WO2022009520A1 - Rotation sensor - Google Patents

Rotation sensor Download PDF

Info

Publication number
WO2022009520A1
WO2022009520A1 PCT/JP2021/018291 JP2021018291W WO2022009520A1 WO 2022009520 A1 WO2022009520 A1 WO 2022009520A1 JP 2021018291 W JP2021018291 W JP 2021018291W WO 2022009520 A1 WO2022009520 A1 WO 2022009520A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
switch
rotation sensor
terminal
voltage
Prior art date
Application number
PCT/JP2021/018291
Other languages
French (fr)
Japanese (ja)
Inventor
祥平 飯沼
武司 加藤
正俊 赤沼
渉 松島
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to US18/010,965 priority Critical patent/US20230221146A1/en
Priority to CN202180047597.3A priority patent/CN115769083A/en
Priority to JP2022534923A priority patent/JPWO2022009520A1/ja
Publication of WO2022009520A1 publication Critical patent/WO2022009520A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/08Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for safeguarding the apparatus, e.g. against abnormal operation, against breakdown
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/4802Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage by using electronic circuits in general
    • G01P3/4805Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage by using electronic circuits in general by using circuits for the electrical integration of the generated pulses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets

Definitions

  • the present invention relates to a rotation sensor.
  • WO2015 / 076040A1 discloses a configuration for determining a disconnection failure of the rotation sensor when the amount of change in the rotation speed detected by the rotation sensor is equal to or more than a predetermined value.
  • the rotation sensor of WO2015 / 076040A1 indirectly determines the disconnection failure from the amount of change in the rotation speed, and does not directly detect the disconnection by the circuit configuration.
  • An object of the present invention is to provide a sensor having a circuit configuration capable of detecting disconnection.
  • a power supply voltage is applied to the sensor unit via the power supply line, and the switch is the power supply line.
  • An on-voltage is applied via the detection line and connected to the detection line.
  • the switch when the power line is disconnected, the switch switches from on to off. Therefore, it is possible to detect the disconnection by detecting that the switch has been switched from on to off via the detection line. Therefore, a sensor having a circuit configuration capable of detecting disconnection is provided.
  • FIG. 1 is a configuration diagram showing an example of a circuit included in the rotation sensor according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an abnormality determination based on a signal detected by a rotation sensor.
  • FIG. 3 is a configuration diagram showing an example of a circuit included in the rotation sensor according to the second embodiment of the present invention.
  • FIG. 4 is a configuration diagram showing an example of a circuit included in the rotation sensor according to the third embodiment of the present invention.
  • FIG. 5 is a configuration diagram showing an example of a circuit included in the rotation sensor according to the fourth embodiment of the present invention.
  • FIG. 6 is a configuration diagram showing an example of a circuit included in the rotation sensor according to the fifth embodiment of the present invention.
  • FIG. 1 is a configuration diagram showing an example of a circuit included in the rotation sensor 100.
  • the rotation speed detection device 1 includes a rotation sensor 100 and an ECU (Electronic Control Unit) 2 as a control device.
  • ECU Electronic Control Unit
  • the rotation speed detection device 1 inputs the output signal from the rotation sensor 100 to the ECU 2 as a pulse signal, and the ECU 2 calculates the rotation speed of the pulse rotor PR as the object to be detected based on the cycle of the pulse signal. ..
  • the pulse rotor PR is, for example, a member that rotates integrally with one of the rotating elements of a power transmission device (transmission, speed reducer, etc.).
  • the pulse rotor PR is not limited to these members.
  • the pulse rotor PR may be formed separately from the power transmission mechanism (gear, pulley, etc.) of the power transmission device, or may be formed integrally with the power transmission mechanism.
  • the rotation sensor 100 includes a sensor unit S, a switch SW, a resistance element R1 as a first resistance element, a resistance element R2 as a second resistance element, a resistance element R3 as a third resistance element, and a fourth resistor. It has a resistance element R4 as an element.
  • the rotation sensor 100 includes wiring L1, wiring L2, and wiring L3.
  • the rotation sensor 100 is connected to the ECU 2 by the wiring L1, the wiring L2, and the wiring L3.
  • Wiring L1 is connected to the power supply Vcc.
  • the wiring L1 constitutes a power line for the positive electrode.
  • the wiring L1 is connected to the terminal T1 of the sensor unit S.
  • the wiring L1 is connected to the terminal Ta of the switch SW described later via the resistance element R2.
  • the wiring L2 is connected to the power supply Vcc via the resistance element Rpu as a pull-up resistance element.
  • the wiring L2 constitutes a detection line.
  • the wiring L2 is connected to the terminal T2 of the sensor unit S via the resistance element R4.
  • the wiring L2 is connected to the terminal Tb of the switch SW described later via the resistance element R1.
  • the wiring L2 is connected to the pulse signal input unit Tin and the analog signal input unit ADin of the detection circuit DC described later.
  • Wiring L3 is connected to a common body ground (negative electrode) GND.
  • the wiring L3 constitutes a power line for the negative electrode.
  • the wiring L3 is connected to the terminal T3 of the sensor unit S.
  • the wiring L3 is connected to the terminal Tc of the switch SW described later.
  • the wiring L3 is connected to the terminal Ta of the switch SW described later via the resistance element R3.
  • the wiring L3 has a ground potential and the wiring L1 has a potential higher than the ground potential, but the present invention is not limited to this, and the potential difference is set so as to occur between the wiring L1 and the wiring L3. Just do it.
  • the potential set in the wiring L1 is set higher than the potential set in the wiring L3, but the potential set in the wiring L1 is set lower than the potential set in the wiring L3. May be good. That is, the potential of the voltage applied to the wiring L1 and the potential of the voltage applied to the wiring L3 may be set so as to be different from each other.
  • the sensor unit S has a terminal T1 as a positive electrode terminal, a terminal T2 as a signal output terminal, and a terminal T3 as a negative electrode terminal.
  • the terminal T1 is connected to the terminal T3 inside the sensor unit S.
  • the sensor unit S has a function of converting the rotational motion of the pulse rotor PR into a pulse signal and outputting it.
  • a power supply voltage is applied to the sensor unit S via the wiring L1.
  • the sensor unit S is connected to the detection circuit DC via the resistance element R4 and the wiring L2.
  • a Hall IC using a Hall element or the like is applied to the sensor unit S.
  • the configuration of the sensor unit S is not limited to this.
  • the sensor unit S operates by receiving power supplied from the power supply Vcc.
  • the sensor unit S detects the magnetic force when a magnetic material such as iron is in close proximity, and the conduction is switched according to the detected magnetic force. That is, the sensor unit S becomes conductive (on) when the magnetic materials are close to each other, and becomes non-conducting (off) when the magnetic materials are not close to each other.
  • the sensor unit S is provided close to the pulse rotor PR. In this case, the sensor unit S is switched on and off each time the pulse rotor PR rotates and the teeth of the pulse rotor PR approach each other. As a result, the ECU 2 can acquire a pulse-shaped on / off signal corresponding to the rotation of the pulse rotor PR from the sensor unit S.
  • the switch SW has a terminal Ta as a control terminal, a terminal Tb as a first terminal, a terminal Tc as a second terminal, and a terminal Td as a ground terminal.
  • An on-voltage is applied to the switch SW from the wiring L1 via the resistance element R2.
  • the terminal Ta is connected to the wiring L1 via the resistance element R2. A voltage for turning on the switch SW in the off state is supplied from the terminal Ta.
  • the terminal Ta is connected to the terminal Td inside the switch SW.
  • the terminal Tb is connected to the wiring L2 via the resistance element R1.
  • the terminal Tc is connected to the wiring L3.
  • the terminal Td is connected to the wiring L3 via the resistance element R3.
  • the switch SW is, for example, a transistor or the like.
  • the configuration of the switch SW is not limited to this.
  • the switch SW is a bipolar transistor
  • the terminal Ta is the base
  • one of the terminal Tb and the terminal Tc is the emitter
  • the other of the terminal Tb and the terminal Tc is the collector.
  • the switch SW is, for example, a field emission transistor (unipolar transistor)
  • the terminal Ta is a gate
  • one of the terminal Tb and the terminal Tc is the source
  • the other of the terminal Tb and the terminal Tc is the drain.
  • An on-voltage is applied to the switch SW via the wiring L1 and the wiring L3, which are power lines.
  • the power line may be selectively connected so that the on voltage is applied to the switch SW.
  • the power supply voltage is applied to the sensor unit S via the power supply line (wiring L1 and wiring L3), and the on-voltage is applied to the control terminal of the switch SW via the power supply line (wiring L1 and wiring L3). Therefore, it is possible to detect disconnection of the power line (wiring L1 and wiring L3). The detection of disconnection of the power line (wiring L1 and wiring L3) will be described in detail later with reference to FIG. 2.
  • the ECU 2 controls various operations of the rotation speed detection device 1.
  • the ECU 2 is composed of a computer including a central arithmetic unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
  • the ECU 2 controls various operations of the rotation speed detection device 1 by reading the program stored in the ROM by the CPU.
  • the ECU 2 can also be composed of a plurality of microcomputers.
  • the detection circuit DC which will be described later, may have a function executed by the ECU 2 as a virtual unit.
  • the ECU 2 has a detection circuit DC and a resistance element Rpu as a pull-up resistance element.
  • the detection circuit DC has a pulse signal input unit Tin and an analog signal input unit ADin.
  • the detection circuit DC has a function of detecting a pulse signal output from the sensor unit S and input to the pulse signal input unit Tin.
  • the detection circuit DC has a function of detecting the magnitude of the voltage of the pulse signal output from the sensor unit S and input to the analog signal input unit ADin.
  • the detection circuit DC detects that the rotation sensor 100 is in an abnormal state. Specifically, the detection circuit DC can detect the disconnection of the wiring L1, the wiring L2, and the wiring L3. Further, the detection circuit DC can detect a short circuit between the wiring L1 and the wiring L2, a short circuit between the wiring L1 and the wiring L3, and a short circuit between the wiring L2 and the wiring L3.
  • the detection circuit DC is provided as a function in the ECU 2 of the power transmission device. That is, the detection circuit DC is provided outside the rotation sensor 100. However, the present invention is not limited to this configuration, and for example, the detection circuit DC may be provided in the rotation sensor 100.
  • FIG. 2 is a diagram illustrating an abnormality determination based on a signal detected by the rotation sensor 100.
  • the terminal Ta of the switch SW is connected to the power supply Vcc via the resistance element R2. Further, the terminal Td of the switch SW is connected to the body ground GND via the resistance element R3. Therefore, the voltage divided by the resistance element R2 and the resistance element R3 is always applied to the terminal Ta of the switch SW. Therefore, the switch SW composed of the transistor is always on. As a result, the wiring L2, which is the detection line, is connected to the body ground GND via the resistance element R1.
  • the terminal T2 When the sensor unit S is on, the terminal T2 is connected to the body ground GND. Therefore, the pulse signal input unit Tin and the analog signal input unit ADin are connected to the resistance element Rpu and the resistance element R4 connected in parallel.
  • the voltage Vlow which is the voltage divided by the resistance element R1 and the resistor element R1, is input.
  • the detection circuit DC detects the magnitude of the voltage input to the analog signal input unit ADin.
  • the voltage Vlow input to the analog signal input unit ADin is a value slightly higher than the voltage Vmin of the body ground GND. As a result, the detection circuit DC detects that the signal when the sensor unit S is on is normal.
  • the detection circuit DC detects the magnitude of the voltage input to the analog signal input unit ADin.
  • the voltage Vhigh input to the analog signal input unit ADin is a value slightly lower than the voltage Vmax of the power supply Vcc. As a result, the detection circuit DC detects that the signal when the sensor unit S is off is normal.
  • the switch SW When at least one of the power line L1 and the wiring L3 is disconnected, or the wiring L1 and the wiring L3 are short-circuited, the switch SW is always turned off. Therefore, it is equivalent to the case where the resistance element R1 is not provided.
  • the sensor unit S is not turned on, and is turned off or indefinite.
  • the voltage Vmax of the power supply Vcc is applied to the pulse signal input unit Tin via the resistance element Rpu. Therefore, the voltage Vmax is input to the pulse signal input unit Tin and the analog signal input unit ADin.
  • the voltage Vmax of the power supply Vcc is directly applied to the pulse signal input unit Tin. Therefore, the voltage Vmax is input to the pulse signal input unit Tin and the analog signal input unit ADin.
  • the pulse signal input unit Tin is directly connected to the body ground GND. Therefore, the voltage Vmin is input to the pulse signal input unit Tin and the analog signal input unit ADin.
  • the voltage input to the pulse signal input unit Tin and the analog signal input unit ADin is voltage Vhigh or voltage Vlow.
  • the voltage input to the pulse signal input unit Tin and the analog signal input unit ADin is voltage Vmax or voltage Vmin.
  • the detection circuit DC recognizes both the voltage Vmax and the voltage Vhigh input to the pulse signal input unit Tin as “H (High)” signals. Further, the detection circuit DC recognizes both the voltage Vmin and the voltage Vlow input to the pulse signal input unit Tin as “L (Low)” signals.
  • the voltage of the signal recognized as the "H” signal is the voltage Vmax or the voltage Vhigh, or the signal recognized as the "L” signal, based on the magnitude of the voltage input to the analog signal input unit ADin.
  • the detection circuit DC can detect whether the rotation sensor 100 is in a normal state or an abnormal state.
  • the rotation sensor 100 for example, when the wiring L1 or the wiring L3, which is a power line, is disconnected, the switch SW is switched from on to off. Therefore, by detecting that the switch SW is switched from on to off via the wiring L2 which is a detection line, it is possible to detect the disconnection of the wiring L1 or the wiring L3. Therefore, the rotation sensor 100 having a circuit configuration capable of detecting disconnection is provided.
  • the rotation sensor 100 is in an abnormal state by using the wirings L1, L2, and L3 necessary for the operation of the rotation sensor 100. Therefore, it is possible to detect an abnormality in the rotation sensor 100 without increasing the number of wires.
  • FIG. 3 is a configuration diagram showing an example of a circuit included in the rotation sensor 200.
  • the differences from the first embodiment will be mainly described, and the same reference numerals are given to the configurations having the same functions, and the description thereof will be omitted.
  • the rotation sensor 200 is different from the rotation sensor 100 according to the first embodiment in that the resistance element R3 is connected to another wiring L4 instead of the wiring L3.
  • Wiring L4 constitutes a power line. Like the wiring L3, the wiring L4 may be any wiring having a potential difference from the wiring L1.
  • the second embodiment it is possible to detect at least the disconnection of the wiring L1 that functions as a power supply line.
  • the potential of the wiring L1 and the polarity of the switch SW are set so that the wiring L1 can apply the on voltage of the switch SW.
  • FIG. 4 is a configuration diagram showing an example of a circuit included in the rotation sensor 300.
  • the rotation sensor 300 is different from the rotation sensor 100 according to the first embodiment in that the resistance element R2 is connected to another wiring L5 instead of the wiring L1.
  • Wiring L5 constitutes a power line. Like the wiring L1, the wiring L5 may be any wiring having a potential difference from the wiring L3.
  • the third embodiment it is possible to detect at least the disconnection of the wiring L3 that functions as a power supply line.
  • the potential of the wiring L2 and the polarity of the switch SW are set so that the wiring L2 can apply the on voltage of the switch SW.
  • FIG. 5 is a configuration diagram showing an example of a circuit included in the rotation sensor 400.
  • the rotation sensor 400 differs from the first embodiment in that the terminal Tc of the switch SW is connected to another wiring L6 instead of the wiring L3.
  • Wiring L6 constitutes a power line.
  • the wiring L6 may be any wiring having a potential difference from the wiring L2.
  • FIG. 6 is a configuration diagram showing an example of a circuit included in the rotation sensor 500.
  • the rotation sensor 500 differs from the first embodiment in that the terminal Tb of the switch SW is connected to another wiring L7 instead of the wiring L2.
  • Wiring L7 constitutes a detection line.
  • the wiring L7 is connected to another detection circuit ODC.
  • the rotation sensor 100, 200, 300, 400, 500 including the wiring L1 (or L3) which is the power supply line, the wiring L2 (or L7) which is the detection line, the sensor unit S, and the switch SW, the sensor unit S Is applied with a power supply voltage via the wiring L1 (or L3), and the switch SW is connected to the wiring L2 (or L7) by applying an on-voltage via the wiring L1 (or L3).
  • the switch SW when the wiring L1 (or L3), which is the power line, is disconnected, the switch SW is switched from on to off. Therefore, the disconnection of the wiring L1 (or L3) can be detected by detecting that the switch SW is switched from on to off via the wiring L2 (or L7) which is a detection line. Therefore, rotation sensors 100, 200, 300, 400, 500 having a circuit configuration capable of detecting disconnection are provided.
  • the switch SW naturally has a predetermined resistance value even when it is on. Therefore, it can be said that this circuit configuration imitates the presence or absence of a resistance element by switching the switch SW on and off.
  • the wiring L2 is connected to the terminal T2 which is the signal output terminal of the sensor unit S.
  • the detection line and the detection circuit for disconnection detection and the detection line and the detection circuit for sensing may be provided separately, but the output detection and the disconnection detection of the sensor unit S may be provided in the wiring L2.
  • the wiring L2 (or L7) is connected to the switch SW via the resistance element R1 as the first resistance element.
  • the resistance value of the resistance element connected to the wiring L2 (or L7) as the detection line is high. Therefore, according to this configuration, the detection accuracy can be improved by providing the resistance element R1 separately from the switch SW.
  • FIGS. 1 and 3 to 6 it is possible to form a circuit configuration in which the concepts of FIGS. 1 and 3 to 6 are combined with each other. Specifically, it is possible to combine FIGS. 3 and 4 or to combine FIGS. 4 to 6, and the combination is not limited to the combination exemplified here.
  • the wiring and the switch naturally have a predetermined resistance value, it is possible to omit the resistance elements R1, R2, R3, and R4 in FIGS. 1 and 3 to 6, but the circuit. From the viewpoint of improving accuracy and the like, it is preferable to provide resistance elements R1, R2, R3 and R4.
  • the configuration for detecting the abnormality of the rotation sensor 100, 200, 300, 400, 500 has been described, but the configuration may be such that the abnormality of the displacement sensor or the like in which the object to be detected is not a rotating body is detected.
  • the wirings L1 to L7 used in the above embodiment may be, for example, a wire or a circuit pattern provided on an electronic board. That is, the wirings L1 to L7 may be any wiring that can electrically connect each component.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

A rotation sensor comprising a power line, a detection line, a sensor unit, and a switch, wherein the sensor unit has a power supply voltage applied thereto via the power line and the switch has an ON-voltage applied thereto via the power line and is connected to the detection line.

Description

回転センサRotation sensor
 本発明は、回転センサに関する。 The present invention relates to a rotation sensor.
 WO2015/076040A1には、回転センサが検出する回転速度の変化量が所定値以上である場合に回転センサの断線故障を判定する構成が開示されている。 WO2015 / 076040A1 discloses a configuration for determining a disconnection failure of the rotation sensor when the amount of change in the rotation speed detected by the rotation sensor is equal to or more than a predetermined value.
 しかしながら、WO2015/076040A1の回転センサは、回転速度の変化量から間接的に断線故障を判定するものであり、回路構成によって直接的に断線を検知するものではない。 However, the rotation sensor of WO2015 / 076040A1 indirectly determines the disconnection failure from the amount of change in the rotation speed, and does not directly detect the disconnection by the circuit configuration.
 本発明は、断線を検知可能な回路構成を有するセンサを提供することを目的とする。 An object of the present invention is to provide a sensor having a circuit configuration capable of detecting disconnection.
 本発明のある態様によれば、電源線と検知線とセンサ部とスイッチとを備える回転センサにおいて、前記センサ部は、前記電源線を介して電源電圧が印加され、前記スイッチは、前記電源線を介してオン電圧が印加され、前記検知線に接続される。 According to an aspect of the present invention, in a rotation sensor including a power supply line, a detection line, a sensor unit, and a switch, a power supply voltage is applied to the sensor unit via the power supply line, and the switch is the power supply line. An on-voltage is applied via the detection line and connected to the detection line.
 上記態様では、電源線が断線すると、スイッチがオンからオフに切り替わる。そのため、スイッチがオンからオフに切り替わったことを、検知線を介して検知することで、断線を検知することができる。したがって、断線を検知可能な回路構成を有するセンサが提供される。 In the above aspect, when the power line is disconnected, the switch switches from on to off. Therefore, it is possible to detect the disconnection by detecting that the switch has been switched from on to off via the detection line. Therefore, a sensor having a circuit configuration capable of detecting disconnection is provided.
図1は、本発明の第1の実施形態に係る回転センサが有する回路の一例を示す構成図である。FIG. 1 is a configuration diagram showing an example of a circuit included in the rotation sensor according to the first embodiment of the present invention. 図2は、回転センサが検知する信号に基づく異常判定について説明する図である。FIG. 2 is a diagram illustrating an abnormality determination based on a signal detected by a rotation sensor. 図3は、本発明の第2の実施形態に係る回転センサが有する回路の一例を示す構成図である。FIG. 3 is a configuration diagram showing an example of a circuit included in the rotation sensor according to the second embodiment of the present invention. 図4は、本発明の第3の実施形態に係る回転センサが有する回路の一例を示す構成図である。FIG. 4 is a configuration diagram showing an example of a circuit included in the rotation sensor according to the third embodiment of the present invention. 図5は、本発明の第4の実施形態に係る回転センサが有する回路の一例を示す構成図である。FIG. 5 is a configuration diagram showing an example of a circuit included in the rotation sensor according to the fourth embodiment of the present invention. 図6は、本発明の第5の実施形態に係る回転センサが有する回路の一例を示す構成図である。FIG. 6 is a configuration diagram showing an example of a circuit included in the rotation sensor according to the fifth embodiment of the present invention.
 以下、添付図面を参照して、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 (第1の実施形態)
 以下、図1及び図2を参照して、本発明の第1の実施形態に係る回転センサ100について説明する。
(First Embodiment)
Hereinafter, the rotation sensor 100 according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
 まず、図1を参照して、回転センサ100、及び回転センサ100が適用される回転速度検出装置1の全体構成について説明する。図1は、回転センサ100が有する回路の一例を示す構成図である。 First, with reference to FIG. 1, the rotation sensor 100 and the overall configuration of the rotation speed detection device 1 to which the rotation sensor 100 is applied will be described. FIG. 1 is a configuration diagram showing an example of a circuit included in the rotation sensor 100.
 図1に示すように、回転速度検出装置1は、回転センサ100と、制御装置としてのECU(Electronic Control Unit)2と、を備える。 As shown in FIG. 1, the rotation speed detection device 1 includes a rotation sensor 100 and an ECU (Electronic Control Unit) 2 as a control device.
 回転速度検出装置1は、回転センサ100からの出力信号をパルス信号としてECU2に入力し、当該パルス信号の周期に基づき、被検出物としてのパルスロータPRの回転速度をECU2が演算するものである。 The rotation speed detection device 1 inputs the output signal from the rotation sensor 100 to the ECU 2 as a pulse signal, and the ECU 2 calculates the rotation speed of the pulse rotor PR as the object to be detected based on the cycle of the pulse signal. ..
 パルスロータPRは、例えば、動力伝達装置(変速機,減速機,等)の回転要素の一つと一体に回転する部材である。しかしながら、パルスロータPRは、これらの部材に限定されるものではない。 The pulse rotor PR is, for example, a member that rotates integrally with one of the rotating elements of a power transmission device (transmission, speed reducer, etc.). However, the pulse rotor PR is not limited to these members.
 パルスロータPRは、動力伝達装置の動力伝達機構(ギア,プーリ,等)と別体に形成されてもよいし、動力伝達機構と一体に形成されてもよい。 The pulse rotor PR may be formed separately from the power transmission mechanism (gear, pulley, etc.) of the power transmission device, or may be formed integrally with the power transmission mechanism.
 回転センサ100は、センサ部Sと、スイッチSWと、第1抵抗素子としての抵抗素子R1と、第2抵抗素子としての抵抗素子R2と、第3抵抗素子としての抵抗素子R3と、第4抵抗素子としての抵抗素子R4と、を有する。 The rotation sensor 100 includes a sensor unit S, a switch SW, a resistance element R1 as a first resistance element, a resistance element R2 as a second resistance element, a resistance element R3 as a third resistance element, and a fourth resistor. It has a resistance element R4 as an element.
 回転センサ100は、配線L1と、配線L2と、配線L3と、を備える。回転センサ100は、配線L1と、配線L2と、配線L3と、によってECU2と接続される。 The rotation sensor 100 includes wiring L1, wiring L2, and wiring L3. The rotation sensor 100 is connected to the ECU 2 by the wiring L1, the wiring L2, and the wiring L3.
 配線L1は、電源Vccと接続される。配線L1は、正極の電源線を構成する。配線L1は、センサ部Sの端子T1に接続されている。配線L1は、抵抗素子R2を介して後述するスイッチSWの端子Taに接続されている。 Wiring L1 is connected to the power supply Vcc. The wiring L1 constitutes a power line for the positive electrode. The wiring L1 is connected to the terminal T1 of the sensor unit S. The wiring L1 is connected to the terminal Ta of the switch SW described later via the resistance element R2.
 配線L2は、プルアップ抵抗素子としての抵抗素子Rpuを介して電源Vccと接続される。配線L2は、検知線を構成する。配線L2は、抵抗素子R4を介してセンサ部Sの端子T2に接続されている。配線L2は、抵抗素子R1を介して後述するスイッチSWの端子Tbに接続されている。配線L2は、後述する検知回路DCのパルス信号入力部Tin及びアナログ信号入力部ADinに接続されている。 The wiring L2 is connected to the power supply Vcc via the resistance element Rpu as a pull-up resistance element. The wiring L2 constitutes a detection line. The wiring L2 is connected to the terminal T2 of the sensor unit S via the resistance element R4. The wiring L2 is connected to the terminal Tb of the switch SW described later via the resistance element R1. The wiring L2 is connected to the pulse signal input unit Tin and the analog signal input unit ADin of the detection circuit DC described later.
 配線L3は、共通のボディアース(負極)GNDに接続される。配線L3は、負極の電源線を構成する。配線L3は、センサ部Sの端子T3に接続されている。配線L3は、後述するスイッチSWの端子Tcに接続されている。配線L3は、抵抗素子R3を介して、後述するスイッチSWの端子Taに接続されている。 Wiring L3 is connected to a common body ground (negative electrode) GND. The wiring L3 constitutes a power line for the negative electrode. The wiring L3 is connected to the terminal T3 of the sensor unit S. The wiring L3 is connected to the terminal Tc of the switch SW described later. The wiring L3 is connected to the terminal Ta of the switch SW described later via the resistance element R3.
 本実施形態では、配線L3を接地電位とし配線L1を接地電位よりも高い電位としているが、これに限定されるものではなく、配線L1と配線L3との間に電位差が生じるように設定されていればよい。 In the present embodiment, the wiring L3 has a ground potential and the wiring L1 has a potential higher than the ground potential, but the present invention is not limited to this, and the potential difference is set so as to occur between the wiring L1 and the wiring L3. Just do it.
 本実施形態では、配線L1に設定される電位を配線L3に設定される電位よりも高く設定しているが、配線L1に設定される電位を配線L3に設定される電位よりも低く設定してもよい。即ち、配線L1に印加される電圧の電位と配線L3に印加される電圧の電位とが異なるように設定されていればよい。 In the present embodiment, the potential set in the wiring L1 is set higher than the potential set in the wiring L3, but the potential set in the wiring L1 is set lower than the potential set in the wiring L3. May be good. That is, the potential of the voltage applied to the wiring L1 and the potential of the voltage applied to the wiring L3 may be set so as to be different from each other.
 センサ部Sは、正極端子としての端子T1と、信号出力端子としての端子T2と、負極端子としての端子T3と、を有する。端子T1は、センサ部Sの内部にて、端子T3と接続されている。 The sensor unit S has a terminal T1 as a positive electrode terminal, a terminal T2 as a signal output terminal, and a terminal T3 as a negative electrode terminal. The terminal T1 is connected to the terminal T3 inside the sensor unit S.
 センサ部Sは、パルスロータPRの回転運動をパルス信号に変換して出力する機能を有する。センサ部Sには、配線L1を介して電源電圧が印加される。センサ部Sは、抵抗素子R4及び配線L2を介して検知回路DCと接続される。 The sensor unit S has a function of converting the rotational motion of the pulse rotor PR into a pulse signal and outputting it. A power supply voltage is applied to the sensor unit S via the wiring L1. The sensor unit S is connected to the detection circuit DC via the resistance element R4 and the wiring L2.
 センサ部Sには、例えば、ホール素子を用いたホールIC等が適用される。なお、センサ部Sの構成は、これに限定されるものではない。 For example, a Hall IC using a Hall element or the like is applied to the sensor unit S. The configuration of the sensor unit S is not limited to this.
 センサ部Sは、電源Vccからの電力の供給を受けて作動する。センサ部Sは、鉄等の磁性体が近接したときにその磁力を検出して、検出した磁力に応じて導通が切り替わる。即ち、センサ部Sは、磁性体が近接したときに導通(オン)となり、そうでない場合は非導通(オフ)となる。ここでは、センサ部Sは、パルスロータPRに近接して設けられる。この場合、センサ部Sは、パルスロータPRが回転して当該パルスロータPRの歯が近接する毎にオン、オフが切り替わる。これにより、ECU2は、センサ部Sから、パルスロータPRの回転に対応したパルス状のオン、オフ信号を取得することができる。 The sensor unit S operates by receiving power supplied from the power supply Vcc. The sensor unit S detects the magnetic force when a magnetic material such as iron is in close proximity, and the conduction is switched according to the detected magnetic force. That is, the sensor unit S becomes conductive (on) when the magnetic materials are close to each other, and becomes non-conducting (off) when the magnetic materials are not close to each other. Here, the sensor unit S is provided close to the pulse rotor PR. In this case, the sensor unit S is switched on and off each time the pulse rotor PR rotates and the teeth of the pulse rotor PR approach each other. As a result, the ECU 2 can acquire a pulse-shaped on / off signal corresponding to the rotation of the pulse rotor PR from the sensor unit S.
 スイッチSWは、制御端子としての端子Taと、第1端子としての端子Tbと、第2端子としての端子Tcと、接地端子としての端子Tdと、を有する。スイッチSWには、配線L1から抵抗素子R2を介してオン電圧が印加される。 The switch SW has a terminal Ta as a control terminal, a terminal Tb as a first terminal, a terminal Tc as a second terminal, and a terminal Td as a ground terminal. An on-voltage is applied to the switch SW from the wiring L1 via the resistance element R2.
 端子Taは、抵抗素子R2を介して配線L1と接続されている。端子Taからは、オフ状態のスイッチSWをオン作動させるための電圧が供給される。端子Taは、スイッチSWの内部にて、端子Tdと接続されている。 The terminal Ta is connected to the wiring L1 via the resistance element R2. A voltage for turning on the switch SW in the off state is supplied from the terminal Ta. The terminal Ta is connected to the terminal Td inside the switch SW.
 端子Tbは、抵抗素子R1を介して配線L2と接続されている。 The terminal Tb is connected to the wiring L2 via the resistance element R1.
 端子Tcは、配線L3と接続されている。 The terminal Tc is connected to the wiring L3.
 端子Tdは、抵抗素子R3を介して配線L3と接続されている。 The terminal Td is connected to the wiring L3 via the resistance element R3.
 スイッチSWがオンのときには、端子Tbと端子Tcとの間には、電流が流れる。スイッチSWがオフのときには、端子Tbと端子Tcの間の電流は、遮断される。 When the switch SW is on, a current flows between the terminal Tb and the terminal Tc. When the switch SW is off, the current between the terminal Tb and the terminal Tc is cut off.
 スイッチSWは、例えば、トランジスタ等である。なお、スイッチSWの構成は、これに限定されるものではない。 The switch SW is, for example, a transistor or the like. The configuration of the switch SW is not limited to this.
 スイッチSWがバイポーラトランジスタである場合には、端子Taはベースであり、端子Tb及び端子Tcの一方がエミッタであり、端子Tb及び端子Tcの他方がコレクタである。 When the switch SW is a bipolar transistor, the terminal Ta is the base, one of the terminal Tb and the terminal Tc is the emitter, and the other of the terminal Tb and the terminal Tc is the collector.
 スイッチSWが例えばフィールドエミッショントランジスタ(ユニポーラトランジスタ)である場合には、端子Taはゲートであり、端子Tb及び端子Tcの一方がソースであり、端子Tb及び端子Tcの他方がドレインである。 When the switch SW is, for example, a field emission transistor (unipolar transistor), the terminal Ta is a gate, one of the terminal Tb and the terminal Tc is the source, and the other of the terminal Tb and the terminal Tc is the drain.
 スイッチSWには、電源線である配線L1及び配線L3を介してオン電圧が印加される。 An on-voltage is applied to the switch SW via the wiring L1 and the wiring L3, which are power lines.
 スイッチSWをオン作動させるオン電圧は、スイッチSWの極性に応じて正負が逆転する。そのため、スイッチSWにオン電圧が印加されるように電源線を選択的に接続すればよい。 The positive and negative of the on voltage that activates the switch SW is reversed according to the polarity of the switch SW. Therefore, the power line may be selectively connected so that the on voltage is applied to the switch SW.
 このように、電源線(配線L1及び配線L3)を介して電源電圧がセンサ部Sに印加され、かつ電源線(配線L1及び配線L3)を介してオン電圧がスイッチSWの制御端子に印加されるので、電源線(配線L1及び配線L3)の断線検知が可能となる。電源線(配線L1及び配線L3)の断線検知については、図2を併せて参照しながら、後で詳細に説明する。 In this way, the power supply voltage is applied to the sensor unit S via the power supply line (wiring L1 and wiring L3), and the on-voltage is applied to the control terminal of the switch SW via the power supply line (wiring L1 and wiring L3). Therefore, it is possible to detect disconnection of the power line (wiring L1 and wiring L3). The detection of disconnection of the power line (wiring L1 and wiring L3) will be described in detail later with reference to FIG. 2.
 ECU2は、回転速度検出装置1の各種動作を制御する。ECU2は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、及び入出力インタフェース(I/Oインタフェース)を備えたコンピュータで構成される。ECU2は、ROMに記憶されたプログラムをCPUによって読み出すことで、回転速度検出装置1の各種動作を制御する。 The ECU 2 controls various operations of the rotation speed detection device 1. The ECU 2 is composed of a computer including a central arithmetic unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). The ECU 2 controls various operations of the rotation speed detection device 1 by reading the program stored in the ROM by the CPU.
 ECU2は、複数のマイクロコンピュータで構成することも可能である。なお、後述する検知回路DCは、ECU2が実行する機能を仮想的なユニットとしたものであってもよい。 The ECU 2 can also be composed of a plurality of microcomputers. The detection circuit DC, which will be described later, may have a function executed by the ECU 2 as a virtual unit.
 ECU2は、検知回路DCと、プルアップ抵抗素子としての抵抗素子Rpuと、を有する。 The ECU 2 has a detection circuit DC and a resistance element Rpu as a pull-up resistance element.
 検知回路DCは、パルス信号入力部Tinと、アナログ信号入力部ADinと、を有する。検知回路DCは、センサ部Sから出力されてパルス信号入力部Tinに入力されるパルス信号を検知する機能を有する。検知回路DCは、センサ部Sから出力されてアナログ信号入力部ADinに入力されるパルス信号の電圧の大きさを検知する機能を有する。 The detection circuit DC has a pulse signal input unit Tin and an analog signal input unit ADin. The detection circuit DC has a function of detecting a pulse signal output from the sensor unit S and input to the pulse signal input unit Tin. The detection circuit DC has a function of detecting the magnitude of the voltage of the pulse signal output from the sensor unit S and input to the analog signal input unit ADin.
 検知回路DCは、回転センサ100が異常な状態であることを検知する。具体的には、検知回路DCは、配線L1、配線L2、及び配線L3の断線を検知可能である。また、検知回路DCは、配線L1と配線L2との短絡、配線L1と配線L3との短絡、及び配線L2と配線L3との短絡を検知可能である。 The detection circuit DC detects that the rotation sensor 100 is in an abnormal state. Specifically, the detection circuit DC can detect the disconnection of the wiring L1, the wiring L2, and the wiring L3. Further, the detection circuit DC can detect a short circuit between the wiring L1 and the wiring L2, a short circuit between the wiring L1 and the wiring L3, and a short circuit between the wiring L2 and the wiring L3.
 検知回路DCは、動力伝達装置のECU2内の一機能として設けられる。即ち、検知回路DCは、回転センサ100の外部に設けられる。しかしながら、この構成に限定されるものではなく、例えば、検知回路DCを、回転センサ100内に設けてもよい。 The detection circuit DC is provided as a function in the ECU 2 of the power transmission device. That is, the detection circuit DC is provided outside the rotation sensor 100. However, the present invention is not limited to this configuration, and for example, the detection circuit DC may be provided in the rotation sensor 100.
 以下、図2を併せて参照して、回転センサ100の作用について説明する。図2は、回転センサ100が検知する信号に基づく異常判定について説明する図である。 Hereinafter, the operation of the rotation sensor 100 will be described with reference to FIG. 2. FIG. 2 is a diagram illustrating an abnormality determination based on a signal detected by the rotation sensor 100.
 まず、回転センサ100が正常な状態である場合について説明する。 First, a case where the rotation sensor 100 is in a normal state will be described.
 スイッチSWの端子Taは、抵抗素子R2を介して電源Vccに接続されている。また、スイッチSWの端子Tdは、抵抗素子R3を介してボディアースGNDに接続されている。そのため、スイッチSWの端子Taには、抵抗素子R2と抵抗素子R3とで分圧された電圧が常に印加されている。よって、トランジスタで構成されるスイッチSWは、常にオンである。これにより、検知線である配線L2は、抵抗素子R1を介してボディアースGNDに接続される。 The terminal Ta of the switch SW is connected to the power supply Vcc via the resistance element R2. Further, the terminal Td of the switch SW is connected to the body ground GND via the resistance element R3. Therefore, the voltage divided by the resistance element R2 and the resistance element R3 is always applied to the terminal Ta of the switch SW. Therefore, the switch SW composed of the transistor is always on. As a result, the wiring L2, which is the detection line, is connected to the body ground GND via the resistance element R1.
 センサ部Sがオンである場合には、端子T2がボディアースGNDに接続されるので、パルス信号入力部Tin及びアナログ信号入力部ADinには、抵抗素子Rpuと、並列接続された抵抗素子R4及び抵抗素子R1と、で分圧された電圧である電圧Vlowが入力される。 When the sensor unit S is on, the terminal T2 is connected to the body ground GND. Therefore, the pulse signal input unit Tin and the analog signal input unit ADin are connected to the resistance element Rpu and the resistance element R4 connected in parallel. The voltage Vlow, which is the voltage divided by the resistance element R1 and the resistor element R1, is input.
 このとき、検知回路DCは、アナログ信号入力部ADinに入力される電圧の大きさを検知する。アナログ信号入力部ADinに入力される電圧Vlowは、ボディアースGNDの電圧Vminよりも少し高い値である。これにより、検知回路DCは、センサ部Sがオンである場合の信号が正常であることを検知する。 At this time, the detection circuit DC detects the magnitude of the voltage input to the analog signal input unit ADin. The voltage Vlow input to the analog signal input unit ADin is a value slightly higher than the voltage Vmin of the body ground GND. As a result, the detection circuit DC detects that the signal when the sensor unit S is on is normal.
 一方、センサ部Sがオフである場合には、抵抗素子R4を介して電流は流れない。しかしながら、抵抗素子Rpuと抵抗素子R1とを介して電流が流れるので、パルス信号入力部Tin及びアナログ信号入力部ADinには、抵抗素子Rpuと抵抗素子R1とで分圧された電圧である電圧Vhighが入力される。 On the other hand, when the sensor unit S is off, no current flows through the resistance element R4. However, since a current flows through the resistance element Rpu and the resistance element R1, the voltage Vhigh, which is the voltage divided by the resistance element Rpu and the resistance element R1, is passed through the pulse signal input unit Tin and the analog signal input unit ADin. Is entered.
 このとき、検知回路DCは、アナログ信号入力部ADinに入力される電圧の大きさを検知する。アナログ信号入力部ADinに入力される電圧Vhighは、電源Vccの電圧Vmaxよりも少し低い値である。これにより、検知回路DCは、センサ部Sがオフである場合の信号が正常であることを検知する。 At this time, the detection circuit DC detects the magnitude of the voltage input to the analog signal input unit ADin. The voltage Vhigh input to the analog signal input unit ADin is a value slightly lower than the voltage Vmax of the power supply Vcc. As a result, the detection circuit DC detects that the signal when the sensor unit S is off is normal.
 次に、回転センサ100に異常が発生した場合について説明する。 Next, a case where an abnormality occurs in the rotation sensor 100 will be described.
 電源線である配線L1と配線L3との少なくとも一方が断線し、若しくは配線L1と配線L3とが短絡した場合には、スイッチSWは、常にオフとなる。そのため、抵抗素子R1がない場合と同等になる。 When at least one of the power line L1 and the wiring L3 is disconnected, or the wiring L1 and the wiring L3 are short-circuited, the switch SW is always turned off. Therefore, it is equivalent to the case where the resistance element R1 is not provided.
 このとき、センサ部Sへの電源の供給もなくなるため、センサ部Sがオンになることはなく、オフ又は不定となる。 At this time, since the power supply to the sensor unit S is also stopped, the sensor unit S is not turned on, and is turned off or indefinite.
 センサ部Sがオフである場合には、抵抗素子R4には電流が流れない。よって、パルス信号入力部Tin及びアナログ信号入力部ADinには、電源Vccの電圧Vmaxが入力される。 When the sensor unit S is off, no current flows through the resistance element R4. Therefore, the voltage Vmax of the power supply Vcc is input to the pulse signal input unit Tin and the analog signal input unit ADin.
 センサ部Sが不定である場合にも同様に、センサ部Sへの電源の供給がないことから、抵抗素子R4には、実質的に電流は流れない。よって、パルス信号入力部Tin及びアナログ信号入力部ADinには、電源Vccの電圧Vmaxが入力される。 Similarly, even when the sensor unit S is indefinite, no current actually flows through the resistance element R4 because the power is not supplied to the sensor unit S. Therefore, the voltage Vmax of the power supply Vcc is input to the pulse signal input unit Tin and the analog signal input unit ADin.
 検知線である配線L2が断線すると、抵抗素子Rpuを介して電源Vccの電圧Vmaxがパルス信号入力部Tinに印加される。よって、パルス信号入力部Tin及びアナログ信号入力部ADinには、電圧Vmaxが入力される。 When the wiring L2, which is the detection line, is disconnected, the voltage Vmax of the power supply Vcc is applied to the pulse signal input unit Tin via the resistance element Rpu. Therefore, the voltage Vmax is input to the pulse signal input unit Tin and the analog signal input unit ADin.
 電源線である配線L1と検知線である配線L2とが短絡すると、電源Vccの電圧Vmaxがパルス信号入力部Tinに直接印加される。よって、パルス信号入力部Tin及びアナログ信号入力部ADinには、電圧Vmaxが入力される。 When the wiring L1 which is the power supply line and the wiring L2 which is the detection line are short-circuited, the voltage Vmax of the power supply Vcc is directly applied to the pulse signal input unit Tin. Therefore, the voltage Vmax is input to the pulse signal input unit Tin and the analog signal input unit ADin.
 検知線である配線L2と電源線である配線L3とが短絡すると、パルス信号入力部TinがボディアースGNDに直接接続される。よって、パルス信号入力部Tin及びアナログ信号入力部ADinには、電圧Vminが入力される。 When the wiring L2 which is the detection line and the wiring L3 which is the power line are short-circuited, the pulse signal input unit Tin is directly connected to the body ground GND. Therefore, the voltage Vmin is input to the pulse signal input unit Tin and the analog signal input unit ADin.
 以上より、配線L1、配線L2、及び配線L3が正常な状態である場合には、パルス信号入力部Tin及びアナログ信号入力部ADinに入力される電圧は、電圧Vhigh又は電圧Vlowである。しかしながら、配線L1、配線L2、及び配線L3の少なくとも一つが異常な状態である場合には、パルス信号入力部Tin及びアナログ信号入力部ADinに入力される電圧は、電圧Vmax又は電圧Vminである。 From the above, when the wiring L1, the wiring L2, and the wiring L3 are in a normal state, the voltage input to the pulse signal input unit Tin and the analog signal input unit ADin is voltage Vhigh or voltage Vlow. However, when at least one of the wiring L1, the wiring L2, and the wiring L3 is in an abnormal state, the voltage input to the pulse signal input unit Tin and the analog signal input unit ADin is voltage Vmax or voltage Vmin.
 ここで、検知回路DCは、パルス信号入力部Tinに入力される電圧Vmax及び電圧Vhighを、共に「H(High)」信号として認識する。また、検知回路DCは、パルス信号入力部Tinに入力される電圧Vmin及び電圧Vlowを、共に「L(Low)」信号として認識する。 Here, the detection circuit DC recognizes both the voltage Vmax and the voltage Vhigh input to the pulse signal input unit Tin as “H (High)” signals. Further, the detection circuit DC recognizes both the voltage Vmin and the voltage Vlow input to the pulse signal input unit Tin as “L (Low)” signals.
 このとき、検知回路DCでは、アナログ信号入力部ADinに入力される電圧の大きさに基づき、「H」信号と認識した信号の電圧が電圧Vmax又は電圧Vhighか、「L」信号と認識した信号の電圧が電圧Vmin又は電圧Vlowか、を検出することで、異常の有無を判定できる。したがって、検知回路DCは、回転センサ100が正常な状態であるか、若しくは異常な状態であるかを検知することができる。 At this time, in the detection circuit DC, the voltage of the signal recognized as the "H" signal is the voltage Vmax or the voltage Vhigh, or the signal recognized as the "L" signal, based on the magnitude of the voltage input to the analog signal input unit ADin. By detecting whether the voltage of the voltage is Vmin or Vlow, it is possible to determine the presence or absence of an abnormality. Therefore, the detection circuit DC can detect whether the rotation sensor 100 is in a normal state or an abnormal state.
 以上の第1の実施形態によれば、以下に示す効果を奏する。 According to the above first embodiment, the following effects are obtained.
 回転センサ100では、例えば、電源線である配線L1又は配線L3が断線すると、スイッチSWがオンからオフに切り替わる。そのため、スイッチSWがオンからオフに切り替わったことを、検知線である配線L2を介して検知することで、配線L1又は配線L3の断線を検知することができる。したがって、断線を検知可能な回路構成を有する回転センサ100が提供される。 In the rotation sensor 100, for example, when the wiring L1 or the wiring L3, which is a power line, is disconnected, the switch SW is switched from on to off. Therefore, by detecting that the switch SW is switched from on to off via the wiring L2 which is a detection line, it is possible to detect the disconnection of the wiring L1 or the wiring L3. Therefore, the rotation sensor 100 having a circuit configuration capable of detecting disconnection is provided.
 また、本実施形態では、回転センサ100の動作に必要な配線L1,L2,及びL3を用いて、回転センサ100が異常な状態であることを検知している。したがって、配線本数を増加させることなく、回転センサ100の異常を検知することができる。 Further, in the present embodiment, it is detected that the rotation sensor 100 is in an abnormal state by using the wirings L1, L2, and L3 necessary for the operation of the rotation sensor 100. Therefore, it is possible to detect an abnormality in the rotation sensor 100 without increasing the number of wires.
 (第2の実施形態)
 次に、図3を参照して、本発明の第2の実施形態に係る回転センサ200について説明する。図3は、回転センサ200が有する回路の一例を示す構成図である。以下に示す各実施形態では、第1の実施形態と異なる点を中心に説明し、同様の機能を有する構成には同一の符号を付して説明を省略する。
(Second embodiment)
Next, the rotation sensor 200 according to the second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a configuration diagram showing an example of a circuit included in the rotation sensor 200. In each of the following embodiments, the differences from the first embodiment will be mainly described, and the same reference numerals are given to the configurations having the same functions, and the description thereof will be omitted.
 回転センサ200は、抵抗素子R3を配線L3でなく他の配線L4に接続している点で、第1の実施形態に係る回転センサ100とは相違する。 The rotation sensor 200 is different from the rotation sensor 100 according to the first embodiment in that the resistance element R3 is connected to another wiring L4 instead of the wiring L3.
 配線L4は、電源線を構成する。配線L4は、配線L3と同様に、配線L1と電位差がある配線であればよい。 Wiring L4 constitutes a power line. Like the wiring L3, the wiring L4 may be any wiring having a potential difference from the wiring L1.
 第2の実施形態によれば、少なくとも電源線として機能する配線L1の断線を検知することが可能である。 According to the second embodiment, it is possible to detect at least the disconnection of the wiring L1 that functions as a power supply line.
 なお、図3においては、配線L1がスイッチSWのオン電圧を印加できるように、配線L1の電位及びスイッチSWの極性が設定される。 In FIG. 3, the potential of the wiring L1 and the polarity of the switch SW are set so that the wiring L1 can apply the on voltage of the switch SW.
 (第3の実施形態)
 次に、図4を参照して、本発明の第3の実施形態に係る回転センサ300について説明する。図4は、回転センサ300が有する回路の一例を示す構成図である。
(Third embodiment)
Next, the rotation sensor 300 according to the third embodiment of the present invention will be described with reference to FIG. FIG. 4 is a configuration diagram showing an example of a circuit included in the rotation sensor 300.
 回転センサ300は、抵抗素子R2を配線L1でなく他の配線L5に接続している点で、第1の実施形態に係る回転センサ100とは相違する。 The rotation sensor 300 is different from the rotation sensor 100 according to the first embodiment in that the resistance element R2 is connected to another wiring L5 instead of the wiring L1.
 配線L5は、電源線を構成する。配線L5は、配線L1と同様に、配線L3と電位差がある配線であればよい。 Wiring L5 constitutes a power line. Like the wiring L1, the wiring L5 may be any wiring having a potential difference from the wiring L3.
 第3の実施形態によれば、少なくとも電源線として機能する配線L3の断線を検知することが可能である。 According to the third embodiment, it is possible to detect at least the disconnection of the wiring L3 that functions as a power supply line.
 なお、図4においては、配線L2がスイッチSWのオン電圧を印加できるように、配線L2の電位及びスイッチSWの極性が設定される。 In FIG. 4, the potential of the wiring L2 and the polarity of the switch SW are set so that the wiring L2 can apply the on voltage of the switch SW.
 (第4の実施形態)
 次に、図5を参照して、本発明の第4の実施形態に係る回転センサ400について説明する。図5は、回転センサ400が有する回路の一例を示す構成図である。
(Fourth Embodiment)
Next, the rotation sensor 400 according to the fourth embodiment of the present invention will be described with reference to FIG. FIG. 5 is a configuration diagram showing an example of a circuit included in the rotation sensor 400.
 回転センサ400は、スイッチSWの端子Tcを配線L3でなく他の配線L6に接続している点で、第1の実施形態とは相違する。 The rotation sensor 400 differs from the first embodiment in that the terminal Tc of the switch SW is connected to another wiring L6 instead of the wiring L3.
 配線L6は、電源線を構成する。配線L6は、配線L2と電位差がある配線であればよい。 Wiring L6 constitutes a power line. The wiring L6 may be any wiring having a potential difference from the wiring L2.
 (第5の実施形態)
 次に、図6を参照して、本発明の第5の実施形態に係る回転センサ500について説明する。図6は、回転センサ500が有する回路の一例を示す構成図である。
(Fifth Embodiment)
Next, with reference to FIG. 6, the rotation sensor 500 according to the fifth embodiment of the present invention will be described. FIG. 6 is a configuration diagram showing an example of a circuit included in the rotation sensor 500.
 回転センサ500は、スイッチSWの端子Tbを配線L2でなく他の配線L7に接続している点で、第1の実施形態とは相違する。 The rotation sensor 500 differs from the first embodiment in that the terminal Tb of the switch SW is connected to another wiring L7 instead of the wiring L2.
 配線L7は、検知線を構成する。配線L7は、他の検知回路ODCに接続される。 Wiring L7 constitutes a detection line. The wiring L7 is connected to another detection circuit ODC.
 以上の本実施形態の構成及び作用効果について、まとめて説明する。 The configuration and action / effect of the above embodiment will be described collectively.
 (1)電源線である配線L1(又はL3)と検知線である配線L2(又はL7)とセンサ部SとスイッチSWとを備える回転センサ100,200,300,400,500において、センサ部Sは、配線L1(又はL3)を介して電源電圧が印加され、スイッチSWは、配線L1(又はL3)を介してオン電圧が印加され、配線L2(又はL7)に接続される。 (1) In the rotation sensor 100, 200, 300, 400, 500 including the wiring L1 (or L3) which is the power supply line, the wiring L2 (or L7) which is the detection line, the sensor unit S, and the switch SW, the sensor unit S Is applied with a power supply voltage via the wiring L1 (or L3), and the switch SW is connected to the wiring L2 (or L7) by applying an on-voltage via the wiring L1 (or L3).
 上記態様では、電源線である配線L1(又はL3)が断線すると、スイッチSWがオンからオフに切り替わる。そのため、スイッチSWがオンからオフに切り替わったことを、検知線である配線L2(又はL7)を介して検知することで、配線L1(又はL3)の断線を検知することができる。したがって、断線を検知可能な回路構成を有する回転センサ100,200,300,400,500が提供される。 In the above embodiment, when the wiring L1 (or L3), which is the power line, is disconnected, the switch SW is switched from on to off. Therefore, the disconnection of the wiring L1 (or L3) can be detected by detecting that the switch SW is switched from on to off via the wiring L2 (or L7) which is a detection line. Therefore, rotation sensors 100, 200, 300, 400, 500 having a circuit configuration capable of detecting disconnection are provided.
 なお、スイッチSWは、オンであっても当然に所定の抵抗値を有する。そのため、本回路構成は、スイッチSWのオンとオフとの切り替えにより、抵抗素子の有無を擬制するものであるということもできる。 The switch SW naturally has a predetermined resistance value even when it is on. Therefore, it can be said that this circuit configuration imitates the presence or absence of a resistance element by switching the switch SW on and off.
 (2)配線L2は、センサ部Sの信号出力端子である端子T2と接続される。 (2) The wiring L2 is connected to the terminal T2 which is the signal output terminal of the sensor unit S.
 この構成によれば、断線検知用の検知線及び検知回路と、センシング用の検知線及び検知回路と、を別々に設けてもよいが、配線L2にセンサ部Sの出力検知と断線検知との双方の機能を持たせることにより、検知線や検知回路の増加を抑制することができる。 According to this configuration, the detection line and the detection circuit for disconnection detection and the detection line and the detection circuit for sensing may be provided separately, but the output detection and the disconnection detection of the sensor unit S may be provided in the wiring L2. By having both functions, it is possible to suppress an increase in the number of detection lines and detection circuits.
 (3)配線L2(又はL7)は、第1抵抗素子としての抵抗素子R1を介してスイッチSWと接続される。 (3) The wiring L2 (or L7) is connected to the switch SW via the resistance element R1 as the first resistance element.
 検知精度の向上のためには、検知線としての配線L2(又はL7)に接続される抵抗要素の抵抗値は高い方が好ましい。そのため、この構成によれば、スイッチSWとは別に抵抗素子R1を設けることにより、検知精度を向上させることができる。 In order to improve the detection accuracy, it is preferable that the resistance value of the resistance element connected to the wiring L2 (or L7) as the detection line is high. Therefore, according to this configuration, the detection accuracy can be improved by providing the resistance element R1 separately from the switch SW.
 (4)スイッチSWは、配線L1から第2抵抗素子としての抵抗素子R2を介してオン電圧が印加される。 (4) An on-voltage is applied to the switch SW from the wiring L1 via the resistance element R2 as the second resistance element.
 この構成によれば、抵抗素子R2によりスイッチSWに印加される電圧を降下させることによって、スイッチSWの耐久性の低下を抑制することができる。 According to this configuration, it is possible to suppress a decrease in the durability of the switch SW by lowering the voltage applied to the switch SW by the resistance element R2.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一つを示したものに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 Although the embodiments of the present invention have been described above, the above-described embodiments are merely shown as one of the application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above-described embodiments. is not it.
 例えば、図1,及び図3から図6の概念を相互に組み合わせた回路構成とすることが可能である。具体的には、図3と図4とを組み合わせたり、図4から図6を組み合わせたりすることも可能であり、ここで例示した組み合わせに限定されるものではない。 For example, it is possible to form a circuit configuration in which the concepts of FIGS. 1 and 3 to 6 are combined with each other. Specifically, it is possible to combine FIGS. 3 and 4 or to combine FIGS. 4 to 6, and the combination is not limited to the combination exemplified here.
 なお、配線及びスイッチは、当然に所定の抵抗値を有するので、図1,及び図3から図6において、抵抗素子R1,R2,R3,及びR4を省略することは可能であるが、回路の精度向上等の観点からは、抵抗素子R1,R2,R3,及びR4を設けることが好ましい。 Since the wiring and the switch naturally have a predetermined resistance value, it is possible to omit the resistance elements R1, R2, R3, and R4 in FIGS. 1 and 3 to 6, but the circuit. From the viewpoint of improving accuracy and the like, it is preferable to provide resistance elements R1, R2, R3 and R4.
 上記実施形態では、回転センサ100,200,300,400,500の異常を検知する構成について説明したが、被検出物が回転体でない変位センサ等の異常を検知する構成であってもよい。 In the above embodiment, the configuration for detecting the abnormality of the rotation sensor 100, 200, 300, 400, 500 has been described, but the configuration may be such that the abnormality of the displacement sensor or the like in which the object to be detected is not a rotating body is detected.
 また、上記実施形態にて用いられる配線L1~L7は、例えば、ワイヤであってもよく、電子基板に設けられる回路パターンであってもよい。即ち、配線L1~L7は、各構成部品を電気的に接続可能なものであればよい。 Further, the wirings L1 to L7 used in the above embodiment may be, for example, a wire or a circuit pattern provided on an electronic board. That is, the wirings L1 to L7 may be any wiring that can electrically connect each component.
 本願は、2020年7月6日に日本国特許庁に出願された特願2020-116299に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2020-116299 filed with the Japan Patent Office on July 6, 2020, and the entire contents of this application are incorporated herein by reference.

Claims (4)

  1.  電源線と検知線とセンサ部とスイッチとを備える回転センサにおいて、
     前記センサ部は、前記電源線を介して電源電圧が印加され、
     前記スイッチは、前記電源線を介してオン電圧が印加され、前記検知線に接続される、
    回転センサ。
    In a rotation sensor equipped with a power line, a detection line, a sensor unit, and a switch,
    A power supply voltage is applied to the sensor unit via the power supply line.
    An on-voltage is applied to the switch via the power line, and the switch is connected to the detection line.
    Rotation sensor.
  2.  請求項1に記載の回転センサにおいて、
     前記検知線は、前記センサ部の信号出力端子と接続される、
    回転センサ。
    In the rotation sensor according to claim 1,
    The detection line is connected to the signal output terminal of the sensor unit.
    Rotation sensor.
  3.  請求項1又は2に記載の回転センサにおいて、
     前記検知線は、第1抵抗素子を介して前記スイッチと接続される、
    回転センサ。
    In the rotation sensor according to claim 1 or 2.
    The detection line is connected to the switch via a first resistance element.
    Rotation sensor.
  4.  請求項1から3のいずれか一つに記載の回転センサにおいて、
     前記スイッチは、前記電源線から第2抵抗素子を介してオン電圧が印加される、
    回転センサ。
    In the rotation sensor according to any one of claims 1 to 3.
    An on-voltage is applied to the switch from the power line via the second resistance element.
    Rotation sensor.
PCT/JP2021/018291 2020-07-06 2021-05-13 Rotation sensor WO2022009520A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/010,965 US20230221146A1 (en) 2020-07-06 2021-05-13 Rotation sensor
CN202180047597.3A CN115769083A (en) 2020-07-06 2021-05-13 Rotary sensor
JP2022534923A JPWO2022009520A1 (en) 2020-07-06 2021-05-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020116299 2020-07-06
JP2020-116299 2020-07-06

Publications (1)

Publication Number Publication Date
WO2022009520A1 true WO2022009520A1 (en) 2022-01-13

Family

ID=79552891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018291 WO2022009520A1 (en) 2020-07-06 2021-05-13 Rotation sensor

Country Status (4)

Country Link
US (1) US20230221146A1 (en)
JP (1) JPWO2022009520A1 (en)
CN (1) CN115769083A (en)
WO (1) WO2022009520A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149060B1 (en) * 1969-09-30 1976-12-24
JPS6010400U (en) * 1983-06-29 1985-01-24 日野自動車株式会社 Vehicle speed sensor abnormality detection device
JPH04110774A (en) * 1990-08-31 1992-04-13 Matsushita Electric Ind Co Ltd Moving amount detecting sensor and car equipped with it
JP2002055114A (en) * 2000-08-09 2002-02-20 Calsonic Kansei Corp Occupant protector
US20150035544A1 (en) * 2012-10-11 2015-02-05 Silicon Audio Seismic, LLC Apparatus for Sensor with Configurable Damping and Associated Methods
JP2018080930A (en) * 2016-11-14 2018-05-24 株式会社豊田自動織機 Self-diagnostic circuit of open collector type rotation sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3748514B2 (en) * 2001-02-06 2006-02-22 日本電産株式会社 Sensor state detection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149060B1 (en) * 1969-09-30 1976-12-24
JPS6010400U (en) * 1983-06-29 1985-01-24 日野自動車株式会社 Vehicle speed sensor abnormality detection device
JPH04110774A (en) * 1990-08-31 1992-04-13 Matsushita Electric Ind Co Ltd Moving amount detecting sensor and car equipped with it
JP2002055114A (en) * 2000-08-09 2002-02-20 Calsonic Kansei Corp Occupant protector
US20150035544A1 (en) * 2012-10-11 2015-02-05 Silicon Audio Seismic, LLC Apparatus for Sensor with Configurable Damping and Associated Methods
JP2018080930A (en) * 2016-11-14 2018-05-24 株式会社豊田自動織機 Self-diagnostic circuit of open collector type rotation sensor

Also Published As

Publication number Publication date
CN115769083A (en) 2023-03-07
JPWO2022009520A1 (en) 2022-01-13
US20230221146A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
KR20060006042A (en) Field effect sensor two wire interconnect method and apparatus
JP4317855B2 (en) Magnetic detector
JP2009027911A (en) Sensorless speed detection of permanent magnet brushless motor where phase terminal is short-circuited
JP2010226844A (en) Hall sensor abnormality detector and motor drive
WO2022009520A1 (en) Rotation sensor
TW201338420A (en) Encoder input device
JP5941718B2 (en) Signal processing circuit, in-vehicle electronic control device, and mounting method of signal processing circuit in in-vehicle electronic control device
JP4149440B2 (en) Protection circuit for analog sensors
JPH04114221A (en) Abnormality detecting method for key switch input part in computer
JP4214799B2 (en) Rotation detector
JP2009159121A (en) Electronic circuit device, circuit system, integrated circuit device, and electronic apparatus
CN108462427B (en) Fan drive circuit
JP5748621B2 (en) Semiconductor chip
JP3724669B2 (en) Position detection switch
JPH04198772A (en) Semiconductor device for electric power
TWI722128B (en) Magnetic sensor and magnetic sensor device
JP4315228B2 (en) Semiconductor integrated circuit device
JP6802073B2 (en) Magnetoresistive device and magnetic detection system
US6960915B2 (en) Electric circuit system
WO2024014084A1 (en) Semiconductor device and product identification method
JP3846374B2 (en) Motor control device for washing machine
JP5014072B2 (en) Rotation sensor device
JPH0714897Y2 (en) Rotation detector
KR20080036300A (en) Circuit for speed sensor of a wheel
JP2524183Y2 (en) Switch input circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534923

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837200

Country of ref document: EP

Kind code of ref document: A1