore, it is easy to change the positional relationship of the slurry discharge port 22 when viewed in a plane.
 また、スラリチューブ27の先端部(出口付近)がスラリチューブ固定金具によって揺動アーム21本体に固定されていることで、スラリチューブ27の先端部のスラリ吐出口22をさらに下方に位置させて止めることができる。また、スラリ吐出口22の研磨テーブル11からの高さを噴射ノズル231~238の高さに合わせることができるため、研磨テーブル11からスラリ吐出口22までの高さを、これまでの約100mmから30mm程度まで近づけることができる。さらに、揺動軸261にエアシリンダーあるいは電動アクチュエータを設けることで、垂直方向の位置移動が可能になり、用途に合わせて研磨テーブル11とスラリ吐出口22との間の距離を調整できる。 Further, since the tip portion (near the outlet) of the slurry tube 27 is fixed to the main body of the swing arm 21 by the slurry tube fixing bracket, the slurry discharge port 22 at the tip portion of the slurry tube 27 is positioned further downward and stopped. be able to. Further, since the height of the slurry discharge port 22 from the polishing table 11 can be adjusted to the height of the injection nozzles 231 to 238, the height from the polishing table 11 to the slurry discharge port 22 can be increased from about 100 mm so far. It can be approached up to about 30 mm. Further, by providing the swing shaft 261 with an air cylinder or an electric actuator, the position can be moved in the vertical direction, and the distance between the polishing table 11 and the slurry discharge port 22 can be adjusted according to the application.
 スラリチューブ27は、揺動アーム21を支持する揺動軸261の外周面に沿って(這わされて)配置されてもよい。これにより、スラリチューブ27の交換が可能である。揺動軸261がカバー24で覆われる場合には、揺動軸261に沿って配置されたスラリチューブ27が当該カバー24の内側に配置されてもよい。また、スラリ吐出口22からのスラリ吐出が停止された場合にスラリチューブ27内に空気が入ることを抑制するために、スラリチューブ27は揺動軸261に沿って一旦上向きに延ばされ、その後下向きに曲げられて下降されてから揺動アーム21に沿って(這わされて)横向きに延ばされて設定されてもよい。 The slurry tube 27 may be arranged (crawled) along the outer peripheral surface of the swing shaft 261 that supports the swing arm 21. As a result, the slurry tube 27 can be replaced. When the swing shaft 261 is covered with the cover 24, the slurry tube 27 arranged along the swing shaft 261 may be arranged inside the cover 24. Further, in order to prevent air from entering the slurry tube 27 when the slurry discharge from the slurry discharge port 22 is stopped, the slurry tube 27 is once extended upward along the swing shaft 261 and then extended upward. It may be set by being bent downward and lowered, and then extended sideways along the swing arm 21 (crawled).
 スラリ吐出口22と噴射ノズル231~238とが同一の揺動アーム21上に配置されていることで、スラリ吐出口22の高さ位置を低くしても、スラリ吐出口22が噴射ノズル231~238と干渉することがない。したがって、スラリ吐出口22の高さ位置を低くすることが可能であり、これにより、スラリがスラリ吐出口22から吐出されてから研磨テーブル11上に到達するまでの距離および時間が短縮され、揺動アーム21を揺動させながらスラリ吐出口22からスラリを吐出させる際に、スラリの滴下位置が位置ずれしにくくなり、ウェハの研磨に必要なスラリを最適なタイミングと位置に滴下することが可能となっている。 Since the slurry discharge port 22 and the injection nozzles 231 to 238 are arranged on the same swing arm 21, the slurry discharge port 22 has the injection nozzles 231 to 23 even if the height position of the slurry discharge port 22 is lowered. Does not interfere with 238. Therefore, it is possible to lower the height position of the slurry discharge port 22, thereby shortening the distance and time from the slurry being discharged from the slurry discharge port 22 to reaching the polishing table 11, and shaking. When the slurry is discharged from the slurry discharge port 22 while swinging the moving arm 21, the position where the slurry is dropped is less likely to shift, and the slurry required for polishing the wafer can be dropped at the optimum timing and position. It has become.
 図1に示すように、揺動アーム21において、スラリ吐出口22は、噴射ノズル231~238よりも研磨対象物(ウェハ)Wに近い側に配置されている。すなわち、スラリ吐出口22は、噴射ノズル231~238の並びの延長には位置していない(噴射ノズル231~238の並びの延長よりも研磨対象物(ウェハ)W側にずれて位置している)。さらに言い換えれば、スラリ吐出口22は、揺動アーム21の先端部に位置する噴射ノズル231と研磨対象物(ウェハ)Wとの間に位置している。これにより、研磨対象物(ウェハ)Wにより近い位置にスラリを吐出することが可能であり、ウェハWの研磨に必要なスラリをより最適なタイミングと位置に滴下することが可能となる。 As shown in FIG. 1, in the swing arm 21, the slurry discharge port 22 is arranged closer to the object to be polished (wafer) W than the injection nozzles 231 to 238. That is, the slurry discharge port 22 is not located at the extension of the arrangement of the injection nozzles 231 to 238 (the slurry discharge port 22 is located offset to the polishing target (wafer) W side from the extension of the arrangement of the injection nozzles 231 to 238. ). In other words, the slurry discharge port 22 is located between the injection nozzle 231 located at the tip of the swing arm 21 and the object to be polished (wafer) W. As a result, the slurry can be discharged to a position closer to the object to be polished (wafer) W, and the slurry required for polishing the wafer W can be dropped to a more optimum timing and position.
 図4は、揺動アーム21を先端側から見た正面図である。図5は、揺動アーム21の先端部を斜め下方から見た図である。 FIG. 4 is a front view of the swing arm 21 as viewed from the tip side. FIG. 5 is a view of the tip of the swing arm 21 as viewed from diagonally below.
 図4および図5に示すように、揺動アーム21の先端部に位置する噴射ノズル231は、スラリ吐出口22から吐出されたスラリの研磨テーブル11上における滴下位置を洗浄できるように斜めに設けられている。すなわち、揺動アーム21の先端側から見たときに、揺動アーム21の先端部に位置する噴射ノズル231は、その吐出方向の延長線が、スラリ吐出口22の吐出方向の延長線に対して鋭角をなすように、斜めに設けられている。 As shown in FIGS. 4 and 5, the injection nozzle 231 located at the tip of the swing arm 21 is diagonally provided so that the dropping position of the slurry discharged from the slurry discharge port 22 on the polishing table 11 can be washed. Has been done. That is, when viewed from the tip side of the swing arm 21, the injection nozzle 231 located at the tip of the swing arm 21 has an extension line in the discharge direction with respect to an extension line in the discharge direction of the slurry discharge port 22. It is installed diagonally so as to form an acute angle.
 図1を参照し、たとえばスラリ吐出口22から研磨テーブル11の中心付近にスラリが滴下される場合に、仮に揺動アーム21の先端部に位置する噴射ノズル231が鉛直下向きに設けられていると、研磨テーブル11の中心付近に残留するスラリに対して洗浄流体を十分に噴射して洗浄できない可能性がある。なお、中心付近に残留しやすい理由は、研磨テーブルの半径方向中心に向かうほど、スラリに対する研磨テーブル外周へ向かわせる遠心力が働きにくくなるためである。これに対し、本実施の形態では、揺動アーム21の先端部に位置する噴射ノズル231が、スラリ吐出口22から吐出されたスラリの滴下位置を洗浄できるように斜めに設けられているため、スラリ吐出口22から研磨テーブル11の中心付近にスラリが滴下される場合であっても、研磨テーブル11の中心付近に洗浄流体を十分に噴射して洗浄することが可能であり、研磨テーブル11上に残留するパーティクルを低減できる。噴射ノズル231は、円形の流体出口を有するノズルではなく、スリット状の流体出口を有する噴霧ノズルであり、研磨テーブル11の中心にかかるよう横長の刷毛を当てたように研磨テーブル11上に洗浄液を滴下するようになっていることが望ましい。なぜなら、円形のスラリ供給口22からスラリが滴下される場合、研磨テーブル11上のスラリが描く図形は、滴下位置から同心円状に拡がろうとし、かつ研磨テーブル11の回転によってその同心円は回転方向外側に向かって長円形化する。円形状の流体出口からの洗浄液の滴下も同様である。したがって、円形のスラリ吐出口22と円形状の流体出口の場合は、スラリ吐出口22と円形状の流体出口とを幾ら近づけても、スラリの広がりと洗浄液との拡がりとは、広がり中心が互いに相違している以上、重なる部分はあるものの相違する部分が生じてしまう。一方、噴射ノズル231が、スリット状の流体出口を有する噴霧ノズルである場合は、噴霧される洗浄液の形状が刷毛状である以上、その噴霧された洗浄液が掛かる部分のスラリは除去される。噴射ノズル231が、スリット状の流体出口を有する噴霧ノズルである場合には、上から見た場合に噴霧される洗浄液の形状が、研磨テーブル11の中心から外周への半径線に載らず、若干傾けられていることが望ましい。この場合、研磨テーブル11の回転に従って外周への洗浄液の流れを助長でき、望まれたスラリの除去を促進できる。 With reference to FIG. 1, for example, when a slurry is dropped from the slurry discharge port 22 near the center of the polishing table 11, it is assumed that the injection nozzle 231 located at the tip of the swing arm 21 is provided vertically downward. There is a possibility that the cleaning fluid cannot be sufficiently sprayed onto the slurry remaining near the center of the polishing table 11 to perform cleaning. The reason why it tends to remain near the center is that the centrifugal force toward the outer periphery of the polishing table with respect to the slurry becomes less likely to work toward the center in the radial direction of the polishing table. On the other hand, in the present embodiment, the injection nozzle 231 located at the tip of the swing arm 21 is diagonally provided so that the dropping position of the slurry discharged from the slurry discharge port 22 can be washed. Even when the slurry is dropped from the slurry discharge port 22 near the center of the polishing table 11, it is possible to sufficiently inject the cleaning fluid near the center of the polishing table 11 for cleaning, and the cleaning is performed on the polishing table 11. Particles remaining in the table can be reduced. The injection nozzle 231 is not a nozzle having a circular fluid outlet, but a spray nozzle having a slit-shaped fluid outlet, and the cleaning liquid is applied onto the polishing table 11 as if a horizontally long brush was applied so as to cover the center of the polishing table 11. It is desirable that it is designed to drip. This is because when the slurry is dropped from the circular slurry supply port 22, the figure drawn by the slurry on the polishing table 11 tries to spread concentrically from the dropping position, and the concentric circles are rotated in the rotation direction due to the rotation of the polishing table 11. Oval to the outside. The same applies to the dripping of the cleaning liquid from the circular fluid outlet. Therefore, in the case of a circular slurry discharge port 22 and a circular fluid outlet, no matter how close the slurry discharge port 22 and the circular fluid outlet are, the spread of the slurry and the spread of the cleaning liquid are such that the spread centers are mutually exclusive. As long as they are different, there are overlapping parts, but different parts occur. On the other hand, when the injection nozzle 231 is a spray nozzle having a slit-shaped fluid outlet, as long as the shape of the sprayed cleaning liquid is brush-like, the slurry of the portion on which the sprayed cleaning liquid is applied is removed. When the injection nozzle 231 is a spray nozzle having a slit-shaped fluid outlet, the shape of the cleaning liquid sprayed when viewed from above is not on the radius line from the center of the polishing table 11 to the outer periphery, and is slightly. It is desirable that it is tilted. In this case, the flow of the cleaning liquid to the outer periphery can be promoted according to the rotation of the polishing table 11, and the desired removal of slurry can be promoted.
 図2~図5に示すように、スラリチューブ27の周囲は、研磨テーブル11で跳ね返った液体がチューブ27とチューブ27との間に浸入して滞留することを防ぐためのカバー24により覆われている。 As shown in FIGS. 2 to 5, the periphery of the slurry tube 27 is covered with a cover 24 for preventing the liquid bounced off by the polishing table 11 from entering and staying between the tubes 27 and the tubes 27. There is.
 本実施の形態のように、スラリ吐出口22と噴射ノズル231~238とが同一の揺動アーム21上に配置されている場合、スラリ吐出口22から吐出されて研磨テーブル11で跳ね返ったスラリだけでなく、噴射ノズル231~238から噴霧されて研磨テーブル11で跳ね返った洗浄流体も、スラリ供給チューブ27とチューブ27との間に浸入して滞留しやすいが、スラリ供給チューブ27の周囲がカバー24により覆われていることで、研磨テーブル11で跳ね返った液体がチューブ27とチューブ27との間に浸入して滞留することを防止できる。 When the slurry discharge port 22 and the injection nozzles 231 to 238 are arranged on the same swing arm 21 as in the present embodiment, only the slurry discharged from the slurry discharge port 22 and rebounded by the polishing table 11 Instead, the cleaning fluid sprayed from the injection nozzles 231 to 238 and bounced off at the polishing table 11 also easily infiltrates between the slurry supply tube 27 and the tube 27 and stays there, but the periphery of the slurry supply tube 27 is covered 24. By being covered with the above, it is possible to prevent the liquid bounced off by the polishing table 11 from entering and staying between the tubes 27 and the tubes 27.
 図5に示すように、カバー24は、研磨テーブル11と対向する下面24bを有しており、スラリチューブ27の先端部は当該下面24bを下向きに貫通してカバー24の外側に突き出されている。これにより、スラリチューブ27の先端部の周囲が一層隙間なくカバーされることになり、研磨テーブル11で跳ね返った液体がチューブ27とチューブ27との間に浸入して滞留することをより確実に防止できる。 As shown in FIG. 5, the cover 24 has a lower surface 24b facing the polishing table 11, and the tip end portion of the slurry tube 27 penetrates the lower surface 24b downward and protrudes to the outside of the cover 24. .. As a result, the periphery of the tip of the slurry tube 27 is covered even more tightly, and the liquid bounced off by the polishing table 11 is more reliably prevented from entering and staying between the tubes 27. can.
 図3に示すように、カバー24の内面には、スラリ供給チューブ27に向かって突き出るように複数(図示された例では3つ)のリブ24aが設けられている。揺動アーム21上にカバー24を取り付ける際に、カバー24の内面に設けられたリブ24aがスラリチューブ27を揺動アーム21側に押さえることになるため、スラリチューブ27に圧力が加わることによりチューブ27が浮き上がって接していなかったカバー24内壁に干渉したり、チューブ27にバタツキ、揺り返しが生じたりするといった問題を抑制・防止できる。これにより、スラリチューブ27のカバー24内壁との擦れ防止だけでなく、スラリチューブ27の浮き上がりによってスラリ吐出口22から吐出されるスラリが脈動して、スラリの滴下位置が不安定になることを抑制できる。
リブ24aの数は図3に示す例では3本であるが、3本に限られるものではなく、1~2本であってもよいし、4本以上であってもよい。カバー24とリブ24aは一体であってもよいし、別体であってもよい。また、一変形例として、リブ24aが揺動アーム21の本体に設けられ、揺動アーム21上にカバー24を取り付ける際に、揺動アーム21の本体に設けられたリブ24aがスラリチューブ27をカバー24の内壁側に押さえかつカバー24の内壁に沿わせるようになっていてもよい。このような態様によっても、リブ24aがカバー24の内面に設けられた態様と同様の作用効果が得られる。
As shown in FIG. 3, a plurality of (three in the illustrated example) ribs 24a are provided on the inner surface of the cover 24 so as to protrude toward the slurry supply tube 27. When the cover 24 is mounted on the swing arm 21, the rib 24a provided on the inner surface of the cover 24 presses the slurry tube 27 toward the swing arm 21, so that the tube is subjected to pressure due to the pressure applied to the slurry tube 27. It is possible to suppress / prevent problems such as the 27 rising and interfering with the inner wall of the cover 24 which was not in contact with the tube 27, and the tube 27 fluttering or swinging back. As a result, not only the slurry tube 27 is prevented from rubbing against the inner wall of the cover 24, but also the slurry discharged from the slurry discharge port 22 is pulsated due to the lifting of the slurry tube 27, and the drop position of the slurry is suppressed from becoming unstable. can.
The number of ribs 24a is three in the example shown in FIG. 3, but the number of ribs 24a is not limited to three, and may be one or two, or four or more. The cover 24 and the rib 24a may be integrated or separate. Further, as a modification, the rib 24a is provided on the main body of the swing arm 21, and when the cover 24 is mounted on the swing arm 21, the rib 24a provided on the main body of the swing arm 21 provides the slurry tube 27. It may be pressed against the inner wall side of the cover 24 and along the inner wall of the cover 24. Even in such an embodiment, the same function and effect as in the embodiment in which the rib 24a is provided on the inner surface of the cover 24 can be obtained.
 また揺動アーム21上からカバー24を取り外す際に、カバー24の内面に設けられたリブ24aによるスラリチューブ27の押さえが解消されるため、スラリチューブ27をパイプ等の中に通す場合に比べて、スラリチューブの交換作業を容易に行うことができる。また、揺動アーム21表面にスラリチューブ27を這わせてその上をカバー24により揺動アーム21に押さえる構造としたことで、スラリチューブ27と噴射ノズル231~238とが別々にまとまることになり、交換を別々に行える。さらに、スラリチューブ27の数が複数の場合であっても、チューブ交換や使い分け(異なる種類のスラリや純水)の設定作業が容易になる。 Further, when the cover 24 is removed from the swing arm 21, the holding of the slurry tube 27 by the rib 24a provided on the inner surface of the cover 24 is eliminated, so that the slurry tube 27 is not passed through a pipe or the like. , The slurry tube can be easily replaced. Further, by laying the slurry tube 27 on the surface of the swing arm 21 and pressing the slurry tube 27 on the swing arm 21 by the cover 24, the slurry tube 27 and the injection nozzles 231 to 238 are separately united. , Can be exchanged separately. Further, even when the number of slurry tubes 27 is plurality, it is easy to replace the tubes and set the proper use (different types of slurry or pure water).
 図2~図4に示すように、揺動アーム21の基端部にはカバー24上に洗浄液(たとえば純水)を供給するカバー洗浄ノズル25が設けられている。図2に示すように、カバー洗浄ノズル25は、揺動アーム21の内部に形成された液体流路23aに連通されている。したがって、液体供給入口23bから供給される液体(たとえば純水)は、液体流路23aを通って各アトマイザノズル231~238へと供給されるとともに、カバー洗浄ノズル25へも供給される。これにより、ウェハWの研磨後に、各アトマイザノズル231~238から研磨テーブル11上に霧状の洗浄流体(液体、または液体と気体の混合)を噴霧して研磨テーブル11の洗浄を行う際に、カバー洗浄ノズル25からカバー23上に洗浄液が供給され、カバー24の洗浄を同時に行うことができる。なお、カバー洗浄ノズル25への供給配管と噴射ノズル231~237への供給配管とは別々の供給配管で、それぞれの吐出がコントロールされ、必要あれば同時に吐出されるように構成してもよい。カバー24の上面はかまぼこ状(断面円弧状)の曲面形状であってもよい。カバー洗浄ノズル25はスプレーノズルであってもよい。 As shown in FIGS. 2 to 4, a cover cleaning nozzle 25 for supplying a cleaning liquid (for example, pure water) is provided on the cover 24 at the base end portion of the swing arm 21. As shown in FIG. 2, the cover cleaning nozzle 25 communicates with the liquid flow path 23a formed inside the swing arm 21. Therefore, the liquid (for example, pure water) supplied from the liquid supply inlet 23b is supplied to the atomizer nozzles 231 to 238 through the liquid flow path 23a, and is also supplied to the cover cleaning nozzle 25. As a result, after polishing the wafer W, when the atomizer nozzles 231 to 238 spray a mist-like cleaning fluid (liquid or a mixture of liquid and gas) onto the polishing table 11 to clean the polishing table 11. A cleaning liquid is supplied from the cover cleaning nozzle 25 onto the cover 23, and the cover 24 can be cleaned at the same time. It should be noted that the supply pipe to the cover cleaning nozzle 25 and the supply pipe to the injection nozzles 231 to 237 may be configured so that their respective discharges are controlled and discharged at the same time if necessary. The upper surface of the cover 24 may have a curved surface shape having a semi-cylindrical shape (arc-shaped cross section). The cover cleaning nozzle 25 may be a spray nozzle.
 本実施の形態では、図2および図4に示すように、カバー洗浄ノズル25は、カバー24の上面に洗浄液を供給する第1ノズル251と、カバー24の右側面に洗浄液を供給する第2ノズル252と、カバー24の左側面に洗浄液を供給する第3ノズル253とを有している。これにより、カバー24の上面と右側面と左側面にそれぞれ洗浄液を供給して洗浄することが可能であり、カバーの上面と右側面と左側面とで付着するパーティクル量や付着の仕方が相違しても、カバー24の洗浄効率を向上できる。第1~第3ノズル251~253はそれぞれスプレーノズルであり、第1~第3ノズル251~253から噴霧される洗浄液(スプレー)の広がりが、カバー24の基部から先端部まで覆えるようになっていてもよい。なお、カバー24の基部から先端部まで洗浄液で覆えることが達成できるノズルであれば、第1~第3ノズル251~253はスプレーノズルに限定されるものではない。第1~第3ノズル251~253の各々のカバー24に対する向きは可変であってもよい。第1~第3ノズル251~253がスプレーノズルである場合には、第1~第3ノズル251~253は各々の軸中心にスプレーの向きを回転可能であってもよい。第1~第3ノズル251~253の流量は、互いに相違可能および/または可変であってもよい。この場合、カバー24の表面の付着物の付着度合いが高い部分に望まれる流量の洗浄液を集中して当てることができる。 In the present embodiment, as shown in FIGS. 2 and 4, the cover cleaning nozzle 25 has a first nozzle 251 that supplies a cleaning liquid to the upper surface of the cover 24 and a second nozzle that supplies the cleaning liquid to the right side surface of the cover 24. It has a 252 and a third nozzle 253 that supplies a cleaning liquid to the left side surface of the cover 24. As a result, it is possible to supply cleaning liquid to the upper surface, the right side surface, and the left side surface of the cover 24 to clean the cover 24, and the amount of particles adhered to the upper surface, the right side surface, and the left side surface of the cover and the method of adhesion are different. However, the cleaning efficiency of the cover 24 can be improved. The first to third nozzles 251 to 253 are spray nozzles, respectively, and the spread of the cleaning liquid (spray) sprayed from the first to third nozzles 251 to 253 can cover from the base to the tip of the cover 24. You may have. The first to third nozzles 251 to 253 are not limited to the spray nozzles as long as the nozzles can cover the cover 24 from the base to the tip with the cleaning liquid. The orientation of the first to third nozzles 251 to 253 with respect to the cover 24 may be variable. When the first to third nozzles 251 to 253 are spray nozzles, the first to third nozzles 251 to 253 may be able to rotate the direction of the spray around the center of each axis. The flow rates of the first to third nozzles 251 to 253 may be different and / or variable from each other. In this case, the desired flow rate of the cleaning liquid can be concentrated and applied to the portion of the surface of the cover 24 where the degree of adhesion is high.
 次に、上述のように構成された研磨装置10の動作の一例を説明する。 Next, an example of the operation of the polishing apparatus 10 configured as described above will be described.
 まず、ウェハWの研磨時には、図1に示すように、スラリ吐出口22から研磨テーブル11の中心付近にスラリを滴下できるように揺動アーム21が位置決めされた状態で、スラリ吐出口22から研磨テーブル11上にスラリが吐出されるとともに、研磨対象であるウェハWがトップリング12により研磨テーブル11上に押圧されて研磨される。 First, when polishing the wafer W, as shown in FIG. 1, the swing arm 21 is positioned so that the slurry can be dropped from the slurry discharge port 22 to the vicinity of the center of the polishing table 11, and the wafer W is polished from the slurry discharge port 22. The slurry is discharged onto the table 11, and the wafer W to be polished is pressed onto the polishing table 11 by the top ring 12 to be polished.
 本実施の形態では、スラリ吐出口22と噴射ノズル231~238とが同一の揺動アーム21上に配置されているため、スラリ吐出口22の高さ位置を低くすることが可能であり、これにより、スラリがスラリ吐出口22から吐出されてから研磨テーブル11上に到達するまでの距離および時間が短縮され、揺動アーム21を揺動させながらスラリ吐出ノズル22からスラリを吐出させる際に、スラリの滴下位置が位置ずれしにくくなり、ウェハの研磨に必要なスラリを最適なタイミングと位置に滴下することが可能である。 In the present embodiment, since the slurry discharge port 22 and the injection nozzles 231 to 238 are arranged on the same swing arm 21, it is possible to lower the height position of the slurry discharge port 22. As a result, the distance and time from when the slurry is discharged from the slurry discharge port 22 to when it reaches the polishing table 11 is shortened, and when the slurry is discharged from the slurry discharge nozzle 22 while swinging the swing arm 21. The dropping position of the slurry is less likely to shift, and the slurry required for polishing the wafer can be dropped at the optimum timing and position.
 ウェハWの研磨後、スラリ吐出口22からのスラリの吐出が停止され、図1に示すように、各噴射ノズル231~238から研磨テーブル11の全面に洗浄流体を噴射できるように揺動アーム21が位置決めされた状態で、液体供給入口23bから供給される液体(たとえば純水)が、液体流路23aを通って各噴射ノズル231~238およびカバー洗浄ノズル25へと供給され、各噴射ノズル231~238から研磨テーブル11上に霧状の洗浄流体が噴霧されて研磨テーブル11の洗浄が行われるとともに、カバー洗浄ノズル25からカバー23上に洗浄液が供給され、カバー24の洗浄が行われる。揺動アーム21を揺動させて、各噴射ノズル231~238から噴射される洗浄流体の噴射位置を制御してもよい。各アトマイザ噴射ノズル231~238およびカバー洗浄ノズル25からの洗浄流体の噴射は、次のウェハWの研磨開始前まで(ドレッシング作業終了まで)行われる。 After polishing the wafer W, the discharge of the slurry from the slurry discharge port 22 is stopped, and as shown in FIG. 1, the swing arm 21 is capable of injecting the cleaning fluid from the injection nozzles 231 to 238 onto the entire surface of the polishing table 11. Is positioned, the liquid (for example, pure water) supplied from the liquid supply inlet 23b is supplied to the injection nozzles 231 to 238 and the cover cleaning nozzle 25 through the liquid flow path 23a, and is supplied to each injection nozzle 231. A mist-like cleaning fluid is sprayed onto the polishing table 11 from 238 to clean the polishing table 11, and a cleaning liquid is supplied from the cover cleaning nozzle 25 onto the cover 23 to clean the cover 24. The swing arm 21 may be swung to control the injection position of the cleaning fluid injected from each of the injection nozzles 231 to 238. The injection of the cleaning fluid from the atomizer injection nozzles 231 to 238 and the cover cleaning nozzle 25 is performed until the start of polishing of the next wafer W (until the end of the dressing work).
 本実施の形態では、図4に示すように、揺動アーム21の先端部に位置する噴射ノズル231が、スラリ吐出口22から吐出されたスラリの研磨テーブル11上における滴下位置を洗浄できるように斜めに設けられているため、スラリ吐出口22から研磨テーブル11の中心付近にスラリが滴下される場合であっても、研磨テーブル11の中心付近に洗浄流体を十分に噴射して洗浄することが可能であり、研磨テーブル11上に残留するパーティクルを低減できる。パーティクルがウェハの表面に付着すると欠陥(defect)の原因となるが、このようにスラリの排出性が向上することで、ウェハの欠陥軽減効果が向上する。 In the present embodiment, as shown in FIG. 4, the injection nozzle 231 located at the tip of the swing arm 21 can clean the dropping position of the slurry discharged from the slurry discharge port 22 on the polishing table 11. Since it is provided at an angle, even if the slurry is dropped from the slurry discharge port 22 near the center of the polishing table 11, it is possible to sufficiently inject the cleaning fluid near the center of the polishing table 11 for cleaning. It is possible and the particles remaining on the polishing table 11 can be reduced. When particles adhere to the surface of the wafer, they cause defects. By improving the dischargeability of the slurry in this way, the defect reducing effect of the wafer is improved.
 ところで、背景技術の欄でも言及したように、従来のCMP装置では、揺動アームの先端部に設けられたスラリ吐出ノズルが、研磨パッド上に配置されたアトマイザと干渉しないように、スラリ吐出ノズルをアトマイザより高い高さ位置に配置する必要があった。そのため、揺動アームを揺動させながらスラリ吐出ノズルからスラリを吐出させる際に、スラリの滴下位置が位置ずれしやすく、ウェハの研磨に必要なスラリを最適なタイミングと位置に滴下することが困難であった。 By the way, as mentioned in the background technology section, in the conventional CMP device, the slurry discharge nozzle provided at the tip of the swing arm does not interfere with the atomizer arranged on the polishing pad. Needed to be placed at a higher height than the atomizer. Therefore, when the slurry is discharged from the slurry discharge nozzle while swinging the swing arm, the position where the slurry is dropped tends to shift, and it is difficult to drop the slurry required for polishing the wafer at the optimum timing and position. Met.
 これに対し、本実施の形態によれば、スラリ吐出口22と噴射ノズル231~238とが同一の揺動アーム21上に配置されているため、スラリ吐出口22の高さ位置を低くしても、スラリ吐出口22が噴射ノズルと干渉することがない。したがって、スラリ吐出口22の高さ位置を低くすることが可能であり、これにより、スラリがスラリ吐出口22から吐出されてから研磨テーブル11上に到達するまでの距離および時間が短縮され、揺動アーム21を揺動させながらスラリ吐出ノズル22からスラリを吐出させる際に、スラリの滴下位置が位置ずれしにくくなり、ウェハWの研磨に必要なスラリを最適なタイミングと位置に滴下することが可能となる。 On the other hand, according to the present embodiment, since the slurry discharge port 22 and the injection nozzles 231 to 238 are arranged on the same swing arm 21, the height position of the slurry discharge port 22 is lowered. However, the slurry discharge port 22 does not interfere with the injection nozzle. Therefore, it is possible to lower the height position of the slurry discharge port 22, thereby shortening the distance and time from the slurry being discharged from the slurry discharge port 22 to reaching the polishing table 11, and shaking. When the slurry is discharged from the slurry discharge nozzle 22 while swinging the moving arm 21, the position where the slurry is dropped is less likely to shift, and the slurry required for polishing the wafer W can be dropped at the optimum timing and position. It will be possible.
 また、本実施の形態によれば、揺動アーム21の先端部に位置する噴射ノズル231が、スラリ吐出口22から吐出されたスラリの研磨テーブル11上における滴下位置を洗浄できるように斜めに設けられているため、たとえばスラリ吐出口22から研磨テーブル11の中心付近にスラリが滴下される場合であっても、研磨テーブル11の中心付近に洗浄流体を噴射して洗浄することが可能であり、研磨テーブル11上に残留するパーティクルを低減できる。 Further, according to the present embodiment, the injection nozzle 231 located at the tip of the swing arm 21 is diagonally provided so that the dropping position of the slurry discharged from the slurry discharge port 22 on the polishing table 11 can be washed. Therefore, for example, even when the slurry is dropped from the slurry discharge port 22 near the center of the polishing table 11, it is possible to inject a cleaning fluid near the center of the polishing table 11 for cleaning. Particles remaining on the polishing table 11 can be reduced.
 また、本実施の形態によれば、噴射ノズル231~238とスラリ吐出口22とが同一の揺動アーム21上に配置されていることにより、研摩装置内の省スペース化が図られる。 また、噴射ノズル231~238とスラリ吐出口22とが同一の揺動アーム21上に配置されていることにより、スラリ吐出口22を研磨テーブル11のテーブル面から退避させたときに、併せて噴射ノズル231~238も洗浄できる。 Further, according to the present embodiment, the injection nozzles 231 to 238 and the slurry discharge port 22 are arranged on the same swing arm 21, so that the space in the polishing device can be saved. Further, since the injection nozzles 231 to 238 and the slurry discharge port 22 are arranged on the same swing arm 21, when the slurry discharge port 22 is retracted from the table surface of the polishing table 11, the injection nozzles 22 are also injected. Nozzles 231 to 238 can also be cleaned.
 また、スラリ吐出口22と噴射ノズル231~238とが同一の揺動アーム21上に配置されている場合、スラリ吐出口22から吐出されて研磨テーブル11で跳ね返ったスラリだけでなく、噴射ノズル231から噴霧されて研磨テーブル11で跳ね返った洗浄流体も、スラリ供給チューブ27とチューブ27との間に浸入して滞留しやすいが、本実施の形態によれば、スラリ供給チューブ27の周囲がカバー24により覆われているため、研磨テーブル11で跳ね返った液体がチューブ27とチューブ27との間に浸入して滞留することを防止できる。 Further, when the slurry discharge port 22 and the injection nozzles 231 to 238 are arranged on the same swing arm 21, not only the slurry discharged from the slurry discharge port 22 and rebounded by the polishing table 11 but also the injection nozzle 231 The cleaning fluid sprayed from and rebounded on the polishing table 11 also easily infiltrates and stays between the slurry supply tube 27 and the tube 27, but according to the present embodiment, the periphery of the slurry supply tube 27 is covered with the cover 24. Therefore, it is possible to prevent the liquid bounced off by the polishing table 11 from entering and staying between the tubes 27 and the tubes 27.
 また、本実施の形態によれば、カバー24が研磨テーブル11と対向する下面24bを有し、スラリチューブ27の先端部が当該下面24bを下向きに貫通してカバー24の外側に突き出されているため、スラリチューブ27の先端部の周囲が一層隙間なくカバーされることになり、研磨テーブル11で跳ね返った液体がチューブ27とチューブ27との間に浸入して滞留することをより確実に防止できる。 Further, according to the present embodiment, the cover 24 has a lower surface 24b facing the polishing table 11, and the tip end portion of the slurry tube 27 penetrates the lower surface 24b downward and protrudes to the outside of the cover 24. Therefore, the periphery of the tip of the slurry tube 27 is covered even more tightly, and the liquid bounced off by the polishing table 11 can be more reliably prevented from entering and staying between the tubes 27. ..
 また、本実施の形態によれば、揺動アーム21の基端部にカバー洗浄ノズル25が設けられており、カバー洗浄ノズル25からカバー24上に洗浄液を供給することで、カバー24を洗浄できる。これにより、ウェハWの研磨中に、カバー24に付着していたパーティクルが研磨テーブル11上に落下してウェハWを汚染することを防止できる。 Further, according to the present embodiment, the cover cleaning nozzle 25 is provided at the base end portion of the swing arm 21, and the cover 24 can be cleaned by supplying the cleaning liquid from the cover cleaning nozzle 25 onto the cover 24. .. This makes it possible to prevent particles adhering to the cover 24 from falling onto the polishing table 11 and contaminating the wafer W during polishing of the wafer W.
 また、本実施の形態によれば、カバー24の内面には、揺動アーム21の長手方向に沿って延ばされているスラリチューブ27に向かって突き出るように複数のリブ24aが設けられているため、揺動アーム21上にカバー24を取り付ける際に、カバー24の内面に設けられたリブ24aがスラリチューブ27を揺動アーム21側に押さえることになり、スラリチューブ27に圧力が加わることによりチューブ27が浮き上がって接していなかったカバー24内壁に干渉したり、チューブ27にバタツキ、揺り返しが生じたりするといった問題が抑制・防止される。これにより、スラリチューブ27の浮き上がりによってスラリ吐出口22から吐出されるスラリが脈動して、スラリの滴下位置が不安定になることを抑制できる。また揺動アーム21上からカバー24を取り外す際に、カバー24の内面に設けられたリブ24aによるスラリチューブ27の押さえが解消されるため、スラリ供給チューブ27をパイプ等の中に通す場合に比べて、スラリチューブ27の交換作業を容易に行うことができる。 Further, according to the present embodiment, a plurality of ribs 24a are provided on the inner surface of the cover 24 so as to protrude toward the slurry tube 27 extending along the longitudinal direction of the swing arm 21. Therefore, when the cover 24 is mounted on the swing arm 21, the rib 24a provided on the inner surface of the cover 24 presses the slurry tube 27 toward the swing arm 21, and pressure is applied to the slurry tube 27. Problems such as the tube 27 floating up and interfering with the inner wall of the cover 24 that was not in contact with the tube 27, and the tube 27 fluttering or swinging back are suppressed / prevented. As a result, it is possible to prevent the slurry discharged from the slurry discharge port 22 from pulsating due to the floating of the slurry tube 27 and causing the slurry dropping position to become unstable. Further, when the cover 24 is removed from the swing arm 21, the holding of the slurry tube 27 by the rib 24a provided on the inner surface of the cover 24 is eliminated, so that the slurry supply tube 27 is not passed through a pipe or the like. Therefore, the replacement work of the slurry tube 27 can be easily performed.
 また、本実施の形態によれば、揺動アーム21において、スラリ吐出口22が噴射ノズル231~238よりもウェハWに近い側に配置されているため、ウェハWにより近い位置にスラリを吐出することが可能であり、ウェハWの研磨に必要なスラリをより最適なタイミングと位置に滴下することが可能である。 Further, according to the present embodiment, in the swing arm 21, the slurry discharge port 22 is arranged closer to the wafer W than the injection nozzles 231 to 238, so that the slurry is discharged to a position closer to the wafer W. This is possible, and the slurry required for polishing the wafer W can be dropped at a more optimum timing and position.
 また、本実施の形態によれば、スラリチューブ27がアトマイザ本体(すなわち揺動アーム21)に固定されているため、剛性が上がり、スラリチューブ27の先端部の振れが小さくなる。また、比較例として、スラリチューブ27が斜めに、あるいは研磨テーブルから遠く離れて配置されていて研磨テーブル中央にスラリを吐出する構成を考えた場合、当該比較例の構成では、スラリの流速の変化により滴下位置がぶれやすいという問題があるが、本実施の形態では、揺動アーム21において、スラリ吐出口22が噴射ノズル231~238よりもウェハWに近い側に配置されており、当該スラリ吐出口22は鉛直下向きであるため、スラリ滴下位置の位置制御が容易である。また、噴射ノズル232~238の噴射位置計算も、この鉛直下向きに滴下するという点で、スラリ吐出口22との相対位置関係が保たれるため、スラリ吐出口22と同じ軌跡を通過するように制御すればよいだけにできる。 Further, according to the present embodiment, since the slurry tube 27 is fixed to the atomizer main body (that is, the swing arm 21), the rigidity is increased and the runout of the tip portion of the slurry tube 27 is reduced. Further, as a comparative example, when considering a configuration in which the slurry tube 27 is arranged diagonally or far away from the polishing table and discharges the slurry to the center of the polishing table, in the configuration of the comparative example, the change in the flow velocity of the slurry is considered. However, in the present embodiment, the slurry discharge port 22 is arranged closer to the wafer W than the injection nozzles 231 to 238 in the swing arm 21, and the slurry discharge port 22 is located closer to the wafer W. Since the outlet 22 faces vertically downward, it is easy to control the position of the slurry dropping position. In addition, the injection position calculation of the injection nozzles 232 to 238 also maintains the relative positional relationship with the slurry discharge port 22 in that it drops vertically downward, so that it passes through the same trajectory as the slurry discharge port 22. You just have to control it.
 図6は、研磨装置10の一部を示す縦断面図で、図7は研磨装置10のシステム構成図ある。図6に示すように、研磨装置10の研磨テーブル11は、その下方に配置されたモータ50に連結されており、矢印で示すようにその軸心周りに回転可能になっている。また、研磨テーブル11の上面には研磨面52aを有する研磨パッド(研磨布)52が貼設されている。また、トップリング12はトップリングシャフト54に連結されており、トップリング12の下部外周部には、半導体ウェハWの外周縁を保持するリテーナリング56が設けられている。 FIG. 6 is a vertical cross-sectional view showing a part of the polishing device 10, and FIG. 7 is a system configuration diagram of the polishing device 10. As shown in FIG. 6, the polishing table 11 of the polishing apparatus 10 is connected to a motor 50 arranged below the polishing table 11, and is rotatable around its axis as shown by an arrow. Further, a polishing pad (polishing cloth) 52 having a polishing surface 52a is attached to the upper surface of the polishing table 11. Further, the top ring 12 is connected to the top ring shaft 54, and a retainer ring 56 for holding the outer peripheral edge of the semiconductor wafer W is provided on the lower outer peripheral portion of the top ring 12.
 トップリング12は、モータ(図示せず)に連結されるとともに昇降シリンダ(図示せず)に連結されている。これによって、トップリング12は、矢印で示すように昇降可能かつその軸心周りに回転可能になっており、半導体ウェハWを研磨パッド52の研磨面52aに対して任意の圧力で押圧することができるようになっている。 The top ring 12 is connected to a motor (not shown) and to an elevating cylinder (not shown). As a result, the top ring 12 can be raised and lowered as shown by an arrow and can rotate around its axis, and the semiconductor wafer W can be pressed against the polishing surface 52a of the polishing pad 52 with an arbitrary pressure. You can do it.
 研磨テーブル11の内部には、半導体ウェハWの表面に形成された銅膜等の金属薄膜の膜厚を測定する膜厚モニタとしての渦電流センサ58が埋設されている。渦電流センサ(膜厚モニタ)58からの配線60は、研磨テーブル22及び支持軸62内を通り、支持軸62の軸端に設けられたロータリコネクタ(またはスリップリング)64を経由してコントローラ66に接続されている。この渦電流センサ58が半導体ウェハWの下方を通過している間、通過軌跡上で連続的に半導体ウェハWの表面に形成された銅膜等の導電膜の膜厚を測定できるようになっている。コントローラ66は、そのコントロール対象と設置場所は、研摩モジュール内で研摩モジュール内の作業に関わる研摩モジュール内のコントローラであっても良く、あるいは洗浄・乾燥装置までも含む研磨装置全体の作業に関わる研磨装置のコントローラであっても良い。さらにまた、コントローラ66は研磨装置の洗浄・乾燥モジュール内に配置されていてもよい。さらに、基板処理システムが設置される工場内の、ハウジングの外側に配置されていてもよい。さらに、コントローラ66は、複数のコンピュータから構成されており、上記複数のコンピュータは、工場内に分散して配置されていてもよい。別の言い方をすれば、コントローラ66を構成する少なくとも1台のコンピュータは、洗浄・乾燥モジュール内、洗浄・乾燥モジュールの近傍、または洗浄・乾燥モジュールから離れた基板処理システム内に配置されていてもよい。さらに、半導体基板製造工場内の複数の基板処理システムの1ラインにコントローラ66を構成する少なくとも1台のコンピュータが配置されていてもよい。さらに、コントローラ66を構成する複数のコンピュータは複数の基板処理システムの複数のラインに配置されていてもよい。さらに、コントローラ66を構成する少なくとも1台のコンピュータは、工場内のライン制御・監視場所やライン制御・監視システム内に配置されていてもよい。さらに、半導体基板製造企業の複数の工場監視場所や工場監視システム内、あるいはCMP装置製造・設置企業内に配置されていてもよい。 Inside the polishing table 11, an eddy current sensor 58 as a film thickness monitor for measuring the film thickness of a metal thin film such as a copper film formed on the surface of the semiconductor wafer W is embedded. The wiring 60 from the eddy current sensor (film thickness monitor) 58 passes through the polishing table 22 and the support shaft 62, and passes through the rotary connector (or slip ring) 64 provided at the shaft end of the support shaft 62, and the controller 66. It is connected to the. While the eddy current sensor 58 passes under the semiconductor wafer W, it has become possible to continuously measure the film thickness of a conductive film such as a copper film formed on the surface of the semiconductor wafer W on the passing locus. There is. The control target and installation location of the controller 66 may be the controller in the polishing module related to the work in the polishing module in the polishing module, or the polishing related to the work of the entire polishing device including the cleaning / drying device. It may be the controller of the device. Furthermore, the controller 66 may be located in the cleaning / drying module of the polishing device. Further, it may be located outside the housing in the factory where the substrate processing system is installed. Further, the controller 66 is composed of a plurality of computers, and the plurality of computers may be distributed and arranged in the factory. In other words, even if at least one computer constituting the controller 66 is located in the cleaning / drying module, in the vicinity of the cleaning / drying module, or in the substrate processing system away from the cleaning / drying module. good. Further, at least one computer constituting the controller 66 may be arranged in one line of a plurality of substrate processing systems in a semiconductor substrate manufacturing factory. Further, the plurality of computers constituting the controller 66 may be arranged on a plurality of lines of the plurality of board processing systems. Further, at least one computer constituting the controller 66 may be arranged in a line control / monitoring place in a factory or a line control / monitoring system. Further, it may be arranged in a plurality of factory monitoring locations of a semiconductor substrate manufacturing company, in a factory monitoring system, or in a company that manufactures and installs a CMP device.
 なお、この例では、渦電流センサを用いて、半導体ウェハ表面に形成された銅膜等の金属薄膜の膜厚を測定しているようにしているが、渦電流センサの代わりに光学式センサを使用して、半導体ウェハの表面に設けられた酸化膜薄膜等の光学的に透明な薄膜の膜厚を研磨中に測定するようにしてもよい。 In this example, the eddy current sensor is used to measure the thickness of a metal thin film such as a copper film formed on the surface of a semiconductor wafer, but an optical sensor is used instead of the vortex current sensor. It may be used to measure the thickness of an optically transparent thin film such as an oxide thin film provided on the surface of a semiconductor wafer during polishing.
 図示しないが、半導体ウェハの表面の研磨後プロファイルを測定する研磨プロファイルモニタを備え、この研磨プロファイルモニタの測定結果をシミュレータ72に実研磨プロファイルとして入力するようにしてもよい。 Although not shown, a polishing profile monitor for measuring the post-polishing profile of the surface of the semiconductor wafer may be provided, and the measurement result of this polishing profile monitor may be input to the simulator 72 as an actual polishing profile.
 揺動アーム24は、図7に示すように、駆動機構としてのサーボモータ262の回転に伴って、研磨面52aの上方を水平面に沿って揺動し、この揺動アーム24の揺動に伴って、先端の下方に向いたスラリ吐出口22、つまり研磨液供給位置が研磨面52aの略半径方向に沿って移動するようになっている。サーボモータ(駆動機構)262は、コントローラ66に接続されている。 As shown in FIG. 7, the swing arm 24 swings above the polishing surface 52a along a horizontal plane with the rotation of the servomotor 262 as a drive mechanism, and the swing arm 24 swings with the swing. Therefore, the slurry discharge port 22 facing downward at the tip, that is, the polishing liquid supply position moves along the substantially radial direction of the polishing surface 52a. The servomotor (drive mechanism) 262 is connected to the controller 66.
 コントローラ66には、揺動アーム24のスラリ吐出口(研磨液供給位置)22と、この研磨液供給位置で研磨液を研磨面52aに供給しながら研磨を行った場合の研磨プロファイルとの関係を予測し、例えば所望の研磨プロファイルを基にシミュレーションを行うシミュレータ72が接続されている。 The controller 66 has a relationship between the slurry discharge port (polishing liquid supply position) 22 of the swing arm 24 and the polishing profile when polishing is performed while supplying the polishing liquid to the polishing surface 52a at this polishing liquid supply position. A simulator 72 that predicts and performs a simulation based on, for example, a desired polishing profile is connected.
 シミュレータ72に記憶されているデータベースは、揺動アーム24のスラリ吐出口22の図7に示す円弧の延長線に沿った位置である複数の研磨液供給位置:α(°)と、この研磨液供給位置で研磨液を供給しながら半導体ウェハWの研磨を行った時の該半導体ウェハWの図7に示す半径rに沿ったウェハ位置:r(mm)との各交点における研磨レート:RR(α,r)(nm/min)からなる。このデータベースの各研磨液供給位置:αにおける研磨レート:RR(α,r)、例えば研磨液供給位置α=60(°)に対応した研磨レート(60,r)から、各研磨液供給位置:αから研磨液を供給しながら一定時間研磨を行った時の研磨プロファイルが判る。つまり、このデータベースにおいて、研磨レートは、一定時間に亘る研磨を継続して行った時の研磨プロファイルも表している。 The database stored in the simulator 72 contains a plurality of polishing liquid supply positions: α (°), which are positions along the extension line of the arc shown in FIG. 7 of the slurry discharge port 22 of the swing arm 24, and this polishing liquid. When the semiconductor wafer W is polished while the polishing liquid is supplied at the supply position, the wafer position along the radius r shown in FIG. 7 of the semiconductor wafer W: the polishing rate at each intersection with r (mm): RR ( It consists of α, r) (nm / min). Each polishing liquid supply position in this database: Polishing rate at α: RR (α, r), for example, from the polishing rate (60, r) corresponding to the polishing liquid supply position α = 60 (°), each polishing liquid supply position: The polishing profile when polishing is performed for a certain period of time while supplying the polishing liquid from α can be known. That is, in this database, the polishing rate also represents the polishing profile when polishing is continuously performed for a certain period of time.
 このような構成の研磨装置10において、トップリング12の下面に半導体ウェハWを保持させ、回転している研磨テーブル11の上面の研磨パッド52に半導体ウェハWを昇降シリンダにより押圧する。そして、揺動アーム24を揺動させてスラリ吐出口22から研磨パッド52上に研磨液Qを供給することで、半導体ウェハWの被研磨面(下面)と研磨パッド52の間に研磨液Qが存在した状態で半導体ウェハWの表面の研磨が行われる。この研磨時に、コントローラ66によって、サーボモータ262を制御しながら揺動アーム24を揺動させることで、スラリ吐出口22から供給される研磨液Qの供給位置(研磨液供給位置)を所定の移動パターンに沿って移動させる。この研磨液供給位置の移動パターンは、シミュレータ72で予測され、コントローラ66に入力されて決定される。 In the polishing apparatus 10 having such a configuration, the semiconductor wafer W is held on the lower surface of the top ring 12, and the semiconductor wafer W is pressed against the polishing pad 52 on the upper surface of the rotating polishing table 11 by the elevating cylinder. Then, by swinging the swing arm 24 to supply the polishing liquid Q from the slurry discharge port 22 onto the polishing pad 52, the polishing liquid Q is between the surface to be polished (lower surface) of the semiconductor wafer W and the polishing pad 52. The surface of the semiconductor wafer W is polished in the presence of. At the time of this polishing, the controller 66 swings the swing arm 24 while controlling the servomotor 262 to move the supply position (polishing liquid supply position) of the polishing liquid Q supplied from the slurry discharge port 22 to a predetermined position. Move along the pattern. The movement pattern of the polishing liquid supply position is predicted by the simulator 72, input to the controller 66, and determined.
 次に、シミュレータ72による研磨液供給位置、すなわち揺動アーム24のスラリ吐出口22の移動パターンの予測を図8、図9A及び図9Bを参照して説明する。 Next, the prediction of the polishing liquid supply position by the simulator 72, that is, the movement pattern of the slurry discharge port 22 of the swing arm 24 will be described with reference to FIGS. 8, 9A and 9B.
 先ず、シミュレータ72は、揺動アーム24の揺動可能範囲、つまり図9Bに示すスラリ吐出口(研磨液供給位置)22の可動範囲A、最小及び最多速度変化点数、及び速度変化時の加減速度等の計算パラメータを読み込む(ステップ1)。 First, the simulator 72 has a swingable range of the swing arm 24, that is, a movable range A of the slurry discharge port (polishing liquid supply position) 22 shown in FIG. 9B, the minimum and maximum speed change points, and the acceleration / deceleration at the time of speed change. Read the calculation parameters such as (step 1).
 次に、シミュレータ72は、揺動アーム24の研磨液供給位置と実研磨プロファイルとの相関を過去データや直前データなどから実験データとして読み込む(ステップ2)。この実験データで求められた揺動アーム24の複数点の研磨液供給位置と研磨レート(研磨プロファイル)との関係を示すデータベースを参照し、必要に応じてN次回帰、フーリエ変換、スプライン回帰及びウェーブレット変換の少なくとも一手法により、任意の研磨液供給位置と研磨レート(研磨プロファイル)との関係を予測して記憶する(ステップ3)。 Next, the simulator 72 reads the correlation between the polishing liquid supply position of the swing arm 24 and the actual polishing profile as experimental data from past data, immediately preceding data, and the like (step 2). Refer to the database showing the relationship between the polishing liquid supply positions of the plurality of points of the swing arm 24 and the polishing rate (polishing profile) obtained from this experimental data, and if necessary, Nth order regression, Fourier transform, spline regression and spline regression. The relationship between an arbitrary polishing liquid supply position and a polishing rate (polishing profile) is predicted and stored by at least one method of wavelet transform (step 3).
 一方、直接或いは研磨装置(CMP)から研磨後の所望研磨プロファイルをシミュレータ70に入力する(ステップ4)。 On the other hand, the desired polishing profile after polishing is input to the simulator 70 directly or from the polishing device (CMP) (step 4).
 次に、例えば図9Bに示す研磨液供給開始位置S、研磨液供給折返し位置R、速度変化位置P1~P4、及び各速度変化位置の間S~P1,P1~P2,P2~P3,P3~P4,P4~Rでのスラリ吐出口の移動速度V1~V5等の研磨液供給位置の移動パターンの計算初期値を設置する(ステップ5)。更に、最大繰り返し回数、許容プロファイル誤差(所望プロファイルと予想プロファイルの誤差)等の計算における制限を設定する(ステップ6)。 Next, for example, between the polishing liquid supply start position S, the polishing liquid supply turning position R, the speed change positions P1 to P4, and each speed change position shown in FIG. 9B, S to P1, P1 to P2, P2 to P3, P3 to Set the calculation initial value of the movement pattern of the polishing liquid supply position such as the movement speed V1 to V5 of the slurry discharge port in P4, P4 to R (step 5). Further, limits in calculation such as the maximum number of repetitions and the allowable profile error (error between the desired profile and the expected profile) are set (step 6).
 以上の各ステップを経て、シミュレータ70は、データベースを参照して、仮の研磨液供給位置移動パターンで研磨液供給位置を移動させながら研磨を行った時の研磨プロファイル(研磨レート)を求める(ステップ7)。 Through each of the above steps, the simulator 70 refers to the database and obtains a polishing profile (polishing rate) when polishing is performed while moving the polishing liquid supply position in a temporary polishing liquid supply position moving pattern (step). 7).
 そして、所望の研磨プロファイルと、ステップ7の計算で求めた研磨プロファイルとの差を計算し(ステップ8)、この差がステップ6で設定した許容プロファイル誤差の範囲内であるか、或いは最大繰り返し数に到達していないかを判断する(ステップ9)。 Then, the difference between the desired polishing profile and the polishing profile obtained in the calculation in step 7 is calculated (step 8), and this difference is within the allowable profile error set in step 6, or the maximum number of repetitions. Is not reached (step 9).
 そして、所望の研磨プロファイルと計算で求めた研磨プロファイルとの差が許容プロファイル誤差の範囲内でない場合には、仮の研磨液供給位置移動パターンを再計算するためにステップ7に戻る(ステップ10)。そして、これを繰り返して、所望の研磨プロファイルと計算で求めた研磨プロファイルとの差が許容プロファイル誤差の範囲内になった時、または所望の研磨プロファイルと計算で求めた研磨プロファイルとの差が許容プロファイル誤差の範囲内でなくても、ステップ6で設定した最大繰り返し数に到達した時に、ステップ7で計算した研磨プロファイルとなる研磨供給位置の移動パターンを表示し保存して、コントローラ66に入力する(ステップ11)。 Then, if the difference between the desired polishing profile and the calculated polishing profile is not within the allowable profile error, the process returns to step 7 in order to recalculate the temporary polishing liquid supply position movement pattern (step 10). .. Then, by repeating this, when the difference between the desired polishing profile and the calculated polishing profile is within the allowable profile error, or the difference between the desired polishing profile and the calculated polishing profile is acceptable. Even if it is not within the range of the profile error, when the maximum number of repetitions set in step 6 is reached, the movement pattern of the polishing supply position, which is the polishing profile calculated in step 7, is displayed and saved, and is input to the controller 66. (Step 11).
 コントローラ66は、シミュレータ70からの入力を受けて、研磨中における研磨液供給位置の移動パターンに沿って揺動アーム24のスラリ吐出口22が移動するように、移動機構としてのサーボモータ70を制御して、揺動アーム24を揺動させる。 The controller 66 receives an input from the simulator 70 and controls the servomotor 70 as a moving mechanism so that the slurry discharge port 22 of the swing arm 24 moves along the moving pattern of the polishing liquid supply position during polishing. Then, the swing arm 24 is swung.
 この例では、半導体ウェハの研磨中に、渦電流センサ58により半導体ウェハの表面に形成された銅膜等の金属薄膜の膜厚分布(研磨プロファイル)を取得してシミュレータ72に入力する。シミュレータ72により、図8のステップ4で入力された所望の研磨プロファイルと研磨中に渦電流センサ58により取得された膜厚分布(研磨プロファイル)とを瞬時に比較して差を求め、所望の研磨プロファイルとするために必要な研磨条件のシミュレーションを行う。シミュレーションによって得られた研磨条件に基づいて、所望のプロファイルになるように、揺動アーム24の揺動パターン、つまりスラリ吐出口(研磨液供給位置)22の移動パターンを更新する。 In this example, during polishing of a semiconductor wafer, the film thickness distribution (polishing profile) of a metal thin film such as a copper film formed on the surface of the semiconductor wafer is acquired by the eddy current sensor 58 and input to the simulator 72. The simulator 72 instantly compares the desired polishing profile input in step 4 of FIG. 8 with the film thickness distribution (polishing profile) acquired by the eddy current sensor 58 during polishing to obtain the difference, and obtains the desired polishing. Simulate the polishing conditions required to create a profile. Based on the polishing conditions obtained by the simulation, the swing pattern of the swing arm 24, that is, the movement pattern of the slurry discharge port (polishing liquid supply position) 22 is updated so as to have a desired profile.
 このように揺動アーム24の揺動パターンを制御して、研磨後の半導体ウェハの表面に形成された銅膜等の金属薄膜の膜厚分布(研磨プロファイル)が所望のプロファイルとなるように所望の研磨を行って、研磨を完了させる。 By controlling the swing pattern of the swing arm 24 in this way, it is desired that the film thickness distribution (polishing profile) of the metal thin film such as a copper film formed on the surface of the semiconductor wafer after polishing becomes a desired profile. Polishing is performed to complete the polishing.
 なお、上述した実施の形態では、噴射ノズル231~238は、研磨テーブル11に向けて洗浄流体(液体または気体と液体の混合流体)を吹き付けて研磨テーブル11上の異物を除去する目的で利用されたが、これに限定されるものではなく、噴射ノズル231~238は研磨テーブル11に向けて温度調整された液体を吹き付けて研磨テーブル11の表面の温度を調節する目的で利用されてもよい。 In the above-described embodiment, the injection nozzles 231 to 238 are used for the purpose of spraying a cleaning fluid (liquid or a mixed fluid of gas and liquid) toward the polishing table 11 to remove foreign substances on the polishing table 11. However, the present invention is not limited to this, and the injection nozzles 231 to 238 may be used for the purpose of spraying a temperature-adjusted liquid toward the polishing table 11 to adjust the temperature of the surface of the polishing table 11.
 これまで本技術の好ましい実施形態について説明したが、本技術は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。

 
Although the preferred embodiments of the present technology have been described so far, it is needless to say that the present technology is not limited to the above-described embodiments and may be implemented in various different forms within the scope of the technical idea.

Claims (16)

  1.  研磨テーブルの上方を水平に揺動可能な揺動アームと、
     前記揺動アームの長手方向に沿って延ばされており先端部のスラリ吐出口から前記研磨テーブル上にスラリを吐出するスラリチューブと、
     前記揺動アームの長手方向に沿って並んで設けられ前記研磨テーブル上に洗浄流体を噴射する複数の噴射ノズルと、
    を備え、
     前記スラリ吐出口は前記揺動アームの先端部に位置決めされており、
     前記揺動アームの先端部に位置する噴射ノズルは、前記スラリ吐出口から吐出されたスラリの前記研磨テーブル上における滴下位置を洗浄できるように斜めに設けられている
    ことを特徴とする液体供給装置。
    A swing arm that can swing horizontally above the polishing table,
    A slurry tube extending along the longitudinal direction of the swing arm and discharging slurry onto the polishing table from a slurry discharge port at the tip thereof.
    A plurality of injection nozzles provided side by side along the longitudinal direction of the swing arm to inject a cleaning fluid onto the polishing table.
    Equipped with
    The slurry discharge port is positioned at the tip of the swing arm.
    The injection nozzle located at the tip of the swing arm is obliquely provided so as to be able to clean the dropping position of the slurry discharged from the slurry discharge port on the polishing table. ..
  2.  前記スラリチューブの周囲は、前記研磨テーブルで跳ね返った液体がチューブとチューブとの間に浸入して滞留することを防ぐためのカバーにより覆われている
    ことを特徴とする請求項1に記載の液体供給装置。
    The liquid according to claim 1, wherein the periphery of the slurry tube is covered with a cover for preventing the liquid bounced off the polishing table from entering and staying between the tubes. Feeding device.
  3.  前記カバーは、前記研磨テーブルと対向する下面を有し、前記スラリチューブの先端部は当該下面を下向きに貫通して当該カバーの外側に突き出されている
    ことを特徴とする請求項2に記載の液体供給装置。
    The second aspect of claim 2, wherein the cover has a lower surface facing the polishing table, and the tip end portion of the slurry tube penetrates the lower surface downward and protrudes to the outside of the cover. Liquid supply device.
  4.  前記揺動アームの基端部には前記カバー上に洗浄液を供給するカバー洗浄ノズルが設けられている、
    ことを特徴とする請求項2または3に記載の液体供給装置。
    A cover cleaning nozzle for supplying a cleaning liquid is provided on the cover at the base end portion of the swing arm.
    The liquid supply device according to claim 2 or 3.
  5.  前記カバー洗浄ノズルは、前記カバーの上面に洗浄液を供給する第1ノズルと、前記カバーの右側面に洗浄液を供給する第2ノズルと、前記カバーの左側面に洗浄液を供給する第3ノズルとを有する、
    ことを特徴とする請求項4に記載の液体供給装置。
    The cover cleaning nozzle includes a first nozzle that supplies a cleaning liquid to the upper surface of the cover, a second nozzle that supplies the cleaning liquid to the right side surface of the cover, and a third nozzle that supplies the cleaning liquid to the left side surface of the cover. Have,
    The liquid supply device according to claim 4.
  6.  前記カバーの内面には、前記揺動アームの表面に沿って這わされている前記スラリチューブに向かって突き出るように複数のリブが設けられている
    ことを特徴とする請求項2~5のいずれかに記載の液体供給装置。
    One of claims 2 to 5, wherein the inner surface of the cover is provided with a plurality of ribs so as to protrude toward the slurry tube crawls along the surface of the swing arm. Liquid supply device according to.
  7.  前記揺動アームにおいて、前記スラリ吐出口は、前記噴射ノズルよりも研磨対象物に近い側に配置されている
    ことを特徴とする請求項1~6のいずれかに記載の液体供給装置。
    The liquid supply device according to any one of claims 1 to 6, wherein in the swing arm, the slurry discharge port is arranged closer to the object to be polished than the injection nozzle.
  8.  前記揺動アームの駆動機構は、サーボモータと減速機から構成されている、
    ことを特徴とする請求項1~7のいずれかに記載の液体供給装置。
    The drive mechanism of the swing arm includes a servomotor and a speed reducer.
    The liquid supply device according to any one of claims 1 to 7.
  9.  液体供給装置を備えた研磨装置であって、
     前記液体供給装置は、
     研磨テーブルの上方を水平に揺動可能な揺動アームと、
     前記揺動アームの長手方向に沿って延ばされており先端部のスラリ吐出口から前記研磨テーブル上にスラリを吐出するスラリチューブと、
     前記揺動アームの長手方向に沿って並んで設けられ前記研磨テーブル上に洗浄流体を噴射する複数の噴射ノズルと、
    を有し、
     前記スラリ吐出口は前記揺動アームの先端部に位置決めされており、
     前記揺動アームの先端部に位置する噴射ノズルは、前記スラリ吐出口から吐出されたスラリの前記研磨テーブル上における滴下位置を洗浄できるように斜めに設けられている、
    ことを特徴とする研磨装置。
    A polishing device equipped with a liquid supply device,
    The liquid supply device is
    A swing arm that can swing horizontally above the polishing table,
    A slurry tube extending along the longitudinal direction of the swing arm and discharging slurry onto the polishing table from a slurry discharge port at the tip thereof.
    A plurality of injection nozzles provided side by side along the longitudinal direction of the swing arm to inject a cleaning fluid onto the polishing table.
    Have,
    The slurry discharge port is positioned at the tip of the swing arm.
    The injection nozzle located at the tip of the swing arm is diagonally provided so that the dropping position of the slurry discharged from the slurry discharge port on the polishing table can be washed.
    A polishing device characterized by that.
  10.  前記スラリチューブの周囲は、前記研磨テーブルで跳ね返った液体がチューブとチューブとの間に浸入して滞留することを防ぐためのカバーにより覆われている
    ことを特徴とする請求項9に記載の研磨装置。
    The polishing according to claim 9, wherein the periphery of the slurry tube is covered with a cover for preventing the liquid bounced off the polishing table from entering and staying between the tubes. Device.
  11.  前記カバーは、前記研磨テーブルと対向する下面を有し、前記スラリチューブの先端部は当該下面を下向きに貫通して当該カバーの外側に突き出されている
    ことを特徴とする請求項10に記載の研磨装置。
    10. The tenth aspect of the present invention, wherein the cover has a lower surface facing the polishing table, and the tip end portion of the slurry tube penetrates the lower surface downward and protrudes to the outside of the cover. Polishing equipment.
  12.  前記揺動アームの基端部には前記カバー上に洗浄液を供給するカバー洗浄ノズルが設けられている、
    ことを特徴とする請求項10または11に記載の研磨装置。
    A cover cleaning nozzle for supplying a cleaning liquid is provided on the cover at the base end portion of the swing arm.
    The polishing apparatus according to claim 10 or 11.
  13.  前記カバー洗浄ノズルは、前記カバーの上面に洗浄液を供給する第1ノズルと、前記カバーの右側面に洗浄液を供給する第2ノズルと、前記カバーの左側面に洗浄液を供給する第3ノズルとを有する、
    ことを特徴とする請求項12に記載の研磨装置。
    The cover cleaning nozzle includes a first nozzle that supplies a cleaning liquid to the upper surface of the cover, a second nozzle that supplies the cleaning liquid to the right side surface of the cover, and a third nozzle that supplies the cleaning liquid to the left side surface of the cover. Have,
    The polishing apparatus according to claim 12.
  14.  前記カバーの内面には、前記揺動アームの表面に沿って這わされている前記スラリチューブに向かって突き出るように複数のリブが設けられている
    ことを特徴とする請求項10~13のいずれかに記載の研磨装置。
    One of claims 10 to 13, wherein the inner surface of the cover is provided with a plurality of ribs so as to project toward the slurry tube crawls along the surface of the swing arm. The polishing device described in.
  15.  前記揺動アームにおいて、前記スラリ吐出口は、前記噴射ノズルよりも研磨対象物に近い側に配置されている
    ことを特徴とする請求項9~14のいずれかに記載の研磨装置。
    The polishing apparatus according to any one of claims 9 to 14, wherein in the swing arm, the slurry discharge port is arranged closer to the object to be polished than the injection nozzle.
  16.  前記揺動アームの駆動機構は、サーボモータと減速機から構成されている、
    ことを特徴とする請求項9~15のいずれかに記載の研磨装置。

     
    The drive mechanism of the swing arm includes a servomotor and a speed reducer.
    The polishing apparatus according to any one of claims 9 to 15.

PCT/JP2021/024136 2020-07-06 2021-06-25 Liquid supply device and polishing device WO2022009700A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020116200A JP2022014055A (en) 2020-07-06 2020-07-06 Liquid supply device and polishing device
JP2020-116200 2020-07-06

Publications (1)

Publication Number Publication Date
WO2022009700A1 true WO2022009700A1 (en) 2022-01-13

Family

ID=79553074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024136 WO2022009700A1 (en) 2020-07-06 2021-06-25 Liquid supply device and polishing device

Country Status (3)

Country Link
JP (1) JP2022014055A (en)
TW (1) TW202206227A (en)
WO (1) WO2022009700A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114843212B (en) * 2022-04-29 2023-01-24 浙江晶睿电子科技有限公司 Multifunctional semiconductor cavity type processing equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1170464A (en) * 1997-06-24 1999-03-16 Applied Materials Inc Combination and operation method for slurry dispenser and rinse arm
JP2002299293A (en) * 2001-03-26 2002-10-11 Samsung Electronics Co Ltd Polishing method and polishing apparatus for wafer
JP2014111301A (en) * 2012-11-02 2014-06-19 Ebara Corp Polishing device and polishing method
US20150190899A1 (en) * 2014-01-02 2015-07-09 Kojem International Co., Ltd Device for the injection of cmp slurry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1170464A (en) * 1997-06-24 1999-03-16 Applied Materials Inc Combination and operation method for slurry dispenser and rinse arm
JP2002299293A (en) * 2001-03-26 2002-10-11 Samsung Electronics Co Ltd Polishing method and polishing apparatus for wafer
JP2014111301A (en) * 2012-11-02 2014-06-19 Ebara Corp Polishing device and polishing method
US20150190899A1 (en) * 2014-01-02 2015-07-09 Kojem International Co., Ltd Device for the injection of cmp slurry

Also Published As

Publication number Publication date
JP2022014055A (en) 2022-01-19
TW202206227A (en) 2022-02-16

Similar Documents

Publication Publication Date Title
US10259098B2 (en) Method and apparatus for polishing a substrate
JP7176059B2 (en) Polishing device and polishing method
KR101598548B1 (en) Polishing apparatus and polishing method
TWI808233B (en) Apparatus for polishing and method for polishing
US6899609B2 (en) CMP equipment for use in planarizing a semiconductor wafer
JP5775797B2 (en) Polishing apparatus and method
WO2022009700A1 (en) Liquid supply device and polishing device
KR20200016178A (en) Apparatus for polishing and method for polishing
JPH11233480A (en) Substrate drying device and its method
JP7170748B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
JP7299773B2 (en) Grinding equipment
US11724355B2 (en) Substrate polish edge uniformity control with secondary fluid dispense
US11819976B2 (en) Spray system for slurry reduction during chemical mechanical polishing (cmp)
TWI837669B (en) Grinding device and grinding method
JP2023072862A (en) Grinding device and processing device
JP2023101963A (en) Washing device
KR20070112647A (en) Chemical mechanical polishing apparatus and method for cleaning polishing-pad using the same
JP2023006220A (en) Liquid supply device and polishing device
JP2023170933A (en) Grinding method of wafer and grinder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21838183

Country of ref document: EP

Kind code of ref document: A1