WO2022009409A1 - Component mounting device - Google Patents

Component mounting device Download PDF

Info

Publication number
WO2022009409A1
WO2022009409A1 PCT/JP2020/026977 JP2020026977W WO2022009409A1 WO 2022009409 A1 WO2022009409 A1 WO 2022009409A1 JP 2020026977 W JP2020026977 W JP 2020026977W WO 2022009409 A1 WO2022009409 A1 WO 2022009409A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
component
mounting
component mounting
mounting device
Prior art date
Application number
PCT/JP2020/026977
Other languages
French (fr)
Japanese (ja)
Inventor
浩二 河口
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2020/026977 priority Critical patent/WO2022009409A1/en
Priority to JP2022534612A priority patent/JP7510505B2/en
Publication of WO2022009409A1 publication Critical patent/WO2022009409A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components

Definitions

  • This specification discloses a component mounting device.
  • a device that measures the sliding resistance at the time of nozzle replacement or the like to judge the quality of the nozzle is known.
  • the sliding resistance between the suction nozzle and the nozzle holder is measured, and if the sliding resistance exceeds a preset set value, the sliding state is changed. Judge as defective.
  • the set value is set to a constant value so as not to interfere with the mounting regardless of the size of the component to be mounted and other mounting conditions. Therefore, for example, for a nozzle with a large load applied when mounting a component on a board, even if the sliding resistance exceeds the set value, it can be mounted without any problem, but it is determined that the nozzle is defective and the nozzle is replaced. Was sometimes needed.
  • the present disclosure has been made to solve such a problem, and the main purpose is to appropriately judge the quality of the nozzle according to the mounting conditions.
  • the component mounting device of the present disclosure is A component mounting device that mounts components on a board using a mounting head.
  • a nozzle holder provided on the mounting head and extending in the vertical direction,
  • a nozzle elevating mechanism that can move the nozzle up and down,
  • the allowable range of the force including the sliding resistance between the nozzle holder and the nozzle is set according to the mounting conditions, the measured value of the force is acquired, and whether or not the measured value falls within the allowable range is determined.
  • the allowable range of the force including the sliding resistance between the nozzle holder and the nozzle was set according to the mounting conditions, and the measured value of the force was acquired and the measured value did not fall within the allowable range. If so, the nozzle is judged to be defective. Therefore, the quality of the nozzle can be appropriately determined as compared with the case where the allowable range is uniformly set regardless of the mounting conditions.
  • Sectional drawing of nozzle 42. The appearance explanatory view of the nozzle 42. It is an operation explanatory view of the nozzle 42, (a) shows before the descent, (b) shows after descent.
  • FIG. 1 is a perspective view of the component mounting device 10
  • FIG. 2 is an explanatory view of the mounting head 18
  • FIG. 3 is a sectional view of the nozzle 42
  • FIG. 4 is an external view of the nozzle 42
  • FIG. 5 is an operation explanatory view of the nozzle 42.
  • 6 is an explanatory diagram showing an electrical connection of the controller 78
  • FIG. 7 is a diagram showing an example of production job data 82a
  • FIG. 8 is a diagram showing an example of production job data 82a.
  • the left-right direction (X-axis), the front-back direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIG.
  • the component mounting device 10 includes a board transfer unit 12, a mounting head 18, a nozzle 42, a mark camera 64, a parts camera 66, a component supply unit 70, a nozzle stocker 90, and various types. It includes a controller 78 (see FIG. 6) that executes control.
  • the board transport unit 12 transports the board S from left to right by conveyor belts 16 and 16 (only one of which is shown in FIG. 1) attached to a pair of front and rear support plates 14 and 14, respectively. Further, the substrate transfer unit 12 fixes and supports the substrate S by lifting the substrate S from below by a support pin 17 arranged below the substrate S and pressing it against the roof portions 14a and 14a of the support plates 14 and 14. The fixing of the substrate S is released by lowering the pin 17.
  • the mounting head 18 can move in the XY plane. Specifically, the mounting head 18 moves in the left-right direction as the X-axis slider 20 moves in the left-right direction along the guide rails 22 and 22, and the Y-axis slider 24 moves in the left-right direction along the guide rails 26 and 26. As it moves in the front-back direction, it moves in the front-back direction. As shown in FIG. 2, the mounting head 18 has a support cylinder 19 that supports the nozzle holder 30 so as to be rotatable and vertically movable.
  • the nozzle holder 30 is a member extending in the vertical direction, has a rotation transmission gear 30a and a flange 30b at the upper part, and holds a nozzle 42 at the lower part.
  • the rotation transmission gear 30a meshes with the drive gear 32 of the nozzle rotation motor 31. Therefore, when the nozzle rotation motor 31 rotates, the nozzle holder 30 rotates around the axis.
  • the flange 30b is sandwiched between the upper piece and the lower piece of the first engaging portion 33a provided on the first arm 33 extending in the vertical direction.
  • the first arm 33 is connected to a mover of the first linear motor 34.
  • the stator of the first linear motor 34 is fixed to the mounting head 18. Therefore, when the mover of the first linear motor 34 moves up and down, the first arm 33 moves up and down along the guide member 35 that guides the movement in the up and down direction, and at the same time, the first arm 33 moves up and down to the first engaging portion 33a.
  • the sandwiched flange 30b and eventually the nozzle holder 30 move up and down.
  • a pair of inverted J-shaped guide grooves 30c are provided on the lower end side surface of the nozzle holder 30 at positions facing each other.
  • the upper annular projection 30d and the lower annular projection 30e are provided on the side surface of the nozzle holder 30 with a gap between them.
  • the nozzle holder 30 is covered with a lock sleeve 36.
  • a lock spring 37 is arranged between the upper end surface of the lock sleeve 36 and the upper annular projection 30d of the nozzle holder 30.
  • the nozzle 42 uses pressure to attract the component P to the tip of the nozzle and release the component P adsorbed to the tip of the nozzle. As shown in FIGS. 3 and 5, the nozzle 42 is elastically supported on the upper end surface of the nozzle sleeve 44, which is a nozzle fixture, via a nozzle spring 46.
  • the nozzle 42 has a ventilation passage 42a extending in the vertical direction inside. Negative pressure or positive pressure can be supplied to the ventilation passage 42a.
  • the nozzle 42 has a flange 42c that protrudes horizontally from a position slightly above the suction port 42b that attracts the component P, a spring receiving portion 42d that protrudes horizontally from the upper end, and a step provided on the way from the upper end to the flange 42c. It has a surface 42e. Of the nozzle 42, the portion from the stepped surface 42e to the spring receiving portion 42d is a shaft portion 42f having a small diameter. A pair of elongated holes 42g extending in the vertical direction are provided on the side surface of the shaft portion 42f so as to face each other. The nozzle sleeve 44 is attached to the nozzle 42 so that it can move up and down relative to the shaft portion 42f of the nozzle 42.
  • the nozzle sleeve 44 is integrated with a pin 44a penetrating in the radial direction.
  • the pin 44a is inserted through a pair of elongated holes 42g of the nozzle 42. Therefore, the nozzle 42 can slide in the extending direction of the elongated hole 42g, that is, in the vertical direction with respect to the pin 44a.
  • the nozzle spring 46 is arranged between the upper end surface of the nozzle sleeve 44 and the spring receiving portion 42d of the nozzle 42.
  • the nozzle sleeve 44 is a component constituting the nozzle holder 30, and is detachably fixed to the guide groove 30c of the nozzle holder 30 with the nozzle 42 elastically supported.
  • the pin 44a provided on the nozzle sleeve 44 is fixed so as to be sandwiched between the end of the guide groove 30c and the lower end of the lock sleeve 36 urged downward by the lock spring 37.
  • the pin 44a of the nozzle sleeve 44 is moved upward along the guide groove 30c (see FIG. 4) of the nozzle holder 30. ..
  • the pin 44a hits the lower end of the lock sleeve 36.
  • the nozzle 42 is rotated with the nozzle sleeve 44 with respect to the lock sleeve 36 so that the pin 44a enters along the guide groove 30c. Let me. Then, the pin 44a finally moves downward through the horizontal portion of the guide groove 30c to reach the end of the guide groove 30c. At this time, the pin 44a is in a state of being pressed against the end of the guide groove 30c by the lock sleeve 36 urged downward by the lock spring 37.
  • the nozzle sleeve 44 is locked to the nozzle holder 30 via the pin 44a.
  • the procedure may be the reverse of the fixing procedure.
  • the stator of the second linear motor 50 is fixed to the lower end of the first arm 33.
  • a second arm 51 is connected to the mover of the second linear motor 50.
  • the second arm 51 includes a second engaging portion 52 made of a cam follower at the tip of the arm, and a load cell 53 for detecting a load in the middle of the arm.
  • the second engaging portion 52 is arranged at a position facing the upper surface of the flange 42c of the nozzle 42.
  • the mark camera 64 is installed at the lower end of the X-axis slider 20 so that the imaging direction faces the substrate S, and is movable as the mounting head 18 moves.
  • the mark camera 64 captures a reference mark for positioning a substrate (not shown) provided on the substrate S, and outputs the obtained image to the controller 78.
  • the parts camera 66 is installed between the parts supply unit 70 and the board transfer unit 12 at substantially the center of the length in the left-right direction so that the image pickup direction faces upward.
  • the parts camera 66 captures an image of the component P adsorbed by the nozzle 42 passing above the component camera 66, and outputs the image obtained by the imaging to the controller 78.
  • the parts supply unit 70 includes a reel 72 and a feeder 74.
  • the reel 72 is wound with a tape formed so that recesses accommodating the component P are arranged along the longitudinal direction.
  • the feeder 74 sends the component P of the tape wound around the reel 72 to a predetermined component supply position.
  • the tape wound around the reel 72 has a film covering the component P, but the film is peeled off when the component supply position is reached. Therefore, the component P arranged at the component supply position is in a state where it can be adsorbed by the nozzle 42.
  • the nozzle stocker 90 is a member that stocks a plurality of nozzles 42, and is arranged next to the parts supply unit 70.
  • the nozzle 42 is replaced with one suitable for the type of the substrate S on which the component P is mounted and the type of the component P.
  • the controller 78 is configured as a microprocessor centered on the CPU 78a, and includes a ROM 78b for storing a processing program, an HDD 78c for storing various data, a RAM 78d used as a work area, and the like. Further, an input device 78e such as a mouse or a keyboard and a display device 78f such as a liquid crystal display are connected to the controller 78.
  • the controller 78 is connected to the feeder controller 77 built in the feeder 74 and the management computer 80 so as to be capable of bidirectional communication.
  • the controller 78 includes a substrate transfer unit 12, an X-axis slider 20, a Y-axis slider 24, a nozzle rotation motor 31, first and second linear motors 34 and 50, a pressure adjusting device 43 for the nozzle 42, and a mark camera 64. It is connected to the parts camera 66 so that a control signal can be output. Further, the controller 78 is connected so as to be able to receive the detection signal from the load cell 53 and the image signal from the mark camera 64 and the parts camera 66. For example, the controller 78 recognizes the position (coordinates) of the board S by processing the image of the board S captured by the mark camera 64 and recognizing the position of the reference mark. Further, the controller 78 determines whether or not the component P is attracted to the nozzle 42 based on the image captured by the parts camera 66, and determines the shape, size, suction position, and the like of the component P.
  • the upper limit value information 79 is stored in the HDD 78c. As shown in FIG. 7, the upper limit value information 79 stores a condition related to the mounting load (a type of mounting condition) and an upper limit value of the allowable range of the sliding resistance Fr in association with each other.
  • the sliding resistance Fr is the resistance when the nozzle 42 slides with respect to the nozzle sleeve 44, and the mounting load is the load when the nozzle 42 presses the component P against the substrate S.
  • the condition regarding the mounting load is a condition including a set load which is a target value of the mounting load determined for each component and a load accuracy which is a degree of an allowable error with respect to the set load.
  • the upper limit of the allowable range of the sliding resistance Fr is set larger as the set load is larger.
  • the upper limit of the allowable range of the sliding resistance Fr is set larger as the load accuracy is lower, that is, the degree of the allowable error with respect to the set load is larger.
  • the state in which the degree of error allowed with respect to the set load is small for example, a state in which an error of about ⁇ 20% with respect to the set load is allowed is referred to as high load accuracy, and with respect to the set load.
  • the management computer 80 includes a personal computer main body 82, an input device 84, and a display 86, and can input signals from the input device 84 operated by the operator, and various types of signals can be input to the display 86. Images can be output.
  • the production job data 82a is stored in a memory (not shown) of the personal computer main body 82. As shown in FIG. 8, the production job data 82a stores the order in which the component P is mounted in the component mounting device 10 and the mounting conditions in association with each other.
  • the mounting conditions include conditions relating to the type of component P and the mounting load.
  • the conditions regarding the mounting load include the set load and the load accuracy.
  • FIG. 9 is a flowchart of the component mounting processing routine.
  • the program of the component mounting processing routine is stored in the HDD 78c of the controller 78.
  • the CPU 78a When the CPU 78a of the controller 78 starts this routine, the CPU 78a first acquires the mounting condition (step S110). Specifically, in the CPU 78a, if the mounting order is # 001, the type of component P is A, the set load is 0.5 [N], the load accuracy is Low, and if the mounting order is # 010, the type of component P is A. , The set load is 0.5 [N], the load accuracy is High, and so on, the type, set load, and load accuracy of the component P corresponding to the mounting order of the component P are acquired from the production job data 82a.
  • the CPU 78a sets an allowable range (step S120). Specifically, if the set load is 0.5 N and the load accuracy is Low, the upper limit of the sliding resistance Fr is 0.005 [N], and if the set load is 0.5 N and the load accuracy is High, sliding. The upper limit value of the resistance Fr is 0.01 [N] ..., And the upper limit value of the sliding resistance Fr corresponding to the set load and the load accuracy acquired in step S110 is acquired from the upper limit value information 79.
  • the CPU 78a acquires the measured value of the sliding resistance Fr (step S130). Specifically, the CPU 78a controls a power supply (not shown) to gradually increase the supply current to the second linear motor 50 and lower the second engaging portion 52 to resist the elastic force Fs of the nozzle spring 46. The nozzle 42 is lowered with respect to the nozzle sleeve 44 of the nozzle holder 30. Then, the CPU 78a acquires the amount of descent (stroke length L) of the second engaging portion 52 based on the detection value of a sensor (not shown) provided in the second linear motor 50, and is based on the detection value of the load cell 53.
  • stroke length L the amount of descent
  • the acting force F (the sum of the sliding resistance Fr between the nozzle 42 and the nozzle sleeve 44 and the elastic force Fs of the nozzle spring 46) is acquired. Then, the spring constant of the nozzle spring 46 is multiplied by the stroke length L to obtain the elastic force Fs. Then, the elastic force Fs is subtracted from the acting force F to acquire the measured value of the sliding resistance Fr.
  • the CPU 78a determines whether the nozzle 42 is good or bad (S140). Specifically, the CPU 78a determines whether or not the measured value of the sliding resistance Fr acquired in step S130 exceeds the upper limit of the allowable range of the sliding resistance Fr acquired in step S120. If the measured value of the sliding resistance Fr exceeds the upper limit of the allowable range of the sliding resistance Fr, the CPU 78a determines that the nozzle 42 attached to the nozzle sleeve 44 of the nozzle holder 30 is defective. On the other hand, if the measured value of the sliding resistance Fr does not exceed the upper limit of the allowable range of the sliding resistance Fr, the CPU 78a determines that the nozzle 42 attached to the nozzle sleeve 44 of the nozzle holder 30 is good. do.
  • step S140 If it is determined in step S140 that the nozzle 42 attached to the nozzle sleeve 44 of the nozzle holder 30 is defective, the CPU 78a notifies the nozzle defect (step S150). Specifically, the CPU 78a causes the display device 78f to display that the nozzle is defective, and ends the component mounting processing routine.
  • step S140 if it is determined in step S140 that the nozzle 42 is good, the CPU 78a moves the nozzle 42 to the feeder 74 (step S160). Specifically, the CPU 78a moves the nozzle 42 to the component supply position of the feeder 74 that supplies the predetermined component P in the component supply unit 70 by controlling the X-axis and Y-axis sliders 20 and 24.
  • the CPU 78a attracts the component P to the tip of the nozzle 42 (step S170). Specifically, the CPU 78a moves the nozzle holder 30 downward by lowering the mover of the first linear motor 34. At the same time, the CPU 78a moves the nozzle 42 to the lowermost end with respect to the nozzle holder 30 by lowering the mover of the second linear motor 50 before the tip of the nozzle 42 comes into contact with the component P. After that, when the CPU 78a determines that the tip of the nozzle 42 has come into contact with the component P based on the detection signal from the load cell 53, the CPU 78a raises the mover of the second linear motor 50 so that the reaction force becomes equal to the set pressing force. Let me.
  • the component P can be prevented from being damaged by the nozzle 42.
  • the CPU 78a controls the pressure adjusting device 43 so that a negative pressure is supplied to the suction port 42b when the tip of the nozzle 42 comes into contact with the component P. As a result, the component P is attracted to the tip of the nozzle 42.
  • the CPU 78a images the component P with the component camera 66 (step S180). Specifically, the CPU 78a controls the second linear motor 50 so that the second engaging portion 52 of the second arm 51 is separated above the flange 42c, and the component P is at a predetermined height. It controls the first linear motor 34. In parallel with this, the CPU 78a controls the X-axis and Y-axis sliders 20 and 24 so that the center position of the nozzle 42 coincides with a predetermined reference point in the imaging region of the parts camera 66, and the center of the nozzle 42. When the position coincides with the reference point, the component P is imaged by the component camera 66. The CPU 78a grasps the position of the component P with respect to the reference point by analyzing the captured image.
  • the CPU 78a moves the nozzle 42 onto the substrate S (step S190). Specifically, the CPU 78a controls the X-axis and Y-axis sliders 20 and 24 to move the nozzle 42 above the predetermined position on the substrate S on which the component P is mounted.
  • the CPU 78a mounts the component P at a predetermined position on the substrate S under predetermined mounting conditions (step S200). Specifically, the CPU 78a controls the nozzle rotation motor 31 so that the posture of the component P becomes a predetermined posture based on the captured image. Further, the CPU 78a moves the nozzle holder 30 downward by lowering the mover of the first linear motor 34. At the same time, the CPU 78a lowers the mover of the second linear motor 50 to lower the nozzle 42 with respect to the nozzle holder 30 before the component P attracted to the tip of the nozzle 42 abuts on the substrate S. Move to the bottom.
  • the CPU 78a determines that the component P has come into contact with the substrate S based on the detection signal from the load cell 53, the CPU 78a raises the mover of the second linear motor 50 so that the reaction force becomes equal to the set pressing force. As a result, the component P can be prevented from being damaged by the collision with the substrate S. Then, the CPU 78a controls the first linear motor 34 and the second linear motor 50 so that the mounting load of the component P falls within the range of the load accuracy with respect to the set load. If the load accuracy is Low, the permissible error with respect to the set load is large, so that the mounting load tends to fall within the range of the load accuracy with respect to the set load even if the speed of the nozzle 42 toward the substrate S is large.
  • the speed can be set large.
  • the set load is High, the error allowed for the set load is small, and therefore, if the speed at which the nozzle 42 is directed toward the substrate S is high, it is difficult for the mounting load to fall within the range of load accuracy with respect to the set load. Therefore, the speed is set low.
  • the CPU 78a controls the pressure adjusting device 43 so that a positive pressure is supplied to the tip of the nozzle 42. As a result, the component P is separated from the nozzle 42 and mounted at a predetermined position on the substrate S.
  • step S200 the CPU 78a determines whether or not the mounting of the component P to be mounted on the board S is completed (step S200), and if not, executes the processing after step S110 for the component P to be mounted next. , End this routine when completed.
  • the component mounting device 10 of the present embodiment corresponds to the component mounting device of the present disclosure
  • the nozzle holder 30 provided with the nozzle sleeve 44 corresponds to the nozzle holder
  • the nozzle 42 corresponds to the nozzle
  • the 2 arm 51 and the second engaging portion 52 correspond to the nozzle elevating mechanism
  • the controller 78 corresponds to the control device.
  • the load cell 53 corresponds to the measuring device
  • the nozzle spring 46 corresponds to the elastic body
  • the nozzle stocker 90 corresponds to the nozzle stocker.
  • the allowable range of the sliding resistance Fr between the nozzle sleeve 44 and the nozzle 42 is set based on the mounting conditions, and the measured value of the sliding resistance Fr is acquired and the measured value is obtained. If it does not fall within the allowable range, the nozzle 42 is determined to be defective. Therefore, the quality of the nozzle 42 can be appropriately determined as compared with the case where the allowable range is uniformly set regardless of the mounting conditions.
  • the mounting condition is a condition relating to the mounting load at the time of component mounting.
  • the upper limit of the allowable range is set larger as the set load is larger, it is difficult to determine the defect of the nozzle 42 used for mounting the component P having a larger set load even if the sliding resistance Fr is large. ..
  • the lower the load accuracy that is, the larger the degree of error allowed for the set load
  • the larger the upper limit of the allowable range is set, so that it is used for mounting the component P whose load accuracy is set low. Nozzle 42 to be defective is less likely to be determined as defective.
  • the mounting condition is a condition relating to the mounting load
  • the upper limit of the allowable range of the sliding resistance Fr is set according to the condition relating to the mounting load
  • the personal computer main body 82 may store the production job data 182a stored in association with the order in which the parts P are mounted and the types of the parts P
  • the HDD 78c may store the parts.
  • the upper limit value information 179 stored in association with the type of P and the upper limit value of the allowable range of the sliding resistance Fr may be stored. Further, as shown in FIG.
  • the CPU 78a acquires the type of the component P corresponding to the mounting order of the production job data 182a, and allows the sliding resistance Fr corresponding to the type of the component P acquired from the production job data 182a.
  • the upper limit value of the range may be acquired from the upper limit value information 179, and the allowable range may be set. By doing so, the allowable range is set according to the type of the component P to be mounted, and the nozzle 42 which is not suitable for mounting the component P is easily determined to be defective.
  • the mounting condition is a condition relating to the descending speed or the acceleration of the nozzle at the time of mounting the component, and the upper limit value of the allowable range of the sliding resistance Fr may be set according to the condition.
  • the quality of the nozzle 42 is determined using the sliding resistance Fr, but the present invention is not limited to this.
  • the quality of the nozzle 42 may be determined by using the total of the sliding resistance Fr and the elastic force Fs.
  • the total of the sliding resistance Fr and the elastic force Fs of the nozzle spring 46 is the acting force F when the nozzle 42 is pressed against the elastic force Fs of the nozzle spring 46, so that it can be measured relatively easily. can do.
  • the nozzle stocker 90 accommodates a plurality of nozzles 42 whose sliding resistance Fr has been measured in advance, and after the nozzle 42 is determined to be defective in step S140, the sliding resistance Fr is within the allowable range from the nozzle stocker 90. You may select the nozzle 42 to enter. Further, in the above-described embodiment, after the nozzle 42 is attached to the nozzle sleeve 44, the quality of the nozzle 42 is determined, but the present invention is not limited to this.
  • the nozzle stocker 90 accommodates a plurality of nozzles 42 whose sliding resistance Fr is measured in advance, and the CPU 78a receives the sliding resistance from the nozzle stocker 90 before mounting the nozzle 42 on the nozzle sleeve 44.
  • Nozzle 42 may be selected in which Fr does not exceed the upper limit of the allowable range of sliding resistance Fr. By doing so, since the nozzle 42 determined to be good is used, it is less likely that the mounting of the component P will be hindered.
  • the detected value of the load cell 53 is acquired as the measured value of the acting force F, but the present invention is not limited to this. Since the acting force F corresponds to the current supplied to the second linear motor 50, for example, the measured value of the acting force F may be obtained by measuring the current supplied to the second linear motor 50. ..
  • the load cell 53 provided on the second arm 51 is used for measuring the sliding resistance Fr, but the present invention is not limited to this.
  • the component mounting device 10 is not provided with the load cell 53, and a load measuring device provided as a device different from the component mounting device 10 may be used for measuring the sliding resistance Fr.
  • the nozzle 42 is elastically supported by the nozzle sleeve 44 provided at the lower end of the nozzle holder 30, but the present invention is not limited to this.
  • the slide portion 242a of the nozzle 242 is slidably attached to the nozzle holder 230, and the nozzle spring 246 is provided between the nozzle holder 230 and the suction portion 242b. It may be provided.
  • nozzle holder 30 for detachably holding the nozzle 42 is provided as the mounting head 18, but the present invention is not limited to this.
  • a plurality of such nozzle holders 30 may be provided around a rotor having a vertical axis as a rotation center at equal angular intervals.
  • a composition refer to Pamphlet Figure 6 of International Publication No. 2014/080472.
  • the quality determination of the nozzle 42 is performed every time the mounting order of the parts P changes, but the determination is not limited to this.
  • the quality of the nozzle 42 may be determined each time the nozzle 42 is replaced, the quality of the nozzle 42 may be determined every set time (for example, every two hours), or the quality of the component P may be determined.
  • the quality of the nozzle 42 may be determined each time the mounting conditions change.
  • the parts supply device of the present disclosure may be configured as follows.
  • the component mounting device of the present disclosure may include a measuring device for measuring a force including a sliding resistance between the nozzle holder and the nozzle.
  • the measuring device may be provided as a part of the component mounting device, or may be provided as a device different from the component mounting device.
  • the mounting condition may be a condition relating to a mounting load at the time of component mounting.
  • the mounting load means the load when the nozzle presses the component against the substrate.
  • the condition regarding the mounting load means a condition including a set load which is a target value of the mounting load determined for each component and a load accuracy which is a degree of an allowable error with respect to the set load.
  • the permissible range is set according to the conditions regarding the mounting load at the time of component mounting. Therefore, for example, if the upper limit of the allowable range is increased as the set load is larger, it becomes difficult to determine a defect of the nozzle used for mounting a component having a large set load even if the sliding resistance is large.
  • the nozzle used for mounting the component with the low load accuracy can be used. It becomes difficult to judge the defect.
  • the mounting condition may be the type of the component to be mounted.
  • the allowable range is set according to the type of the component to be mounted, and the quality of the nozzle is determined according to the type of the component to be mounted. Therefore, a nozzle that is not suitable for mounting the component is likely to be defective.
  • the component mounting device of the present disclosure includes an elastic body provided between the nozzle holder and the nozzle, and the force may be the sum of the sliding resistance and the elastic force of the elastic body.
  • the total of the sliding resistance and the elastic force of the elastic body becomes the acting force when the nozzle is pressed against the elastic force of the elastic body, so that it can be measured relatively easily. Since the elastic force of the elastic body can be calculated from the spring constant and the stroke length of the elastic body, the value obtained by subtracting the elastic force from the acting force is the sliding resistance.
  • the force may be the sliding resistance itself.
  • the component mounting device of the present disclosure includes a nozzle stocker for accommodating a plurality of the nozzles whose force has been measured in advance, and the control device has the allowable range of the force from the nozzle stocker when mounting the component. You may select the nozzle to enter. In this way, the nozzles judged to be good are used, so that the mounting of the parts is less likely to be hindered.
  • the present invention can be used for a component mounting device, a component mounting system incorporating a component mounting device, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

This component mounting device 10 is a device for mounting a component on a substrate S using a mounting head 18. The component mounting device 10 comprises: a nozzle holder provided in the mounting head 18 and extending in a vertical direction; a nozzle 42 attached to a lower end of the nozzle holder to be vertically slidable with respect to the nozzle holder; a nozzle raising/lowering mechanism that can vertically move the nozzle 42; and a control device that sets a tolerance of a force including the sliding resistance between the nozzle holder and the nozzle 42 according to mounting conditions, obtains a measured value of the force to determine whether or not the measured value falls within the tolerance, and determines that the nozzle 42 is defective when the measured value does not fall within the tolerance.

Description

部品実装装置Component mounting device
 本明細書では、部品実装装置を開示する。 This specification discloses a component mounting device.
 従来、ノズル内部に摺動部を有する部品実装装置において、ノズル交換時などに摺動抵抗を測定しノズルの良否判断を行うものが知られている。例えば、特許文献1に記載された部品実装装置では、吸着ノズルとノズルホルダとの間の摺動抵抗を測定し、摺動抵抗が予め設定された設定値を超えたならば、摺動状態が不良であると判断する。 Conventionally, in a component mounting device having a sliding portion inside a nozzle, a device that measures the sliding resistance at the time of nozzle replacement or the like to judge the quality of the nozzle is known. For example, in the component mounting device described in Patent Document 1, the sliding resistance between the suction nozzle and the nozzle holder is measured, and if the sliding resistance exceeds a preset set value, the sliding state is changed. Judge as defective.
国際公開第2017/029704号パンフレットInternational Publication No. 2017/029704 Pamphlet
 しかしながら、このような部品実装装置では、設定値は実装する部品の大きさやその他の装着条件に関わらず実装に支障がないように、一定の値とされていた。そのため、例えば、基板に部品を実装する際に加える荷重の大きいノズルについては、摺動抵抗が設定値を超えても支障なく実装可能であるにもかかわらず、摺動不良と判定されてノズル交換が必要になることがあった。 However, in such a component mounting device, the set value is set to a constant value so as not to interfere with the mounting regardless of the size of the component to be mounted and other mounting conditions. Therefore, for example, for a nozzle with a large load applied when mounting a component on a board, even if the sliding resistance exceeds the set value, it can be mounted without any problem, but it is determined that the nozzle is defective and the nozzle is replaced. Was sometimes needed.
 本開示はこのような課題を解決するためになされたものであり、装着条件に応じてノズルの良否判断を適切に行うことを主目的とする。 The present disclosure has been made to solve such a problem, and the main purpose is to appropriately judge the quality of the nozzle according to the mounting conditions.
 本開示の部品実装装置は、
 装着ヘッドを利用して基板上に部品を実装する部品実装装置であって、
 前記装着ヘッドに設けられ上下方向に延びるノズルホルダと、
 前記ノズルホルダの下端に該ノズルホルダに対して上下に摺動可能に取り付けられたノズルと、
 前記ノズルを上下に移動可能なノズル昇降機構と、
 装着条件に応じて前記ノズルホルダと前記ノズルとの間の摺動抵抗を含む力の許容範囲を設定し、前記力の計測値を取得して該計測値が前記許容範囲に入るか否かを判定し、前記計測値が前記許容範囲に入らなかったならば前記ノズルを不良であると判定する制御装置と、
 を備えている。
The component mounting device of the present disclosure is
A component mounting device that mounts components on a board using a mounting head.
A nozzle holder provided on the mounting head and extending in the vertical direction,
A nozzle attached to the lower end of the nozzle holder so as to be slidable up and down with respect to the nozzle holder,
A nozzle elevating mechanism that can move the nozzle up and down,
The allowable range of the force including the sliding resistance between the nozzle holder and the nozzle is set according to the mounting conditions, the measured value of the force is acquired, and whether or not the measured value falls within the allowable range is determined. A control device for determining that the nozzle is defective if the measured value does not fall within the allowable range.
It is equipped with.
 この部品実装装置では、装着条件に応じてノズルホルダとノズルとの間の摺動抵抗を含む力の許容範囲を設定し、その力の計測値を取得して計測値が許容範囲に入らなかったならばノズルを不良と判定する。そのため、装着条件にかかわらず許容範囲を一律に設定する場合と比べて、ノズルの良否判定を適切に行うことができる。 In this component mounting device, the allowable range of the force including the sliding resistance between the nozzle holder and the nozzle was set according to the mounting conditions, and the measured value of the force was acquired and the measured value did not fall within the allowable range. If so, the nozzle is judged to be defective. Therefore, the quality of the nozzle can be appropriately determined as compared with the case where the allowable range is uniformly set regardless of the mounting conditions.
部品実装装置10の斜視図。The perspective view of the component mounting apparatus 10. 装着ヘッド18の説明図。Explanatory drawing of the mounting head 18. ノズル42の断面図。Sectional drawing of nozzle 42. ノズル42の外観説明図。The appearance explanatory view of the nozzle 42. ノズル42の動作説明図であり、(a)は下降前、(b)は下降後を示す。It is an operation explanatory view of the nozzle 42, (a) shows before the descent, (b) shows after descent. コントローラ78の電気的接続を示す説明図。Explanatory drawing which shows the electrical connection of a controller 78. 上限値情報79の一例を示す図。The figure which shows an example of the upper limit value information 79. 生産ジョブデータ82aの一例を示す図。The figure which shows an example of the production job data 82a. 部品実装処理ルーチンを示すフローチャート。A flowchart showing a component mounting process routine. 生産ジョブデータ182aの一例を示す図。The figure which shows an example of the production job data 182a. 上限値情報179の一例を示す図。The figure which shows an example of the upper limit value information 179. 吸着ユニット200の正面図。Front view of the suction unit 200.
 本開示の好適な実施形態を、図面を参照しながら以下に説明する。図1は部品実装装置10の斜視図、図2は装着ヘッド18の説明図、図3はノズル42の断面図、図4はノズル42の外観説明図、図5はノズル42の動作説明図、図6はコントローラ78の電気的接続を示す説明図であり、図7は生産ジョブデータ82aの一例を示す図であり、図8は生産ジョブデータ82aの一例を示す図である。なお、本実施形態において、左右方向(X軸)、前後方向(Y軸)及び上下方向(Z軸)は、図1に示した通りとする。 A preferred embodiment of the present disclosure will be described below with reference to the drawings. 1 is a perspective view of the component mounting device 10, FIG. 2 is an explanatory view of the mounting head 18, FIG. 3 is a sectional view of the nozzle 42, FIG. 4 is an external view of the nozzle 42, and FIG. 5 is an operation explanatory view of the nozzle 42. 6 is an explanatory diagram showing an electrical connection of the controller 78, FIG. 7 is a diagram showing an example of production job data 82a, and FIG. 8 is a diagram showing an example of production job data 82a. In this embodiment, the left-right direction (X-axis), the front-back direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIG.
 部品実装装置10は、図1に示すように、基板搬送ユニット12と、装着ヘッド18と、ノズル42と、マークカメラ64と、パーツカメラ66と、部品供給ユニット70と、ノズルストッカ90と、各種制御を実行するコントローラ78(図6参照)とを備えている。 As shown in FIG. 1, the component mounting device 10 includes a board transfer unit 12, a mounting head 18, a nozzle 42, a mark camera 64, a parts camera 66, a component supply unit 70, a nozzle stocker 90, and various types. It includes a controller 78 (see FIG. 6) that executes control.
 基板搬送ユニット12は、前後一対の支持板14,14にそれぞれ取り付けられたコンベアベルト16,16(図1では片方のみ図示)により基板Sを左から右へと搬送する。また、基板搬送ユニット12は、基板Sの下方に配置された支持ピン17により基板Sを下から持ち上げて支持板14,14の屋根部14a,14aに押し当てることで基板Sを固定し、支持ピン17を下降させることで基板Sの固定を解除する。 The board transport unit 12 transports the board S from left to right by conveyor belts 16 and 16 (only one of which is shown in FIG. 1) attached to a pair of front and rear support plates 14 and 14, respectively. Further, the substrate transfer unit 12 fixes and supports the substrate S by lifting the substrate S from below by a support pin 17 arranged below the substrate S and pressing it against the roof portions 14a and 14a of the support plates 14 and 14. The fixing of the substrate S is released by lowering the pin 17.
 装着ヘッド18は、XY平面を移動可能である。具体的には、装着ヘッド18は、X軸スライダ20がガイドレール22,22に沿って左右方向に移動するのに伴って左右方向に移動し、Y軸スライダ24がガイドレール26,26に沿って前後方向に移動するのに伴って前後方向に移動する。この装着ヘッド18は、図2に示すように、ノズルホルダ30を軸回転及び上下動可能に支持する支持筒19を有している。ノズルホルダ30は、上下方向に延びる部材であり、上部に回転伝達ギヤ30aとフランジ30bを有し、下部にノズル42を保持している。回転伝達ギヤ30aは、ノズル回転用モータ31の駆動ギヤ32に噛み合っている。そのため、ノズル回転用モータ31が回転すると、それに伴ってノズルホルダ30が軸回転する。フランジ30bは、上下方向に延びる第1アーム33に設けられた第1係合部33aの上片及び下片の間に挟まれている。第1アーム33は、第1リニアモータ34の可動子に連結されている。第1リニアモータ34の固定子は、装着ヘッド18に固定されている。そのため、第1リニアモータ34の可動子が上下動すると、それに伴って第1アーム33は上下方向への移動をガイドするガイド部材35に沿って上下動し、これと共に第1係合部33aに挟まれたフランジ30b、ひいてはノズルホルダ30が上下動する。ノズルホルダ30の下端側面には、互いに対向する位置に一対の逆J字状の誘導溝30c(図4参照)が設けられている。図2及び図3に示すように、ノズルホルダ30の側面には、上側環状突起30dと下側環状突起30eとが間をあけて設けられている。ノズルホルダ30には、ロックスリーブ36が被せられている。このロックスリーブ36の上部開口の直径は、ノズルホルダ30の上側環状突起30dや下側環状突起30eの直径よりも小さいため、ロックスリーブ36はノズルホルダ30から脱落することなく上下動可能となっている。ロックスリーブ36の上端面とノズルホルダ30の上側環状突起30dとの間には、ロックスプリング37が配置されている。 The mounting head 18 can move in the XY plane. Specifically, the mounting head 18 moves in the left-right direction as the X-axis slider 20 moves in the left-right direction along the guide rails 22 and 22, and the Y-axis slider 24 moves in the left-right direction along the guide rails 26 and 26. As it moves in the front-back direction, it moves in the front-back direction. As shown in FIG. 2, the mounting head 18 has a support cylinder 19 that supports the nozzle holder 30 so as to be rotatable and vertically movable. The nozzle holder 30 is a member extending in the vertical direction, has a rotation transmission gear 30a and a flange 30b at the upper part, and holds a nozzle 42 at the lower part. The rotation transmission gear 30a meshes with the drive gear 32 of the nozzle rotation motor 31. Therefore, when the nozzle rotation motor 31 rotates, the nozzle holder 30 rotates around the axis. The flange 30b is sandwiched between the upper piece and the lower piece of the first engaging portion 33a provided on the first arm 33 extending in the vertical direction. The first arm 33 is connected to a mover of the first linear motor 34. The stator of the first linear motor 34 is fixed to the mounting head 18. Therefore, when the mover of the first linear motor 34 moves up and down, the first arm 33 moves up and down along the guide member 35 that guides the movement in the up and down direction, and at the same time, the first arm 33 moves up and down to the first engaging portion 33a. The sandwiched flange 30b and eventually the nozzle holder 30 move up and down. A pair of inverted J-shaped guide grooves 30c (see FIG. 4) are provided on the lower end side surface of the nozzle holder 30 at positions facing each other. As shown in FIGS. 2 and 3, the upper annular projection 30d and the lower annular projection 30e are provided on the side surface of the nozzle holder 30 with a gap between them. The nozzle holder 30 is covered with a lock sleeve 36. Since the diameter of the upper opening of the lock sleeve 36 is smaller than the diameter of the upper annular projection 30d and the lower annular projection 30e of the nozzle holder 30, the lock sleeve 36 can move up and down without falling off from the nozzle holder 30. There is. A lock spring 37 is arranged between the upper end surface of the lock sleeve 36 and the upper annular projection 30d of the nozzle holder 30.
 ノズル42は、圧力を利用して、ノズル先端に部品Pを吸着したり、ノズル先端に吸着している部品Pを離したりするものである。このノズル42は、図3及び図5に示すように、ノズル固定具であるノズルスリーブ44の上端面に、ノズルスプリング46を介して弾性支持されている。ノズル42は、内部に上下方向に延びる通気路42aを有している。通気路42aには、負圧や正圧を供給することが可能である。ノズル42は、部品Pを吸着する吸着口42bのやや上方の位置から水平に張り出したフランジ42cと、上端から水平に張り出したバネ受け部42dと、上端からフランジ42cまでの途中に設けられた段差面42eとを有している。ノズル42のうち段差面42eからバネ受け部42dまでの間は小径の軸部42fとなっている。この軸部42fの側面には、上下方向に延びる一対の長穴42gが互いに対向するように設けられている。ノズルスリーブ44は、ノズル42の軸部42fに対して相対的に上下動可能なようにノズル42に装着されている。ノズルスリーブ44は、直径方向に貫通したピン44aと一体化されている。このピン44aは、ノズル42の一対の長穴42gに挿通されている。そのため、ノズル42は、ピン44aに対して長穴42gの延びる方向つまり上下方向にスライド可能となっている。ノズルスプリング46は、ノズルスリーブ44の上端面とノズル42のバネ受け部42dとの間に配置されている。 The nozzle 42 uses pressure to attract the component P to the tip of the nozzle and release the component P adsorbed to the tip of the nozzle. As shown in FIGS. 3 and 5, the nozzle 42 is elastically supported on the upper end surface of the nozzle sleeve 44, which is a nozzle fixture, via a nozzle spring 46. The nozzle 42 has a ventilation passage 42a extending in the vertical direction inside. Negative pressure or positive pressure can be supplied to the ventilation passage 42a. The nozzle 42 has a flange 42c that protrudes horizontally from a position slightly above the suction port 42b that attracts the component P, a spring receiving portion 42d that protrudes horizontally from the upper end, and a step provided on the way from the upper end to the flange 42c. It has a surface 42e. Of the nozzle 42, the portion from the stepped surface 42e to the spring receiving portion 42d is a shaft portion 42f having a small diameter. A pair of elongated holes 42g extending in the vertical direction are provided on the side surface of the shaft portion 42f so as to face each other. The nozzle sleeve 44 is attached to the nozzle 42 so that it can move up and down relative to the shaft portion 42f of the nozzle 42. The nozzle sleeve 44 is integrated with a pin 44a penetrating in the radial direction. The pin 44a is inserted through a pair of elongated holes 42g of the nozzle 42. Therefore, the nozzle 42 can slide in the extending direction of the elongated hole 42g, that is, in the vertical direction with respect to the pin 44a. The nozzle spring 46 is arranged between the upper end surface of the nozzle sleeve 44 and the spring receiving portion 42d of the nozzle 42.
 ノズルスリーブ44は、ノズルホルダ30を構成する部品であり、ノズル42を弾性支持した状態で、ノズルホルダ30の誘導溝30cに着脱可能に固定されている。ノズルスリーブ44に設けられたピン44aは、誘導溝30cの終端とロックスプリング37によって下向きに付勢されたロックスリーブ36の下端との間に挟まれた状態で固定される。ノズル42を弾性支持したノズルスリーブ44をノズルホルダ30に固定するにあたっては、まず、ノズルスリーブ44のピン44aをノズルホルダ30の誘導溝30c(図4参照)に沿って上方向に移動させていく。すると、ピン44aがロックスリーブ36の下端に当たる。その後、ロックスプリング37の弾性力Fsに抗してロックスリーブ36をピン44aで持ち上げながら、誘導溝30cに沿ってピン44aが進入するようにロックスリーブ36に対してノズルスリーブ44と共にノズル42を回転させる。すると、ピン44aは誘導溝30cの水平部分を経て最後に下方向に移動して誘導溝30cの終端に至る。このとき、ピン44aはロックスプリング37によって下向きに付勢されたロックスリーブ36により誘導溝30cの終端に押しつけられた状態となる。その結果、ノズルスリーブ44はピン44aを介してノズルホルダ30にロックされる。なお、ノズル42を弾性支持したノズルスリーブ44をノズルホルダ30から外すときには、固定した手順と逆の手順を行えばよい。 The nozzle sleeve 44 is a component constituting the nozzle holder 30, and is detachably fixed to the guide groove 30c of the nozzle holder 30 with the nozzle 42 elastically supported. The pin 44a provided on the nozzle sleeve 44 is fixed so as to be sandwiched between the end of the guide groove 30c and the lower end of the lock sleeve 36 urged downward by the lock spring 37. In fixing the nozzle sleeve 44 elastically supporting the nozzle 42 to the nozzle holder 30, first, the pin 44a of the nozzle sleeve 44 is moved upward along the guide groove 30c (see FIG. 4) of the nozzle holder 30. .. Then, the pin 44a hits the lower end of the lock sleeve 36. After that, while lifting the lock sleeve 36 with the pin 44a against the elastic force Fs of the lock spring 37, the nozzle 42 is rotated with the nozzle sleeve 44 with respect to the lock sleeve 36 so that the pin 44a enters along the guide groove 30c. Let me. Then, the pin 44a finally moves downward through the horizontal portion of the guide groove 30c to reach the end of the guide groove 30c. At this time, the pin 44a is in a state of being pressed against the end of the guide groove 30c by the lock sleeve 36 urged downward by the lock spring 37. As a result, the nozzle sleeve 44 is locked to the nozzle holder 30 via the pin 44a. When removing the nozzle sleeve 44 elastically supporting the nozzle 42 from the nozzle holder 30, the procedure may be the reverse of the fixing procedure.
 図2に戻り、第1アーム33の下端には、第2リニアモータ50の固定子が固定されている。この第2リニアモータ50の可動子には、第2アーム51が連結されている。第2アーム51は、アーム先端にカムフォロワからなる第2係合部52を備えると共に、アーム中間に負荷を検出するロードセル53を備えている。第2係合部52はノズル42のフランジ42cの上面と対向する位置に配置されている。第2リニアモータ50の可動子が下方に移動すると、それに伴って第2アーム51の第2係合部52がフランジ42cをノズルスプリング46の弾性力Fsに抗して下方へ押圧するため、ノズル42はノズルスリーブ44のピン44aつまりノズルホルダ30に対して下方へ移動する(図3の2点鎖線参照)。その後、第2リニアモータ50の可動子が上方に移動すると、フランジ42cを下方へ押圧する力が弱まるため、ノズル42はノズルスプリング46の弾性力Fsによりピン44aつまりノズルホルダ30に対して上方へ移動する。 Returning to FIG. 2, the stator of the second linear motor 50 is fixed to the lower end of the first arm 33. A second arm 51 is connected to the mover of the second linear motor 50. The second arm 51 includes a second engaging portion 52 made of a cam follower at the tip of the arm, and a load cell 53 for detecting a load in the middle of the arm. The second engaging portion 52 is arranged at a position facing the upper surface of the flange 42c of the nozzle 42. When the mover of the second linear motor 50 moves downward, the second engaging portion 52 of the second arm 51 presses the flange 42c downward against the elastic force Fs of the nozzle spring 46, so that the nozzle 42 moves downward with respect to the pin 44a of the nozzle sleeve 44, that is, the nozzle holder 30 (see the two-dot chain line in FIG. 3). After that, when the mover of the second linear motor 50 moves upward, the force for pressing the flange 42c downward weakens, so that the nozzle 42 moves upward with respect to the pin 44a, that is, the nozzle holder 30 due to the elastic force Fs of the nozzle spring 46. Moving.
 図1に戻り、マークカメラ64は、X軸スライダ20の下端に、撮像方向が基板Sに対向する向きとなるように設置され、装着ヘッド18の移動に伴って移動可能である。このマークカメラ64は、基板Sに設けられた図示しない基板位置決め用の基準マークを撮像し、得られた画像をコントローラ78へ出力する。 Returning to FIG. 1, the mark camera 64 is installed at the lower end of the X-axis slider 20 so that the imaging direction faces the substrate S, and is movable as the mounting head 18 moves. The mark camera 64 captures a reference mark for positioning a substrate (not shown) provided on the substrate S, and outputs the obtained image to the controller 78.
 パーツカメラ66は、部品供給ユニット70と基板搬送ユニット12との間であって左右方向の長さの略中央にて、撮像方向が上向きとなるように設置されている。このパーツカメラ66は、その上方を通過するノズル42に吸着された部品Pを撮像し、撮像により得られた画像をコントローラ78へ出力する。 The parts camera 66 is installed between the parts supply unit 70 and the board transfer unit 12 at substantially the center of the length in the left-right direction so that the image pickup direction faces upward. The parts camera 66 captures an image of the component P adsorbed by the nozzle 42 passing above the component camera 66, and outputs the image obtained by the imaging to the controller 78.
 部品供給ユニット70は、リール72と、フィーダ74とを備えている。リール72には、部品Pを収容した凹部が長手方向に沿って並ぶように形成されたテープが巻かれている。フィーダ74は、リール72に巻かれたテープの部品Pを所定の部品供給位置へ送り出す。リール72に巻かれたテープは部品Pを覆うフィルムを有しているが、部品供給位置に至るとフィルムが剥がされるようになっている。そのため、部品供給位置に配置された部品Pはノズル42によって吸着可能な状態となる。 The parts supply unit 70 includes a reel 72 and a feeder 74. The reel 72 is wound with a tape formed so that recesses accommodating the component P are arranged along the longitudinal direction. The feeder 74 sends the component P of the tape wound around the reel 72 to a predetermined component supply position. The tape wound around the reel 72 has a film covering the component P, but the film is peeled off when the component supply position is reached. Therefore, the component P arranged at the component supply position is in a state where it can be adsorbed by the nozzle 42.
 ノズルストッカ90は、複数のノズル42をストックする部材であり、部品供給ユニット70の隣に配置されている。ノズル42は、部品Pを装着する基板Sの種類や部品Pの種類に適したものに交換される。 The nozzle stocker 90 is a member that stocks a plurality of nozzles 42, and is arranged next to the parts supply unit 70. The nozzle 42 is replaced with one suitable for the type of the substrate S on which the component P is mounted and the type of the component P.
 コントローラ78は、図6に示すように、CPU78aを中心とするマイクロプロセッサとして構成されており、処理プログラムを記憶するROM78b、各種データを記憶するHDD78c、作業領域として用いられるRAM78dなどを備えている。また、コントローラ78には、マウスやキーボードなどの入力装置78e、液晶ディスプレイなどの表示装置78fが接続されている。このコントローラ78は、フィーダ74に内蔵されたフィーダコントローラ77や管理コンピュータ80と双方向通信可能なように接続されている。また、コントローラ78は、基板搬送ユニット12やX軸スライダ20、Y軸スライダ24、ノズル回転用モータ31、第1及び第2リニアモータ34,50、ノズル42の圧力調整装置43、マークカメラ64、パーツカメラ66へ制御信号を出力可能なように接続されている。また、コントローラ78は、ロードセル53からの検出信号、マークカメラ64やパーツカメラ66からの画像信号を受信可能に接続されている。例えば、コントローラ78は、マークカメラ64で撮像された基板Sの画像を処理して基準マークの位置を認識することにより基板Sの位置(座標)を認識する。また、コントローラ78は、パーツカメラ66で撮像された画像に基づいてノズル42に部品Pが吸着されているか否かの判断やその部品Pの形状、大きさ、吸着位置などを判定する。 As shown in FIG. 6, the controller 78 is configured as a microprocessor centered on the CPU 78a, and includes a ROM 78b for storing a processing program, an HDD 78c for storing various data, a RAM 78d used as a work area, and the like. Further, an input device 78e such as a mouse or a keyboard and a display device 78f such as a liquid crystal display are connected to the controller 78. The controller 78 is connected to the feeder controller 77 built in the feeder 74 and the management computer 80 so as to be capable of bidirectional communication. Further, the controller 78 includes a substrate transfer unit 12, an X-axis slider 20, a Y-axis slider 24, a nozzle rotation motor 31, first and second linear motors 34 and 50, a pressure adjusting device 43 for the nozzle 42, and a mark camera 64. It is connected to the parts camera 66 so that a control signal can be output. Further, the controller 78 is connected so as to be able to receive the detection signal from the load cell 53 and the image signal from the mark camera 64 and the parts camera 66. For example, the controller 78 recognizes the position (coordinates) of the board S by processing the image of the board S captured by the mark camera 64 and recognizing the position of the reference mark. Further, the controller 78 determines whether or not the component P is attracted to the nozzle 42 based on the image captured by the parts camera 66, and determines the shape, size, suction position, and the like of the component P.
 HDD78cには、上限値情報79が記憶されている。上限値情報79には、図7に示すように、装着荷重に関する条件(装着条件の一種)と摺動抵抗Frの許容範囲の上限値とが対応付けて記憶されている。なお、摺動抵抗Frとは、ノズル42がノズルスリーブ44に対して摺動する際の抵抗であり、装着荷重とはノズル42が基板Sに部品Pを押し当てるときの荷重である。また、装着荷重に関する条件とは、部品ごとに定められた装着荷重の目標値である設定荷重や、設定荷重に対して許容される誤差の程度である荷重精度を含む条件である。摺動抵抗Frの許容範囲の上限値は、設定荷重が大きいほど大きく設定されている。また、摺動抵抗Frの許容範囲の上限値は、荷重精度が低い、つまり設定荷重に対して許容される誤差の程度が大きいほど、大きく設定されている。ここでは、設定荷重に対して許容される誤差の程度が小さく、例えば設定荷重に対して±20%程度の誤差が許容される状態のことを荷重精度がHighであると称し、設定荷重に対して許容される誤差の程度が大きく、例えば設定荷重に対して±60%程度の誤差が許容される状態のことを荷重精度がLowであると称する。 The upper limit value information 79 is stored in the HDD 78c. As shown in FIG. 7, the upper limit value information 79 stores a condition related to the mounting load (a type of mounting condition) and an upper limit value of the allowable range of the sliding resistance Fr in association with each other. The sliding resistance Fr is the resistance when the nozzle 42 slides with respect to the nozzle sleeve 44, and the mounting load is the load when the nozzle 42 presses the component P against the substrate S. Further, the condition regarding the mounting load is a condition including a set load which is a target value of the mounting load determined for each component and a load accuracy which is a degree of an allowable error with respect to the set load. The upper limit of the allowable range of the sliding resistance Fr is set larger as the set load is larger. Further, the upper limit of the allowable range of the sliding resistance Fr is set larger as the load accuracy is lower, that is, the degree of the allowable error with respect to the set load is larger. Here, the state in which the degree of error allowed with respect to the set load is small, for example, a state in which an error of about ± 20% with respect to the set load is allowed is referred to as high load accuracy, and with respect to the set load. The state in which the degree of allowable error is large, for example, an error of about ± 60% with respect to the set load is allowed, is referred to as the load accuracy is Low.
 管理コンピュータ80は、図6に示すように、パソコン本体82と入力デバイス84とディスプレイ86とを備えており、オペレータによって操作される入力デバイス84からの信号を入力可能であり、ディスプレイ86に種々の画像を出力可能である。パソコン本体82の図示しないメモリには、生産ジョブデータ82aが記憶されている。生産ジョブデータ82aには、図8に示すように、部品実装装置10において部品Pを実装する順序と装着条件とを対応付けて記憶されている。装着条件には、部品Pの種類及び装着荷重に関する条件が含まれる。装着荷重に関する条件には、設定荷重及び荷重精度が含まれる。 As shown in FIG. 6, the management computer 80 includes a personal computer main body 82, an input device 84, and a display 86, and can input signals from the input device 84 operated by the operator, and various types of signals can be input to the display 86. Images can be output. The production job data 82a is stored in a memory (not shown) of the personal computer main body 82. As shown in FIG. 8, the production job data 82a stores the order in which the component P is mounted in the component mounting device 10 and the mounting conditions in association with each other. The mounting conditions include conditions relating to the type of component P and the mounting load. The conditions regarding the mounting load include the set load and the load accuracy.
 次に、部品実装装置10のコントローラ78が、生産ジョブに基づいて基板Sへ部品Pを実装する動作について説明する。図9は、部品実装処理ルーチンのフローチャートである。部品実装処理ルーチンのプログラムは、コントローラ78のHDD78cに格納されている。 Next, the operation in which the controller 78 of the component mounting device 10 mounts the component P on the board S based on the production job will be described. FIG. 9 is a flowchart of the component mounting processing routine. The program of the component mounting processing routine is stored in the HDD 78c of the controller 78.
 コントローラ78のCPU78aは、このルーチンを開始すると、まずCPU78aは、装着条件を取得する(ステップS110)。具体的には、CPU78aは、装着順序が#001ならば部品Pの種類がA、設定荷重が0.5[N]、荷重精度がLow、装着順序が#010ならば部品Pの種類がA、設定荷重が0.5[N]、荷重精度がHigh、…という具合に、部品Pの装着順序に対応する部品Pの種類、設定荷重及び荷重精度を生産ジョブデータ82aから取得する。 When the CPU 78a of the controller 78 starts this routine, the CPU 78a first acquires the mounting condition (step S110). Specifically, in the CPU 78a, if the mounting order is # 001, the type of component P is A, the set load is 0.5 [N], the load accuracy is Low, and if the mounting order is # 010, the type of component P is A. , The set load is 0.5 [N], the load accuracy is High, and so on, the type, set load, and load accuracy of the component P corresponding to the mounting order of the component P are acquired from the production job data 82a.
 次に、CPU78aは、許容範囲を設定する(ステップS120)。具体的には、設定荷重が0.5Nであり荷重精度がLowならば摺動抵抗Frの上限値は0.005[N]、設定荷重が0.5Nであり荷重精度がHighならば摺動抵抗Frの上限値は0.01[N]…、という具合に、ステップS110で取得した設定荷重及び荷重精度に対応する摺動抵抗Frの上限値を上限値情報79から取得する。 Next, the CPU 78a sets an allowable range (step S120). Specifically, if the set load is 0.5 N and the load accuracy is Low, the upper limit of the sliding resistance Fr is 0.005 [N], and if the set load is 0.5 N and the load accuracy is High, sliding. The upper limit value of the resistance Fr is 0.01 [N] ..., And the upper limit value of the sliding resistance Fr corresponding to the set load and the load accuracy acquired in step S110 is acquired from the upper limit value information 79.
 次に、CPU78aは、摺動抵抗Frの計測値を取得する(ステップS130)。具体的には、CPU78aは、図示しない電源を制御して、第2リニアモータ50への供給電流を漸増させ、第2係合部52を下降させて、ノズルスプリング46の弾性力Fsに抗してノズル42をノズルホルダ30のノズルスリーブ44に対して下降させる。そして、CPU78aは、第2リニアモータ50に設けられた図示しないセンサの検出値に基づいて第2係合部52の下降量(ストローク長さL)を取得すると共に、ロードセル53の検出値に基づいて作用力F(ノズル42とノズルスリーブ44との間の摺動抵抗Frとノズルスプリング46の弾性力Fsとの合計)を取得する。そして、ノズルスプリング46のばね定数にストローク長さLを乗じて弾性力Fsを求める。そして、作用力Fから弾性力Fsを引いて摺動抵抗Frの計測値を取得する。 Next, the CPU 78a acquires the measured value of the sliding resistance Fr (step S130). Specifically, the CPU 78a controls a power supply (not shown) to gradually increase the supply current to the second linear motor 50 and lower the second engaging portion 52 to resist the elastic force Fs of the nozzle spring 46. The nozzle 42 is lowered with respect to the nozzle sleeve 44 of the nozzle holder 30. Then, the CPU 78a acquires the amount of descent (stroke length L) of the second engaging portion 52 based on the detection value of a sensor (not shown) provided in the second linear motor 50, and is based on the detection value of the load cell 53. The acting force F (the sum of the sliding resistance Fr between the nozzle 42 and the nozzle sleeve 44 and the elastic force Fs of the nozzle spring 46) is acquired. Then, the spring constant of the nozzle spring 46 is multiplied by the stroke length L to obtain the elastic force Fs. Then, the elastic force Fs is subtracted from the acting force F to acquire the measured value of the sliding resistance Fr.
 次に、CPU78aは、ノズル42の良否判定を行う(S140)。具体的には、CPU78aは、ステップS130で取得した摺動抵抗Frの計測値が、ステップS120で取得した摺動抵抗Frの許容範囲の上限値を超えているか否か判定する。摺動抵抗Frの計測値が摺動抵抗Frの許容範囲の上限値を超えているならば、CPU78aは、ノズルホルダ30のノズルスリーブ44に取り付けられているノズル42が不良であると判定する。一方、摺動抵抗Frの計測値が摺動抵抗Frの許容範囲の上限値を超えていないならば、CPU78aは、ノズルホルダ30のノズルスリーブ44に取り付けられているノズル42が良好であると判定する。 Next, the CPU 78a determines whether the nozzle 42 is good or bad (S140). Specifically, the CPU 78a determines whether or not the measured value of the sliding resistance Fr acquired in step S130 exceeds the upper limit of the allowable range of the sliding resistance Fr acquired in step S120. If the measured value of the sliding resistance Fr exceeds the upper limit of the allowable range of the sliding resistance Fr, the CPU 78a determines that the nozzle 42 attached to the nozzle sleeve 44 of the nozzle holder 30 is defective. On the other hand, if the measured value of the sliding resistance Fr does not exceed the upper limit of the allowable range of the sliding resistance Fr, the CPU 78a determines that the nozzle 42 attached to the nozzle sleeve 44 of the nozzle holder 30 is good. do.
 ステップS140で、ノズルホルダ30のノズルスリーブ44に取り付けられているノズル42が不良であると判定したならば、CPU78aは、ノズル不良を報知する(ステップS150)。具体的には、CPU78aは、表示装置78fにノズル不良である旨を表示させて、部品実装処理ルーチンを終了する。 If it is determined in step S140 that the nozzle 42 attached to the nozzle sleeve 44 of the nozzle holder 30 is defective, the CPU 78a notifies the nozzle defect (step S150). Specifically, the CPU 78a causes the display device 78f to display that the nozzle is defective, and ends the component mounting processing routine.
 一方、ステップS140でノズル42が良好であると判定したならば、CPU78aは、ノズル42をフィーダ74へ移動させる(ステップS160)。具体的には、CPU78aは、X軸及びY軸スライダ20,24を制御することにより、部品供給ユニット70のうち所定の部品Pを供給するフィーダ74の部品供給位置へノズル42を移動させる。 On the other hand, if it is determined in step S140 that the nozzle 42 is good, the CPU 78a moves the nozzle 42 to the feeder 74 (step S160). Specifically, the CPU 78a moves the nozzle 42 to the component supply position of the feeder 74 that supplies the predetermined component P in the component supply unit 70 by controlling the X-axis and Y- axis sliders 20 and 24.
 次に、CPU78aは、ノズル42の先端に部品Pを吸着させる(ステップS170)。具体的には、CPU78aは、第1リニアモータ34の可動子を下降させることによりノズルホルダ30を下方へ移動させる。それと並行して、CPU78aは、ノズル42の先端が部品Pに当接する前に、第2リニアモータ50の可動子を下降させることによりノズルホルダ30に対してノズル42を最下端へ移動させる。その後、CPU78aは、ロードセル53からの検出信号に基づいてノズル42の先端が部品Pに接触したと判断すると、その反力が設定押付力と等しくなるように第2リニアモータ50の可動子を上昇させる。これにより、部品Pがノズル42によって損傷を受けないようにすることができる。また、CPU78aは、ノズル42の先端が部品Pに当接した時点で吸着口42bに負圧が供給されるように圧力調整装置43を制御する。これにより、部品Pはノズル42の先端に吸着される。 Next, the CPU 78a attracts the component P to the tip of the nozzle 42 (step S170). Specifically, the CPU 78a moves the nozzle holder 30 downward by lowering the mover of the first linear motor 34. At the same time, the CPU 78a moves the nozzle 42 to the lowermost end with respect to the nozzle holder 30 by lowering the mover of the second linear motor 50 before the tip of the nozzle 42 comes into contact with the component P. After that, when the CPU 78a determines that the tip of the nozzle 42 has come into contact with the component P based on the detection signal from the load cell 53, the CPU 78a raises the mover of the second linear motor 50 so that the reaction force becomes equal to the set pressing force. Let me. Thereby, the component P can be prevented from being damaged by the nozzle 42. Further, the CPU 78a controls the pressure adjusting device 43 so that a negative pressure is supplied to the suction port 42b when the tip of the nozzle 42 comes into contact with the component P. As a result, the component P is attracted to the tip of the nozzle 42.
 次に、CPU78aは、パーツカメラ66により部品Pを撮像する(ステップS180)。具体的には、CPU78aは、第2アーム51の第2係合部52がフランジ42cの上方に離間するように第2リニアモータ50を制御すると共に、部品Pが所定の高さになるように第1リニアモータ34を制御する。これと並行して、CPU78aは、ノズル42の中心位置がパーツカメラ66の撮像領域の予め定められた基準点と一致するようにX軸及びY軸スライダ20,24を制御し、ノズル42の中心位置が基準点に一致した時点でパーツカメラ66により部品Pを撮像する。CPU78aは、この撮像画像を解析することにより、基準点に対する部品Pの位置を把握する。 Next, the CPU 78a images the component P with the component camera 66 (step S180). Specifically, the CPU 78a controls the second linear motor 50 so that the second engaging portion 52 of the second arm 51 is separated above the flange 42c, and the component P is at a predetermined height. It controls the first linear motor 34. In parallel with this, the CPU 78a controls the X-axis and Y- axis sliders 20 and 24 so that the center position of the nozzle 42 coincides with a predetermined reference point in the imaging region of the parts camera 66, and the center of the nozzle 42. When the position coincides with the reference point, the component P is imaged by the component camera 66. The CPU 78a grasps the position of the component P with respect to the reference point by analyzing the captured image.
 次に、CPU78aは、ノズル42を基板S上へ移動させる(ステップS190)。具体的には、CPU78aは、X軸及びY軸スライダ20,24を制御することにより、基板Sのうち部品Pを実装させる所定位置の上方へノズル42を移動させる。 Next, the CPU 78a moves the nozzle 42 onto the substrate S (step S190). Specifically, the CPU 78a controls the X-axis and Y- axis sliders 20 and 24 to move the nozzle 42 above the predetermined position on the substrate S on which the component P is mounted.
 次に、CPU78aは、部品Pを基板Sの所定位置に所定の装着条件で実装させる(ステップS200)。具体的には、CPU78aは、撮像画像に基づいて部品Pの姿勢が予め定めた所定の姿勢になるようにノズル回転用モータ31を制御する。また、CPU78aは、第1リニアモータ34の可動子を下降させることによりノズルホルダ30を下方へ移動させる。それと並行して、CPU78aは、ノズル42の先端に吸着されている部品Pが基板Sに当接する前に、第2リニアモータ50の可動子を下降させることによりノズルホルダ30に対してノズル42を最下端へ移動させる。その後、CPU78aは、ロードセル53からの検出信号に基づいて部品Pが基板Sに接触したと判断すると、その反力が設定押付力と等しくなるように第2リニアモータ50の可動子を上昇させる。これにより、部品Pが基板Sとの衝突によって損傷を受けないようにすることができる。そして、CPU78aは、部品Pの装着荷重が設定荷重に対する荷重精度の範囲内に収まるように、第1リニアモータ34及び第2リニアモータ50を制御する。荷重精度がLowならば、設定荷重に対して許容される誤差が大きいため、ノズル42が基板Sに向かう速度が大きかったとしても装着荷重が設定荷重に対する荷重精度の範囲内に収まり易い。そのため、その速度を大きく設定することができる。一方、設定荷重がHighならば、設定荷重に対して許容される誤差が小さいため、ノズル42が基板Sに向かう速度が大きいと装着荷重が設定荷重に対する荷重精度の範囲内に収まり難い。そのため、その速度を低く設定する。そして、CPU78aは、ノズル42の先端に正圧が供給されるように圧力調整装置43を制御する。これにより、部品Pはノズル42から離脱して基板Sの所定位置に実装される。 Next, the CPU 78a mounts the component P at a predetermined position on the substrate S under predetermined mounting conditions (step S200). Specifically, the CPU 78a controls the nozzle rotation motor 31 so that the posture of the component P becomes a predetermined posture based on the captured image. Further, the CPU 78a moves the nozzle holder 30 downward by lowering the mover of the first linear motor 34. At the same time, the CPU 78a lowers the mover of the second linear motor 50 to lower the nozzle 42 with respect to the nozzle holder 30 before the component P attracted to the tip of the nozzle 42 abuts on the substrate S. Move to the bottom. After that, when the CPU 78a determines that the component P has come into contact with the substrate S based on the detection signal from the load cell 53, the CPU 78a raises the mover of the second linear motor 50 so that the reaction force becomes equal to the set pressing force. As a result, the component P can be prevented from being damaged by the collision with the substrate S. Then, the CPU 78a controls the first linear motor 34 and the second linear motor 50 so that the mounting load of the component P falls within the range of the load accuracy with respect to the set load. If the load accuracy is Low, the permissible error with respect to the set load is large, so that the mounting load tends to fall within the range of the load accuracy with respect to the set load even if the speed of the nozzle 42 toward the substrate S is large. Therefore, the speed can be set large. On the other hand, if the set load is High, the error allowed for the set load is small, and therefore, if the speed at which the nozzle 42 is directed toward the substrate S is high, it is difficult for the mounting load to fall within the range of load accuracy with respect to the set load. Therefore, the speed is set low. Then, the CPU 78a controls the pressure adjusting device 43 so that a positive pressure is supplied to the tip of the nozzle 42. As a result, the component P is separated from the nozzle 42 and mounted at a predetermined position on the substrate S.
 次に、CPU78aは、基板Sへ実装すべき部品Pの実装が完了したか否かを判定し(ステップS200)、完了していなければ次に装着する部品PについてステップS110以降の処理を実行し、完了したならば本ルーチンを終了する。 Next, the CPU 78a determines whether or not the mounting of the component P to be mounted on the board S is completed (step S200), and if not, executes the processing after step S110 for the component P to be mounted next. , End this routine when completed.
 ここで、本実施形態の構成要素と本開示の構成要素との対応関係を明らかにする。本実施形態の部品実装装置10が本開示の部品実装装置に相当し、ノズルスリーブ44を備えたノズルホルダ30がノズルホルダに相当し、ノズル42がノズルに相当し、第2リニアモータ50、第2アーム51及び第2係合部52がノズル昇降機構に相当し、コントローラ78が制御装置に相当する。また、ロードセル53が計測装置に相当し、ノズルスプリング46が弾性体に相当し、ノズルストッカ90がノズルストッカに相当する。 Here, the correspondence between the components of the present embodiment and the components of the present disclosure will be clarified. The component mounting device 10 of the present embodiment corresponds to the component mounting device of the present disclosure, the nozzle holder 30 provided with the nozzle sleeve 44 corresponds to the nozzle holder, the nozzle 42 corresponds to the nozzle, and the second linear motor 50, the second linear motor 50, The 2 arm 51 and the second engaging portion 52 correspond to the nozzle elevating mechanism, and the controller 78 corresponds to the control device. Further, the load cell 53 corresponds to the measuring device, the nozzle spring 46 corresponds to the elastic body, and the nozzle stocker 90 corresponds to the nozzle stocker.
 以上詳述した部品実装装置10では、装着条件に基づいてノズルスリーブ44とノズル42との間の摺動抵抗Frの許容範囲を設定し、摺動抵抗Frの計測値を取得して計測値が許容範囲に入らなかったならばノズル42を不良と判定する。そのため、装着条件にかかわらず許容範囲を一律に設定する場合と比べて、ノズル42の良否判定を適切に行うことができる。 In the component mounting device 10 described in detail above, the allowable range of the sliding resistance Fr between the nozzle sleeve 44 and the nozzle 42 is set based on the mounting conditions, and the measured value of the sliding resistance Fr is acquired and the measured value is obtained. If it does not fall within the allowable range, the nozzle 42 is determined to be defective. Therefore, the quality of the nozzle 42 can be appropriately determined as compared with the case where the allowable range is uniformly set regardless of the mounting conditions.
 また、本実施形態の部品実装装置10では、装着条件は、部品実装時の装着荷重に関する条件である。図7では、設定荷重が大きいほど許容範囲の上限値を大きく設定しているため、設定荷重が大きい部品Pの実装に使用されるノズル42は摺動抵抗Frが大きくても不良判定され難くなる。また、例えば荷重精度が低い、つまり設定荷重に対して許容される誤差の程度が大きいほど、許容範囲の上限値を大きく設定しているため、荷重精度が低く設定された部品Pの実装に使用するノズル42は不良判定され難くなる。 Further, in the component mounting device 10 of the present embodiment, the mounting condition is a condition relating to the mounting load at the time of component mounting. In FIG. 7, since the upper limit of the allowable range is set larger as the set load is larger, it is difficult to determine the defect of the nozzle 42 used for mounting the component P having a larger set load even if the sliding resistance Fr is large. .. Further, for example, the lower the load accuracy, that is, the larger the degree of error allowed for the set load, the larger the upper limit of the allowable range is set, so that it is used for mounting the component P whose load accuracy is set low. Nozzle 42 to be defective is less likely to be determined as defective.
 なお、本開示は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It is needless to say that the present disclosure is not limited to the above-described embodiment, and can be implemented in various embodiments as long as it belongs to the technical scope of the present invention.
 例えば上述した実施形態では、装着条件は装着荷重に関する条件であり、装着荷重に関する条件に応じて摺動抵抗Frの許容範囲の上限値を設定したがこれに限られない。例えば、パソコン本体82には、図10に示すように、部品Pを実装する順序と部品Pの種類とを対応付けて記憶した生産ジョブデータ182aが記憶されていてもよく、HDD78cには、部品Pの種類と摺動抵抗Frの許容範囲の上限値とを対応付けて記憶した上限値情報179が記憶されていてもよい。更に、CPU78aは、図11に示すように生産ジョブデータ182aの装着順序に対応する部品Pの種類を取得すると共に、生産ジョブデータ182aから取得した部品Pの種類に対応する摺動抵抗Frの許容範囲の上限値を上限値情報179から取得し、許容範囲を設定してもよい。こうすれば、実装する部品Pの種類に応じて許容範囲が設定され、部品Pを実装するのには適さないノズル42が不良判定されやすくなる。また、装着条件は部品実装時のノズルの下降速度または加速度に関する条件であり、条件に応じて摺動抵抗Frの許容範囲の上限値を設定するようにしてもよい。 For example, in the above-described embodiment, the mounting condition is a condition relating to the mounting load, and the upper limit of the allowable range of the sliding resistance Fr is set according to the condition relating to the mounting load, but the present invention is not limited to this. For example, as shown in FIG. 10, the personal computer main body 82 may store the production job data 182a stored in association with the order in which the parts P are mounted and the types of the parts P, and the HDD 78c may store the parts. The upper limit value information 179 stored in association with the type of P and the upper limit value of the allowable range of the sliding resistance Fr may be stored. Further, as shown in FIG. 11, the CPU 78a acquires the type of the component P corresponding to the mounting order of the production job data 182a, and allows the sliding resistance Fr corresponding to the type of the component P acquired from the production job data 182a. The upper limit value of the range may be acquired from the upper limit value information 179, and the allowable range may be set. By doing so, the allowable range is set according to the type of the component P to be mounted, and the nozzle 42 which is not suitable for mounting the component P is easily determined to be defective. Further, the mounting condition is a condition relating to the descending speed or the acceleration of the nozzle at the time of mounting the component, and the upper limit value of the allowable range of the sliding resistance Fr may be set according to the condition.
 上述した実施形態では、摺動抵抗Frを用いてノズル42の良否判定を行ったがこれに限られない。例えば、摺動抵抗Frと弾性力Fsとの合計を利用してノズル42の良否判定を行ってもよい。こうすれば、摺動抵抗Fr及びノズルスプリング46の弾性力Fsの合計は、ノズル42をノズルスプリング46の弾性力Fsに抗して押下したときの作用力Fとなるため、比較的容易に計測することができる。 In the above-described embodiment, the quality of the nozzle 42 is determined using the sliding resistance Fr, but the present invention is not limited to this. For example, the quality of the nozzle 42 may be determined by using the total of the sliding resistance Fr and the elastic force Fs. In this way, the total of the sliding resistance Fr and the elastic force Fs of the nozzle spring 46 is the acting force F when the nozzle 42 is pressed against the elastic force Fs of the nozzle spring 46, so that it can be measured relatively easily. can do.
 上述した実施形態では、ステップS140でノズル42が不良判定されたあと、ノズル42の不良を報知して、実装処理ルーチンを終了したがこれに限られない。例えば、ノズルストッカ90には、摺動抵抗Frが予め計測された複数のノズル42が収容されており、ステップS140でノズル42が不良判定されたあと、ノズルストッカ90から摺動抵抗Frが許容範囲に入るノズル42を選択してもよい。また、上述した実施形態では、ノズル42をノズルスリーブ44に装着したあとに、ノズル42の良否判定を行ったがこれに限られない。例えば、ノズルストッカ90には、摺動抵抗Frが予め計測された複数のノズル42が収容されており、ノズル42をノズルスリーブ44に装着するまえに、CPU78aは、ノズルストッカ90から、摺動抵抗Frが摺動抵抗Frの許容範囲の上限値を超えないノズル42を選択してもよい。こうすれば、良好と判定されたノズル42が使用されるため部品Pの実装に支障をきたし難くなる。 In the above-described embodiment, after the nozzle 42 is determined to be defective in step S140, the defect of the nozzle 42 is notified and the mounting processing routine is terminated, but the present invention is not limited to this. For example, the nozzle stocker 90 accommodates a plurality of nozzles 42 whose sliding resistance Fr has been measured in advance, and after the nozzle 42 is determined to be defective in step S140, the sliding resistance Fr is within the allowable range from the nozzle stocker 90. You may select the nozzle 42 to enter. Further, in the above-described embodiment, after the nozzle 42 is attached to the nozzle sleeve 44, the quality of the nozzle 42 is determined, but the present invention is not limited to this. For example, the nozzle stocker 90 accommodates a plurality of nozzles 42 whose sliding resistance Fr is measured in advance, and the CPU 78a receives the sliding resistance from the nozzle stocker 90 before mounting the nozzle 42 on the nozzle sleeve 44. Nozzle 42 may be selected in which Fr does not exceed the upper limit of the allowable range of sliding resistance Fr. By doing so, since the nozzle 42 determined to be good is used, it is less likely that the mounting of the component P will be hindered.
 上述した実施形態では、ロードセル53の検出値を作用力Fの計測値として取得したがこれに限られない。作用力Fは、第2リニアモータ50に供給する電流に応じたものとなるため、例えば、第2リニアモータ50に供給する電流を計測して、作用力Fの計測値を取得してもよい。 In the above-described embodiment, the detected value of the load cell 53 is acquired as the measured value of the acting force F, but the present invention is not limited to this. Since the acting force F corresponds to the current supplied to the second linear motor 50, for example, the measured value of the acting force F may be obtained by measuring the current supplied to the second linear motor 50. ..
 上述した実施形態では、摺動抵抗Frの計測には第2アーム51に設けられたロードセル53を利用したがこれに限られない。例えば、部品実装装置10にはロードセル53が設けられておらず、摺動抵抗Frの計測には、部品実装装置10とは別の装置として設けられた荷重測定装置を用いてもよい。 In the above-described embodiment, the load cell 53 provided on the second arm 51 is used for measuring the sliding resistance Fr, but the present invention is not limited to this. For example, the component mounting device 10 is not provided with the load cell 53, and a load measuring device provided as a device different from the component mounting device 10 may be used for measuring the sliding resistance Fr.
 上述した実施形態では、図3に示すように、ノズルホルダ30の下端に設けられたノズルスリーブ44にノズル42が弾性支持されていたがこれに限られない。例えば、図12に示す吸着ユニット200のように、ノズルホルダ230に対してノズル242のスライド部242aが摺動可能に取り付けられており、ノズルホルダ230と吸着部242bとの間にノズルスプリング246が設けられていてもよい。 In the above-described embodiment, as shown in FIG. 3, the nozzle 42 is elastically supported by the nozzle sleeve 44 provided at the lower end of the nozzle holder 30, but the present invention is not limited to this. For example, as in the suction unit 200 shown in FIG. 12, the slide portion 242a of the nozzle 242 is slidably attached to the nozzle holder 230, and the nozzle spring 246 is provided between the nozzle holder 230 and the suction portion 242b. It may be provided.
 上述した実施形態では、装着ヘッド18としてノズル42を着脱可能に保持するノズルホルダ30を1つだけ備えていたがこれに限られない。例えば、こうしたノズルホルダ30を、上下軸を回転中心とするロータの周囲に等角度間隔で複数設けられていてもよい。構成については、国際公開2014/080472号パンフレット図6を参照されたい。 In the above-described embodiment, only one nozzle holder 30 for detachably holding the nozzle 42 is provided as the mounting head 18, but the present invention is not limited to this. For example, a plurality of such nozzle holders 30 may be provided around a rotor having a vertical axis as a rotation center at equal angular intervals. For the composition, refer to Pamphlet Figure 6 of International Publication No. 2014/080472.
 上述した実施形態では、ノズル42の良否判定は部品Pの装着順序が変わるごとに実施されたがこれに限られない。例えば、ノズル42が交換されるごとにノズル42の良否判定を実施してもよいし、設定時間ごと(例えば、2時間ごと)にノズル42の良否判定を実施してもよいし、部品Pの装着条件が変わるごとにノズル42の良否判定を実施してもよい。 In the above-described embodiment, the quality determination of the nozzle 42 is performed every time the mounting order of the parts P changes, but the determination is not limited to this. For example, the quality of the nozzle 42 may be determined each time the nozzle 42 is replaced, the quality of the nozzle 42 may be determined every set time (for example, every two hours), or the quality of the component P may be determined. The quality of the nozzle 42 may be determined each time the mounting conditions change.
 ここで、本開示の部品供給装置は、以下のように構成してもよい。例えば、本開示の部品実装装置において、前記ノズルホルダと前記ノズルとの間の摺動抵抗を含む力を計測する計測装置を備えていてもよい。なお、計測装置は、部品実装装置の一部として設けられていてもよいし、部品実装装置とは別の装置として設けられていてもよい。 Here, the parts supply device of the present disclosure may be configured as follows. For example, the component mounting device of the present disclosure may include a measuring device for measuring a force including a sliding resistance between the nozzle holder and the nozzle. The measuring device may be provided as a part of the component mounting device, or may be provided as a device different from the component mounting device.
 本開示の部品実装装置において、前記装着条件は、部品実装時の装着荷重に関する条件としてもよい。なお、装着荷重とは、ノズルが基板に部品を押し当てるときの荷重のことをいう。また、装着荷重に関する条件とは、部品ごとに定められた装着荷重の目標値である設定荷重や、設定荷重に対して許容される誤差の程度である荷重精度を含む条件をいう。こうすれば、部品実装時の装着荷重に関する条件に応じて許容範囲が設定される。そのため、例えば設定荷重が大きいほど許容範囲の上限値を大きくすれば、設定荷重が大きい部品の実装に使用されるノズルは摺動抵抗が大きくても不良判定されにくくなる。また、例えば荷重精度が低い、つまり設定荷重に対して許容される誤差の程度が大きいほど、許容範囲の上限値を大きく設定すれば、荷重精度が低く設定された部品の実装に使用するノズルは不良判定されにくくなる。 In the component mounting device of the present disclosure, the mounting condition may be a condition relating to a mounting load at the time of component mounting. The mounting load means the load when the nozzle presses the component against the substrate. Further, the condition regarding the mounting load means a condition including a set load which is a target value of the mounting load determined for each component and a load accuracy which is a degree of an allowable error with respect to the set load. In this way, the permissible range is set according to the conditions regarding the mounting load at the time of component mounting. Therefore, for example, if the upper limit of the allowable range is increased as the set load is larger, it becomes difficult to determine a defect of the nozzle used for mounting a component having a large set load even if the sliding resistance is large. Further, for example, if the load accuracy is low, that is, the degree of the allowable error with respect to the set load is large, and the upper limit of the allowable range is set to be large, the nozzle used for mounting the component with the low load accuracy can be used. It becomes difficult to judge the defect.
 本開示の部品実装装置において、前記装着条件は、実装する前記部品の種類としてもよい。こうすれば、実装する部品の種類に応じて許容範囲が設定され、実装する部品の種類に応じたノズルの良否判定が行われる。そのため、その部品を実装するのには適さないノズルは、不良判定されやすくなる。 In the component mounting device of the present disclosure, the mounting condition may be the type of the component to be mounted. By doing so, the allowable range is set according to the type of the component to be mounted, and the quality of the nozzle is determined according to the type of the component to be mounted. Therefore, a nozzle that is not suitable for mounting the component is likely to be defective.
 本開示の部品実装装置において、前記ノズルホルダと前記ノズルとの間に設けられた弾性体を備え、前記力は、前記摺動抵抗及び前記弾性体の弾性力の合計としてもよい。こうすれば、摺動抵抗及び弾性体の弾性力の合計は、ノズルを弾性体の弾性力に抗して押下したときの作用力となるため、比較的容易に計測することができる。なお、弾性体の弾性力は弾性体のばね定数及びストローク長さから計算で求めることができるため、作用力から弾性力を引いた値が摺動抵抗になる。 The component mounting device of the present disclosure includes an elastic body provided between the nozzle holder and the nozzle, and the force may be the sum of the sliding resistance and the elastic force of the elastic body. In this way, the total of the sliding resistance and the elastic force of the elastic body becomes the acting force when the nozzle is pressed against the elastic force of the elastic body, so that it can be measured relatively easily. Since the elastic force of the elastic body can be calculated from the spring constant and the stroke length of the elastic body, the value obtained by subtracting the elastic force from the acting force is the sliding resistance.
 本開示の部品実装装置において、前記力は、前記摺動抵抗そのものとしてもよい。 In the component mounting device of the present disclosure, the force may be the sliding resistance itself.
 本開示の部品実装装置において、前記力が予め計測された、複数の前記ノズルを収容するノズルストッカを備え、前記制御装置は、前記部品を実装するにあたり、前記ノズルストッカから前記力が前記許容範囲に入るノズルを選択してもよい。こうすれば、良好と判定されたノズルが使用されるため部品の実装に支障をきたし難くなる。 The component mounting device of the present disclosure includes a nozzle stocker for accommodating a plurality of the nozzles whose force has been measured in advance, and the control device has the allowable range of the force from the nozzle stocker when mounting the component. You may select the nozzle to enter. In this way, the nozzles judged to be good are used, so that the mounting of the parts is less likely to be hindered.
 本発明は、部品実装装置や部品実装装置を組み込んだ部品実装システムなどに利用可能である。 The present invention can be used for a component mounting device, a component mounting system incorporating a component mounting device, or the like.
10 部品実装装置、12 基板搬送ユニット、14 支持板、14a 屋根部、16 コンベアベルト、17 支持ピン、18 装着ヘッド、19 支持筒、20 X軸スライダ、22 ガイドレール、24 Y軸スライダ、26 ガイドレール、30 ノズルホルダ、30a 回転伝達ギヤ、30b フランジ、30c 誘導溝、30d 上側環状突起、30e 下側環状突起、31 ノズル回転用モータ、32 駆動ギヤ、33 第1アーム、33a 第1係合部、34 第1リニアモータ、35 ガイド部材、36 ロックスリーブ、37 ロックスプリング、42 ノズル、42a 通気路、42b 吸着口、42c フランジ、42d バネ受け部、42e 段差面、42f 軸部、42g 長穴、43 圧力調整装置、44 ノズルスリーブ、44a ピン、46 ノズルスプリング、50 第2リニアモータ、51 第2アーム、52 第2係合部、53 ロードセル、64 マークカメラ、66 パーツカメラ、70 部品供給ユニット、72 リール、74 フィーダ、77 フィーダコントローラ、78 コントローラ、78a CPU、78b ROM、78c HDD、78d RAM、78e 入力装置、78f 表示装置、79,179 上限値情報、80 管理コンピュータ、82 パソコン本体、82a,182a 生産ジョブデータ、84 入力デバイス、86 ディスプレイ、90 ノズルストッカ、200 吸着ユニット、230 ノズルホルダ、242 ノズル、242a スライド部、242b 吸着部、246 ノズルスプリング、F 作用力、Fr 摺動抵抗、Fs 弾性力、L ストローク長さ、P 部品、S 基板。 10 component mounting device, 12 board transfer unit, 14 support plate, 14a roof, 16 conveyor belt, 17 support pin, 18 mounting head, 19 support cylinder, 20 X-axis slider, 22 guide rail, 24 Y-axis slider, 26 guide Rail, 30 nozzle holder, 30a rotation transmission gear, 30b flange, 30c guide groove, 30d upper annular protrusion, 30e lower annular protrusion, 31 nozzle rotation motor, 32 drive gear, 33 first arm, 33a first engagement part , 34 1st linear motor, 35 guide member, 36 lock sleeve, 37 lock spring, 42 nozzle, 42a ventilation path, 42b suction port, 42c flange, 42d spring receiving part, 42e step surface, 42f shaft part, 42g slotted hole, 43 pressure regulator, 44 nozzle sleeve, 44a pin, 46 nozzle spring, 50 second linear motor, 51 second arm, 52 second engaging part, 53 load cell, 64 mark camera, 66 parts camera, 70 parts supply unit, 72 reel, 74 feeder, 77 feeder controller, 78 controller, 78a CPU, 78b ROM, 78c HDD, 78d RAM, 78e input device, 78f display device, 79,179 upper limit information, 80 management computer, 82 personal computer body, 82a, 182a production job data, 84 input device, 86 display, 90 nozzle stocker, 200 suction unit, 230 nozzle holder, 242 nozzle, 242a slide part, 242b suction part, 246 nozzle spring, F acting force, Fr sliding resistance, Fs elasticity Force, L stroke length, P parts, S board.

Claims (7)

  1.  装着ヘッドを利用して基板上に部品を実装する部品実装装置であって、
     前記装着ヘッドに設けられ上下方向に延びるノズルホルダと、
     前記ノズルホルダの下端に該ノズルホルダに対して上下に摺動可能に取り付けられたノズルと、
     前記ノズルを上下に移動可能なノズル昇降機構と、
     装着条件に応じて前記ノズルホルダと前記ノズルとの間の摺動抵抗を含む力の許容範囲を設定し、前記力の計測値を取得して該計測値が前記許容範囲に入るか否かを判定し、前記計測値が前記許容範囲に入らなかったならば前記ノズルを不良であると判定する制御装置と、
     を備えた部品実装装置。
    A component mounting device that mounts components on a board using a mounting head.
    A nozzle holder provided on the mounting head and extending in the vertical direction,
    A nozzle attached to the lower end of the nozzle holder so as to be slidable up and down with respect to the nozzle holder,
    A nozzle elevating mechanism that can move the nozzle up and down,
    The permissible range of the force including the sliding resistance between the nozzle holder and the nozzle is set according to the mounting conditions, the measured value of the force is acquired, and whether or not the measured value falls within the permissible range is determined. A control device for determining that the nozzle is defective if the measured value does not fall within the allowable range.
    A component mounting device equipped with.
  2.  請求項1に記載の部品実装装置であって、
     前記ノズルホルダと前記ノズルとの間の摺動抵抗を含む力を計測する計測装置
     を備えた部品実装装置。
    The component mounting device according to claim 1.
    A component mounting device including a measuring device for measuring a force including a sliding resistance between the nozzle holder and the nozzle.
  3.  前記装着条件は、部品実装時の装着荷重に関する条件である、
     請求項1又は2に記載の部品実装装置。
    The mounting condition is a condition relating to a mounting load at the time of component mounting.
    The component mounting device according to claim 1 or 2.
  4.  前記装着条件は、実装する前記部品の種類である、
     請求項1~3のいずれか1項に記載の部品実装装置。
    The mounting condition is the type of the component to be mounted.
    The component mounting device according to any one of claims 1 to 3.
  5.  請求項1~4のいずれか1項に記載の部品実装装置であって、
     前記ノズルホルダと前記ノズルとの間に設けられた弾性体
     を備え、
     前記力は、前記摺動抵抗及び前記弾性体の弾性力の合計である、
     部品実装装置。
    The component mounting device according to any one of claims 1 to 4.
    An elastic body provided between the nozzle holder and the nozzle is provided.
    The force is the sum of the sliding resistance and the elastic force of the elastic body.
    Component mounting device.
  6.  前記力は、前記摺動抵抗そのものである、
     請求項1~4のいずれか1項に記載の部品実装装置。
    The force is the sliding resistance itself.
    The component mounting device according to any one of claims 1 to 4.
  7.  請求項1~6のいずれか1項に記載の部品実装装置であって、
     前記力が予め計測された、複数の前記ノズルを収容するノズルストッカ
     を備え、
     前記制御装置は、前記部品を実装するにあたり、前記ノズルストッカから前記力が前記許容範囲に入るノズルを選択する、
     部品実装装置。
    The component mounting device according to any one of claims 1 to 6.
    A nozzle stocker for accommodating a plurality of the nozzles whose forces have been measured in advance is provided.
    The control device selects a nozzle from which the force falls within the allowable range from the nozzle stocker when mounting the component.
    Component mounting device.
PCT/JP2020/026977 2020-07-10 2020-07-10 Component mounting device WO2022009409A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/026977 WO2022009409A1 (en) 2020-07-10 2020-07-10 Component mounting device
JP2022534612A JP7510505B2 (en) 2020-07-10 2020-07-10 Component Mounting Equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/026977 WO2022009409A1 (en) 2020-07-10 2020-07-10 Component mounting device

Publications (1)

Publication Number Publication Date
WO2022009409A1 true WO2022009409A1 (en) 2022-01-13

Family

ID=79552373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026977 WO2022009409A1 (en) 2020-07-10 2020-07-10 Component mounting device

Country Status (2)

Country Link
JP (1) JP7510505B2 (en)
WO (1) WO2022009409A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313838A (en) * 2005-05-09 2006-11-16 Juki Corp Component mounting device
JP2007189041A (en) * 2006-01-13 2007-07-26 Juki Corp Method for simultaneously sucking electronic part in mounting device and method for deciding propriety of simultaneous suction
JP2007220836A (en) * 2006-02-16 2007-08-30 Juki Corp Electronic component mounting equipment
JP2011029253A (en) * 2009-07-22 2011-02-10 Panasonic Corp Component mounting machine and method of inspecting suction unit
WO2014080472A1 (en) * 2012-11-21 2014-05-30 富士機械製造株式会社 Electronic-circuit-component-mounting head
JP2016082087A (en) * 2014-10-17 2016-05-16 パナソニックIpマネジメント株式会社 Electronic component mounting method
WO2017029704A1 (en) * 2015-08-18 2017-02-23 富士機械製造株式会社 Component mounting device
JP2019216129A (en) * 2018-06-11 2019-12-19 パナソニックIpマネジメント株式会社 Component mounting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313838A (en) * 2005-05-09 2006-11-16 Juki Corp Component mounting device
JP2007189041A (en) * 2006-01-13 2007-07-26 Juki Corp Method for simultaneously sucking electronic part in mounting device and method for deciding propriety of simultaneous suction
JP2007220836A (en) * 2006-02-16 2007-08-30 Juki Corp Electronic component mounting equipment
JP2011029253A (en) * 2009-07-22 2011-02-10 Panasonic Corp Component mounting machine and method of inspecting suction unit
WO2014080472A1 (en) * 2012-11-21 2014-05-30 富士機械製造株式会社 Electronic-circuit-component-mounting head
JP2016082087A (en) * 2014-10-17 2016-05-16 パナソニックIpマネジメント株式会社 Electronic component mounting method
WO2017029704A1 (en) * 2015-08-18 2017-02-23 富士機械製造株式会社 Component mounting device
JP2019216129A (en) * 2018-06-11 2019-12-19 パナソニックIpマネジメント株式会社 Component mounting device

Also Published As

Publication number Publication date
JP7510505B2 (en) 2024-07-03
JPWO2022009409A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
JP6744316B2 (en) Component mounting device
EP3258764B1 (en) Mounting device and control method for mounting device
KR102261010B1 (en) Position detecting apparatus, substrate manufacturing apparatus, position detecting method, and manufacturing method of substrate
JP5174583B2 (en) Control method of electronic component mounting apparatus
EP3764763A1 (en) Component mounting system
JP4835607B2 (en) Inspection method and inspection device for suction nozzle unit
US11331901B2 (en) Printing apparatus
JP2022518542A (en) Inspection device jigs, inspection devices, inspection sets, and inspection methods for objects using them.
JP2015073026A (en) Mounting system, calibration method, and program
JPWO2018037507A1 (en) Mounting device
WO2022009409A1 (en) Component mounting device
WO2022149264A1 (en) Component presence/absence detection device, training method for component presence/absence detection device, and component mounting machine
JP2017220498A (en) Component mounting equipment and component mounting method
JP2015015377A (en) Component mounting system
JP6522331B2 (en) Board work equipment
JPWO2018216132A1 (en) Measuring the position determining device
JP6764522B2 (en) Parts mounting machine
US11122719B2 (en) Component mounter
JP3823719B2 (en) Electronic component mounting apparatus and electronic component mounting method
EP3522693B1 (en) Component mounting apparatus
JP4016202B2 (en) Microwork loading method and apparatus
JP6043966B2 (en) Head maintenance method
JP6043965B2 (en) Head maintenance device and component mounting machine
JPWO2007077621A1 (en) TCP handling device
JP2023101842A (en) Component mounting device and component mounting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943918

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534612

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943918

Country of ref document: EP

Kind code of ref document: A1