WO2022008039A1 - Dispositif multi-tâche mono-broche à carrousel - Google Patents

Dispositif multi-tâche mono-broche à carrousel Download PDF

Info

Publication number
WO2022008039A1
WO2022008039A1 PCT/EP2020/069158 EP2020069158W WO2022008039A1 WO 2022008039 A1 WO2022008039 A1 WO 2022008039A1 EP 2020069158 W EP2020069158 W EP 2020069158W WO 2022008039 A1 WO2022008039 A1 WO 2022008039A1
Authority
WO
WIPO (PCT)
Prior art keywords
spindle
rivet
carousel
module
drive
Prior art date
Application number
PCT/EP2020/069158
Other languages
English (en)
Inventor
Sebastien Pereira Santo
Original Assignee
Seti-Tec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seti-Tec filed Critical Seti-Tec
Priority to BR112023000137A priority Critical patent/BR112023000137A2/pt
Priority to JP2023501513A priority patent/JP2023538485A/ja
Priority to US18/004,245 priority patent/US20230302597A1/en
Priority to EP20750168.5A priority patent/EP4178759A1/fr
Priority to PCT/EP2020/069158 priority patent/WO2022008039A1/fr
Publication of WO2022008039A1 publication Critical patent/WO2022008039A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q9/00Arrangements for supporting or guiding portable metal-working machines or apparatus
    • B23Q9/0007Portable machines comprising means for their guidance or support directly on the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/14Riveting machines specially adapted for riveting specific articles, e.g. brake lining machines
    • B21J15/142Aerospace structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q39/00Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation
    • B23Q39/02Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station
    • B23Q39/021Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station with a plurality of toolheads per workholder, whereby the toolhead is a main spindle, a multispindle, a revolver or the like
    • B23Q39/022Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station with a plurality of toolheads per workholder, whereby the toolhead is a main spindle, a multispindle, a revolver or the like with same working direction of toolheads on same workholder
    • B23Q39/024Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station with a plurality of toolheads per workholder, whereby the toolhead is a main spindle, a multispindle, a revolver or the like with same working direction of toolheads on same workholder consecutive working of toolheads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q9/00Arrangements for supporting or guiding portable metal-working machines or apparatus
    • B23Q9/0014Portable machines provided with or cooperating with guide means supported directly by the workpiece during action
    • B23Q9/0042Portable machines provided with or cooperating with guide means supported directly by the workpiece during action the guide means being fixed only on the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q39/00Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation
    • B23Q2039/004Machines with tool turrets

Definitions

  • the field of the invention is that of the design and production of devices used in industry to perform various tasks on a structure to be worked on, in particular for the aeronautical industry.
  • These devices include in particular those of the type comprising a tool placed at the end of a robot arm to be manipulated and moved relative to the structure to be worked, the device comprising means making it possible to make the tool integral with the structure to work in order to make it resume the efforts due to the accomplishment of the task to relieve the robot arm.
  • US patent document 5,088,171 describes a device of this type comprising a drill placed at the end of a robot arm and comprising means allowing the tool to be snapped onto the surface of the structure to be worked to make them integral time to complete a task.
  • the patent document FR-B1-2 809 034 describes a device of this type comprising a drill mounted on a hexapod robot and which comprises suction cups to make it possible to make the structure to be worked alternately integral with the robot and the tool.
  • Patent document WOA-2-200349899 describes a device of this type.
  • the means for attaching the tool to the structure to be worked also make it possible to improve the stability of the topping during the performance of a task and thus to improve the precision with which this task is accomplished.
  • the aim of the invention is in particular to provide an effective solution to at least some of these various problems.
  • an objective of the invention is to provide a versatile device which can make it possible to carry out tasks of different types without requiring for this to carry out a tool change operation between two different tasks to set up the necessary tools.
  • the object of the invention is to provide such a device which is compact and/or light, and which consequently makes it possible to carry out tasks in confined spaces.
  • Another object of the invention is, according to at least one embodiment, to provide such a device which is simple in design.
  • Another object of the invention is, according to at least one embodiment, to provide such a device which is simple to maintain.
  • Another object of the invention is to provide, in at least one embodiment, such a device which is relatively inexpensive.
  • the invention proposes a multi-task device comprising: means for securing said device to motorized handling means capable of moving at least partially said multi-task device in space relative to a structure to be worked on; means for securing said device to said structure to be worked on; at least two functional modules, each of said functional modules comprising at least one movable member able to allow the performance of a given task.
  • Such a device comprises a single drive and control assembly of said functional modules, said drive and control assembly comprising: a single drive pin; motor means able to drive said spindle in motion; means for measuring at least one physical parameter representative of at least one operating characteristic of said functional modules; means for controlling said motor means and said measuring means.
  • Such a device further comprises equipment means capable of linking in movement said single drive spindle alternately with said at least one movable member of said functional modules.
  • the invention proposes a multi-tasking device that can be secured to a structure to be worked, for example by suction cups, and can be moved relative to this structure by motorized handling means such as a robot arm, a walking robot or a digital grid.
  • This device is multi-tasking in that it embeds several functional modules, each allowing the performance of a distinct type of task such as for example drilling, countersinking, coating of sealant on an assembly element such as a rivet or a screw, the installation of rivets, the installation of temporary fixation (e.g. staple) ....
  • Such a device is particularly original in that it comprises a single set of training and control of the functional modules.
  • This drive and control assembly comprises in particular a single drive spindle and motor means for driving it in motion.
  • the device comprises equipment means capable of linking in movement the single drive spindle alternately with a mobile member of the on-board functional modules.
  • the functional modules do not include motorization. They are each driven in motion, alternately by means of the same spindle and the same motorization of the single drive and control assembly.
  • the single drive and control assembly comprises means for measuring at least one physical parameter representative of at least one operating characteristic of the functional modules and means for controlling the motor means and measuring means so that the "intelligent" part of the device is integrated, at least for the most part, in the single training and control assembly, so that the functional modules only include the essential elements necessary for the realization their function, ie its output device(s) as well as the mechanical elements making it possible to transfer, and if necessary modify, the movement of the spindle to its output device(s).
  • the functional modules according to the invention thus have an extremely simple architecture. They are therefore particularly robust. They are also compact and lightweight. This makes it possible to embed a large number of functional modules without requiring excessively dimensioned handling means, which would have an impact on the general size of the device and on its cost.
  • a device according to the invention thus benefits from great versatility, which contributes to increasing productivity, good compactness, which makes it possible to carry out tasks in cramped environments, great simplicity and robustness, which reduces the frequency maintenance operations and participates in increasing productivity, and of a certain lightness which makes it possible in particular to reduce the size of the handling means.
  • said fitting means ensure a direct connection between said spindle and said at least one mobile member of the fitted functional module.
  • a device comprises means for transforming movement between said pin and said at least one moving member of said paired functional module.
  • said motorized handling means belong to the group comprising:
  • said measuring means are capable of measuring at least one parameter representative of at least one operating characteristic of said functional modules belonging to the group comprising:
  • said motor means comprise at least one electric motor capable of driving said spindle and said at least one moving member of a functional module paired with said spindle.
  • said control means comprise means for measuring the electrical intensity consumed by said motor and means for determining, as a function of the measured electrical intensity, a torque and/or an axial force on said at least one movable member of a paired module.
  • said at least one motor comprises a rotor, said measuring means comprising at least one sensor for measuring the angular position of said rotor, said control means comprising means for determining, as a function of the angular position of said rotor measured, the angular position and / the axial position of said at least one movable member of a functional module paired with said pin.
  • said motor means comprise a transmission connecting said at least one motor to said single drive spindle, said measuring means comprising at least one torque and/or force and/or position sensor integrated into said transmission able to allow the determination of a torque and/or of an axial force on said at least one movable member of a fitted module and/or of an angular and/or axial position of said at least one movable member of a paired module.
  • a device comprises means for conveying said functional modules in the extension of said drive spindle.
  • said routing means comprise at least one carousel mounted rotatably and comprising means for supporting a plurality of functional modules.
  • a device comprises means for driving said at least one carousel in rotation, said means for driving in rotation comprising at least one movable drive pawl forming with said carousel a wheel-type assembly ratchet, said drive means in rotation comprising means for moving said movable drive pawl along an axis orthogonal to the axis of rotation of said carousel.
  • said routing means comprise at least one support member movable in translation and comprising support means for a plurality of functional modules.
  • a device comprises means for the remote activation-deactivation of said equipment means.
  • said drive spindle is mounted to move in rotation and in translation along the same axis, said motor means comprising at least one motor and a transmission connecting said drive spindle to said at least one motor, said transmission comprising: a rotary drive nut comprising a splined portion of complementary shape to a splined portion provided on said spindle along said axis; a drive ring in translation connected to said drive pin by a helical connection along said axis.
  • a device comprises at least one pressing element, capable of exerting pressure on said structure to be worked, located in the extension of said drive spindle, and means for moving said pressing element in the direction of said structure to be worked, said means for moving said pressing element acting on said pressing element via a functional module located in the extension of said spindle.
  • a device comprises at least one of said functional assemblies comprises a sheath slidably housing a functional assembly, said operating assembly further comprising means for locking said functional assembly in said sheath in translation.
  • Figure 1 illustrates a perspective view of a device according to the invention
  • Figure 2 illustrates a sectional view of the device of Figure 1 along a plane passing through the axis of the spindle;
  • FIG 3 illustrates an enlarged partial view of Figure 1
  • Figure 4 illustrates a view of the device of Figure 1 along the plane A-A of the device of Figure 3;
  • Figure 5 illustrates a first variant of suction pad device for securing a device according to the invention to a structure to be worked on;
  • Figure 6 illustrates a partial sectional view along a plane passing through the pin and the rotating guide shaft of the carousel of a device according to the invention
  • Figure 7 illustrates a perspective view of a rotating guide shaft of the carousel of a device according to the invention
  • Figure 8 illustrates a sectional view of a rivet support module
  • FIG 9 illustrates a sectional view of another rivet support module
  • Figure 10 illustrates a sectional view of a drilling module
  • FIG 11 Figure 11 illustrates a sectional view of a temporary attachment support module
  • Figure 12 illustrates a sectional view along the plane D-D of the device of Figure 2;
  • Figure 13 illustrates a sectional view along the plane E-E of the device of Figure 2;
  • Figure 14 illustrates a sectional view along the plane B-B of the device of Figure 2;
  • Figure 15 illustrates a sectional view along the plane C-C of the device of Figure 2;
  • Figure 16 illustrates a partial view in perspective and in section along a plane passing through the axis of rotation of the carousel of a device according to the invention
  • Figure 17 illustrates the device of Figure 1 from another angle of view
  • Figure 18 illustrates the device of Figure 17 with a different suction cup device
  • Figure 19 illustrates an example of a C-clamp implemented for securing a device according to the invention to a structure to be worked on;
  • Figure 20 illustrates the device of Figure 19 from another angle
  • FIG 21 illustrates a section along the H-H axis of figure 20;
  • FIG 22 illustrates a detail of Figure 21
  • Figure 23 illustrates a partial view of a universal securing device according to the invention
  • Figure 24 illustrates a perspective detail view of the device of Figure 1 at the secondary carousel
  • Figure 25 illustrates a sectional view along the axis l-l of the secondary carousel
  • Figure 26 illustrates a sectional view along the J-J axis of the secondary carousel
  • Figure 27 illustrates a partial view in longitudinal section of the device at the level of the rapid fitting means
  • Figure 28 illustrates a sectional view along the K-K axis of Figure 27;
  • Figure 29 illustrates a sectional view along the H-H axis of Figure 4.
  • FIG 30 illustrates a sectional view of a male element of the apparatus means
  • Figure 31 illustrates a sectional view along a 90° section plane of Figure 30;
  • Figure 32 illustrates a top view of a locking member
  • Figure 32 illustrates a side view of a locking member 28
  • Figure 34 illustrates a partial sectional view of the coating station
  • Figure 35 illustrates a partial sectional view along the M-M axis of Figure 34;
  • Figure 36 illustrates a partial sectional view of a rivet support module at the coating station
  • Figure 37 illustrates the lead screw and coating station shoe
  • FIG 38 figure 38 illustrates a detail view of the coating station
  • FIG 39 figure 39 illustrates an alternative coating station
  • FIG 40 Figure 40 illustrates a detail of Figure 39
  • FIG 41 Figure 41 illustrates another detail of Figure 39
  • Figure 42 illustrates a longitudinal sectional view of a rivet support module of a given size being coated
  • Figure 43 illustrates a longitudinal sectional view of a rivet support module of a given size different from that of Figure 42 during coating, the connection zone of the head and the body of which located at the same relative position with respect to the nozzle as with the module in FIG. 42;
  • Figure 44 illustrates a longitudinal sectional view at the temporary fastener loading station
  • Figure 45 illustrates views of a locking element
  • Figure 46 illustrates a detail of Figure 44
  • Figure 47 illustrates a partial view in longitudinal section of the perspective workstation
  • Figure 48 illustrates a partial view in longitudinal section of the workstation at the level of the rapid fitting means
  • Figure 49 illustrates a partial view in longitudinal section of the connection means in translation of the main and secondary spindles
  • Figure 50 illustrates views illustrating telescopy
  • FIGS. 1 to 50 An example of a multitasking device according to the invention is described in relation to FIGS. 1 to 50. As shown in these figures, such a multi-task device 1 comprises a frame 2.
  • This frame 2 is equipped with means 3 for securing to a motorized handling device (not shown) to which it is intended to be secured so as to be able to be moved relative to a structure to be worked on (not shown).
  • a motorized handling device not shown
  • motorized handling means belong to the group comprising: robot arms; walking robots; digital grids.
  • These fastening means comprise a plate 31 traversed by a plurality of holes 32 allowing the passage of fastening bolts at the end of the robot arm.
  • Other fastening means may be implemented, such as quick fastening means of the collar type, clamp or cam system, etc.
  • the fastening means will comprise for example bolts, collars or other fastening means to a cradle provided with rollers able to be guided in the rails of the digital grid.
  • the device comprises means 4 for securing to a structure to be worked on.
  • These securing means can be of different types.
  • suction cups 41 secured to the frame 2 suitable for being connected to vacuum means such as for example a vacuum pump to improve the attachment to the surface of the structure to be worked.
  • the suction cups can be attached in groups to supports, thus forming suction cup pads.
  • Two suction pads are shown in Figures 1, 17 and 18, this number could however be greater than two.
  • the suction cups can be offset on one side of pin 51 (which will be described in detail later) as shown in figure 18 or else distributed around pin 51 (see figure 17).
  • they may include a clamping C otherwise known in the state of the art, such as that illustrated in figure 19.
  • the means for securing to a structure to be worked on can be permanently secured to the frame. Alternatively, they can be secured to the frame via means universal reversible fasteners 100.
  • the universal reversible fixing means 100 comprise a fixing plate 101.
  • the fixing plate 101 will be integral with a support structure carrying the suction cups.
  • the fixing plate 101 will be secured to the distal end of a bar 420 of the clamping C.
  • This fixing plate 101 has an essentially rectangular section in one plane and a section with two lateral grooves 102 in another plane orthogonal to the first.
  • These lateral grooves 102 extend all along the fixing plate 101 and comprise an inclined face 103 so that the thickness of the grooved portions of the fixing plate 101 tends to thicken from the ends of the plate towards the inside of it.
  • the universal reversible fixing means comprise a pair of jaws 104 of complementary shape to the grooved ends of the fixing plate 101.
  • These jaws 104 therefore each define a housing 105 capable of receiving the corresponding grooved end of the fixing plate 101.
  • These housings 105 thus each have two opposite surfaces, one of which is inclined relative to the other at an angle substantially identical to the angle of inclination of the corresponding groove of the fixing plate.
  • Each jaw is secured to the cylinder 106 of a cylinder 109 whose rod 107 of the piston 108 passes through the jaw 104 and is secured to the frame.
  • the jaws 104 are mounted so as to move between at least: a separation position in which they are separated from each other to allow the introduction of the grooved ends of the fixing plate 101 with a view to securing the fixing means to the frame to a structure to be worked, and a securing position in which they are brought together to grip (grip) the grooved ends of the fixing plate 101 in order to secure to the frame the means of securing to a structure to be worked.
  • the cylinders 109 are actuated to place the jaws 104 in their disconnection position.
  • the fixing plate 101 of the securing means is then inserted between the jaws 104.
  • the cylinders 109 are then actuated to place the jaws 105 in their securing position in which they enclose the grooved ends of the fixing plate 101.
  • the separation of the securing means is obtained by proceeding inversely.
  • the device is likely to embed a plurality of functional modules which will be described in more detail later.
  • Each of these functional modules makes it possible to perform a particular task such as, for example, a drilling and/or countersinking operation, a riveting operation, a temporary fixing operation (for example a staple), a removal operation (or coating) on a fastening element (a rivet or a screw) of a bead of sealing mastic.
  • a drilling and/or countersinking operation for example, a riveting operation, a temporary fixing operation (for example a staple), a removal operation (or coating) on a fastening element (a rivet or a screw) of a bead of sealing mastic.
  • a temporary fixing operation for example a staple
  • a removal operation or coating
  • Other functions could be envisaged such as screwing.
  • Functional module 9 shown aligned with pin 51 in Figure 2 is a drilling module.
  • the drilling module comprises a sheath 90.
  • This furnace 90 has a tubular shape and a generally annular section.
  • the sheath 90 includes a side finger 900 forming a projection on its side wall.
  • the furnace 90 includes a lateral groove 901 which is made diametrically opposite and offset along the longitudinal axis of the sleeve with respect to the finger 900.
  • This drilling module comprises an output shaft 91 (ie movable member) at the end of which a cutting tool such as a drill bit 92 can be secured (possibly stepped to allow the production of a countersink) by known fixing means 93 either.
  • the cutting tool could, for example, be a simple drill bit for making simple holes, a stepped drill bit, a countersink bit for making countersunk holes, a countersinking to countersink previously made holes.
  • the output shaft 91 is rotatably mounted in a bearing 94 itself slidably mounted along the sleeve 90 by means of a bearing 95.
  • the finger 900 of the sheath 90 of the drilling module houses a chamber 902 in which is slidably mounted a piston 903 of a cylinder 904.
  • the end 905 of the piston 903 is capable of being housed in a housing of complementary shape 950 provided at this effect in bearing 95.
  • Finger 900 is extended by a supply line 906 of cylinder 904 capable of being placed in communication with a pressurized air intake line 907 provided in the device, with which it is in communication when it is at the workstation of the device.
  • Elastic return means tend to return the piston 903 to a position in which its end 905 is housed in the corresponding housing 950 of the bearing 95 so as to block the latter in translation inside the sheath 90 and to consequently prevent the bearing 95, the bearing 94, the output shaft 91 and the tool 92 which it carries from leaving the sheath 90 as long as the functional module is not paired with pin 51.
  • the end 905 and the corresponding cylinder 904 constitute means for locking in translation a functional assembly of functional module inside its sheath.
  • a functional assembly includes all the components of a functional module mounted free in translation in its sheath.
  • the elastic return means could be implemented so that the end 905 protrudes inside the sheath 90 to form a stop for the pad 95 preventing the functional assembly from sliding inside. of the furnace beyond its position shown in Figure 5 or 6.
  • the sleeve houses at each of its ends a stop segment (not shown) each forming a stopper for the functional assembly.
  • a functional drilling module assembly can slide inside the sheath between these stop segments as long as the end 905 does not protrude into the housing 950 or directly into the sheath.
  • the drilling module comprises a bell 160 secured to the output shaft 91 and linked in movement thereto.
  • This bell includes radial holes 161.
  • a screwing module can be produced with a substantially identical structure to that of the drilling module.
  • the means 93 for fixing a cutting tool would be replaced by means for securing a socket or a screwing recess to the output shaft.
  • the advance of the spindle 51 is controlled so that the advance per revolution of the spindle is substantially equal to the pitch of the screw so that the socket or the screwing recess advances in such a way synchronous with the screw.
  • a facsimile may also be required to allow embedding.
  • the rivet support module 200 allows the rivet to be held and comprises, like the drilling module, a sheath 90.
  • This furnace 90 has a tubular shape and a generally annular section.
  • the sheath 90 includes a side finger 900 forming a projection on its side wall.
  • the furnace 90 includes a lateral groove 901 which is made diametrically opposite and offset along the longitudinal axis of the sleeve with respect to the finger 900.
  • the sheath houses a tubular element 201 which has at one of its ends a shoulder 202 provided to bear against a shoulder 203 of complementary shape made at one end of the furnace 90.
  • the tubular element 201 which constitutes a chamber, houses a piston 205 which is mounted therein to move in translation.
  • the piston 205 comprises at one end a flange 206 provided with a circumferential groove 207 housing an O-ring 208.
  • This O-ring 208 provides sealing between the piston 205 and the tubular element 201.
  • the shoulder 204 of the furnace 90 also includes an inner circumferential groove 209 housing an O-ring 210 ensuring the seal between the piston 205 and the sleeve 90.
  • the side finger 900 of the sheath 90 houses an air duct which extends along the sheath and which is capable of being placed in communication with a pressurized air inlet duct 907 provided in the device, with which it is in communication when he is at the workstation of the device.
  • the end of the piston 205 located on the inside of the shoulder 204 of the sheath 90 comprises a half-dog 211 whose function will be explained later.
  • the other end of the piston 205 carries a split ring 212 which constitutes a holding means for the rivet at the end of the piston.
  • This split ring 212 has a conical inner bore 213 whose diameter tightens starting from the inside of the piston 205 towards the outside thereof.
  • This conical portion 213 opens into an inner groove 214 of a shape complementary to that of the end of the head 219 of a rivet 216.
  • This groove 214 also opens into a conical inner portion 215 whose diameter narrows in the direction of the outside of split ring 212.
  • This ring 212 has a plurality of longitudinal grooves (not shown) to allow it to deform during the introduction and extraction of a rivet, as will be described in more detail later.
  • the split ring 212 comprises at least one outer peripheral groove 217 housing an elastic return element such as an O-ring or a spring (not shown) providing a tensioning return means function, as will be explained in more detail later, returning the ring from a release state in which its inside diameter is enlarged, to a holding state in which its inside diameter is resown.
  • an elastic return element such as an O-ring or a spring (not shown) providing a tensioning return means function, as will be explained in more detail later, returning the ring from a release state in which its inside diameter is enlarged, to a holding state in which its inside diameter is resown.
  • the tubular element forms with the split ring a fastening element support element.
  • the piston is crossed by an internal bore allowing the passage of a rivet.
  • rivet support modules may be provided with pistons with different diameter inner bores and different sized split rings to allow rivets of different sizes to be held in place.
  • the piston 205 is designed to be driven in rotation and/or in translation. It thus constitutes a mobile organ.
  • the piston 205 is movable in translation in the tubular element 201 between a first extreme position in which its shoulder 207 comes into abutment against a circlip 218 provided for this purpose at the end of the tubular element 201 located opposite that located close to the shoulder 204 of the furnace, and a second extreme position in which its shoulder 207 comes into abutment against the shoulder 204 of the sheath.
  • a module of the rivet support type could be implemented to support another type of fastening element such as a screw, for example.
  • the split ring would of course have a shape adapted to that of the head of a screw rather than that of the head of a rivet.
  • the temporary fixing support module 300 includes a sheath 90.
  • This furnace 90 has a tubular shape and a generally annular section.
  • the sheath 90 includes a side finger 900 forming a projection on its side wall.
  • the furnace 90 includes a lateral groove 901 which is made diametrically opposite and offset along the longitudinal axis of the sleeve with respect to the finger 900.
  • This must 900 accommodates an air line 906 which extends along the sheath and which is capable of being placed in communication with a pressurized air intake line 907 provided in the device, with which it is in communication when he is at the workstation of the device.
  • the sheath 90 houses a tubular element 301.
  • This tubular element 301 has a shoulder 302 at one of its ends bearing against a shoulder 303 provided inside the sheath 90 at one of its ends.
  • the tubular element 301 has a second shoulder 304 located close to the air duct formed in the finger. This shoulder delimits a smaller diameter portion of the tubular element.
  • the tubular element 301 has another end which extends close to a second shoulder 305 made inside the sheath at the other end of the latter. However, a space is left between the two to allow the passage of air.
  • the tubular element 301 delimits a chamber housing a piston 306.
  • This piston 306 comprises at one of its ends a shoulder 307 having a circumferential groove 308 housing an O-ring 309 providing sealing between the piston 306 and the tubular element. 301.
  • the shoulder 305 of the sleeve 90 includes an inner circumferential groove 310 housing an O-ring 311 ensuring the seal between the sleeve 90 and the piston 306.
  • the piston 306 is mounted to move in translation inside the tubular element 301 and the sheath 90.
  • the piston 306 comprises a first bore 312 housing a drive tube 313 (moving member) mounted to move in translation and in rotation inside the latter.
  • This drive tube 313 comprises at one of its ends a flange 314 defining a bell 160 traversed by radial holes 161.
  • Elastic return means 315 such as for example spring washers or a spring, are interposed between the flange 314 of the drive tube 313 and the shoulder 307 of the piston 306. These return means tend to move one of the other this collar and this shoulder.
  • the drive tube and the piston are movable and linked in translation in the module between at least:
  • the bell 160 of the drive tube 313 communicates with a first cylindrical bore 316, which communicates with a second bore 317.
  • This second bore houses a first freewheel 318.
  • the second bore 317 communicates with a third bore 320.
  • the third bore 320 houses a locking element 321 which is held there by means of a circlip 322 housed on the one hand in a groove 323 provided for this purpose in the tube of drive 313 and on the other hand in a groove 324 provided for this purpose in the locking element 321.
  • the module includes means for maintaining a temporary fixation in the module. These means of holding the locking element.
  • the locking element 321 is in the form of a ring through which a bore 325 passes, having an eccentric portion 326 defining a projecting locking lug 327.
  • the locking element 321 comprises a peripheral housing 328 housing a return means (not shown), such as a compression spring, interposed between the locking element 321 and the drive tube 313.
  • the locking element 321 is movable inside the third bore 320 laterally in a direction perpendicular to the longitudinal axis of the drive tube 313 between at least: a rest position in which the end of the locking pin 327 is remote from the longitudinal axis of the drive tube 313 (it is retracted), and a locking position in which the end of the locking pin 327 is brought closer to the longitudinal axis of the drive tube 313 (it is deployed inside the module).
  • the compression spring tends to bring the locking element 321 back into its locking position.
  • the first bore 312 of the piston 306 communicates with a second bore 329 comprising a conical portion 331 narrowing towards a cylindrical portion 332.
  • the second bore 329 of the piston 306 communicates with a third bore 333 emerging.
  • This third bore 333 houses a second freewheel 334 held in place by means of a circlip 335.
  • An O-ring 336 ensures rotational drive between the third bore 333 and the second freewheel 334.
  • first and second freewheels have opposing drive capabilities.
  • the device comprises a single training and control set of 5 functional modules.
  • This drive and control assembly 5 comprises a single drive spindle 51 called the main spindle.
  • This pin is mounted to move in rotation and in translation along the same axis, i.e. along its longitudinal axis.
  • the spindle is thus mounted to move in translation between a retracted position and an extended position in the direction of the workstation.
  • This assembly 5 also includes motor means 52 able to drive the drive spindle 51 in movement.
  • these motor means comprise an advance motor 510 and a rotation motor 511. They also comprise a transmission T making it possible to drive the spindle 51 in motion via the advance and/or rotation motors according to translational and/or rotational movements along its axis.
  • This transmission is of the type comprising a drive nut in translation 512 and a drive ring in rotation 513.
  • the rotation drive ring 513 has an inner bore whose inner periphery comprises keys 5131 of complementary shape to grooves 510 formed along the spindle 51 along its longitudinal axis. In this way, spindle 51 and rotation drive ring 513 are connected in rotation along the axis of the spindle but free in translation along this axis.
  • the translation drive nut 512 has a threaded inner bore 5121 of complementary shape to a threaded portion 511 provided along the spindle so well that they are linked by a helical bond.
  • This type of transmission makes it possible to shift the motor(s) laterally with respect to the spindle.
  • the motor(s) are then next to the spindle rather than in line with it.
  • This improves the compactness of the device, makes it possible to reduce the distance to the center and thus to perform tasks close to a wall, and also to reduce the overhang.
  • the axes of the motors are essentially parallel to the axis of the spindle.
  • one or the other of these motors, or both may have an axis inclined with respect to that of the spindle, in particular orthogonal.
  • the device comprises equipment means for making the drive pin and at least one mobile member of a functional module paired with the pin alternately integral in movement.
  • the single drive and control assembly 5 conventionally comprises a controller 53 comprising all of the components necessary for controlling the operation of the motors and all of the actuators and other sensors of the device.
  • a controller comprises in particular all the memories, program(s) and processor(s) necessary for controlling the device and for carrying out the various tasks. It also includes communication means (transmitter-receiver) able to enable it to receive and transmit data by wire or wireless. It can also incorporate the components needed to power the motors (inverter type). It may also include means for entering instructions (keyboard, microphone, touch screen mouse or other), a display screen, means for emitting sound signals, etc.
  • Such a controller may be wholly or partly secured to the frame or placed remotely.
  • the single drive and control assembly 5 comprises means for measuring at least one physical parameter representative of at least one operating characteristic of the functional modules. These parameters can in particular be representative of at least one following quantity: a torque on at least one moving member of the module paired with the spindle; an axial force on at least one movable member of the module paired with the spindle; an angular position of at least one movable member of the module paired with the spindle; an axial position of at least one movable member of the module paired with the spindle.
  • control means comprise means 530 for measuring the electrical intensity consumed by the motor or motors (current sensor) and for determining, as a function of the measured electrical intensity, a torque and/or an axial force on the spindle and therefore on one or more output devices of a functional module paired with the spindle.
  • This type of means for measuring and determining forces or torques as a function of the current consumed by a motor are known per se and not described in detail.
  • control means comprise one or more angle sensors 531 integrated into one or more of the motor(s).
  • An angle sensor is a sensor for measuring the angular position of the rotor of a motor.
  • the control means then comprising means for determining, as a function of the angular position of said measured rotor, the angular position and/or the axial position of said at least one movable member of a functional module paired with the spindle.
  • This type of means for measuring and determining position as a function of the angular position of the rotor of a motor are known per se and not described in detail.
  • the measurement means comprising at least one torque and/or force and/or position sensor 532 integrated into the transmission T and able to allow the determination of a torque and/or an axial force on the spindle and/or an angular and/or axial position of the spindle, and therefore by deduction of a torque and/or an axial force and/or an angular position and/or an axial position of the at least one movable member of a module paired with the spindle.
  • This type of means for measuring and determining forces or torques are known per se and not described in detail.
  • a device comprises means for carrying a plurality of functional modules.
  • These carrying means make it possible to embark and move several functional modules.
  • the number of modules likely to be on board is equal to 7 but could be alternatively different (lower or higher). This number can be even or odd.
  • these carrying means comprise a so-called main carousel 6.
  • the main carousel 6 comprises, like a revolver barrel, a plurality of cells 61 each allowing to house a functional module.
  • Each cell 61 constitutes a bore opening on either side and extending parallel to the axis of rotation of the carousel.
  • the cells 61 are preferably distributed in an essentially uniform manner around the axis of the carousel.
  • the device comprises several functional stations.
  • the carousel not only makes it possible to embark several functional modules, it also makes it possible to move them from one station to another. It is for this, mounted mobile in rotation around its axis which extends essentially parallel to that of the main spindle as will be described in more detail later.
  • the functional stations are as follows: a station P1 for loading/unloading functional modules; a temporary fixing loading station P2 (in this embodiment, the stations P1 and P2 are combined to form a multifunction station but could constitute two distinct stations); a rivet loading station P3; a P4 rivet coating station; a work station P5 in the extension of the single spindle 51 and which can be carried out, depending on the module located at this station, operations of: drilling and/or countersinking; riveting; temporary fixation.
  • Functional module loading/unloading station P1 allows functional modules to be inserted one by one into the cells of the carousel and to be extracted therefrom.
  • the device comprises a cylinder 13 whose piston 11, which carries a lug 10, is movable in translation in a chamber 12 along an axis orthogonal to the axis of a cell of the carousel brought to the loading station /unloading.
  • the device comprises a temporary fixing loading station P2 for inserting a temporary fixing into a temporary fixing support module brought to this station by the carousel.
  • the temporary fixing loading station is located at the loading/unloading station for functional modules. These two positions thus constitute a single dual function functional position.
  • the temporary fixing loading station could, however, be located at another location.
  • This station P2 comprises a temporary fixing supply device 1000.
  • This device comprises a bandolier-type actuator allowing the temporary fixings 1001 to be moved in translation until they are placed in the axis of the temporary fixing support module brought to the station P2 temporary fixing loading.
  • This station P2 also includes a loading cylinder 1002.
  • This cylinder 1002 is placed in the axis of a temporary fixing support module 300 brought by the carousel 6 to the temporary fixing loading station.
  • This cylinder 1002 is arranged upstream of a temporary binding 1001 placed by the bandolier 1000 in the axis of the temporary binding loading station P2 to allow action on it to introduce it into the support module 300, as this will be explained in more detail later.
  • the temporary fixing loading station P2 further comprises a temporary fixing holding device in the temporary fixing support module 300 when it is introduced into this module.
  • This holding device comprises an essentially L-shaped fork 1003, the end of which comprises two fingers spaced apart to form a space for receiving a temporary fixation.
  • This fork 1003 is placed at the exit of a temporary fixing support module 300 placed at the temporary fixing loading station P2 and is mounted so as to be able to rotate about an axis 1004 between: a holding position in which its end provided of fingers extends essentially perpendicular to the temporary fixing support module and forms a stopper against which a temporary fixing can come to rest during its insertion into a temporary fixing support module, and a release position in which the fork is pivoted around its axis according to arrow C so that its end provided with fingers is disengaged from the module to allow it to be rotated by the carousel.
  • the movement of the fork 1003 is ensured by means of a cylinder 1005.
  • the device comprises a rivet loading station P3.
  • This rivet loading station P3 comprises a loading jack 1006.
  • This jack 1006 is placed in the axis of a rivet support module brought by the carousel to the rivet loading station.
  • This station P3 comprises a device for receiving and transferring rivets from a rivet supply (or supply) zone 1007 (or other fastening element such as screws or the like) to a rivet distribution zone or receiving rivets such as here a rivet support module 200 located at the rivet loading station P3.
  • a rivet supply (or supply) zone 1007 or other fastening element such as screws or the like
  • a rivet distribution zone or receiving rivets such as here a rivet support module 200 located at the rivet loading station P3.
  • the reception and transfer device comprises a so-called secondary carousel 1008.
  • the carousel constitutes a support element.
  • This carousel 1008 comprises, like a revolver barrel, a plurality of cells 1009 each allowing to accommodate a rivet.
  • Each cell 1009 constitutes a bore opening on either side and extending parallel to the axis of rotation of the carousel 1008.
  • the cells 1009 are preferably distributed in an essentially uniform manner around the axis of the carousel 1008.
  • the number of cells is equal to six. It can of course be greater or less than 6.
  • the carousel and its cells form fastening element receiving means.
  • the carousel and its drive means make it possible to move fastening elements from a supply zone to a distribution zone.
  • Each cell 1009 has a different diameter so that each cell makes it possible to receive rivets 216 of different sizes.
  • Each cell 1009 comprises a receiving orifice 1090 and a dispensing orifice 1091 of the fastener.
  • the 1090 receiving hole allows a fixing element to be inserted into a cell.
  • the dispensing orifice allows a fixing element to be evacuated outside the cell.
  • the device comprises means for holding a fixing element introduced into a cell. These holding means prevent the extraction, through the orifice receiving orifice, of a fixing element located in a cell.
  • the holding means comprise an element deformable 1092 provided with a tip forming a harpoon 1093 located in each cell.
  • the tip of each harpoon is shaped to allow the introduction of a fixing element into the cell through its receiving hole and to prevent the extraction of the fixing element through the receiving hole of the cell .
  • the tip of each harpoon is oriented towards the receiving orifice of the corresponding cell.
  • the carousel 1008 is rotatably mounted along an axis essentially parallel to the axis of the main spindle 51, between a support plate 1011 and a rivet holding plate 1012.
  • the holding plate constitutes a means of holding fixing elements in the cells.
  • the support plate 1011 is secured to the frame and fixed relative to the latter. It is traversed by as many holes 1013 as the carousel 1008 comprises cells 1009. Each hole has a different diameter corresponding to that of a cell.
  • the support plate 1011 carries a shaft 1014 around which the carousel 1008 is rotatably mounted.
  • One of the holes 1013 of the support plate 1011 is located in the axis of the loading cylinder 1006.
  • the retaining plate 1012 comprises, in the axis of each hole 1013 of the support plate 1011, air exhaust holes 1015. It is however traversed by a distribution opening 1080, and not by ventilation holes. air exhaust 1015, in the axis of the cylinder 1006.
  • the diameter of the distribution opening 1080 allows the passage of the largest rivet likely to be embarked in the secondary carousel.
  • the carousel 1008 comprises along its outer peripheral contour longitudinal indentations 1016 which extend essentially parallel to the axis of the carousel 1008. These indentations form drive teeth as will emerge more clearly subsequently.
  • the device comprises means for driving the carousel in rotation around the shaft.
  • These rotation drive means comprise: a first cylinder 1017 comprising a piston 1018 movable in translation in a chamber 1019; a second cylinder 1020 comprising a piston 1021 movable in translation inside a chamber 1022.
  • the piston 1018 of the first actuator 1017 carries a pawl 1023 which is mounted so as to be able to rotate with respect to the piston around an axis 1024 essentially parallel to the axis of rotating carousel 1008.
  • the pawl 1023 comprises a support surface 1025 provided to come to bear against an abutment 1026 of the piston 1018 defining the extreme drive position.
  • the pawl 1023 is movable between two extreme positions, namely: an extended position in which its support surface 1025 is resting against the stop 1026 of the piston 1018 so that its end is separated from the piston and at least partially housed in a notch 1016 of the carousel (cf. FIG. 14), and a retracted position in which its bearing surface 1025 is not resting against the stop 1026 of the piston 1018 so that its end is close to the piston 1018 and clear of any indentation 1016 of the carousel.
  • Return means (not shown), such as a spring or the like, may optionally be implemented to act on the pawl 1023 to tend to bring it back to its deployed position.
  • the piston 1018 is movable between two extreme positions, namely: a starting position in which it is in abutment on the left side in FIG. 14 (insofar as the device can take any orientation in the space, the indication of the left side is purely illustrative with reference to Figure 14 for reasons of understanding), and an end position in which it is in abutment with the right side in Figure 14 and the pawl 1023 is in deployed position between two notches 1016.
  • the device comprises a blocking pin 8 mounted to move between a blocking position in which it is brought into abutment against the carousel 1008 between two consecutive notches 1016 to prevent rotation of the carousel around its axis, and a release position in which it is is released from the carousel to allow its rotation.
  • This blocking pin 8 is secured to the support plate 1011 by means of a leaf spring 1027 which tends to maintain it in its blocking position. It constitutes a means of locking and indexing the carousel 1008 in positions in which a cell 1009 of the carousel 1008 is located in alignment with the loading cylinder 1006, ie at the dispensing zone. Preferably, at least one other cell is then located in a feed zone.
  • pressurized air is injected into the chamber 1019 so as to move the piston 1018 along the arrow G into its end position.
  • the bearing surface 1025 of the pawl 1023 is in abutment against the abutment 1026 of the piston 1018 so that the pawl 1023 is locked in rotation in the clockwise direction.
  • the carousel 1008 is thus driven in rotation in the clockwise direction until the piston 1018 is in abutment in its end position.
  • a new cell 1009 of the carousel 1008 is then in alignment with the loading cylinder 1006.
  • the blocking pin 8 slides against the peripheral surface of the carousel 1008 and is gradually moved from its blocking position in its unlocked position against the effect of the leaf spring 1027 then again in its locking position under the effect of the leaf spring 1027 so that the carousel 1008 is held stationary.
  • Cylinder 1017 is actuated according to arrow H to return to its start position. During this movement, the pawl 1023 slides against the peripheral surface of the carousel 1008 and gradually passes from its deployed position to its retracted position then to its deployed position by rotating around its axis.
  • the carousel 1008 can again be rotated clockwise by repeating this process.
  • the piston 1021 of the second jack 1020 carries a pawl 1028 which is rotatably mounted relative to the piston 1021 around an axis 1029 essentially parallel to the axis of rotation of the carousel 1008.
  • the pawl 1028 comprises a support surface 1030 provided to come to bear against an abutment 1031 of the piston 1021 defining the extreme drive position.
  • the pawl 1028 is movable between two extreme positions, namely: an extended position in which its bearing surface 1030 is resting against the stop 1031 of the piston 1021 so that its end is separated from the piston 1021 and at least partially housed in a notch 1016 of the carousel 1008 (cf. figure 15), and a retracted position in which its support surface 1030 is not in abutment against the stop 1031 of the piston 1021 so that its end is close to the piston 1021 and clear of any notch 1016 of the carousel.
  • Return means (not shown), such as a spring or the like, may possibly be implemented to act on the pawl 1028 to tend to return to its deployed position.
  • the piston 1021 is movable between two extreme positions, namely: a starting position in which it is in abutment on the right side in FIG. 15 (insofar as the device can take any orientation in the space, the indication of the right side is purely illustrative with reference to Figure 15 for reasons of understanding), and an end position in which it is in abutment with the left side in Figure 15 and the pawl 1028 is in deployed position between two notches 1016.
  • the piston 1021 is in its end position and the pawl 1028 is in its deployed position.
  • pressurized air is injected into the chamber 1022 so as to move the piston 1021 along the arrow I into its end position.
  • the bearing surface 1030 of the pawl 1028 is in abutment against the abutment 1031 of the piston 1021 so that the pawl 1028 is locked in rotation in the counterclockwise direction.
  • the carousel 1008 is thus rotated counterclockwise until the piston 1021 is in abutment in its end position.
  • a new cell 1009 of the carousel 1008 is then in alignment with the loading cylinder 1006.
  • the blocking pin 8 slides against the peripheral surface of the carousel 1008 and is gradually moved from its blocking position in its unlocked position against the effect of the leaf spring 1027 then again in its locking position under the effect of the leaf spring 1027 so that the carousel 1008 is held stationary.
  • the cylinder 1020 is actuated according to the arrow J to return to its start position.
  • the pawl 2018 slides against the peripheral surface of the carousel 1008 and gradually passes from its deployed position to its retracted position then to its deployed position by rotating around its axis.
  • the carousel 1008 can again be rotated counterclockwise by repeating this process.
  • the carousel 1008 and the pawls 1023, 1028 form ratchet wheel systems.
  • the first 1017 and second 1020 cylinders as well as the corresponding pawls 1023, 1028 have antagonistic movements in that they make it possible to drive the carousel 1008 in rotation in opposite directions.
  • first 1017 and second 1020 cylinders make it possible to line the desired cell 1009 with the main pin 51 more quickly by choosing the direction of rotation of the carousel 1008 which will allow the fastest line setting.
  • a single actuator can be implemented. This will simplify the device but will induce longer alignment times.
  • the rotational drive means of the secondary carousel 1008 may be of the type of those of the main carousel 6, which are described later. In this case, rather than using single jacks to drive the pawls, double jacks can be used, i.e. external jacks containing an internal pawl locking jack.
  • the indexing of the secondary carousel can also be obtained by means of a blocking pin controlled by a jack as for the main carousel.
  • This device comprises means for supplying the rivet carousel.
  • the rivets are brought through a flexible tube pushed inside this tube by a pressurized gas.
  • the device comprises a coating device placed at a rivet coating station P4. This station is used to deposit a sealant on a rivet.
  • This P4 coating station is located near the P5 workstation.
  • first pulley 1032 movable in rotation about an axis essentially parallel to that of the main spindle 51 and linked in rotation by means of a belt 1033 with a driving pulley 1034 fixed to the main spindle 51 in such a way that it is connected to it in rotation along its axis of rotation but not in translation, for example by means of grooves.
  • This first pulley 1032 is linked in rotation to the casing of a cylinder 1036 along an axis essentially parallel to that of the main spindle 51.
  • This casing is mounted so as to be able to rotate with respect to the frame along the same axis.
  • the piston rod 1035 of the cylinder 1036 is connected in rotation with the casing.
  • This piston 1035 is mounted to move in translation and in rotation along an axis parallel to the axis of the main spindle 51 inside a chamber 1037. It carries at its end a half-clutch 1038 of complementary shape to the half- dog 211 of the rivet support module 200.
  • a second pulley 1039 is linked in rotation to the casing of the actuator 1036 along an axis essentially parallel to that of the main spindle 51.
  • This second pulley 1039 is linked in rotation by means of a belt 1040 to a third pulley 1041.
  • the third pulley 1041 is mounted on a shaft 1042 to which it is connected in rotation.
  • the shaft 1042 carries at its end opposite to that to which the pulley 1041 is fixed a lead screw 1043.
  • This lead screw 1043 comprises a thread whose profile comprises a first flank 1044 intended to mesh with a shoe 1046 and a second flank 1045 inclined with respect to the axis of the lead screw.
  • the first flank is inclined a few degrees with respect to the perpendicular to the axis of the lead screw in such a way that, the shoe, being applied to this flank, has a tendency to slide towards the thread root.
  • This shoe 1046 is mounted on the end of the piston 1047 mounted movable in translation along an axis essentially orthogonal to the axis of the main spindle 51 in the chamber 1048 of a jack 1049.
  • the shoe 1046 is thus movable between at least: a meshing position in which it meshes with the lead screw 1043, and a disengagement position in which it does not mesh with the lead screw
  • This station comprises mastic dispensing means comprising a nozzle 1050 connected to mastic supply means (not shown) comprising a pump connected on the one hand to a reserve of mastic and on the other hand to the nozzle 1050 via pipes provided for this purpose.
  • the nozzle 1050 comprises a dispensing end 1051 intended to come close to a rivet 216 carried for a rivet support module 200 brought to the coating station P4.
  • This end may be straight (extending in a plane perpendicular to an axis perpendicular to the axis of the rivet support module 200). However, this end is preferably beveled or curved so that the nozzle 1050 can come into abutment against the rivet 216 while providing an orifice for dispensing sealant onto the rivet 216.
  • This solution is preferred insofar as it makes it possible to guarantee simply and effectively the calibration of the thread(s) of mastic deposited on the rivet.
  • the nozzle 1050 is integral with the end of a piston 1051 mounted to move in translation along an axis perpendicular to the axis of the rivet support module in the chamber 1052 of a cylinder 1053.
  • the shoe 1046, the nozzle 1050 and their respective jacks 1049, 1053 are mounted in a block 1054 secured to the piston 1055 mounted to move in translation along an axis parallel to the axis of the lead screw 1043 in the chamber 1056 of a cylinder 1057.
  • This station includes means for determining (evaluating) the length of the rivet 216 brought to the coating station.
  • These means comprise a sensor 1058.
  • One end of the sensor is integral with the piston 1059 mounted to move in translation along an axis parallel to the axis of the lead screw 1043 in the chamber (not shown) of a cylinder 1060.
  • the other end of the probe 1058 comprises a conical centering tip 1061 oriented towards a rivet 216 brought to the coating station.
  • the cylinder 1060 makes it possible to approach and move away the conical tip 1061 from the rivet 216 to feel its end and thus determine its length.
  • the feeler 1058 then defines a stop against which the support 1062 of the nozzle 1050 is likely to come to bear to determine a coating limit at the end of the rivet.
  • end of the rivet is meant a zone located at the end of the body of the rivet opposite the head of the rivet.
  • Figures 39 to 41 illustrate a variant of the coating station.
  • the nozzle 3000 is fixed relative to the frame and comprises: a block 3001 provided with a bore 3002 defining a chamber and a plurality of distribution channels 3003 of coating material, these channels 3003 being in communication fluidic with the chamber 3002 and opening out via dispensing orifices 3004 provided along an axis essentially parallel to the axis of the body of the fastener element to be coated; a drawer 3005 mounted to move in translation inside the chamber 3002, this drawer 3005 having a blind longitudinal groove 3006 on either side arranged along said axis over a length allowing fluid communication of the groove 3006 with the all of the channels 3003, the groove 3006 being connected to coating material supply means comprising for example a mastic pump whose outlet is connected by a pipe to the groove 3006.
  • coating material supply means comprising for example a mastic pump whose outlet is connected by a pipe to the groove 3006.
  • a fitting 3011 makes it possible to inject mastic into one of the channels 3003, itself in communication with the groove 3006.
  • the feeler 3007 which comprises an end 3008 provided to come into contact with the end (foot) of a fixing element, is at its opposite end connected in translation with the drawer 3005.
  • the sensor 3007 is also connected in translation with the piston 3009 of a cylinder 3010 whose axis extends essentially parallel to the axis of the main spindle 51.
  • the channel 3003 located opposite that located on the side of the end of a fixing element to be coated extends at the level of the connection zone between the body and the head of this fixing element.
  • the nozzle thus makes it possible to distribute mastic in the form of parallel cords on the body of a fastening element between its end and the connection zone between its body and its head.
  • the P5 workstation is located in the extension of the main spindle 51.
  • This station makes it possible to carry out various operations according to the functional module brought to its level, in this case: drilling and/or countersinking; riveting; temporary fixation.
  • This station comprises, in addition to the main pin 51, a secondary pin 170 mounted to move in translation inside the main pin 51 which is hollow.
  • This secondary spindle 170 is integral with the piston 172 mounted to move in translation along the axis of the main spindle 51 in the chamber 171 of a cylinder 17.
  • the secondary spindle constitutes the rod of this cylinder.
  • the workstation comprises equipment means 16 of functional modules.
  • the fitting means comprise means of the quick-connect type.
  • they include: the bell 160 of certain functional modules comprising radial holes 161; a male element 162 secured to the main drive spindle 51 and linked in movement thereto and capable of being housed in the bell 160; locking elements (balls or rollers) 163 secured to the male element 162 and located in the extension of the radial holes 161 when the male element 162 is housed in the bell 160: preferably, these locking elements comprise a cylindrical body provided to slide in radial holes 1620 of the male element 162 so that their end can be housed in the radial holes 161 of the bell 160, and a head in a portion of a sphere with a diameter larger than the body cylindrical to prevent them from being evacuated from the male element by the locking key; a locking key 164 mounted to move in translation inside the male element 162 and comprising a circumferential ramp 165 capable of coming to act against the locking elements 163 (in particular their cylindrical head
  • the locking key 164 is secured to the end of the secondary spindle 170.
  • the locking key 164 is movable between at least two positions between which it can be moved by means of the cylinder 17, namely: a fitting position in which it is close to the locking elements 163 in such a way that its circumferential ramp 165 acts on the locking elements 163 to cause them to slide inside the radial holes so that their ends form a projection outside the male element to come if necessary lodge in the radial holes 161 of a bell 160, and a disconnection position in which the locking key 164 is remote from the locking elements 163 so that it does not act on them so that their ends do not protrude outside the male element to be dislodged from the radial holes 161 of a bell 160, if necessary.
  • Elastic return means may optionally be implemented to tend to bring the locking elements 163 back to their unpaired position when the locking key does not act on them.
  • the device comprises a pressurized air intake duct 907 which opens out at the workstation in such a way that it communicates with the air duct 906 of the sheath of a functional module located at the workstation.
  • the secondary spindle 170 can make it possible to carry out a function of telescopy of various functional modules, such as in particular the rivet support modules.
  • This telescopy makes it possible, as will be described in more detail later, to bring the secondary pin 170, initially housed in the main pin in a retracted position, to come out of the main pin 51 to reach a deployed position in which it extends at least partly outside the main spindle, then to link them in translation so that the movement of the main spindle 51 is accompanied by a movement of the secondary spindle 170: the main spindle and the secondary spindle then form the same very long spindle.
  • the secondary pin 170 comprises at its end opposite that of the locking key 164, the piston 172 movable in translation inside the main pin 51 which constitutes its chamber 171 of the cylinder 17.
  • the secondary pin 170 comprises downstream of the piston 172 a circumferential groove 1063.
  • the device comprises means for connecting in translation said internal spindle with said external spindle.
  • the main pin 51 carries a release ring 1064.
  • This unlocking ring 1064 is fixed in translation with the frame. It is linked in rotation with the main spindle by means of grooves (not shown) which further allow the main spindle to translate inside the locking ring 1064.
  • the locking ring 1064 is linked in rotation with the drive pulley 1034.
  • This unlocking ring 1064 comprises a bore with a cylindrical portion 1065 followed by a frustoconical portion 1066 of widening towards an opening emerging on the side of the pin 51 oriented towards a functional module brought to the workstation.
  • the main pin 51 carries a locking member.
  • This locking member comprises a locking ring 1067 mounted on the male element 162.
  • This locking ring 1067 is crossed by a hole 1068 whose diameter allows the passage of the locking key 164 and the secondary pin 170.
  • This locking ring 1067 comprises a lateral actuation portion 1069 comprising: a first outer peripheral groove portion 1070, and an outer surface 1072 against which the unlocking ring 1064 is capable of acting.
  • the locking ring 1067 has two opposite cut sides 1073 and is mounted in a complementary shaped groove 1074 formed in the male element 162.
  • the first groove portion 1070 forms, with a second peripheral groove portion 1070′ formed on the male element, a peripheral groove housing an elastic return element such as for example an O-ring or a spring.
  • the locking ring 1067 is movable in translation in the groove 1074 of the male element 162 along an axis orthogonal to the axis of the main spindle 51 enters: a locking position in which the actuating portion 1069 is brought closer to the axis of the male element 162 thanks to the action of the elastic return element, the peripheral end 1075 being engaged in the groove 1063 (or housing) formed in the secondary spindle, and an unlocking position in which the actuating portion 1069 is separated from the axis of the male element 162, the peripheral end 1075 then being disengaged from the groove 1063 made in the secondary spindle.
  • Passage into the unlocked position is obtained by introducing the portion of the male element 162 bearing the locking ring 1067 into the conical portion 1066 then into the cylindrical portion 1065 of the unlocking ring 1064 which therefore acts on the ring lock 1067 to move it relative to the male element 162 against the effect of the compression spring.
  • Passage into the locking position is obtained: after extraction of the male element 162 and of the locking ring 1067 from the unlocking ring 1064, then when the circumferential groove 1063 of the secondary pin 170 reaches the level of the locking 1067, the latter passes into its locking position under the effect of the compression spring so that the locking end 1075 of the locking ring 1067 is housed in the groove 1063 of the secondary pin 170 while approaching from the axis the male element 162.
  • the secondary spindle 170 is then linked in translation with the main spindle 51 so that the translational movement of the main spindle 51 is accompanied by a translational movement of the secondary spindle 170 which together form the same very long spindle.
  • the carousel is mounted mobile in rotation around its axis which extends essentially parallel to that of the spindle.
  • the carousel includes along its outer peripheral contour longitudinal indentations 62 which extend substantially parallel to the axis of the carousel. These indentations form training teeth as will emerge more clearly later.
  • the device comprises means for driving the carousel in rotation around its axis.
  • These rotation drive means comprise: a first cylinder 70 comprising a piston 700 movable in translation in a chamber 701; a second cylinder 71 comprising a piston 710 movable in translation inside a chamber 711.
  • the piston 700 of the first cylinder 70 carries a pawl 702 which is rotatably mounted relative to the piston 700 around an axis 703 essentially parallel to the axis of rotation of the carousel.
  • the pawl 702 comprises a support surface 704 provided to come to bear against an abutment 705 of the piston 700 defining the extreme drive position.
  • the pawl 702 is movable between two extreme positions, namely: an extended position in which its support surface 704 is in abutment against the stop 705 of the piston 700 so that its end is separated from the piston 700 and at least partially housed in a notch 62 of the carousel (cf. FIG. 12), and a retracted position in which its support surface 704 does not rest against the stop 705 of the piston 700 so that its end is close to the piston 700 and clear of any notch 62 of the carousel.
  • Return means (not shown), such as a spring or the like, may optionally be implemented to act on the pawl to tend to bring it back to its deployed position.
  • the piston 700 comprises an inner chamber 706 in which is housed an internal piston 707 whose end 708 is bevelled.
  • This internal piston 707 is mounted to move in translation in the chamber 706 between: an unlocking position in which its bevelled end 708 is located away from the pawl 702 so as to leave the latter free to rotate around the axis 703, and a blocking position, capable of being taken when the pawl 702 is in its deployed position, in which its beveled end 708 is resting against the pawl 702 in order to immobilize it in rotation around the axis 703.
  • the piston 700 is movable between two extreme positions, namely: a starting position in which it is in abutment on the right side in Figure 12 (insofar as the device can take any orientation in the space, the indication of the right side is purely illustrative with reference to Figure 12 for reasons of understanding), and an end position in which it is in abutment with the left side in Figure 12 and the pawl 702 is in deployed position between two notches 62.
  • the piston 700 is in its end position and the pawl is in its extended position.
  • the device comprises a blocking pin 8 mounted to move between: an indexing position in which it is brought into abutment against the carousel between two consecutive notches 62 to prevent rotation of the carousel around its axis, and a release position in which it is released from the carousel to allow its rotation.
  • An elastic return means such as for example a spring (not shown), acts on the pin 8 to tend to bring it back into its blocking position.
  • a jack 800 makes it possible to block the blocking pin 8 in its blocking position.
  • the blocking pin 8 constitutes a means of blocking and indexing the carousel in positions in which at least one cell 61 of the carousel is at a functional position.
  • the blocking pin 8 when the blocking pin 8 is in the blocking position in an indentation between two consecutive cells, several cells are in alignment with different functional positions, in this case: a cell is at the position loading/unloading of modules; a cell is located at the temporary fixing loading station; a cell is located at the rivet loading station; a cell is located at the rivet coating station; a cell is located at the workstation in the extension of the single pin 51.
  • the jack 800 is exhausted so that the blocking pin 8 is held in its blocking position solely by the effect of the spring.
  • the piston 700 is in its starting position (in abutment on the right in the figure
  • Pawl 702 is in its deployed position.
  • the internal piston 707 is in its blocking position so that the pawl 702 is maintained in its deployed position without being able to rotate around its axis 703.
  • Pressurized air is then injected into chamber 701 so as to move piston 700 along arrow B from its start position to its end position.
  • the pawl meshes with the notch in which it is located so that the carousel is thus rotated counterclockwise.
  • the blocking pin 8 slides against the peripheral surface of the carousel so that it gradually passes from its indexing position to its release position then from its release position to its indexing position when the piston 700 is in abutment in its end position.
  • the cylinder 800 is powered to block the locking pin in its indexing position so that the carousel is kept immobile. At least one new cell 61 of the carousel is then at a functional station.
  • the internal piston 707 is moved into its unlocked position so that the pawl is free to rotate around the axis 703 (within the limit of the travel authorized by its shape and the surfaces which surround it).
  • Cylinder 70 is actuated so that piston 700 moves along arrow A to be returned to its starting position.
  • the pawl 702 moves progressively from its deployed position to its retracted position then from its retracted position to its deployed position by sliding against the peripheral surface of the carousel and by pivoting around the axis 703 in the clockwise direction until until the piston is in its starting position.
  • the pawl is then housed in another notch 62 of the carousel.
  • the carousel can again be rotated counterclockwise by repeating this process.
  • the piston 710 of the second cylinder 71 carries a pawl 712 which is rotatably mounted relative to the piston 710 around an axis 713 essentially parallel to the axis of rotation of the carousel.
  • the pawl 712 thus comprises a bearing surface 714 provided to bear against an abutment 715 of the piston 710 defining the extreme driving position.
  • the pawl 712 is movable between two extreme positions, namely: an extended position in which its bearing surface 714 is resting against the stop 715 of the piston 710 so that its end is housed in a notch 62 of the carousel ( see Figure 13), and a retracted position in which its end is close to the piston 710 and disengaged from any notch 62 of the carousel (not shown).
  • Return means (not shown), such as a spring or the like, may optionally be implemented to act on the pawl to tend to bring it back to its deployed position.
  • the piston 710 comprises an inner chamber 716 in which is housed an internal piston (not shown) whose end is beveled like the internal piston 707.
  • This internal piston is mounted so as to be able to move in translation in the chamber between: an unlocking position in which its end is remote from the pawl so as to leave the latter free to rotate around the axis 713, and a blocking position, capable of being taken when the pawl is in its deployed position, in which its end beveled rests against the pawl in order to immobilize it in rotation around the axis 713.
  • the piston 710 is movable between two extreme positions, namely: a starting position in which it is in abutment on the left side in FIG. 13 (insofar as the device can take any orientation in space , the indication of the right side is purely illustrative with reference to Figure 12 for reasons of understanding), and an end position in which it is in abutment on the right side in Figure 13 and the pawl is in the deployed position between two notches 62.
  • the cylinder 800 is exhausted so that the locking pin 8 is held in its locking position by the sole effect of the spring.
  • the piston 710 is in its starting position (in abutment on the left in the figure
  • Pawl 712 is in its deployed position.
  • the internal piston is in its locking position so that the pawl is held in its deployed position without being able to rotate around its axis 713.
  • Pressurized air is then injected into the chamber 711 so as to move the piston 710 according to the arrow A then its starting position towards its end position.
  • the pawl meshes with the notch in which it is located so that the carousel is thus rotated clockwise.
  • the blocking pin 8 slides against the peripheral surface of the carousel so that it gradually passes from its indexing position to its release position then from its release position to its indexing position when the piston 710 is in abutment in its end position.
  • the cylinder 800 is powered to block the locking pin in its indexing position so that the carousel is kept immobile. At least one new cell 61 of the carousel is then at a functional station.
  • the internal piston is moved into its unlocked position so that the pawl is free to rotate around the axis 713 (within the limit of the travel authorized by its shape and the surfaces which surround it).
  • Cylinder 71 is actuated so that piston 710 moves along arrow B to be returned to its starting position.
  • the pawl 712 moves progressively from its deployed position to its retracted position then from its retracted position to its deployed position by sliding against the peripheral surface of the carousel and by pivoting around the axis 713 in the counterclockwise direction until until the piston is in its starting position.
  • the pawl is then housed in another notch 62 of the carousel.
  • the carousel can again be rotated clockwise by repeating this process.
  • the carousel and pawls form ratchet wheel systems.
  • the first 70 and second 71 cylinders as well as the corresponding pawls have antagonistic movements in that they make it possible to drive the carousel in rotation in opposite directions.
  • first 70 and second 71 cylinders make it possible to place a module at the desired functional position as quickly as possible by choosing the direction of rotation of the carousel which will ensure the shortest path.
  • a single actuator can be implemented. This will simplify the device but will induce alignment times longer.
  • the rotation drive means of the main carousel may be of the type of those of the secondary carousel.
  • double jacks to drive the pawls, i.e. external jacks containing an internal pawl locking jack
  • single jacks can be implemented.
  • the indexing of the secondary carousel can also be obtained by means of a blocking pin not controlled by a jack as for the secondary carousel.
  • the carousel 6 is rotatably mounted around a fixed shaft 8 on which it is guided in rotation by means of a bearing 87 with needles, balls or the like.
  • the shaft 8 is hollow and comprises at one of its ends a widened portion defining a chamber 81 in which slides a piston 82 of a jack 80.
  • the shaft 8 comprises at the other of its ends a circumferential groove 83 and is crossed by a side slot 84 communicating with the hollow interior of the shaft.
  • the shaft further comprises at this end a flat 85 which opens into the groove 83.
  • a guide element 14 is secured to the end of the rod 820 of the piston 82.
  • This guide element 14 comprises a portion forming a projection 140 which extends inside the slot 84 of the shaft 8.
  • a groove 141 is formed at the end of the portion forming a projection 140. This groove 141 is extends in the extension of the groove 83 of the shaft with which it forms a circular groove.
  • the sheath 90 of each functional module is designed to be slidably mounted inside the cells 61 of the carousel 6.
  • the end of the lateral finger 900 of each of the sheath 90 of each functional module is provided to be housed according to the angular position of the carousel 6 alternately in the groove 83 of the shaft 8 and in the groove 141 of the guide element 14 so that the sheath is held integral with the shaft 8 or the piston 82 along the axis of rotation of the carousel 6, and is thus immobilized in translation along the axis of the cell in which it is located.
  • the portion forming a projection 140 and the grooves 141 and 84 extend at an angular position corresponding to the finger 900 of a sheath 90 of a functional module 9 located at the workstation in the extension of the pin 51.
  • each sheath 90 is capable of housing the lug 10 placed at the end of the piston 11 movable in translation in the chamber 12 of the cylinder 13.
  • the jack 13 is located at a loading/unloading station of the carousel 6. This station is located in such a way that when a cell 61 of the carousel is at the workstation in the extension of the spindle 51, another cell is at the loading/unloading station (ie at the staple loading station in this embodiment), another cell is located at the rivet loading station and another cell is located at the coating station.
  • the flat 85 and the lug 10 extend along axes parallel and perpendicular to the axis of rotation of the carousel 6.
  • the loading of the carousel 6 into functional modules 9 is obtained in the following manner.
  • Pressurized air is injected into chamber 12 of cylinder 13 so as to move piston 11 along arrow C in order to release lug 10 from inside cell 61 located at the loading/unloading station.
  • the actuator 1005 is actuated to place the fork 1003 in its release position.
  • a module is introduced inside the cell 61 located at the loading/unloading station by the side of the carousel 6 located on the side of the end of the shaft 8 where the groove 84 is located.
  • the finger 900 of the sheath 90 is introduced into the groove 83 passing through the flat 85 which forms an introduction passage.
  • Air is then introduced into chamber 12 of cylinder 13 so as to move piston 11 along arrow D to introduce lug 10 into groove 901 of sheath 90.
  • Sheath 90, and therefore the corresponding functional module 9 is thus held in the cell 61 along the axis of which it is blocked in translation.
  • this groove 901 allows the sheath to arrive at the loading/unloading station and its departure from this station, while the lug 10 protrudes into the groove 901.
  • the carousel 6 can then be rotated to place the next cell at the loading/unloading station and the process is repeated to load a new functional module 9.
  • the main carousel comprises more or less than seven cells.
  • the unloading of a functional module 9 is obtained, after having placed the cell corresponding to the loading/unloading station, by actuating the jack 13 to disengage the lug 10 from the groove 901 and thus let the functional module 9 slide out of the corresponding cell 61.
  • the device comprises a presser element 15 of tubular shape mounted to move in translation relative to the frame 2 along the axis of movement of the pin 51 and in the extension thereof.
  • a pressing element 15 can for example be used during a drilling operation to exert a compressive force on the structure to be drilled, in particular to ensure contact between the plates of a stack and to avoid the formation of burrs between these plates when drilling.
  • the robot arm to which the device is attached is actuated to place the multi-task device so that the workstation is positioned at the location of the structure to be worked on which an operation is to be carried out.
  • the robot applies the device against the structure to be worked until the suction cups 41 bear against the surface thereof. A vacuum is then created in the suction cups to ensure an effective connection between the multi-tasking device and the structure to be worked on.
  • a clamping C 42 can be used as an alternative to suction cups.
  • the main carousel In order to perform a drilling and/or countersinking operation, the main carousel is rotated until the desired drilling module is at the workstation.
  • the elastic return means tend to bring the piston 903 of the cylinder back to a position in which its end 905 is housed in the housing 950 or forms a projection in the sheath to prevent the functional assembly of the drilling module from sliding in the furnace, the end 905 of the piston 903 coming into contact with the end 951 of the bearing 95.
  • the drilling and/or countersinking module 9 must then be paired with the drive spindle 51 so that the latter can drive the output shaft 91 in movement, which constitutes a moving member of the module.
  • the pin 51 is driven in translation along its axis in the direction of the functional module placed at the workstation until the male element 162 is housed in the bell 160.
  • Pressurized air is injected into the chamber 171 of the cylinder 17 in order to move the internal pin 170 according to the arrow E.
  • the ramp 165 of the locking key 164 then acts on the locking elements 163 to place them in their position. apparatus in which they cooperate with the radial holes 161 of the bell 160.
  • the spindle 51 and the output shaft 9 are then connected in rotation and in translation.
  • the angular position of the male element 162 relative to the bell 160 is random and consequently the locking elements may not be perfectly in line with the radial holes of the bell.
  • the spherical heads of the locking elements make it possible to induce a slight relative rotation of the bell with respect to the male element causing the holes of the bell and the male element to be co-axially placed and thus authorizing the penetration of the elements lock in the holes of the bell.
  • the resisting torque resulting from the first drilling operation would then induce a relative displacement in rotation of the male element and the bell to bring the locking elements into line. locking with the radial holes and finalizing the fitting.
  • the actuator 904 is actuated to extract the end 905 of its piston 903 from the housing 950 of the bearing 95 or so that the end 905 no longer protrudes inside the sheath.
  • Pressurized air is then injected into the chamber 81 of the cylinder 80 in order to move the piston 82 according to the arrow E.
  • the actuation of the cylinder 80 produces no effect.
  • the main pin 51 is then driven in translation along the arrow E. This has the effect of: causing the movable assembly and the sheath to translate along the arrow E causing the drive element 14 to follow the same movement so that the functional drilling module 9, the finger 900 of which cooperates with the groove 141 of the drive element 14, is driven in translation along the arrow E along the axis of the spindle 51, until the furnace 90 comes to rest against the pressing element 15.
  • the pressing element then follows the same movement thus causing it to press against the structure to be worked and exert a pressure force on the structure to be worked.
  • the pressing force of the pressing element 15 against the surface to be worked is maintained by the actuator 80 while the translational movement of the pin 51 along the arrow E is accompanied by a movement of the mobile assembly at the inside the sheath which is then motionless in translation along the arrow E.
  • the spindle 51 can then be driven in rotation and in translation and transmit its movements to the output shaft 91 of the functional module 9 fitted to carry out the desired drilling operation.
  • the apparatus of the main spindle and the output shaft here constitutes a connection in rotation and in translation.
  • a rivet support module 200 Prior to carrying out a rivet setting operation, whether or not preceded by a mastic coating operation, a rivet support module 200 must be loaded with a rivet 216.
  • the main carousel 6 is driven in rotation so as to bring to the rivet loading station P3 the rivet support module 200 corresponding to the size of the rivet 216 that one wishes to place and if necessary coat.
  • the cell 1009 of the secondary carousel 1008 corresponding to the size of this rivet 216 is supplied with a rivet by the supply means of the carousel 1008 with rivets.
  • the rivets are brought through a flexible tube pushed inside this tube by a pressurized gas.
  • the secondary carousel 1008 is then driven in rotation so as to place the cell 1009 containing the rivet at the rivet loading station P3.
  • Pressurized air is injected into the air duct 906 of the rivet support module 200 so as to maintain its piston 205 in its first extreme position in abutment against the circlip 218 on the side opposite the split ring.
  • the cylinder 1006 is then implemented to push the rivet 216 contained in the cell 1009 inside the rivet support module 200 until the head 219 of the rivet 216 is housed in the split ring 213.
  • the head 219 of the rivet 216 acts on the split ring 213 to widen it so as to come to lodge in the groove 214 and in the conical bore 215 of the split ring 213.
  • the ring 213 then tightens around the head 219 of the rivet 216 under the effect of the O-rings implemented for this purpose so that the rivet 216 can no longer come out of the ring 213 following the path reverse.
  • the rivet 216 is then held in the rivet support module 100 and its body 220 forms a projection outside the module 200 beyond the split ring 213.
  • the rivet support module 200 previously loaded with the rivet 216 which it is desired to coat with mastic is brought to the coating station P4 by rotating the main carousel 6.
  • a coating of the heliocoidal type consists in depositing at least one annular bead of mastic at the end 221 of the rivet, at least one annular bead of mastic under the head 219 of the rivet and a helical bead along the body 220 of the rivet between the end and head of the rivet.
  • the procedure is as follows.
  • the cylinder 1053 Prior to the arrival at the coating station of a rivet support module: the cylinder 1053 is actuated to maintain the end of the nozzle 1050 in its extreme position in which it is furthest from the body 220 of the rivet 216; the cylinder 1047 is actuated so as to maintain the shoe 1046 in its disengaged position; cylinder 1060 is actuated so that feeler 1058 is in its extreme position on the side of end 221 of rivet 216; the cylinder 1057 is actuated so that the block 1054 carrying the shoe 1046 and the nozzle 1050 is in its extreme position on the side of the end 221 of the rivet 216.
  • the support 1062 of the nozzle 1050 is then in abutment against the feeler 1058.
  • the cylinder chamber 1057 carrying block 1054 is exhausted.
  • the cylinder 1036 is actuated so as to engage the half-dog clutch 1038 which it carries with the half dog 211 of the piston of the rivet support module 100 placed at the coating station.
  • the piston here constitutes a movable member and the bringing into cooperation of the two half-clutches constitutes an indirect device of the main spindle with this movable member.
  • the apparatus here is a rotating connection.
  • each rivet support module is suitable for supporting a rivet of a given size.
  • each rivet support module The length along the axis of the pin 51 of the piston 205 of each rivet support module is determined according to the size of the rivet that it is intended to support so that, when the cylinder 1036 carrying the half dog 1038 arrives at the end of travel, the connection zone between the head 219 and the body 220 of the rivet carried by a module is always at the same given position along the axis of the pin 51.
  • the cylinder 1060 is actuated to move the feeler 1058 in the direction of the head 219 of the rivet until the conical point 1061 comes to rest against the end 221 of the rivet thus stopping the stroke of the cylinder 1060.
  • the feeler 1058 against which the nozzle 1050 abuts, thus moves the nozzle at the level of the end 221 of the rivet (at a predetermined distance from the end of the rivet).
  • Actuator 1053 moves nozzle 1050 towards rivet body 220 until its end comes into contact with the rivet body.
  • the main spindle 51 is driven in rotation so as to drive in rotation via the pulleys and belts on the one hand the piston 205 of the module and therefore the rivet that it carries but also the lead screw 1043 at time tO.
  • the mastic pump is operated so that nozzle 1050 delivers mastic to end 221 of the rivet.
  • the shoe 1046 is moved towards its meshing position with the lead screw 1043 by means of the cylinder 1049.
  • the contact between the shoe 1046 and the surface 1045 of the thread 1044 of the lead screw 1043 is finalized after a fraction X of a turn of the lead screw 1043.
  • This fraction of a turn is necessary insofar as when the shoe comes into contact with the screw, it is in a random relative position such that a space between the shoe and the side of the thread remains.
  • the drive in translation of the sabot by the lead screw is effective only after this space has been reabsorbed under the action of a random fraction of turn X.
  • the nozzle 1050 When the shoe 1046 is in its meshing position, ie after finalizing the contact between the shoe and the lead screw, the nozzle 1050 then begins to move towards the head 219 of the rivet and the nozzle 1050 begins to deposit a bead putty spirals along the body 220 of the rivet.
  • the nozzle 1050 arrives at the height of the connection between the body 220 and the head 219 of the rivet.
  • the length of cord deposited on the end which can be 2 turns at most, justifies the total number of turns of 3 + Y to have at least a deposit of 1 turn under the head.
  • the deposition of mastic is deactivated by depressurizing the mastic pump.
  • the shoe 1046 is moved into its disengagement position by means of the cylinder 1049.
  • the nozzle 1050 is moved away from the rivet body 220 by means of the cylinder 1053.
  • the nozzle 1050 and the feeler 1058 are brought into the extreme position on the side of the end 221 of the rivet respectively thanks to the extension of the cylinders 1057 and 1060.
  • the main carousel 6 is rotated to bring the mastic-coated rivet to the rivet setting station at which there is a rivet setting device.
  • An annular-type coating consists of depositing at least one annular bead of mastic under the head 219 of the rivet.
  • the cylinder 1053 Prior to the arrival at the coating station of a rivet support module 100: the cylinder 1053 is actuated to maintain the end of the nozzle 1050 in its extreme position in which it is furthest from the body 220 of the rivet; the cylinder 1049 is actuated so as to maintain the shoe 1046 in its disengaged position; the cylinder 1060 is actuated so that the feeler 1058 is in its extreme position on the side of the end 221 of the rivet.
  • the cylinder 1036 is actuated so as to engage the half-dog 1038 which it carries with the half-dog 211 of the rivet support module 100 placed at the coating station.
  • each rivet support module is suitable for supporting a rivet of a given size.
  • the length along the axis of the pin of the piston of each rivet support module is determined according to the size of the rivet that it is intended to support so that, when the jack carrying the half dog clutch reaches the end of its stroke , the connection zone between the head and the body of the rivet carried by a module is always at the same given position.
  • the cylinder 1060 is actuated to move the feeler 1058 in the direction of the head 219 of the rivet until the conical point 1061 comes to rest against the end 221 of the rivet thus stopping the stroke of the cylinder 1060.
  • the cylinder 1057 is actuated to come into abutment at its end on the side of the rivet head 219 thus stopping the nozzle 1050 at the height of the connection between the body 220 and the head
  • Actuator 1053 moves nozzle 1050 towards rivet body 220 until its end comes into contact with rivet body 220.
  • the main spindle 51 is driven in rotation so as to drive in rotation via the pulleys and belts on the one hand the piston 205 of the module and therefore the rivet it carries.
  • the mastic pump is implemented so that the nozzle 1050 delivers mastic at the connection area between the head 219 and the body
  • the rotation of the main spindle 51 is stopped after having imparted a rotation of at least one turn to the rivet, at this stage a bead of at least one turn is deposited under the head 219 of the rivet.
  • mastic dispensing is deactivated by depressurizing the mastic pump.
  • the nozzle 1050 is moved away from the body 220 of the rivet thanks to the retraction of the jack 1053.
  • the nozzle 1050 and the feeler 1058 are brought into the extreme position on the side of the end 221 of the rivet respectively thanks to the extension of the cylinders 1057 and 1060.
  • the main carousel 6 is rotated to bring the putty coated rivet to the work station to set the rivet.
  • a coating of a rivet with parallel annular beads of mastic between its end and the zone where its body connects with its head is obtained as follows.
  • Jack 3010 is actuated to move feeler 3008 along arrow E to its extreme position.
  • a rivet support module carrying a rivet to be coated is then brought to the coating station.
  • the half-clutch 1038 is moved as far as the stop by the corresponding cylinder so as to come into engagement with the half-clutch 211 of the module and to move the piston of the module into a position in which the connection zone of the rivet that it door is in alignment with the channel 3003 of the nozzle located opposite to that located on the side of the end of the rivet.
  • Cylinder 3010 is actuated along arrow F so that end 3008 of the feeler comes into contact with the end of the rivet.
  • the drawer 3005 then slides inside the chamber 3002 so as to close the channels which extend beyond the end of the rivet.
  • the rivet is then rotated through a lathe as the mastic pump is operated to dispense mastic. This makes it possible to simultaneously deposit on the body of the rivet a plurality of annular beads of mastic parallel between the end and the connection zone of the rivet.
  • the rotation of the rivet is stopped, the pump is stopped, the cylinder is operated according to arrow E to move the feeler away from the rivet, then the main carousel is operated to move the module carrying the coated rivet to the workstation. to set the rivet.
  • the device can be implemented to carry out the installation of rivets, previously coated or not with mastic, depending on the case. It therefore comprises a rivet setting device.
  • the main spindle 51 is driven in translation along its axis via the feed motor.
  • the main pin 51 then bears against the piston 205 of the rivet support module 200 so that the latter moves in translation inside the chamber from a retracted position in which it extends inside of the sheath towards a deployed position in which it extends at least partly outside the sheath until it comes into abutment at the bottom thereof and the sheath translates into the cell of the carousel over a sufficient distance to come and engage the end 221 of the rivet in the corresponding hole (in the case of a rivet with a threaded end, the insertion of the threaded portion may suffice).
  • the piston of the module constitutes a mobile member and the apparatus here constitutes a simple contacting of the main pin with the mobile member so as to drive it in translation in one direction.
  • the feed motor is then driven so as to move the main spindle 51 in the opposite direction.
  • the piston 205 of the rivet support module remains immobile inside its chamber under the effect of friction.
  • the main pin 51 is translated until it reaches its extreme position in which the portion of the male element 162 carrying the locking ring 1067 is housed in the cylindrical portion 1065 of the unlocking ring 1064 which acts on the unlocking ring 1067 to move it into its unlocked position.
  • the secondary spindle 170 is then translated inside the main spindle 51 by supplying the chamber of its cylinder 17 (until it comes into contact with the head of the rivet).
  • the main pin 51 is advanced, the portion of the male element 162 comes out of the cylindrical portion 1065, thus the unlocking ring is again pressed against the secondary pin and when this ring again arrives at the level of the circumferential groove 1063, it is housed in the groove 1063 under the action of the elastic return element.
  • the secondary spindle 170 is then linked in translation with the main spindle 51 so that the translational movement of the main spindle 51 is accompanied by a translational movement of the secondary spindle 170 which together form a long spindle.
  • the locking key 164 then pushes on the head 219 of the rivet to extract it from the pliers and insert it completely into the hole.
  • the rivet is thus evacuated from the module by evacuation means which allow it to be inserted into a hole and which comprise in this embodiment in particular the main and secondary pins.
  • Reading the currents of the motors driving the main spindle, in this case the feed motor, makes it possible to know the thrust effect on the rivet and to stop the progress of the main spindle when the thrust effect becomes greater than a predetermined threshold corresponding to a total insertion of the rivet in its hole.
  • the main pin 51 is moved to its extreme position in which the portion of the male element 162 carrying the locking ring 1067 is housed in the cylindrical portion 1065 of the unlocking ring 1064 which thereby acts on the outer surface of the lateral actuating portion 1069 to move the locking ring 1067 relative to the male element 162 against the effect of the compression spring in its unlocked position.
  • the secondary spindle 170 is then retracted into the main spindle 51 by actuating its cylinder 17.
  • the piston 205 of the rivet support module is retracted into the sheath by supplying its chamber with compressed air until it comes into abutment against the circlips 218 and the sheath 90 is retracted into its cell thanks to the action of the jack 80 .
  • a device according to the invention can be implemented to carry out the installation of temporary fixings.
  • a temporary attachment 2000 conventionally comprises a body 2001, a deformable end 2002 (expandable and retractable) at the tip of a harpoon having a slot longitudinal and containing a spacer element fixed with respect to the body, and a rotating element 2003 which when it is turned with respect to the body, causes the separation (expansion) of the harpoon then its retraction into the body.
  • the rotating element is turned and tightened with respect to the body, the harpoon deviates from the other side of the sheets with respect to the body then enters the body and causes the plating of the sheets one on the other.
  • An illustrative and non-limiting example of temporary fixation is described in document US 4548533.
  • the temporary fasteners according to the invention comprise a body and a rotary element of cylindrical section and of the same diameter and having smooth and uniform external surfaces.
  • the body and the rotating element are separated by a space (housing) to enable them to be locked in position as will be described in more detail elsewhere.
  • a 300 module of temporary fixing support Prior to carrying out a temporary fixing operation, a 300 module of temporary fixing support must be loaded with a temporary fixing.
  • the main carousel 6 is driven in rotation so as to bring the temporary fixing support module to the loading station P2.
  • the cylinder 1005 is actuated to place the fork 1003 in its holding position.
  • the bandolier 1000 is implemented to place a temporary fixing 2000 in the axis of the temporary fixing support module.
  • the chamber of the temporary fixing support module is supplied with compressed air so as to maintain the piston 306 in a release position in which its shoulder 307 is close to the flange 314 of the drive tube 313.
  • the surface of the conical bore 331 of the piston 306 acts on the locking element 321 to maintain it in its rest position in which the end of the locking pin 327 is remote from the longitudinal axis of the drive tube.
  • the loading cylinder 1002 is activated in such a way that the end of its rod comes out of its chamber to come and push the head of the rotating element 2003 of the temporary attachment so as to introduce the temporary attachment into the attachment support module temporary until the female part 2001 comes into abutment against the fork 1003.
  • the rotating element 2003 of the temporary attachment is then in engagement with the first freewheel 318 while the body 2001 is in engagement with the second freewheel 33'.
  • the chamber of the temporary fixing support module is vented so that the piston 306 moves away from the collar 314 under the effect of the spring 315 until it reaches a locking position.
  • the locking element 321 returns to its locking position under the effect of the spring housed in the housing 328: the end of the locking pin 327 is then housed in the space E between the head of the rotary element 2003 and the body of the temporary fixing so that the latter is blocked in translation inside the module along its longitudinal axis.
  • the loading jack 1002 is then retracted to its starting position then the jack 1005 is actuated so as to bring the fork 1003 back to its release position.
  • the device allows the placement of temporary fixation and thus comprises a device for placing temporary fixation.
  • a temporary fixation support module in which a temporary fixation has been introduced is brought with the main carousel to the workstation.
  • the temporary fixture bracket module must then be paired to the main spindle.
  • pin 51 is driven in translation along its axis in the direction of the functional module placed at the workstation until the male element 162 is housed in the bell 160.
  • a slight air pressure can be introduced into the chamber of the module so that the piston 306 exerts a counter force along the longitudinal axis of the module vis-à-vis the fitting force.
  • Pressurized air is injected into the chamber 171 of the cylinder 17 in order to move the internal pin 170 according to the arrow E.
  • the ramp 165 of the locking key 164 then acts on the locking elements 163 to place them in their position. equipment in which they cooperate with the radial holes 161 of the bell 160.
  • the pin 51 and the drive tube are then connected in rotation and in translation.
  • the drive tube is a moving part and the pairing of the latter with the main spindle is a connection in rotation and in translation.
  • the advance motor is implemented to translate the main spindle 51 so as to cause the drive tube 313 to slide and thereby the piston 306 inside the module, the cylinder 80 and the compressed gas supply from the temporary fixture support module via line 906 are exhausted until the descent of spindle 51 has allowed insertion of the temporary fixture into its housing in the workpiece;
  • the continuous advance motor is implemented to translate the main spindle 51 so as to continue to slide the drive tube 313 and by the same the piston 306 inside the module until the thrust recorded at the level of the main pin 51 by the current sensor consumed by the advance motor reaches a predetermined threshold value corresponding to the abutment of the temporary fixing against the structure to be worked.
  • the main spindle 51 is driven in rotation by means of the rotation motor so that the drive tube rotates the head of the male part of the temporary fixing.
  • the male part of the temporary attachment rotates while the female part is held stationary in rotation.
  • the male part is screwed causing the expansion of the deformable end in the hole and thus the securing of the temporary fixing in the hole of the structure to be worked.
  • the rotation motor is rotated in the other direction so as to rotate the main spindle 51 by some degree in order to disengage the freewheels from the module.
  • Air is introduced into line 906 to move the piston to its release position and place the locking pin in its rest position.
  • the feed motor is implemented to move pin 51 to its home position.
  • the main spindle is stopped when the drive tube is in its initial position.
  • the cylinder 820 is activated to replace the sheath in its original position.
  • the cylinder 17 is actuated to release the locking elements 163 from the radial holes 161 of the bell 160 and thus uncouple the main spindle 51 from the drive tube 313 of the module.
  • the feed motor is again implemented to bring the main spindle back to its initial starting position.
  • the temporary fixture support module can then be led back to the temporary fixture loading station to receive a new temporary fixture for placement.
  • the equipment between the spindle and the moving part i.e. the output shaft or the drive tube
  • the spindle and the output shaft or the drive tube are interconnected directly via the equipment means 16 without intermediate transmission.
  • An intermediate transmission could however be interposed between the movable member and the bell 160.
  • Such an intermediate transmission could or could not serve as a reduction gear. It could not induce motion transformation or on the contrary induce motion transformation (for example transformation of a translational movement of the spindle into a rotational movement of at least one moving part of a functional module).
  • the equipment between the moving part (the piston of the module) and the spindle is done indirectly at the coating station via the pulleys, belts and half-dogs. It is done directly by simple contact at the workstation.
  • the sensors of the control and measurement assembly can make it possible to detect parameters specific to the operation of the paired module.
  • the following parameters can for example be measured: axial thrust on the drill: deduced for example from a force sensor on the spindle or in the transmission or from the intensity feed motor supply current; torque on the drill: deduced for example from a torque sensor on the spindle or in the transmission or from the intensity of the rotation motor supply current; drill stroke: for example deduced from the feed motor angle sensor.
  • axial thrust on the drill deduced for example from a force sensor on the spindle or in the transmission or from the intensity feed motor supply current
  • torque on the drill deduced for example from a torque sensor on the spindle or in the transmission or from the intensity of the rotation motor supply current
  • drill stroke for example deduced from the feed motor angle sensor.
  • travel of the screw deduced for example from the angle sensor of the rotation motor
  • tightening torque for example deduced from the torque sensor in the transmission or from the intensity of the rotation motor.
  • the axial thrust on the rivet deduced for example from a force sensor on the spindle or in the transmission or from the intensity of the advance motor supply current.
  • the axial travel of the rivet deduced for example from the angle sensor of the advance motor.
  • axial thrust on the temporary fixing deduced for example from a force sensor on the spindle or in the transmission or from the intensity of the supply current of the advance motor; tightening torque: for example deduced from the torque sensor in the transmission or from the current of the rotation motor.
  • the axial thrust measurement can also be used to detect the engagement of the male element 162 and the bell 160 during the fitting of a functional module.
  • the functional modules therefore preferably do not include any sensor, or at the very least a very limited number of sensors, which makes their structure particularly simple. , robust and economical.
  • the device also includes a battery of pneumatic connectors 18 making it possible to connect all the pneumatic actuators to pressurized fluid supply means and/or to means for creating a vacuum.
  • a drilling or riveting or temporary fixing operation can be implemented at the workstation; a rivet loading operation at the rivet loading station; a temporary fixing loading operation to the temporary fixing loading pose.
  • the device according to the invention makes it possible to perform a plurality of functions, for example laying of a fixing element, coating of a fixing element, drilling, etc. In this sense, it constitutes a multitasking device. It thus comprises devices making it possible to perform each of the functions, in particular coating device, device for installing temporary fixing, device for installing fixing element, drilling device, device for transferring fixing element, etc. Each of these devices can be dissociated to form an independent device performing its own function. Any combination of several (in particular at least 2) of these devices can be made.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)
  • Automatic Assembly (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

La présente invention concerne un dispositif multi-tâche comprenant : - des moyens de solidarisation dudit dispositif à des moyens de manutention motorisés aptes à déplacer au moins en partie ledit dispositif multi-tâche dans l'espace par rapport à une structure à travailler; - des moyens de solidarisation dudit dispositif à ladite structure à travailler; - au moins deux modules fonctionnels, chacun desdits modules fonctionnels comprenant au moins un organe mobile apte à permettre la réalisation d'une tâche donnée; ledit dispositif comprenant un unique ensemble d'entrainement et de contrôle desdits modules fonctionnels, ledit ensemble d'entrainement et de contrôle comprenant : - une unique broche d'entrainement; - des moyens moteurs aptes à entrainer en mouvement ladite broche; - des moyens de mesure d'au moins un paramètre physique représentatif d'au moins une caractéristique de fonctionnement desdits modules fonctionnels; - des moyens de contrôle desdits moyens moteurs et desdits moyens de mesure; ledit dispositif comprenant en outre des moyens d'appareillage aptes à lier en mouvement ladite unique broche d'entrainement alternativement avec ledit au moins un organe mobile desdits modules fonctionnels.

Description

DESCRIPTION
Titre : Dispositif multi-tâche mono-broche à carrousel
1. Domaine de l'invention
Le domaine de l’invention est celui de la conception et de la réalisation de dispositifs mis en oeuvre dans l’industrie pour réaliser des tâches diverses sur une structure à travailler en particulier pour l’industrie aéronautique.
2. Art antérieur
De nombreux dispositifs sont couramment mis en oeuvre pour réaliser différentes tâches ou opérations sur une structure à travailler. Il peut par exemple s’agir d’un perçage, d’un fraisurage, de la pose d’une fixation temporaire, de l’enduction d’un rivet avec du mastic puis de la pose de ce rivet dans un trou percé dans ladite structure ou toute autre opération.
Des dispositifs mobiles ont été développés pour permettre de réaliser des tâches sur des structures complexes comme par exemple des avions.
Au rang de ces dispositifs figurent notamment ceux du type comprenant un outillage placé à l’extrémité d’un bras robot pour être manipulé et déplacé par rapport à la structure à travailler, le dispositif comprenant des moyens permettant de rendre l’outillage solidaire de la structure à travailler afin de lui faire reprendre les efforts dus à l’accomplissement de la tâche pour soulager le bras robot.
Le document de brevet US 5 088 171 décrit un dispositif de ce type comprenant une perceuse placée à l’extrémité d’un bras robot et comprenant des moyens permettant d’encliqueter l’outillage avec la surface de la structure à travailler pour les rendre solidaires le temps de l’accomplissement d’une tâche.
On connaît également des dispositifs du type comprenant un outillage solidaire d’un robot dit « marcheur », notamment hexapode, permettant de manipuler et de déplacer l’outillage par rapport à la structure à travailler.
Le document de brevet FR-B1-2 809 034 décrit un dispositif de ce type comprenant une perceuse montée sur un robot hexapode et qui comprend des ventouses pour permettre de rendre la structure à travailler alternativement solidaire du robot et de l’outillage.
On connaît encore des dispositifs du type comprenant un châssis intégrant des rails orthogonaux (un rail en x et un rail en y) solidarisables à la structure à travailler au moyen de ventouses. Ces rails permettent de guider de manière motorisée l’outillage par rapport à la structure à travailler pour permettre d’accomplir des tâches successivement à différents endroits de cette structure. Ce type de dispositifs est généralement appelé « grille numérique » ou « grille numérique de perçage » s’ils sont mis en oeuvre pour réaliser des perçages.
Le document de brevet WOA-2-200349899 décrit un dispositif de ce type.
Ces types de dispositifs sont avantageux en ce qu’ils permettent d’intervenir efficacement pour réaliser des tâches sur des structures complexes comme notamment des fuselages d’avion.
Ils permettent encore de soulager les moyens de mise en mouvement mis en oeuvre pour déplacer l’outillage (robot, actionneurs, motorisations, transmissions...) compte tenu de la mise en oeuvre de moyens permettant de solidariser l’outillage à la structure à travailler (ventouses, système de liaison mécanique...). Ceci permet de réduire le dimensionnement de ces moyens de mise en mouvement et ainsi d’en réduire l’encombrement et le coût.
Les moyens de solidarisation de l’outil à la structure à travailler permettent également d’améliorer la stabilité de l’ouillage pendant la réalisation d’une tâche et ainsi d’améliorer la précision avec laquelle cette tâche est accomplie.
Ces types de dispositifs présentent toutefois quelques inconvénients.
En particulier, ils sont assez peu polyvalents. En effet, ils n’embarquent qu’un type d’outillage, par exemple un dispositif de perçage, si bien qu’ils ne permettent de réaliser qu’un type de tâche, en l’occurrence un perçage. Ainsi, s’il est souhaité de réaliser, sur une même structure, plusieurs types de tâches, par exemple un perçage puis la pose d’un rivet, il est nécessaire de procéder au démontage du premier outillage après la réalisation de la première tâche pour le remplacer par un outre outillage apte à la réalisation de la tâche suivante. Ceci est assez peu pratique et induit une baisse de productivité.
Des solutions ont été imaginées pour embarquer plusieurs types d’outillages notamment à l’extrémité d’un bras robot. Toutefois, les dispositifs de ce type sont encombrants, complexes et chers à mettre en œuvre.
Il est donc encore possible d’améliorer les dispositifs de ce type, ce qui constitue un objectif poursuivi par l’invention.
3. Objectifs de l'invention
L’invention a notamment pour objectif d’apporter une solution efficace à au moins certains de ces différents problèmes.
En particulier, selon au moins un mode de réalisation, un objectif de l’invention est de fournir un dispositif polyvalent qui puisse permettre de réaliser des tâches de types différents sans nécessiter pour cela de réaliser une opération de changement d’outillage entre deux tâches différentes pour mettre en place l’outillage nécessaire.
L’invention a pour objectif, selon au moins un mode de réalisation, de fournir un tel dispositif qui soit compact et/ou léger, et qui permette en conséquence de réaliser des tâches dans des endroits exigus.
Un autre objectif de l’invention est, selon au moins un mode de réalisation, de fournir un tel dispositif qui soit simple de conception.
Un autre objectif de l’invention est, selon au moins un mode de réalisation, de fournir un tel dispositif qui soit simple à entretenir.
Un autre objectif de l’invention est de procurer, dans au moins un mode de réalisation, un tel dispositif qui soit relativement bon marché.
4. Présentation de l’invention
Pour ceci, l’invention propose un dispositif multi-tâche comprenant : des moyens de solidarisation dudit dispositif à des moyens de manutention motorisés aptes à déplacer au moins en partie ledit dispositif multi-tâche dans l’espace par rapport à une structure à travailler ; des moyens de solidarisation dudit dispositif à ladite structure à travailler ; au moins deux modules fonctionnels, chacun desdits modules fonctionnels comprenant au moins un organe mobile apte à permettre la réalisation d’une tâche donnée.
Un tel dispositif comprend un unique ensemble d’entrainement et de contrôle desdits modules fonctionnels, ledit ensemble d’entrainement et de contrôle comprenant : une unique broche d’entrainement ; des moyens moteurs aptes à entraîner en mouvement ladite broche ; des moyens de mesure d’au moins un paramètre physique représentatif d’au moins une caractéristique de fonctionnement desdits modules fonctionnels ; des moyens de contrôle desdits moyens moteurs et desdits moyens de mesure. Un tel dispositif comprend en outre des moyens d’appareillage aptes à lier en mouvement ladite unique broche d’entrainement alternativement avec ledit au moins un organe mobile desdits modules fonctionnels.
Ainsi, selon cet aspect, l’invention propose un dispositif multi-tâches pouvant être solidarisé à une structure à travailler, par exemple par des ventouses, et à être déplacé par rapport à cette structure par des moyens de manutentions motorisé comme un bras robot, un robot marcheur ou une grille numérique. Ce dispositif est multi-tâches en ce qu’il embarque plusieurs modules fonctionnels permettant chacun la réalisation d’un type de tâche distinct comme par exemple un perçage, un fraisurage, l’enduction de mastic sur un élément d’assemblage comme un rivet ou une vis, la pose de rivet, la pose de fixation temporaire (par exemple d’agrafe) ....
Un tel dispositif est en particulier original du fait qu’il comprend un unique ensemble d’entrainement et de contrôle des modules fonctionnels.
Cet ensemble d’entrainement et de contrôle comprend notamment une unique broche d’entrainement et des moyens moteurs pour entraîner celle-ci en mouvement.
Le dispositif comprend des moyens d’appareillage aptes à lier en mouvement l’unique broche d’entrainement alternativement avec un organe mobile des modules fonctionnels embarqués. Ainsi, les modules fonctionnels ne comprennent pas de motorisation. Ils sont chacun entraîné en mouvement, alternativement au moyen de la même broche et de la même motorisation de l’unique ensemble d’entrainement et de contrôle.
De même, l’unique ensemble d’entrainement et de contrôle comprend des moyens de mesure d’au moins un paramètre physique représentatif d’au moins une caractéristique de fonctionnement des modules fonctionnels et des moyens de contrôle des moyens moteurs et des moyens de mesure si bien que la partie « intelligente » du dispositif est intégrée, au tout le moins dans la majeure partie, dans l’unique ensemble d’entrainement et de contrôle, si bien que les modules fonctionnels ne comportent que les éléments essentiels nécessaires à la réalisation de leur fonction, i.e. son ou ses organes de sortie ainsi que les éléments mécaniques permettant de transférer, et le cas échéant modifier, le mouvement de la broche à son ou ses organes de sortie.
Les modules fonctionnels selon l’invention présentent ainsi une architecture extrêmement simple. Ils sont donc particulièrement robustes. Ils sont en outre compacts et légers. Ceci permet d’embarquer un nombre important de modules fonctionnels sans pour autant nécessiter de moyens de manutention trop fortement dimensionnés, ce qui aurait un impact sur l’encombrement général du dispositif et sur son coût.
L’utilisation d’un unique ensemble d’entrainement et de contrôle regroupant l’ensemble des moyens moteurs, moyens de mesure et moyens de contrôle ainsi qu’une unique broche d’entrainement qui sont utilisés pour piloter chacun des modules fonctionnels, permet de réduire le nombre de composants mis en oeuvre, de simplifier l’architecture, d’améliorer ainsi notamment la robustesse, la fiabilité et la compacité du dispositif.
Un dispositif selon l’invention bénéficie ainsi d’une grande polyvalence ce qui participe à augmenter la productivité, d’une bonne compacité ce qui permet de réaliser des tâches dans des environnement exigus, d’une grande simplicité et robustesse ce qui réduit la fréquence des opérations de maintenance et participe à augmenter la productivité, et d’une certaine légèreté ce qui permet notamment de diminuer le dimensionnement des moyens de manutention.
Selon une caractéristique possible, lesdits moyens d’appareillage assurent une liaison directe entre ladite broche et ledit au moins un organe mobile du module fonctionnel appareillé.
Selon une caractéristique possible, un dispositif selon l’invention comprend des moyens de transformation de mouvement entre ladite broche et ledit au moins un organe mobile dudit module fonctionnel appareillé.
Selon une caractéristique possible, lesdits moyens de manutention motorisés appartiennent au groupe comprenant :
- les robots ;
- les grilles de perçage numériques.
Selon une caractéristique possible, lesdits moyens de mesure sont aptes à mesurer au moins un paramètre représentatif d’au moins une caractéristique de fonctionnement desdits modules fonctionnels appartenant au groupe comprenant :
- un couple sur ledit au moins un organe mobile du module appareillé ;
- un effort axial sur ledit au moins un organe mobile du module appareillé ;
- une position angulaire dudit au moins un organe mobile du module appareillé ;
- une position axiale dudit au moins un organe mobile du module appareillé.
Selon une caractéristique possible, lesdits moyens moteur comprennent au moins un moteur électrique apte à entraîner en mouvement ladite broche et ledit au moins un organe mobile d’un module fonctionnel appareillé à ladite broche.
Selon une caractéristique possible, lesdits moyens de contrôle comprennent des moyens de mesure de l’intensité électrique consommée par ledit moteur et des moyens de détermination, en fonction de l’intensité électrique mesurée, d’un couple et/ou d’un effort axial sur ledit au moins un organe mobile d’un module appareillé. Selon une caractéristique possible, ledit au moins un moteur comprend un rotor, lesdits moyens de mesure comprenant au moins un capteur de mesure de la position angulaire dudit rotor, lesdits moyens de contrôle comprenant des moyens de détermination, en fonction de la position angulaire dudit rotor mesurée, de la position angulaire et/ de la position axiale dudit au moins un organe mobile d’un module fonctionnel appareillé à ladite broche.
Selon une caractéristique possible, lesdits moyens moteur comprennent une transmission reliant ledit au moins un moteur à ladite unique broche d’entrainement, lesdits moyens de mesure comprenant au moins un capteur de couple et/ou d’effort et/ou de position intégrés à ladite transmission aptes à permettre la détermination d’un couple et/ou d’un effort axial sur ledit au moins un organe mobile d’un module appareillé et/ou d’une position angulaire et/ou axiale dudit au moins un organe mobile d’un module appareillé.
Selon une caractéristique possible, un dispositif selon l’invention comprend des moyens d’acheminement desdits modules fonctionnels dans le prolongement de ladite broche d’entrainement.
Selon une caractéristique possible, lesdits moyens d’acheminement comprennent au moins un carrousel monté mobile en rotation et comprenant des moyens de support d’une pluralité de modules fonctionnels.
Selon une caractéristique possible, un dispositif selon l’invention comprend des moyens d’entrainement en rotation dudit au moins un carrousel, lesdits moyens d’entrainement en rotation comprenant au moins un cliquet d’entrainement mobile formant avec ledit carrousel un ensemble de type roue à rochet, lesdits moyens d’entrainement en rotation comprenant des moyens de déplacement dudit cliquet d’entrainement mobile selon un axe orthogonal à l’axe de rotation dudit carrousel.
Selon une caractéristique possible, lesdits moyens d’acheminement comprennent au moins un organe de support mobile en translation et comprenant des moyens de support d’une pluralité de modules fonctionnels.
Selon une caractéristique possible, un dispositif selon l’invention comprend des moyens d’activation-désactivation à distance desdits moyens d’appareillage. Selon une caractéristique possible, ladite broche d’entrainement est montée mobile en rotation et en translation selon un même axe, lesdits moyens moteurs comprenant au moins un moteur et une transmission reliant ladite broche d’entrainement audit au moins un moteur, ladite transmission comprenant : une noix d’entrainement en rotation comprenant une portion cannelée de forme complémentaire d’une portion cannelée ménagée sur ladite broche le long dudit axe ; une bague d’entrainement en translation liée à ladite broche d’entrainement par une liaison hélicoïdale selon ledit axe.
Selon une caractéristique possible, un dispositif selon l’invention comprend au moins un élément presseur, apte à exercer une pression sur ladite structure à travailler, situé dans le prolongement de ladite broche d’entrainement, et des moyens de déplacement dudit élément presseur en direction de ladite structure à travailler, lesdits moyens de déplacement dudit élément presseur agissant sur ledit élément presseur via un module fonctionnel situé dans le prolongement de ladite broche.
Selon une caractéristique possible, un dispositif selon l’invention comprend au moins un desdits ensembles fonctionnels comprend un fourreau logeant en coulissement un ensemble fonctionnel, ledit ensemble fonctionnement comprenant en outre des moyens de blocage en translation dudit ensemble fonctionnel dans ledit fourreau.
5. Description des figures
D’autres caractéristiques et avantages de l’invention apparaîtront à la lecture de la description suivante de modes de réalisation particuliers, donnée à titre de simple exemple illustratif et non limitatif, et des dessins annexés parmi lesquels :
[Fig 1] la figure 1 illustre une vue en perspective d’un dispositif selon l’invention ;
[Fig 2] la figure 2 illustre une vue en coupe du dispositif de la figure 1 selon un plan passant par l’axe de la broche ;
[Fig 3] la figure 3 illustre une vue partielle agrandie de la figure 1 ;
[Fig 4] la figure 4 illustre une vue du dispositif de la figure 1 selon le plan A-A du dispositif de la figure 3 ;
[Fig 5] la figure 5 illustre une première variante de dispositif de pads à ventouse pour la solidarisation d’un dispositif selon l’invention à une structure à travailler ;
[Fig 6] la figure 6 illustre une vue partielle et en coupe selon un plan passant par la broche et l’arbre de guidage en rotation du carrousel d’un dispositif selon l’invention ;
[Fig 7] la figure 7 illustre une vue en perspective d’un arbre de guidage en rotation du carrousel d’un dispositif selon l’invention ;
[Fig 8] la figure 8 illustre une vue en coupe d’un module de support de rivet ;
[Fig 9] la figure 9 illustre une vue en coupe d’un autre module de support de rivet ;
[Fig 10] la figure 10 illustre une vue en coupe d’un module de perçage ;
[Fig 11] la figure 11 illustre une vue en coupe d’un module de support de fixation temporaire ; [Fig 12] la figure 12 illustre une vue en coupe selon le plan D-D du dispositif de la figure 2 ;
[Fig 13] la figure 13 illustre une vue en coupe selon le plan E-E du dispositif de la figure 2 ;
[Fig 14] la figure 14 illustre une vue en coupe selon le plan B-B du dispositif de la figure 2 ;
[Fig 15] la figure 15 illustre une vue en coupe selon le plan C-C du dispositif de la figure 2 ;
[Fig 16] la figure 16 illustre une vue partielle en perspective et en coupe selon un plan passant par l’axe de rotation du carrousel d’un dispositif selon l’invention ;
[Fig 17] la figure 17 illustre le dispositif de la figure 1 selon un autre angle de vue ;
[Fig 18] la figure 18 illustre le dispositif de la figure 17 avec une dispositif de ventouses différente ;
[Fig 19] la figure 19 illustre un exemple de C-clamp mis en oeuvre pour la solidarisation d’un dispositif selon l’invention à une structure à travailler;
[Fig 20] la figure 20 illustre le dispositif de la figure 19 selon un autre angle de vue ;
[Fig 21] la figure 21 illustre une coupe suivant l’axe H-H de la figure 20 ;
[Fig 22] la figure 22 illustre un détail de la figure 21 ;
[Fig 23] la figure 23 illustre une vue partielle d’un dispositif de solidarisation universelle selon l’invention ;
[Fig 24] la figure 24 illustre une vue de détail en perspective du dispositif de la figure 1 au niveau du carrousel secondaire ;
[Fig 25] la figure 25 illustre une vue en coupe suivant l’axe l-l du carrousel secondaire ;
[Fig 26] la figure 26 illustre une vue en coupe suivant l’axe J-J du carrousel secondaire ;
[Fig 27] la figure 27 illustre une vue partielle en coupe longitudinale du dispositif au niveau des moyens d’appareillage rapide ;
[Fig 28] la figure 28 illustre une vue en coupe suivant l’axe K-K de la figure 27 ;
[Fig 29] la figure 29 illustre une vue en coupe suivant l’axe H-H de la figure 4 ;
[Fig 30] la figure 30 illustre une vue en coupe d’un élément mâle des moyens d’appareillage [Fig 31] la figure 31 illustre une vue en coupe selon un plan de coupe à 90° de de la figure 30 ;
[Fig 32] la figure 32 illustre une vue de dessus d’un organe de verrouillage ;
[Fig 33] la figure 32 illustre une vue de côté d’un organe de verrouillage 28 ;
[Fig 34] la figure 34 illustre une vue partielle en coupe du poste d’enduction ;
[Fig 35] la figure 35 illustre une vue partielle en coupe suivant l’axe M-M de la figure 34 ;
[Fig 36] la figure 36 illustre une vue partielle en coupe d’un module de support de rivet au poste d’enduction ;
[Fig 37] la figure 37 illustre la vis mère et le sabot du poste d’enduction ;
[Fig 38] la figure 38 illustre une vue de détail du poste d’enduction ;
[Fig 39] la figure 39 illustre une variante de poste d’enduction ;
[Fig 40] la figure 40 illustre un détail de la figure 39 ;
[Fig 41] la figure 41 illustre un autre détail de la figure 39 ;
[Fig 42] la figure 42 illustre une vue en coupe longitudinale d’un module de support de rivet d’une taille donnée en cours d’enduction ;
[Fig 43] la figure 43 illustre une vue en coupe longitudinale d’un module de support de rivet d’une taille donnée différente de celle de la figure 42 en cours d’enduction dont la zone de raccordement de la tête et du corps se situe à la même position relative par rapport à la buse qu’avec le module d la figure 42 ;
[Fig 44] la figure 44 illustre une vue en coupe longitudinale au niveau du poste de chargement de fixation temporaire ;
[Fig 45] la figure 45 illustre des vues d’un élément de verrouillage ;
[Fig 46] la figure 46 illustre un détail de la figure 44 ;
[Fig 47] la figure 47 illustre une vue partielle en coupe longitudinale du poste de travail perspective ;
[Fig 48] la figure 48 illustre une vue partielle en coupe longitudinale du poste de travail au niveau des moyens d’appareillage rapide ;
[Fig 49] la figure 49 illustre une vue partielle en coupe longitudinale des moyens de liaison en translation des broches principale et secondaire ;
[Fig 50] la figure 50 illustre des vues illustrant la téléscopie
6. Description de modes de réalisation particuliers
On décrit, en relation avec les figures 1 à 50, un exemple d’un dispositif multi-tâche selon l’invention. Ainsi que cela est représenté sur ces figures, un tel dispositif multi-tâche 1 comprend un bâti 2.
Ce bâti 2 est équipé de moyens de solidarisation 3 à un dispositif de manutention motorisés (non représenté) auquel il est destiné à être solidarisé de manière à pouvoir être déplacé par rapporté une structure à travailler (non représentée).
Ces moyens de manutention motorisés appartiennent au groupe comprenant : les bras robot ; les robots marcheurs ; les grilles numériques.
Dans l’exemple illustré, il s’agit de moyens de solidarisation 3 à un bras robot. Ces moyens de solidarisation comprennent une platine 31 traversée par une pluralité de trous 32 permettant le passage de boulons de solidarisation à l’extrémité du bras robot. D’autres moyens de solidarisation pourront être mis en oeuvre comme par exemple des moyens de solidarisation rapides de type collier, système à clamp ou à came....
Dans le cas des grilles numériques, les moyens de solidarisation comprendront par exemple des boulons, colliers ou autres moyens de solidarisation à un berceau muni des galets aptes à être guidés dans les rails de la grille numérique.
Moyens de solidarisation à une structure à travailler
Le dispositif comprend des moyens de solidarisation 4 à une structure à travailler.
Ces moyens de solidarisation peuvent être de différents types.
Ils peuvent par exemple comprendre des ventouses 41 solidaires du bâti 2 aptes à être reliées à des moyens de mise sous vide comme par exemple une pompe à vide pour améliorer la solidarisation à la surface de la structure à travailler.
Les ventouses peuvent être solidarisées par groupes à des supports formant ainsi des pads à ventouses. Deux pads à ventouses sont représentés sur les figures 1 , 17 et 18, ce nombre pourrait toutefois être supérieur à deux.
Les ventouses peuvent être décalées d’un côté de la broche 51 (qui sera décrite en détail par la suite) comme cela est illustré à la figure 18 ou bien réparties autour de la broche 51 (cf. figure 17).
Ils peuvent alternativement comprendre un C de clampage par ailleurs connu dans l’état de l’art comme par exemple celui illustré à la figure 19.
Les moyens de solidarisation à une structure à travailler peuvent être solidarisés à demeure au bâti. De manière alternative, ils peuvent être solidarisés au bâti via des moyens de fixation réversibles universels 100.
Moyens de fixation réversibles universels des moyens de solidarisafion à une structure à travailler
Les moyens de fixation réversibles universels 100 comprennent une plaque de fixation 101.
Dans le cas des ventouses 41 , la plaque de fixation 101 sera solidaire d’une structure porteuse portant les ventouses.
Dans le cas du C de clampage 42, la plaque de fixation 101 sera solidaire de l’extrémité distale d'un barreau 420 du C de clampage.
Cette plaque de fixation 101 présente une section essentiellement rectangulaire dans un plan et une section avec deux rainures latérales 102 dans un autre plan orthogonal au premier.
Ces rainures latérales 102 s’étendent tout le long de la plaque de fixation 101 et comprennent un pan incliné 103 de sorte que l’épaisseur des portions rainurées de la plaque de fixation 101 tend à s’épaissir depuis les extrémités de la plaque vers l’intérieur de celle-ci.
Les moyens de fixation réversibles universels comprennent une paire de mâchoires 104 de forme complémentaire des extrémités rainurées de la plaque de fixation 101.
Ces mâchoires 104 définissent donc chacune un logement 105 apte à recevoir l’extrémité rainurée correspondante de la plaque de fixation 101. Ces logements 105 présentent ainsi chacun deux surfaces opposées dont l’une est inclinée par rapport à l’autre d’un angle sensiblement identique à l’angle d’inclinaison de la rainure correspondante de la plaque de fixation.
Chaque mâchoire est solidaire du cylindre 106 d’un vérin 109 dont la tige 107 du piston 108 passe à travers la mâchoire 104 et est solidarisée au bâti.
Les mâchoires 104 sont montées mobiles entre au moins : une position de désolidarisation dans laquelle elle sont éloignées l’une de l’autre pour permettre l’introduction des extrémités rainurées de la plaque de fixation 101 en vue de solidariser au bâti les moyens de fixation à une structure à travailler, et une position de solidarisation dans laquelle elles sont rapprochées pour enserrer (prendre en étau) les extrémités rainurées de la plaque de fixation 101 afin de solidariser au bâti les moyens de solidarisation à une structure à travailler.
Lors de leur passage de leur position de désolidarisation à leur position de solidarisation, les surfaces inclinées des extrémités rainurées de la plaque de fixation 101 viennent progressivement glisser contre les surfaces inclinées des mâchoires 104 correspondantes pour assurer une solidarisation par effet de coin.
Pour fixer au bâti les moyens de solidarisation souhaité, les vérins 109 sont actionnés pour placer les mâchoires 104 dans leur position de désolidarisation.
La plaque de fixation 101 des moyens de solidarisation est ensuite insérée entre les mâchoires 104.
Les vérins 109 sont ensuite actionnés pour placer les mâchoires 105 dans leur position de solidarisation dans laquelle elles enserrent les extrémités rainurées de la plaque de fixation 101.
La désolidarisation des moyens de solidarisation est obtenue en procédant inversement.
Modules fonctionnels
Le dispositif est susceptible d’embarquer une pluralité de modules fonctionnels qui seront décrits plus en détail par la suite.
Chacun de ces modules fonctionnels permet de réaliser une tâche particulière comme par exemple une opération de perçage et/ou de fraisurage, une opération de pose de rivets, une opération de pose de fixation temporaire (par exemple d’agrafe), une opération de dépose (ou d’enduction) sur un élément de fixation (un rivet ou une vis) d’un cordon de mastic d’étanchéité. D’autres fonctions pourraient être envisagées telles que du vissage.
Module de perçage et/ou fraisurage
Le module fonctionnel 9 illustré dans l’alignement de la broche 51 à la figure 2 est un module de perçage.
Le module de perçage comprend un fourreau 90.
Ce fourneau 90 présente une forme tubulaire et une section globalement annulaire.
Le fourreau 90 comprend un doigt latéral 900 formant saillie sur sa paroi latérale.
Le fourneau 90 comprend une rainure latérale 901 qui est ménagée de manière diamétralement opposée et décalée suivant l’axe longitudinal du fourreau par rapport au doigt 900.
Ce module de perçage comprend un arbre de sortie 91 (i.e. organe mobile) à l’extrémité duquel peut être solidarisé un outil de coupe comme un foret 92 (éventuellement étager pour permettre la réalisation d’une fraisure) par des moyens de fixation 93 connus en soit. L’outil de coupe pourra par exemple être un foret simple pour réaliser de simples perçages, un foret étagé, un foret fraisureur pour réaliser des perçages fraisurés, un outil de fraisage pour réaliser la fraisure de perçages préalablement réalisés.
L’arbre de sortie 91 est monté mobile en rotation dans un palier 94 lui-même monté coulissant le long du fourreau 90 au moyen d’un coussinet 95.
Le doigt 900 du fourreau 90 du module de perçage loge une chambre 902 dans laquelle est monté coulissant un piston 903 d’un vérin 904. L’extrémité 905 du piston 903 est susceptible de venir se loger dans un logement de forme complémentaire 950 ménagé à cet effet dans le coussinet 95.
Le doigt 900 est prolongé par une conduite d’alimentation 906 du vérin 904 susceptible d’être mise en communication avec une conduite d’admission d’airsous pression 907 ménagée dans le dispositif, avec laquelle il se trouve en communication lorsqu’il se trouve au poste de travail du dispositif.
Des moyens de rappel élastique (non représentés) tendent à ramener le piston 903 dans une position dans laquelle son extrémité 905 est logée dans le logement 950 correspondant du coussinet 95 de sorte à bloquer celui-ci en translation à l’intérieur du fourreau 90 et pour empêcher en conséquence le coussinet 95, le palier 94, l’arbre de sortie 91 et l’outil 92 qu’il porte de sortir du fourreau 90 tant que le module fonctionnel n’est pas appareillé à la broche 51.
L’extrémité 905 et le vérin 904 correspondant constituent des moyens de blocage en translation d’un ensemble fonctionnel de module fonctionnel à l’intérieur de son fourreau. Un ensemble fonctionnel comprend l’ensemble des composants d’un module fonctionnel montés libres en translation dans son fourreau.
De manière alternative, les moyens de rappel élastique pourront être mis en oeuvre pour que l’extrémité 905 forme saillie à l’intérieur du fourreau 90 pour former une butée pour le pour le coussinet 95 prévenant que l’ensemble fonctionnel coulisse à l’intérieur du fourneau au-delà de sa position illustrée à la figure 5 ou 6.
En outre (dans les deux variantes de fonctionnement du vérin 904 et de l’extrémité 905), le fourreau loge à chacune de ses extrémités un segment d’arrêt (non représenté) formant chacun une butée d’arrêt pour l’ensemble fonctionnel. Ainsi, un ensemble fonctionnel de module de perçage peut coulisser à l’intérieur du fourreau entre ces segments d'arrêt tant que l’extrémité 905 ne forme pas saillie dans le logement 950 ou directement dans le fourreau.
Le module de perçage comprend une cloche 160 solidaire de l’arbre de sortie 91 et liée en mouvement à celui-ci. Cette cloche comprend des trous radiaux 161.
Un module de vissage pourra être réalisé avec une structure sensiblement identique à celle du module de perçage. Dans ce cas, les moyens de fixation 93 d’un outil coupant seraient remplacés par des moyens de solidarisation d’une douille ou d’une empreinte de vissage à l’arbre de sortie. Cela pourrait supposer que l’avance de la broche 51 soit pilotée de telle sorte que l’avance par tour de la broche soit sensiblement égale au pas de la vis de telle sorte à ce que la douille ou l’empreinte de vissage avance de façon synchrone avec la vis. Une téléscopie pourrait en outre être nécessaire pour permettre l’embectage.
Module support de rivet
Le module support de rivet 200 permet le maintien de rivet et comprend, comme le module de perçage, un fourreau 90.
Ce fourneau 90 présente une forme tubulaire et une section globalement annulaire.
Le fourreau 90 comprend un doigt latéral 900 formant saillie sur sa paroi latérale.
Le fourneau 90 comprend une rainure latérale 901 qui est ménagée de manière diamétralement opposée et décalée suivant l’axe longitudinal du fourreau par rapport au doigt 900.
Le fourreau loge un élément tubulaire 201 qui présente à l’une de ses extrémités un épaulement 202 prévu pour venir en appui contre un épaulement 203 de forme complémentaire ménagé à une extrémité du fourneau 90.
Son extrémité opposée étant à proximité d’un épaulement 204 ménagé dans la partie inférieure du fourreau 90, sans toutefois être en contact avec cet épaulement pour permettre à de l’air sous pression de passer entre la surface externe de l’élément tubulaire 201 et la surface interne du fourreau 90, comme cela ressortira plus clairement par la suite.
L’élément tubulaire 201 , qui constitue une chambre, loge un piston 205 qui y est monté mobile en translation.
Le piston 205 comprend à une extrémité une collerette 206 munie d’une rainure circonférentielle 207 logeant un joint torique 208. Ce joint torique 208 assure l’étanchéité entre le piston 205 et l’élément tubulaire 201.
L’épaulement 204 du fourneau 90 comprend également une rainure circonférentielle intérieure 209 logeant un joint torique 210 assurant l’étanchéité entre le piston 205 et le fourreau 90.
Le doigt latéral 900 du fourreau 90 loge une conduite d’air qui se prolonge le long du fourreau et qui est susceptible d’être mise en communication avec une conduite d’admission d’air sous pression 907 ménagée dans le dispositif, avec laquelle il se trouve en communication lorsqu’il se trouve au poste de travail du dispositif. L’extrémité du piston 205 située du côté intérieur de l’épaulement 204 du fourreau 90 comprend un demi-crabot 211 dont la fonction sera explicitée ultérieurement.
L’autre extrémité du piston 205 porte une bague fendue 212 qui constitue un moyen de maintien di rivet à l’extrémité du piston.
Cette bague fendue 212 présente un alésage intérieur conique 213 dont le diamètre se resserre en partant de l’intérieur du piston 205 vers l’extérieur de celui-ci. Cette portion conique 213 débouche sur une rainure intérieure 214 de forme complémentaire de celle de l’extrémité de la tête 219 d’un rivet 216. Cette rainure 214 débouche elle aussi dans une portion intérieure conique 215 dont le diamètre se resserre en en direction de l’extérieur de la bague fendue 212.
Cette bague 212 présente une pluralité de rainures longitudinales (non représentées) pour lui permettre de se déformer lors de l’introduction et de l’extraction d’un rivet, comme cela sera décrit plus en détail par la suite.
La bague fendue 212 comprend au moins une rainure périphérique externe 217 logeant un élément de rappel élastique comme un joint torique ou un ressort (non représenté) assurant une fonction de moyen de rappel tendant, ainsi que cela sera expliqué plus en détail par la suite, à ramener la bague d’un état de libération dans lequel son diamètre intérieur est élargi, à un état de maintien dans lequel son diamètre intérieur est ressemé.
L’élément tubulaire forme avec la bague fendu un élément de support d’élément de fixation.
Le piston est traversé par un alésage intérieur permettant le passage d’un rivet.
Plusieurs modules support de rivet pourront être prévu avec des pistons d’alésage intérieur de diamètre différent et de bague fendue de taille différente pour permettre le maintien de rivet de dimensions différentes.
Le piston 205 est prévu pour être entraîné en rotation et/ou en translation. Il constitue ainsi un organe mobile.
Le piston 205 est mobile en translation dans l’élément tubulaire 201 entre une première position extrême dans laquelle son épaulement 207 vient en butée contre un circlips 218 prévu à cet effet à l’extrémité de l’élément tubulaire 201 située à l’opposée de celle située à proximité de l’épaulement 204 du fourneau, et une deuxième position extrême dans laquelle son épaulement 207 vient en butée contre l’épaulement 204 du fourreau.
Un module du type de celui de support rivet pourrait être mis en oeuvre pour supporter un autre type d’élément de fixation comme parexemple une vis. Dans ce cas, la bague fendue aurait bien entendu une forme adaptée à celle de la tête d’une vis plutôt qu’à celle de la tête d’un rivet.
Module de support de fixation temporaire
Le module de support de fixation temporaire 300 comprend un fourreau 90.
Ce fourneau 90 présente une forme tubulaire et une section globalement annulaire.
Le fourreau 90 comprend un doigt latéral 900 formant saillie sur sa paroi latérale.
Le fourneau 90 comprend une rainure latérale 901 qui est ménagée de manière diamétralement opposée et décalée suivant l’axe longitudinal du fourreau par rapport au doigt 900.
Ce doit 900 loge une conduite d’air 906 qui se prolonge le long du fourreau et qui est susceptible d’être mise en communication avec une conduite d’admission d’airsous pression 907 ménagée dans le dispositif, avec laquelle il se trouve en communication lorsqu’il se trouve au poste de travail du dispositif.
Le fourreau 90 loge un élément tubulaire 301. Cet élément tubulaire 301 présente un épaulement 302 à l’une de ses extrémités venant en appui contre un épaulement 303 ménagé à l’intérieur du fourreau 90 à l’une de ses extrémités.
L’élément tubulaire 301 présente un deuxième épaulement 304 situé à proximité de la conduite d’air ménagée dans le doigt. Cet épaulement délimite une portion de plus faible diamètre de l’élément tubulaire.
L’élément tubulaire 301 présente une autre extrémité qui s’étend à proximité d’un deuxième épaulement 305 ménagé à l’intérieur du fourreau à l’autre extrémité de celui-ci. Un espace est toutefois ménagé entre les deux pour permettre le passage d’air.
L’élément tubulaire 301 délimite une chambre logeant un piston 306. Ce piston 306 comprend à l’une de ses extrémités un épaulement 307 présentant une rainure circonférentielle 308 logeant un joint torique 309 assurant l’étanchéité entre le piston 306 et l’élément tubulaire 301.
L’épaulement 305 du fourreau 90 comprend une rainure circonférentielle intérieure 310 logeant un joint torique 311 assurant l’étanchéité entre le fourreau 90 et le piston 306.
Le piston 306 est monté mobile en translation à l’intérieur de l’élément tubulaire 301 et du fourreau 90.
Le piston 306 comprend un premier alésage 312 logeant un tube d’entrainement 313 (organe mobile) monté mobile en translation et en rotation à l’intérieur de celui-ci.
Ce tube d’entrainement 313 comprend à l’une de ses extrémités une collerette 314 définissant une cloche 160 traversée par des trous radiaux 161.
Des moyens de rappel élastique 315, comme par exemples des rondelles élastiques ou un ressort, sont interposés entre la collerette 314 du tube d’entrainement 313 et l’épaulement 307 du piston 306. Ces moyens de rappel tendent à éloigner l’un de l’autre cette collerette et cet épaulement.
Le tube d’entrainement et le piston sont mobiles et liés en translation dans le module entre au moins :
- une position rétractée dans laquelle ils s’étendent à l’intérieur dudit module, et
- une position déployée dans laquelle au moins l’une de ces éléments s’étend au moins en partie en dehors du module, i.e. du fourreau.
La cloche 160 du tube d’entrainement 313 communique avec un premier alésage cylindrique 316, qui communique avec un deuxième alésage 317.
Ce deuxième alésage loge une première roue-libre 318.
Le deuxième alésage 317 communique avec un troisième alésage 320. Le troisième alésage 320 loge un élément de verrouillage 321 qui y est maintenu au moyen d’un circlips 322 logé d’une part dans une gorge 323 prévue à cet effet dans le tube d’entrainement 313 et d’autre part dans une gorge 324 prévue à cet effet dans l’élément de verrouillage 321.
Le module comprend des moyens de maintien d’une fixation temporaire dans le module. Ces moyens de maintien l’élément de verrouillage.
L’élément de verrouillage 321 se présente sous la forme d’une bague traversée par un alésage 325 présentant une portion excentrée 326 définissant un ergot de verrouillage 327 en saillie. L’élément de verrouillage 321 comprend un logement périphérique 328 logeant un moyen de rappel (non représenté), comme un ressort de compression, interposé entre l’élément de verrouillage 321 et le tube d’entrainement 313. L’élément de verrouillage 321 est mobile à l’intérieur du troisième alésage 320 latéralement selon une direction perpendiculaire à l’axe longitudinal du tube d’entrainement 313 entre au moins : une position de repos dans laquelle l’extrémité de l’ergot de verrouillage 327 est éloignée de l’axe longitudinal du tube d’entrainement 313 (elle se trouve rétractée), et une position de verrouillage dans laquelle l’extrémité de l’ergot de verrouillage 327 est rapprochée de l’axe longitudinal du tube d’entrainement 313 (elle se trouve déployée à l’intérieur du module).
Le ressort de compression tend à ramener l’élément de verrouillage 321 dans sa position de verrouillage.
Le premier alésage 312 du piston 306 communique avec un deuxième alésage 329 comprenant une portion conique 331 se resserrant vers une portion cylindrique 332.
Le deuxième alésage 329 du piston 306 communique avec un troisième alésage 333 débouchant.
Ce troisième alésage 333 loge une deuxième roue-libre 334 maintenue en place au moyen d’un circlips 335. Un joint torique 336 assure l’entrainement en rotation entre le troisième alésage 333 et la deuxième roue-libre 334.
Comme cela ressortira plus clairement par la suite, les première et deuxième roues- libres ont des capacités d’entrainement antagonistes.
Ensemble unique d’entrainement et de contrôle
Le dispositif comprend un unique ensemble d’entrainement et de contrôle 5 des modules fonctionnels.
Cet ensemble d’entrainement et de contrôle 5 comprend une unique broche d’entrainement 51 dite broche principale. Cette broche est montée mobile en rotation et en translation selon un même axe, i.e. selon son axe longitudinal. La broche est ainsi montée mobile en translation entre une position rétractée et une position déployée en direction du poste de travail.
Cet ensemble 5 comprend également des moyens moteurs 52 aptes à entraîner en mouvement la broche d’entrainement 51.
Dans ce mode de réalisation, ces moyens moteurs comprennent un moteur d’avance 510 et un moteur de rotation 511. Ils comprennent également une transmission T permettant d’entrainer en mouvement la broche 51 via les moteurs d’avance et/ou de rotation selon des mouvements de translation et/ou de rotation suivant son axe.
Cette transmission est du type comprenant une noix d’entrainement en translation 512 et une bague d’entrainement en rotation 513.
La bague d’entrainement en rotation 513 présente un alésage intérieur dont la périphérie intérieure comprend des clavettes 5131 de forme complémentaire de rainures 510 ménagées le long de la broche 51 selon son axe longitudinal. De cette manière, la broche 51 et la bague d’entrainement en rotation 513 sont liées en rotation selon l’axe de la broche mais libres en translation selon cet axe.
La noix d’entrainement en translation 512 présente un alésage intérieur taraudé 5121 de forme complémentaire d’une portion filetée 511 ménagé le long de la broche si bien qu’elles sont liées par une liaison hélicoïdale.
Ce type de transmission est connue en soi et n’est pas décrit plus en détail ici.
Un exemple de transmission de ce type est notamment décrit dans le brevet EP-B1- 2754531 qui présente l’avantage de rendre la vitesse d’avance de la broche seulement dépendante de la fréquence de rotation du moteur d’avance.
D’autres architectures de transmission produisant le même effet pourraient être envisagées.
Ce type de transmission permet de décaler latéralement le ou les moteurs par rapport à la broche. Le ou les moteurs se trouvent alors à côté de la broche plutôt que dans le prolongement de celle-ci. Ceci améliore la compacité du dispositif, permet de réduire la distance au centre et ainsi de pratiquer des tâches à proximité d’une paroi, et encore de réduire le porte-à-faux. Dans l’exemple illustré, les axes des moteurs sont essentiellement parallèles à l’axe de la broche. Dans des variantes l’un ou l’autre de ces moteurs, ou bien les deux, pourra avoir un axe incliné par rapport à celui de la broche, notamment orthogonal.
Comme il sera décrit plus en détail par la suite, le dispositif comprend des moyens d’appareillage pour rendre alternativement solidaire en mouvement la broche d’entrainement et au moins un organe mobile d’un module fonctionnel appareillé à la broche.
L’unique ensemble d’entrainement et de contrôle 5 comprend classiquement un contrôleur 53 comprenant l’ensemble des composants nécessaires au pilotage du fonctionnement des moteurs et l’ensemble des actionneurs et autres capteurs du dispositif. Un tel contrôleur comprend notamment toutes les mémoires, programme(s) et processeur(s) nécessaires au pilotage du dispositif et à la réalisation des différentes tâches. Il comprend également des moyens de communication (émetteur-récepteur) aptes lui permettre de recevoir et de transmettre des données de façon filaire ou sans fil. Il peut également intégrer les composants nécessaires à l’alimentation des moteurs (de type onduleurs). Il peut encore comprendre des moyens de saisie d’instructions (clavier, micro, souris écran tactile ou autre), un écran d’affichage, des moyens d’émission de signaux sonores... Un tel contrôleur peut être en tout ou partie solidarisé au bâti ou placé à distance.
L’unique ensemble d’entrainement et de contrôle 5 comprend des moyens de mesure d’au moins un paramètre physique représentatif d’au moins une caractéristique de fonctionnement des modules fonctionnels. Ces paramètres peuvent en particulier être représentatifs d’au moins une grandeur suivante : un couple sur au moins un organe mobile du module appareillé à la broche ; un effort axial sur au moins un organe mobile du module appareillé à la broche ; une position angulaire d’au moins un organe mobile du module appareillé à la broche ; une position axiale d’au moins un organe mobile du module appareillé à la broche.
Dans des variantes, les moyens de contrôle comprennent des moyens de mesure 530 de l’intensité électrique consommée par le ou les moteurs (capteur de courant) et de détermination, en fonction de l’intensité électrique mesurée, d’un couple et/ou d’un effort axial sur la broche et donc sur un ou plusieurs organes de sortie d’un module fonctionnel appareillé à la broche. Ce type de moyens de mesure et de détermination d’efforts ou de couples en fonction du courant consommé par un moteur sont connus en soit et non décrits en détail.
Dans des variantes, les moyens de contrôle comprennent un ou plusieurs capteurs d’angles 531 intégrés à un ou plusieurs du ou des moteurs. Un capteur d’angle est un capteur de mesure de la position angulaire du rotor d’un moteur. Les moyens de contrôle comprenant alors des moyens de détermination, en fonction de la position angulaire dudit rotor mesurée, de la position angulaire et/ou de la position axiale dudit au moins un organe mobile d’un module fonctionnel appareillé à la broche. Ce type de moyens de mesure et de détermination de position en fonction de la position angulaire du rotor d’un moteur sont connus en soit et non décrits en détail.
Dans des variantes, les moyens de mesure comprenant au moins un capteur de couple et ou d’effort et/ou de position 532 intégrés à la transmission T et aptes à permettre la détermination d’un couple et ou d’un effort axial sur la broche et ou d’une position angulaire et ou axiale de la broche, et donc par déduction d’un couple et/ou d’un effort axial et/ou d’une position angulaire et/ou d’une position axiale de l’au moins un organe mobile d’un module appareillé à la broche. Ce type de moyens de mesure et de détermination d’efforts ou de couples sont connus en soit et non décrits en détail.
Plusieurs des différents moyens de mesure mentionnés ci-dessus peuvent bien entendu être utilisés de manière combinée.
Moyens de portage de modules : carrousel
Un dispositif selon l’invention comprend des moyens de portage d’une pluralité de modules fonctionnels. Ces moyens de portage permettent d’embarquer et de déplacer plusieurs modules fonctionnels. Dans le mode de réalisation illustré, le nombre de module susceptibles d’être embarqués est égal à 7 mais pourrait être alternativement différent (inférieur ou supérieur). Ce nombre pourra être pair ou impair. Dans ce mode de réalisation, ces moyens de portage comprennent un carrousel 6 dit principal. Le carrousel principal 6 comprend, à la manière d’un barillet de révolver, une pluralité d’alvéoles 61 permettant chacune de loger un module fonctionnel.
Chaque alvéole 61 constitue un alésage débouchant de part et d’autre et s’étendant parallèlement à l’axe de rotation du carrousel. Les alvéoles 61 sont préférentiellement réparties de manière essentiellement uniforme autour de l’axe du carrousel.
Postes fonctionnels
Le dispositif comprend plusieurs postes fonctionnels.
Le carrousel permet non seulement d’embarquer plusieurs modules fonctionnels, il permet également de les déplacer d’un poste à un autre. Il est pour cela, monté mobile en rotation autour de son axe qui s’étend essentiellement parallèlement à celui de la broche principale comme cela sera décrit plus en détail par la suite.
Dans ce mode de réalisation, les postes fonctionnels sont les suivants : un poste P1 de chargement/déchargement de modules fonctionnels ; un poste P2 de chargement de fixation temporaire (dans ce mode de réalisation, les postes P1 et P2 sont confondus pour former un poste multifonctions mais pourrait constituer deux postes distincts) ; un poste P3 de chargement de rivet ; un poste P4 d’enduction de rivet ; un poste P5 de travail dans le prolongement de la broche unique 51 et auquel peuvent être réalisées, selon le module situé à ce poste, des opérations de : perçage et/ou fraisurage ; pose de rivet ; pose de fixation temporaire.
Poste de chargement/déchargement de modules fonctionnels
Le poste P1 de chargement/déchargement de modules fonctionnels permet d’introduire un à un des modules fonctionnels dans des alvéoles du carrousel et de les en extraire.
Au niveau de ce poste, le dispositif comprend un vérin 13 dont le piston 11 , qui porte un ergot 10, est mobile en translation dans une chambre 12 selon un axe orthogonal à l’axe d’une alvéole du carrousel amenée au poste de chargement/déchargement.
La fonction de ce vérin sera décrite ultérieurement.
Poste de changement de fixation temporaire Le dispositif comprend un poste P2 de chargement de fixation temporaire pour insérer une fixation temporaire dans un module de support de fixation temporaire amené à ce poste par le carrousel.
Dans ce mode de réalisation, le poste de chargement de fixation temporaire se situe au poste de chargement/déchargement de modules fonctionnels. Ces deux postes constituent ainsi un unique poste fonctionnel double fonction.
Le poste de chargement de fixation temporaire pourrait toutefois être situé à un autre emplacement.
Ce poste P2 comprend un dispositif d’amenée de fixation temporaire 1000. Ce dispositif comprend un actionneurde type cartouchière permettant de déplacer en translation des fixations temporaires 1001 jusqu’à les placée dans l’axe du module de support de fixation temporaire amené au poste P2 de chargement de fixation temporaire.
Ce poste P2 comprend également un vérin de chargement 1002. Ce vérin 1002 est placé dans l’axe d’un module de support de fixation temporaire 300 amené par le carrousel 6 au poste de chargement de fixation temporaire.
Ce vérin 1002 est disposé en amont d’une fixation temporaire 1001 placée par la cartouchière 1000 dans l’axe du poste P2 de chargement de fixation temporaire pour permettre d’agirsur celle-ci pour l’introduire dans le module de support 300, comme cela sera expliqué plus en détail par la suite.
Le poste P2 de chargement de fixation temporaire comprend encore un dispositif de maintien de fixation temporaire dans le module de support de fixation temporaire 300 lors de son introduction dans ce module. Ce dispositif de maintien comprend une fourchette 1003 essentiellement en forme de L dont l’extrémité comprend deux doigts espacés pour former un espace de réception d’une fixation temporaire.
Cette fourchette 1003 est placée à la sortie d’un module de support de fixation temporaire 300 placé au poste P2 de chargement de fixation temporaire et est montée mobile en rotation autour d’un axe 1004 entre : une position de maintien dans laquelle son extrémité munie de doigts s’étend essentiellement perpendiculairement au module de support de fixation temporaire et forme une butée d’arrêt contre laquelle peut venir en appui une fixation temporaire lors de son introduction dans un module de support de fixation temporaire, et une position de libération dans laquelle la fourchette est pivoté autour de son axe selon la flèche C de sorte que son extrémité munie de doigts soit dégagée du module pour lui permettre d’être entraîné en rotation par le carrousel.
Le déplacement de la fourchette 1003 est assuré au moyen d’un vérin 1005.
Poste de chargement de rivets
Le dispositif comprend un poste P3 de chargement de rivets.
Ce poste P3 de chargement de rivets comprend un vérin de chargement 1006. Ce vérin 1006 est placé dans l’axe d’un module de support de rivet amené par le carrousel au poste de chargement de rivets.
Ce poste P3 comprend un dispositif de réception et de transfert de rivets depuis un zone d’alimentation (ou d’amenée) de rivets 1007 (ou autre élément de fixation comme des vis ou autre) jusqu’à une zone de distribution de rivets ou de réception de rivets comme par exemple ici un module de support de rivet 200 situé au poste P3 de chargement de rivet.
Le dispositif de réception et de transfert comprend un carrousel dit secondaire 1008. Le carrousel constitue un élément de support. Ce carrousel 1008 comprend, à la manière d’un barillet de révolver, une pluralité d’alvéoles 1009 permettant chacune de loger un rivet.
Chaque alvéole 1009 constitue un alésage débouchant de part et d’autre et s’étendant parallèlement à l’axe de rotation du carrousel 1008. Les alvéoles 1009 sont préférentiellement réparties de manière essentiellement uniforme autour de l’axe du carrousel 1008.
Dans ce mode de réalisation, le nombre d’alvéoles est égale à six. Il pourra bien entendu est supérieur ou inférieur à 6.
Notamment le carrousel et ses alvéoles forment des moyens de réception d’élément de fixation. Le carrousel et ses moyens d’entrainement permet de déplacer des éléments de fixation d’une zone d’alimentation vers une zone de distribution.
Chaque alvéole 1009 présente un diamètre différent si bien que chaque alvéole permet de réceptionner des rivets 216 de tailles différentes.
Chaque alvéole 1009 comprend un orifice de réception 1090 et un orifice de distribution 1091 d’élément de fixation. L’orifice de réception 1090 permetd’insérerun élément de fixation dans une alvéole. L’orifice de distribution permet d’évacuer un élément de fixation en dehors de l’alvéole.
Le dispositif comprend des moyens de maintien d’un élément de fixation introduit dans une alvéole. Ces moyens de maintien préviennent l’extraction, à travers l’orifice orifice de réception, d’un élément de fixation situé dans une alvéole.
Dans ce mode de réalisation, les moyens de maintien comprennent un élément déformable 1092 muni d’une pointe formant harpon 1093 situé dans chaque alvéole. La pointe de chaque harpon est conformée pour permettre l’introduction d’un élément de fixation dans l’alvéole à travers son orifice de réception et prévenir l’extraction de l’élément de fixation à travers l’orifice de réception de l’alvéole. Ainsi, la pointe de chaque harpon est orientée vers l’orifice de réception de l’alvéole correspondante.
Le carrousel 1008 est monté mobile en rotation selon un axe essentiellement parallèle à l’axe de la broche principale 51, entre une plaque de support 1011 et une plaque de maintien 1012 de rivet. La plaque de maintien constitue un moyen de maintien d’éléments de fixation dans les alvéoles.
La plaque de support 1011 est solidaire du bâti et fixe par rapport à celui-ci. Elle est traversée par autant de trous 1013 que le carrousel 1008 comprend d’alvéoles 1009. Chaque trou présente un diamètre différent correspondant à celui d’une alvéole. La plaque support 1011 porte un arbre 1014 autour duquel le carrousel 1008 est monté mobile en rotation.
Un des trous 1013 de la plaque support 1011 se trouve dans l’axe du vérin de chargement 1006.
La plaque de maintien 1012 comprend, dans l’axe de chaque trou 1013 de la plaque de support 1011, des trous d’échappement d’air 1015. Elle est toutefois traversée par une ouverture de distribution 1080, et non par des trous d’échappement d’air 1015, dans l’axe du vérin 1006. Le diamètre de l’ouverture de distribution 1080 permet le passage du plus gros rivet susceptible d’être embarqué dans le carrousel secondaire.
Le carrousel 1008 comprend le long de son contour périphérique extérieur des échancrures longitudinales 1016 qui s’étendent essentiellement parallèlement à l’axe du carrousel 1008. Ces échancrures forment des dents d’entrainement ainsi que cela ressortira plus clairement par la suite.
Le dispositif comprend des moyens de d’entrainement en rotation du carrousel autour de l’arbre.
Ces moyens d’entrainement en rotation comprennent : une premier vérin 1017 comprenant un piston 1018 mobile en translation dans une chambre 1019 ; un deuxième vérin 1020 comprenant un piston 1021 mobile en translation à l’intérieur d’une chambre 1022.
Le piston 1018 du premier vérin 1017 porte un cliquet 1023 qui est monté mobile en rotation par rapport au piston autour d’un axe 1024 essentiellement parallèle à l’axe de rotation du carrousel 1008.
Le cliquet 1023 comprend une surface d’appui 1025 prévue pour venir en appui contre une butée 1026 du piston 1018 définissant la position extrême d’entrainement.
Le cliquet 1023 est mobile entre deux positions extrêmes, à savoir : une position déployée dans laquelle sa surface d’appui 1025 se trouve en appui contre la butée 1026 du piston 1018 si bien que son extrémité se trouve écartée du piston et au moins partiellement logée dans une échancrure 1016 du carrousel (cf. figure 14), et une position rétractée dans laquelle sa surface d’appui 1025 n’est pas en appui contre la butée 1026 du piston 1018 si bien que son extrémité se trouve rapprochée du piston 1018 et dégagée de toute échancrure 1016 du carrousel.
Des moyens de rappel (non représentés), comme par exemple un ressort ou autre, peuvent éventuellement être mise en oeuvre pour agir sur le cliquet 1023 pour tendre à le ramener dans sa position déployée.
Le piston 1018 est mobile entre deux positions d’extrêmes, à savoir : une position de départ dans laquelle il se trouve en butée du côté gauche sur la figure 14 (dans la mesure ou le dispositif peut prendre n’importe quelle orientation dans l’espace, l’indication du côté gauche est purement illustrative en référence à la figure 14 pour des raisons de compréhension), et une position de fin dans laquelle il se trouve en butée du côté droit sur la figure 14 et le cliquet 1023 se trouve en position déployée entre deux échancrures 1016.
Dans la configuration illustrée à la figure 14, le piston 1018 de trouve dans sa position de début et le cliquet 1023 se trouve dans sa position déployée.
Le dispositif comprend un pion de blocage 8 monté mobile entre une position de blocage dans laquelle il est amené en butée contre le carrousel 1008 entre deux échancrures 1016 consécutives pour empêcher la rotation du carrousel autour de son axe, et une position de libération dans laquelle il est dégagé du carrousel pour autoriser sa rotation. Ce pion de blocage 8 est solidaire de la plaque de support 1011 au moyen d’une lame ressort 1027 qui tend à le maintenir dans sa position de blocage. Il constitue un moyen de blocage et d’indexation du carrousel 1008 dans des positions dans lesquelles une alvéole 1009 du carrousel 1008 se trouve dans l’alignement du vérin de chargement 1006, i.e. à la zone de distribution. Préférentiellement, au moins une autre alvéole se situe alors à une zone d’alimentation. Pour entraîner en rotation le carrousel 1008 dans le sens horaire, de l’air sous pression est injecté dans la chambre 1019 de sorte à déplacer le piston 1018 selon la flèche G dans sa position de fin. Au cours de ce déplacement, la surface d’appui 1025 du cliquet 1023 est en butée contre la butée 1026 du piston 1018 si bien que le cliquet 1023 est bloqué en rotation dans le sens horaire. Le carrousel 1008 est ainsi entraîné en rotation dans le sens horaire jusqu’à ce que le piston 1018 se trouve en butée dans sa position de fin. Une nouvelle alvéole 1009 du carrousel 1008 se trouve alors dans l’alignement du vérin de chargement 1006. Au cours du déplacement du carrousel 1008, le pion de blocage 8 glisse contre la surface périphérique du carrousel 1008 et est progressivement déplacé depuis sa position de blocage à sa position de déblocage contre l’effet de la lame ressort 1027 puis de nouveau dans sa position de blocage sous l’effet de la lame ressort 1027 si bien que le carrousel 1008 est maintenu immobile.
Le vérin 1017 est actionné selon la flèche H pour revenir dans sa position de début. Au cours de ce déplacement, le cliquet 1023 glisse contre la surface périphérique du carrousel 1008 et passe progressivement de sa position déployée à sa position rétractée puis à sa position déployée en tournant autour de son axe.
Le carrousel 1008 peut de nouveau être entraîné en rotation dans le sens horaire en réitérant ce processus.
Le piston 1021 du deuxième vérin 1020 porte un cliquet 1028 qui est monté mobile en rotation par rapport au piston 1021 autour d’un axe 1029 essentiellement parallèle à l’axe de rotation du carrousel 1008.
Le cliquet 1028 comprend une surface d’appui 1030 prévue pour venir en appui contre une butée 1031 du piston 1021 définissant la position extrême d’entrainement.
Le cliquet 1028 est mobile entre deux positions extrêmes, à savoir : une position déployée dans laquelle sa surface d’appui 1030 se trouve en appui contre la butée 1031 du piston 1021 si bien que son extrémité se trouve écartée du piston 1021 et au moins partiellement logée dans une échancrure 1016 du carrousel 1008 (cf. figure 15), et une position rétractée dans laquelle sa surface d’appui 1030 n’est pas en appui contre la butée 1031 du piston 1021 si bien que son extrémité se trouve rapprochée du piston 1021 et dégagée de toute échancrure 1016 du carrousel. 1008 Des moyens de rappel (non représentés), comme par exemple un ressort ou autre, peuvent éventuellement être mise en oeuvre pour agir sur le cliquet 1028 pour tendre à le ramener dans sa position déployée.
Le piston 1021 est mobile entre deux positions d’extrêmes, à savoir : une position de départ dans laquelle il se trouve en butée du côté droit sur la figure 15 (dans la mesure ou le dispositif peut prendre n’importe quelle orientation dans l’espace, l’indication du côté droit est purement illustrative en référence à la figure 15 pour des raisons de compréhension), et une position de fin dans laquelle il se trouve en butée du côté gauche sur la figure 15 et le cliquet 1028 se trouve en position déployée entre deux échancrures 1016.
Dans la configuration illustrée à la figure 15, le piston 1021 de trouve dans sa position de fin et le cliquet 1028 se trouve dans sa position déployée.
Pour entraîner en rotation le carrousel 1008 dans le sens antihoraire, de l’air sous pression est injecté dans la chambre 1022 de sorte à déplacer le piston 1021 selon la flèche I dans sa position de fin. Au cours de ce déplacement, la surface d’appui 1030 du cliquet 1028 est en butée contre la butée 1031 du piston 1021 si bien que le cliquet 1028 est bloqué en rotation dans le sens antihoraire. Le carrousel 1008 est ainsi entraîné en rotation dans le sens antihoraire jusqu’à ce que le piston 1021 se trouve en butée dans sa position de fin. Une nouvelle alvéole 1009 du carrousel 1008 se trouve alors dans l’alignement du vérin de chargement 1006. Au cours du déplacement du carrousel 1008, le pion de blocage 8 glisse contre la surface périphérique du carrousel 1008 et est progressivement déplacé depuis sa position de blocage à sa position de déblocage contre l’effet de la lame ressort 1027 puis de nouveau dans sa position de blocage sous l’effet de la lame ressort 1027 si bien que le carrousel 1008 est maintenu immobile.
Le vérin 1020 est actionné selon la flèche J pour revenir dans sa position de début. Au cours de ce déplacement, le cliquet 2018 glisse contre la surface périphérique du carrousel 1008 et passe progressivement de sa position déployée à sa position rétractée puis à sa position déployée en tournant autour de son axe.
Le carrousel 1008 peut de nouveau être entraîné en rotation dans le sens antihoraire en réitérant ce processus.
Le carrousel 1008 et les cliquets 1023, 1028 forment des systèmes de roue à rochets. Les premier 1017 et deuxième 1020 vérins ainsi que les cliquets 1023, 1028 correspondants ont des mouvements antagonistes en ce qu’ils permettent d’entrainer en rotation le carrousel 1008 dans des sens opposés.
La mise en oeuvre des premier 1017 et deuxième 1020 vérins permet de mettre en ligne l’alvéole 1009 souhaitée avec la broche principale 51 plus rapidement en choisissant le sens de rotation du carrousel 1008 qui permettra la mise en ligne la plus rapide. Toutefois, un seul vérin pourra être mis en oeuvre. Ceci permettra de simplifier le dispositif mais induira des temps d’alignement plus longs.
Les moyens d’entrainement en rotation du carrousel secondaire 1008 pourront être du type de ceux du carrousel principal 6, qui sont décrits plus loin. Dans ce cas, plutôt que de mettre en œuvre des vérins simples pour entraîner les cliquets, des vérins doubles pourront être mis en œuvre, i.e. vérins externes contenant un vérin interne de blocage de cliquet.
L’indexation du carrousel secondaire pourra également être obtenue au moyen d’un pion de blocage commandé par un vérin comme pour le carrousel principal.
Ce dispositif comprend des moyens d’alimentation du carrousel en rivet. Les rivets sont amenés au travers d’un tube flexible poussés à l’intérieur de ce tube par un gaz sous pression.
Poste d’enduction de rivets
Le dispositif comprend un dispositif d’enduction placé à un poste P4 d’enduction de rivets. Ce poste permet de déposer sur un rivet un mastic d’étanchéité.
Ce poste P4 d’enduction est situé à proximité du poste de travail P5.
Il comprend une première poulie 1032 mobile en rotation autour d’un axe essentiellement parallèle à celui de la broche principale 51 et liée en rotation au moyen d’une courroie 1033 avec une poulie motrice 1034 fixée à la broche principale 51 de manière telle qu’elle y est liée en rotation selon son axe de rotation mais non en translation par exemple au moyen de rainures.
Cette première poulie 1032 est liée en rotation au carter d’un vérin 1036 suivant un axe essentiellement parallèle à celui de la broche principale 51. Ce carter est monté mobile en rotation par rapport au bâti suivant le même axe. La tige du piston 1035 du vérin 1036 est liée en rotation avec le carter.
Ce piston 1035 est monté mobile en translation et en rotation selon un axe parallèle à l’axe de la broche principale 51 à l’intérieur d’une chambre 1037. Il porte à son extrémité un demi-crabot 1038 de forme complémentaire du demi-crabot 211 du module de support de rivet 200.
Une deuxième poulie 1039 est liée en rotation au carter du vérin 1036 suivant un axe essentiellement parallèle à celui de la broche principale 51. Cette deuxième poulie 1039 est liée en rotation au moyen d’une courroie 1040 à une troisième poulie 1041. La troisième poulie 1041 est montée sur un arbre 1042 auquel elle est liée en rotation.
L’arbre 1042 porte à son extrémité opposée à celle à laquelle la poulie 1041 est fixée une vis mère 1043.
Cette vis mère 1043 comprend un filet dont le profil comprend un premier flanc 1044 destiné à engrener avec un sabot 1046 et un second flanc 1045 incliné par rapport à l’axe de la vis mère.
Le premier flanc est incliné de quelques degrés par rapport à la perpendiculaire à l’axe de la vis mère dans un sens tel que, le sabot, étant appliqué sur ce flanc, ait une tendance à glisser vers le fond de filet.
Ce sabot 1046 est monté l’extrémité du piston 1047 monté mobile en translation selon un axe essentiellement orthogonal à l’axe de la broche principale 51 dans la chambre 1048 d’un vérin 1049.
Le sabot 1046 est ainsi mobile entre au moins : une position d’engrènement dans laquelle il engrène avec la vis-mère 1043, et une position de désengrènement dans laquelle il n’engrène pas avec la vis-mère
1043.
Ce poste comprend des moyens de distribution de mastic comprenant une buse 1050 reliée à des moyens d’alimentation en mastic (non représentés) comprenant une pompe reliée d’une part à une réserve de mastic et d’autre part à la buse 1050 via des tuyaux prévus à cet effet.
La buse 1050 comprend une extrémité de distribution 1051 destinée à venir à proximité d’un rivet 216 porté pour un module de support de rivet 200 amené au poste d’enduction P4. Cette extrémité peut être droite (s’étendant dans un plan perpendiculaire à un axe perpendiculaire à l’axe du module de support de rivet 200). Cette extrémité est toutefois préférentiellement biseautée ou incurvée de sorte que la buse 1050 puisse venir en butée contre le rivet 216 tout en ménageant un orifice pour distribuer du mastic sur le rivet 216. Cette solution est préférée dans la mesure où elle permet de garantir simplement et efficacement la calibration du ou des filets de mastic déposés sur le rivet.
La buse 1050 estsolidaire de l’extrémité d’un piston 1051 monté mobile en translation suivant un axe perpendiculaire l’axe du module de support de rivet dans la chambre 1052 d’un vérin 1053.
Le sabot 1046, la buse 1050 et leurs vérins 1049, 1053 respectifs sont montés dans un bloc 1054 solidaire du piston 1055 monté mobile en translation selon un axe parallèle l’axe de la vis-mère 1043 dans la chambre 1056 d’un vérin 1057.
Ce poste comprend des moyens de détermination (évaluation) de la longueur du rivet 216 amené au poste d’enduction. Ces moyens comprennent un palpeur 1058. Une extrémité du palpeur est solidaire du piston 1059 monté mobile en translation suivant un axe parallèle à l’axe de la vis-mère 1043 dans la chambre (non représentée) d’un vérin 1060. L’autre extrémité du palpeur 1058 comprend une pointe de centrage conique 1061 orientée vers un rivet 216 amené au poste d’enduction. Le vérin 1060 permet d’approcher et d’éloigner la pointe conique 1061 du rivet 216 pour venir palper son extrémité et ainsi déterminer sa longueur. Le palpeur 1058 défini alors une butée contre laquelle est susceptible de venir en appui le support 1062 de la buse 1050 pour déterminer une limite d’enduction au niveau de l’extrémité du rivet. On entend par extrémité du rivet, une zone située à l’extrémité du corps du rivet opposée à la tête du rivet.
Les figures 39 à 41 illustrent une variante du poste d’enduction.
Selon cette variante, la buse 3000 est fixe par rapport au bâti et comprend : un bloc 3001 muni d’un alésage 3002 définissant une chambre et d’une pluralité de canaux de distribution 3003 de matériau d’enduction, ces canaux 3003 étant en communication fluidique avec la chambre 3002 et débouchant par des orifices de distribution 3004 ménagés le long d’un axe essentiellement parallèle à l’axe du corps de l’élément de fixation à enduire ; un tiroir 3005 monté mobile en translation à l’intérieur de la chambre 3002, ce tiroir 3005 présentant une rainure longitudinale borgne 3006 de part et d’autre ménagée selon ledit axe sur une longueur autorisant une mise en communication fluidique de la rainure 3006 avec l’ensemble des canaux 3003, la rainure 3006 étant reliée à des moyens d’alimentation en matériau d’enduction comprenant par exemple une pompe à mastic dont la sortie est reliée par une canalisation à la rainure 3006.
Un raccord 3011 permet d’injecter du mastic dans un des canaux 3003, lui-même en communication avec la rainure 3006.
Selon cette variante, le palpeur 3007, qui comprend une extrémité 3008 prévue pour venir en contact avec l’extrémité (pied) d’un élément de fixation, est à son extrémité opposée lié en translation avec le tiroir 3005.
Le palpeur 3007 est en outre lié en translation avec le piston 3009 d’un vérin 3010 dont l’axe s’étend essentiellement parallèlement à l’axe de la broche principale 51.
De cette façon, lorsque le palpeur est en contact avec l’extrémité d’un élément de fixation, le ou les canaux 3003 débouchant au-delà de cette extrémité opposée ne communiquent pas avec la rainure 3006.
Le canal 3003 situé à l’opposée de celui situé du côté de l’extrémité d’un élément à de fixation à enduire s’étend ai niveau de la zone de raccordement entre le corps et la tête de cet élément de fixation.
La buse permet ainsi de distribuer du mastic sous la forme de cordons parallèles sur le corps d’un élément de fixation entre son extrémité et la zone de raccordement entre son corps et sa tête.
Poste de travail
Le poste de travail P5 est situé dans le prolongement de la broche principale 51.
Ce poste permet de réaliser différentes opérations selon le module fonctionnel amené à son niveau, en l’occurrence : perçage et/ou fraisurage ; pose de rivet ; pose de fixation temporaire.
Ce poste comprend, outre la broche principale 51 , une broche secondaire 170 montée mobile en translation à l’intérieur de la broche principale 51 qui est creuse.
Cette broche secondaire 170 est solidaire du piston 172 monté mobile en translation suivant l’axe de la broche principale 51 dans la chambre 171 d’un vérin 17. La broche secondaire constitue la tige de ce vérin.
Le poste de travail comprend des moyens d’appareillage 16 de modules fonctionnels. Les moyens d’appareillage comprennent des moyens de type à connexion rapide. Dans ce mode de réalisation, ils comprennent : la cloche 160 de certains modules fonctionnels comprenant des trous radiaux 161 ; un élément mâle 162 solidaire de la broche principale d’entrainement 51 et lié en mouvement à celle-ci et susceptible de venir se loger dans la cloche 160 ; des éléments de verrouillage (billes ou galets) 163 solidaires de l’élément mâle 162 et situés dans le prolongement des trous radiaux 161 lorsque l’élément mâle 162 se trouve logé dans la cloche 160 : de manière préférentielle, ces éléments de verrouillage comprennent un corps cylindrique prévu pour coulisser dans des trous radiaux 1620 de l’élément mâle 162 pour de sorte que leur extrémité puisse venir se loger dans les trous radiaux 161 de la cloche 160, et une tête en portion de sphère de diamètre plus large que le corps cylindrique pour les empêché d’être évacués de l’élément mâle par la clé de verrouillage ; une clé de verrouillage 164 montée mobile en translation à l’intérieur de l’élément mâle 162 et comprenant une rampe circonférentielle 165 susceptible de venir agir contre les éléments de verrouillage 163 (en particulier leur tête cylindrique) pour les déplacer à l’intérieur de l’élément mâles 162 jusqu’à les faire coopérer avec les trous radiaux 162 de la cloche 160 et ainsi rendre la cloche et l’élément mâle solidaires en rotation et en translation.
La clé de verrouillage 164 est solidaire de l’extrémité de la broche secondaire 170. La clé de verrouillage 164 est mobile entre au moins deux positions entre lesquelles elle peut être déplacée au moyen du vérin 17, à savoir : une position d’appareillage dans laquelle elle est rapprochée des éléments de verrouillage 163 de telle sorte que sa rampe circonférentielle 165 agit sur les éléments de verrouillage 163 pour les faire coulisser à l’intérieur des trous radiaux afin que leurs extrémités forment saillie en dehors de l’élément mâle pour venir le cas échéant se loger dans les trous radiaux 161 d’une cloche 160, et une position de désappareillage dans laquelle la clé de verrouillage 164 est éloignée des éléments de verrouillage 163 de sorte qu’elle n’agit pas sur eux si bien que leurs extrémités ne forme pas saillie en dehors de l’élément mâle pour être le cas échéant délogés des trous radiaux 161 d’une cloche 160.
Des moyens de rappels élastique peuvent éventuellement être mis en oeuvre pour tendre à ramener les éléments de verrouillage 163 dans leur position de désappareiillage lorsque la clé de verrouillage n’agit pas sur eux.
Le dispositif comprend une conduite d’admission d’air sous pression 907 qui débouche au poste de travail de telle sorte qu’elle communique avec la conduite d’air 906 du fourreau d’un module fonctionnel se trouvant au poste de travail.
Téléscopie
La broche secondaire 170 peut permettre de réaliser une fonction de téléscopie de différents modules fonctionnels, comme notamment les modules de support de rivet.
Cette téléscopie permet, ainsi que cela sera décrit plus en détail par la suite, d’amener la broche secondaire 170, initialement logée dans la broche principale dans une position rétractée, à sortir de la broche principale 51 pour atteindre une position déployée dans laquelle elle s’étend au moins en partie à l’extérieur de la broche principale, puis à les lier en translation de sorte que le déplacement de la broche principale 51 s’accompagne d’un déplacement de la broche secondaire 170 : la broche principale et la broche secondaire forment alors une même broche de grande longueur.
Pour cela, la broche secondaire 170 comprend à son extrémité opposée à celle de la clé de verrouillage 164, le piston 172 mobile en translation à l’intérieur de la broche principale 51 qui constitue sa chambre 171 du vérin 17.
La broche secondaire 170 comprend en aval du piston 172 une rainure circonférentielle 1063.
Le dispositif comprend des moyens de liaison en translation de ladite broche interne avec ladite broche externe.
Plus précisément, la broche principale 51 porte une bague de déverrouillage 1064.
Cette bague de déverrouillage 1064 est fixe en translation avec le bâti. Elle est liée en rotation avec la broche principale au moyen de rainures (non représentées) qui permettent en outre à la broche principale de se translater à l’intérieur de la bague de verrouillage 1064. La bague de verrouillage 1064 est liée en rotation avec la poulie motrice 1034.
Cette bague de déverrouillage 1064 comprend un alésage avec une portion cylindrique 1065 suivie d’une portion tronconique 1066 d’élargissant vers une ouverture débouchant du côté de la broche 51 orientée vers un module fonctionnel amené au poste de travail.
La broche principale 51 porte un organe de verrouillage. Cet organe de verrouillage comprend une bague de verrouillage 1067 montée sur l’élément mâle 162.
Cette bague de verrouillage 1067 est traversée par un trou 1068 dont le diamètre permet le passage de la clé de verrouillage 164 et de la broche secondaire 170.
Cette bague de verrouillage 1067 comprend une portion latérale d’actionnement 1069 comprenant : une première portion de gorge périphérique externe 1070, et une surface externe 1072 contre laquelle est susceptible d’agir la bague de déverrouillage 1064.
La bague de verrouillage 1067 présente deux pans coupés opposés 1073 et est montée dans une rainure de forme complémentaire 1074 ménagée dans l’élément mâle 162.
La première portion de gorge 1070 forme, avec une deuxième portion de gorge périphérique 1070’ ménagée sur l’élément mâle, une gorge périphérique logeant un élément de rappel élastique comme par exemple un joint torique ou un ressort.
La bague de verrouillage 1067 est mobile en translation dans la rainure 1074 de l’élément mâle 162 suivant un axe orthogonal à l’axe de la broche principale 51 entre : une position de verrouillage dans laquelle la portion d’actionnement 1069 est rapprochée de l’axe de l’élément mâle 162 grâce à l’action de l’élément de rappel élastique, l’extrémité périphérique 1075 étant engagée dans la rainure 1063 (ou logement) pratiquée dans la broche secondaire, et une position de déverrouillage dans laquelle la portion d’actionnement 1069 est écartée de l’axe de l’élément mâle 162, l’extrémité périphérique 1075 étant alors désengagée de la rainure 1063 pratiquée dans la broche secondaire.
Le passage dans la position de déverrouillage est obtenu en introduisant la portion de l’élément mâle 162 portant la bague de verrouillage 1067 dans la portion conique 1066 puis dans la portion cylindrique 1065 de la bague de déverrouillage 1064 qui agit de ce fait sur la bague de verrouillage 1067 pour la déplacer par rapport à l’élément mâle 162 contre l’effet du ressort de compression.
Il est alors possible de translater la broche secondaire 170 à l’intérieur de la broche principale 51 entre au moins : une position rétractée dans laquelle elle se trouve logée à l’intérieur de ladite broche externe, et une position déployée dans laquelle elle s’étend au moins en partie à l’extérieur de ladite broche externe.
Le passage dans la position de verrouillage est obtenu : après extraction de l’élément mâle 162 et de la bague de verrouillage 1067 de la bague de déveirouillage 1064, puis lorsque la rainure circonférentielle 1063 de la broche secondaire 170 arrive au niveau de là bague de verrouillage 1067, celle-ci passe dans sa position de verrouillage sous l’effet du ressort de compression si bien que l’extrémité de verrouillage 1075 de la bague de verrouillage 1067 vient se loger dans la rainure 1063 de la broche secondaire 170 en se rapprochant de l’axe l’élément mâle 162.
La broche secondaire 170 est alors liée en translation avec la broche principale 51 si bien que le déplacement en translation de la broche principale 51 s’accompagne d’un déplacement en translation de la broche secondaire 170 qui forment ensemble une même broche de grande longueur.
Entrainement en rotation du carrousel principal
Comme cela a été mentionné plus haut, le carrousel est monté mobile en rotation autour de son axe qui s’étend essentiellement parallèlement à celui de la broche.
Le carrousel comprend le long de son contour périphérique extérieur des échancrures longitudinales 62 qui s’étendent essentiellement parallèlement à l’axe du carrousel. Ces échancrures forment des dents d’entrainement ainsi que cela ressortira plus clairement par la suite.
Le dispositif comprend des moyens d’entrainement en rotation du carrousel autour de son axe.
Ces moyens d’entrainement en rotation comprennent : une premier vérin 70 comprenant un piston 700 mobile en translation dans une chambre 701 ; un deuxième vérin 71 comprenant un piston 710 mobile en translation à l’intérieur d’une chambre 711.
Le piston 700 du premier vérin 70 porte un cliquet 702 qui est monté mobile en rotation par rapport au piston 700 autour d’un axe 703 essentiellement parallèle à l’axe de rotation du carrousel.
Le cliquet 702 comprend une surface d’appui 704 prévue pour venir en appui contre une butée 705 du piston 700 définissant la position extrême d’entrainement.
Le cliquet 702 est mobile entre deux positions extrêmes, à savoir : une position déployée dans laquelle sa surface d’appui 704 se trouve en appui contre la butée 705 du piston 700 si bien que son extrémité se trouve écartée du piston 700 et au moins partiellement logée dans une échancrure 62 du carrousel (cf. figure 12), et une position rétractée dans laquelle sa surface d’appui 704 n’est pas en appui contre la butée 705 du piston 700 si bien que son extrémité se trouve rapprochée du piston 700 et dégagée de toute échancrure 62 du carrousel .
Des moyens de rappel (non représentés), comme par exemple un ressort ou autre, peuvent éventuellement être mise en oeuvre pour agir sur le cliquet pour tendre à le ramener dans sa position déployée.
Le piston 700 comprend une chambre intérieure 706 dans laquelle se trouve loger un piston interne 707 dont l’extrémité 708 est biseautée.
Ce piston interne 707 est monté mobile en translation dans la chambre 706 entre : une position de déblocage dans laquelle son extrémité biseautée 708 se trouve éloignée du cliquet 702 de sorte à laisser celui-ci libre en rotation autour de l’axe 703, et une position de blocage, susceptible d’être prise lorsque le cliquet 702 se trouve dans sa position déployée, dans laquelle son extrémité biseautée 708 se trouve en appuis contre le cliquet 702 afin de l’immobiliser en rotation autour de l’axe 703.
Le piston 700 est mobile entre deux positions d’extrêmes, à savoir : une position de départ dans laquelle il se trouve en butée du côté droit sur la figure 12 (dans la mesure ou le dispositif peut prendre n’importe quelle orientation dans l’espace, l’indication du côté droit est purement illustrative en référence à la figure 12 pour des raisons de compréhension), et une position de fin dans laquelle il se trouve en butée du côté gauche sur la figure 12 et le cliquet 702 se trouve en position déployée entre deux échancrures 62.
Dans la configuration illustrée à la figure 12, le piston 700 de trouve dans sa position de fin et le cliquet se trouve dans sa position déployée.
Le dispositif comprend un pion de blocage 8 monté mobile entre : une position d’indexation dans laquelle il est amené en butée contre le carrousel entre deux échancrures 62 consécutives pour empêcher la rotation du carrousel autour de son axe, et une position de libération dans laquelle il est dégagé du carrousel pour autoriser sa rotation.
Un moyen de rappel élastique, comme par exemple un ressort (non représenté), agit sur le pion 8 pour tendre à le ramener dans sa position de blocage. Un vérin 800 permet de bloquer le pion de blocage 8 dans sa position de blocage.
Le pion de blocage 8 constitue un moyen de blocage et d’indexation du carrousel dans des positions dans lesquelles au moins une alvéole 61 du carrousel se trouve à un poste fonctionnel. Dans ce mode de réalisation, lorsque le pion de blocage 8 se trouve en position de blocage dans une échancrure entre deux alvéoles consécutives, plusieurs alvéoles se trouvent dans l’alignement de différents postes fonctionnels, en l’occurrence : une alvéole se trouve au poste de chargement/déchargement de modules ; une alvéole se trouve au poste de chargement de fixation temporaire ; une alvéole se trouve au poste de chargement de rivet ; une alvéole se trouve au poste d’enduction de rivet ; une alvéole se trouve au poste de travail dans le prolongement de la broche unique 51. Pour entraîner en rotation le carrousel dans le sens antihoraire, le vérin 800 est mis à l’échappement si bien que le pion de blocage 8 est maintenu dans sa position de blocage par le seul effet du ressort.
Le piston 700 se trouve dans sa position de départ (en butée à droite sur la figure
12).
Le cliquet 702 se trouve dans sa position déployée.
Le piston interne 707 se trouve dans sa position de blocage si bien que le cliquet 702 est maintenu dans sa position déployée sans pouvoir tourner autour de son axe 703.
De l’air sous pression est ensuite injecté dans la chambre 701 de sorte à déplacer le piston 700 selon la flèche B depuis sa position de départ vers sa position de fin.
Au cours de ce déplacement, le cliquet engrène avec l’échancrure dans laquelle il se trouve si bien que le carrousel est ainsi entraîné en rotation dans le sens antihoraire. Le pion de blocage 8 glisse contre la surface périphérique du carrousel si bien qu’il passe progressivement de sa position d’indexation à sa position de libération puis de sa position de libération à sa position d’indexation lorsque le piston 700 se trouve en butée dans sa position de fin. Le vérin 800 est alimenté pour bloquer le pion de blocage dans sa position d’indexation si bien que le carrousel est maintenu immobile. Au moins une nouvelle alvéole 61 du carrousel se trouve alors à un poste fonctionnel.
Le piston interne 707 est déplacé dans sa position de déblocage si bien que le cliquet est libre en rotation autour de l’axe 703 (dans la limite du débattement autorisé par sa forme est les surfaces qui l’entourent).
Le vérin 70 est actionné de sorte que le piston 700 se déplace selon la flèche A pour être ramené dans sa position de départ.
Au cours de ce déplacement, le cliquet 702 passe progressivement de sa position déployée à sa position rétractée puis de sa position rétractée à sa position déployée en glissant contre la surface périphérique du carrousel et en pivotant autour de l’axe 703 dans le sens horaire jusqu’à ce que le piston se trouve dans sa position de départ. Le cliquet se trouve alors loger dans une autre échancrure 62 du carrousel.
Le carrousel peut de nouveau être entraîné en rotation dans le sens antihoraire en réitérant ce processus.
Le piston 710 du deuxième vérin 71 porte un cliquet 712 qui est monté mobile en rotation par rapport au piston 710 autour d’un axe 713 essentiellement parallèle à l’axe de rotation du carrousel. Le cliquet 712 comprend ainsi une surface d’appui 714 prévue pour venir en appui contre une butée 715 du piston 710 définissant la position extrême d’entrainement.
Le cliquet 712 est mobile entre deux positions extrêmes, à savoir : une position déployée dans laquelle sa surface d’appui 714 se trouve en appui contre la butée 715 du piston 710 si bien que son extrémité se trouve logée dans une échancrure 62 du carrousel (cf. figure 13), et une position rétractée dans laquelle son extrémité se trouve rapprochée du piston 710 et dégagée de toute échancrure 62 du carrousel (non représentée).
Des moyens de rappel (non représentés), comme par exemple un ressort ou autre, peuvent éventuellement être mise en oeuvre pour agir sur le cliquet pour tendre à le ramener dans sa position déployée.
Le piston 710 comprend une chambre intérieure 716 dans laquelle se trouve loger un piston interne (non représenté) dont l’extrémité est biseautée comme le piston interne 707. Ce piston interne est monté mobile en translation dans la chambre entre : une position de déblocage dans laquelle son extrémité se trouve éloignée du cliquet de sorte à laisser celui-ci libre en rotation autour de l’axe 713, et une position de blocage, susceptible d’être prise lorsque le cliquet se trouve dans sa position déployée, dans laquelle son extrémité biseautée se trouve en appui contre le cliquet afin de l’immobiliser en rotation autour de l’axe 713.
Le piston 710 est mobile entre deux positions d’extrêmes, à savoir : une de départ dans laquelle il se trouve en butée du côté gauche sur la figure 13 (dans la mesure ou le dispositif peut prendre n’importe quelle orientation dans l’espace, l’indication du côté droit est purement illustrative en référence à la figure 12 pour des raisons de compréhension), et une position de fin dans laquelle il se trouve en butée du côté droit sur la figure 13 et le cliquet se trouve en position déployée entre deux échancrures 62.
Dans la configuration illustrée à la figure 13, le piston 710 se trouve dans sa position de départ et le cliquet 712 se trouve dans sa position déployée.
Pour entraîner en rotation le carrousel dans le sens horaire, le vérin 800 est mis à l’échappement si bien que le pion de blocage 8 est maintenu dans sa position de blocage par le seul effet du ressort.
Le piston 710 se trouve dans sa position de départ (en butée à gauche sur la figure
13). Le cliquet 712 se trouve dans sa position déployée.
Le piston interne se trouve dans sa position de blocage si bien que le cliquet est maintenu dans sa position déployée sans pouvoir tourner autour de son axe 713.
De l’air sous pression est ensuite injecté dans la chambre 711 de sorte à déplacer le piston 710 selon la flèche A puis sa position de départ vers sa position de fin.
Au cours de ce déplacement, le cliquet engrène avec l’échancrure dans laquelle il se trouve si bien que le carrousel est ainsi entraîné en rotation dans le sens horaire. Le pion de blocage 8 glisse contre la surface périphérique du carrousel si bien qu’il passe progressivement de sa position d’indexation à sa position de libération puis de sa position de libération à sa position d’indexation lorsque le piston 710 se trouve en butée dans sa position de fin. Le vérin 800 est alimenté pour bloquer le pion de blocage dans sa position d’indexation si bien que le carrousel est maintenu immobile. Au moins une nouvelle alvéole 61 du carrousel se trouve alors à un poste fonctionnel.
Le piston interne est déplacé dans sa position de déblocage si bien que le cliquet est libre en rotation autour de l’axe 713 (dans la limite du débattement autorisé par sa forme est les surfaces qui l’entourent).
Le vérin 71 est actionné de sorte que le piston 710 se déplace selon la flèche B pour être ramené dans sa position de départ.
Au cours de ce déplacement, le cliquet 712 passe progressivement de sa position déployée à sa position rétractée puis de sa position rétractée à sa position déployée en glissant contre la surface périphérique du carrousel et en pivotant autour de l’axe 713 dans le sens antihoraire jusqu’à ce que le piston se trouve dans sa position de départ. Le cliquet se trouve alors loger dans une autre échancrure 62 du carrousel.
Le carrousel peut de nouveau être entraîné en rotation en sens horaire en réitérant ce processus.
Le carrousel et les cliquets forment des systèmes de roue à rochets.
Les premier 70 et deuxième 71 vérins ainsi que les cliquets correspondants ont des mouvements antagonistes en ce qu’ils permettent d’entrainer en rotation le carrousel dans des sens opposés.
La mise en oeuvre des premier 70 et deuxième 71 vérins permet de placer un module au poste fonctionnel souhaité le plus rapidement en choisissant le sens de rotation du carrousel qui permettra d’assurer le trajet le plus court. Toutefois, un seul vérin pourra être mis en oeuvre. Ceci permettra de simplifier le dispositif mais induira des temps d’alignement plus longs.
Les moyens d’entrainement en rotation du carrousel principal pourront être du type de ceux du carrousel secondaire. Dans ce cas, plutôt que de mettre en œuvre des vérins doubles pour entraîner les cliquets, i.e. vérins externes contenant un vérin interne de blocage de cliquet, des vérins simples pourront être mis en œuvre.
L’indexation du carrousel secondaire pourra également être obtenue au moyen d’un pion de blocage non commandé par un vérin comme pour le carrousel secondaire.
Le carrousel 6 est monté mobile en rotation autour d’un arbre 8 fixe sur lequel il est guidé en rotation au moyen d’un palier 87 à aiguilles, à billes ou autre.
L’arbre 8 est creux et comprend à l’une de ses extrémités une portion élargie définissant une chambre 81 dans laquelle coulisse un piston 82 d’un vérin 80.
L’arbre 8 comprend à l’autre de ses extrémités une rainure circonférentielle 83 et est traversé par une lumière latérale 84 communiquant avec l’intérieur creux de l’arbre. L’arbre comprend en outre à cette extrémité un méplat 85 qui débouche dans la rainure 83.
Un élément de guidage 14 est solidarisé à l’extrémité de la tige 820 du piston 82.
Cet élément de guidage 14 comprend une portion formant saillie 140 qui s’étend à l’intérieur de la lumière 84 de l’arbre 8. Une rainure 141 est ménagée à l’extrémité de la portion formant saillie 140. Cette rainure 141 s’étend dans le prolongement de la rainure 83 de l’arbre avec laquelle elle forme une rainure circulaire.
Le fourreau 90 de chaque module fonctionnel est prévu pour être monté coulissant à l’intérieur des alvéoles 61 du carrousel 6.
L’extrémité du doigt latéral 900 de chaque du fourreau 90 de chaque module fonctionnel est prévue pour venir se loger selon la position angulaire du carrousel 6 alternativement dans la rainure 83 de l’arbre 8 et dans la rainure 141 de l’élément de guidage 14 de telle sorte que le fourreau soit maintenu solidaire de l’arbre 8 ou du piston 82 selon l’axe de rotation du carrousel 6, et soit ainsi immobilisé en translation selon l’axe de l’alvéole dans laquelle il se trouve.
La portion formant saillie 140 et les rainures 141 et 84 s’étendent à une position angulaire correspondant au doigt 900 d’un fourreau 90 d’un module fonctionnel 9 situé au poste de travail dans le prolongement de la broche 51.
La rainure 901 de chaque fourreau 90 est apte à loger l’ergot 10 placé à l’extrémité du piston 11 mobile en translation dans la chambre 12 du vérin 13.
Le vérin 13 est situé à un poste de chargement/déchargement du carrousel 6. Ce poste est situé de manière telle que lorsqu’une alvéole 61 du carrousel se trouve au poste de travail dans le prolongement de la broche 51 , une autre alvéole se trouve au poste de chargement/déchargement (i.e. au poste de chargement d’agrafe dans ce mode de réalisation), une autre alvéole se trouve au poste de chargement de rivet et une autre alvéole se situe au poste d’enduction.
Le méplat 85 et l’ergot 10 s’étendent le long d’axes parallèles et perpendiculaires à par l’axe de rotation du carrousel 6.
Chargement-déchargement de modules fonctionnels
Le chargement du carrousel 6 en modules fonctionnels 9 est obtenu de la manière suivante.
De l’air sous pression est injecté dans la chambre 12 du vérin 13 de façon à déplacer le piston 11 selon la flèche C afin de dégager l’ergot 10 de l’intérieur de l’alvéole 61 située au poste de chargement/déchargement.
Le vérin 1005 est actionné pour placer la fourchette 1003 dans sa position de libération.
Un module est introduit à l’intérieur de l’alvéole 61 située au poste de chargement/déchargement par le côté du carrousel 6 situé du côté de l’extrémité de l’arbre 8 où se trouve la rainure 84.
Le doigt 900 du fourreau 90 est introduit dans la rainure 83 en passant par le méplat 85 qui forme un passage d’introduction.
De l’air est ensuite introduit dans la chambre 12 du vérin 13 de sorte à déplacer le piston 11 selon la flèche D pour introduire l’ergot 10 dans la rainure 901 du fourreau 90. Le fourreau 90, et donc le module fonctionnel 9 correspondant, est ainsi maintenu dans l’alvéole 61 le long de l’axe de laquelle il est bloqué en translation.
La forme de cette rainure 901 permet l’arrivée du fourreau au poste de chargement/déchargement et son départ depuis ce poste alors que l’ergot 10 forme saillie dans la rainure 901.
Le carrousel 6 peut ensuite être entraîné en rotation pour placer l’alvéole suivante au poste de chargement/déchargement et le processus est réitéré pour charger un nouveau module fonctionnel 9.
Il est ainsi possible de charger les sept, ou plus généralement l’ensemble, des alvéoles du carrousel principal. Toutefois, seule certaines alvéoles peuvent être chargée selon les besoins. Il est également possible, dans d’autres mode de réalisation, que le carrousel principal comprenne plus ou moins de sept alvéoles.
Le déchargement d’un module fonctionnel 9 est obtenu, après avoir placé l’alvéole correspondant au poste de chargement/déchargement, en actionnant le vérin 13 pour dégager l’ergot 10 de la rainure 901 et laisser ainsi glisser le module fonctionnel 9 en dehors de l’alvéole 61 correspondante.
Élément presseur
Le dispositif comprend un élément presseur 15 de forme tubulaire monté mobile en translation par rapport au bâti 2 selon l’axe de déplacement de la broche 51 et dans le prolongement de celle-ci. Un tel élément presseur 15 peut par exemple être utilisé au cours d’une opération de perçage pour exercer un effort de compression sur la structure à percer, notamment pour assurer le contact entre les plaques d’un empilement et éviter la formation de bavures entre ces plaques lors du perçage.
Mise en place du dispositif mutli-tâche
Le bras robot auquel est solidarisé le dispositif est actionné pour venir placer le dispositif multi-tâche de sorte que le poste de travail soit positionné à l’emplacement de la structure à travailler auquel on souhaite réaliser une opération.
Le robot applique le dispositif contre la structure à travailler jusqu’à ce que les ventouses 41 viennent en appui contre la surface de celle-ci. Le vide est ensuite fait dans les ventouses pour assurer une liaison efficace entre le dispositif multi-tâches et la structure à travailler.
Un C de clampage 42 peut être utilisé de façon alternative aux ventouses.
Opération de perçage et/ou fraisurage
Afin de réaliser une opération de perçage et/ou fraisurage, le carrousel principal est entraîné en rotation jusqu’à ce que le module de perçage souhaité se trouve au poste de travail.
Pour mémoire, les moyens de rappel élastique tendent à ramener le piston 903 du vérin dans une position dans laquelle son extrémité 905 est logée dans le logement 950 ou forme saillie dans le fourreau pour empêcher que l’ensemble fonctionnel du module de perçage ne coulisse dans le fourneau, l’extrémité 905 du piston 903 entrant en contact avec l’extrémité 951 du coussinet 95.
Le module de perçage et/ou fraisurage 9 doit ensuite être appareillé à la broche d’entrainement 51 de sorte que celle-ci puisse entraîner en mouvement l’arbre de sortie 91 qui constitue un organe mobile du module. Pour cela, la broche 51 est entraînée en translation selon son axe en direction du module fonctionnel placé au poste de travail jusqu’à ce que l’élément mâle 162 se trouve logé dans la cloche 160.
De l’air sous pression est injecté dans la chambre 171 du vérin 17 afin de déplacer la broche interne 170 selon la flèche E. La rampe 165 de la clé de verrouillage 164 agit alors sur les éléments de verrouillage 163 pour les placer dans leur position d’appareillage dans laquelle ils coopèrent avec les trous radiaux 161 de la cloche 160. La broche 51 et l’arbre de sortie 9 sont alors liés en rotation et en translation.
La position angulaire de l’élément mâle 162 de façon relative à la cloche 160 est aléatoire et en conséquence les éléments de verrouillage peuvent ne pas être parfaitement en ligne avec les trous radiaux de la cloche. Les têtes sphériques des éléments de verrouillage permettent d’induire une légère rotation relative de la cloche par rapport à l’élément mâle provoquant la mise en co-axialité des trous de la cloche et de l’élément mâle et autorisant ainsi la pénétration des éléments de verrouillage dans les trous de la cloche.
Un surnombre de trous dans la cloche par rapport à ceux de l’élément mâle facilite ce ré indexage.
Si toutefois les éléments de verrouillage restaient en équilibre entre 2 trous sans y pénétrer, le couple résistant résultant de la première opération de perçage induirait alors un déplacement relatif en rotation de l’élément mâle et de la cloche pour mettre en en ligne les éléments de verrouillage avec les trous radiaux et finaliser l’appareillage.
Le vérin 904 est actionné pour extraire l’extrémité 905 de son piston 903 du logement 950 du coussinet 95 ou pour que l’extrémité 905 ne forme plus saillie à l’intérieur du fourreau.
De l’air sous pression est ensuite injecté dans la chambre 81 du vérin 80 afin de déplacer le piston 82 selon la flèche E. Dans la mesure où l’équipage mobile est en butée à l’intérieur du fourreau contre le segment d'arrêt situé du côté de la cloche, l’actionnement du vérin 80 ne produit aucun effet. La broche principale 51 est ensuite entraînée en translation suivant la flèche E. Ceci a pour effets : de faire translater l’équipage mobile et le fourreau suivant la flèche E de faire suivre le même mouvement à l’élément d’entrainement 14 si bien que le module fonctionnel 9 de perçage, dont le doigt 900 coopère avec la rainure 141 de l’élément d’entrainement 14, est entraîné en translation suivant la flèche E le long de l’axe de la broche 51 , jusqu’à ce que le fourneau 90 vienne en appui contre l’élément presseur 15. L’élément presseur suit alors le même mouvement l’amenant ainsi à venir se plaquer contre la structure à travailler et exercer un effort de pression sur la structure à travailler.
L’effort de placage de l’élément presseur 15 contre la surface à travailler est maintenu par le vérin 80 alors que le déplacement en translation de la broche 51 selon la flèche E s’accompagne d’une déplacement de l’équipage mobile à l’intérieur du fourreau qui est alors immobile en translation suivant la flèche E.
La broche 51 peut alors être entraînée en rotation et en translation et transmettre ses mouvements à l’arbre de sortie 91 du module fonctionnel 9 appareillé pour réaliser l’opération de perçage souhaitée.
L’appareillage de la broche principale et de l’arbre de sortie constitue ici une liaison en rotation et en translation.
En solidarisant au module une douille de vissage plutôt qu’un outil de coupe, il est possible de réaliser une opération de vissage/dévissage.
Changement de rivet
Préalablement à la réalisation d’une opération de pose de rivet, précédée ou non d’une opération d’enduction de mastic, un module de support de rivet 200 doit être chargé avec un rivet 216.
Pour cela, le carrousel principal 6 est entraîné en rotation de sorte à amener au poste P3 de chargement de rivet le module de support de rivet 200 correspondant à la taille du rivet 216 que l’on souhaite poser et le cas échéant enduire.
Une fois le module de support de rivet 200 amené au poste P3 de chargement de rivet, une opération de chargement de rivet est mise en œuvre.
Préalablement, l’alvéole 1009 du carrousel secondaire 1008 correspondant à la taille de ce rivet 216 est alimenté avec un rivet par les moyens d’alimentation du carrousel 1008 en rivet. Les rivets sont amenés au travers d’un tube flexible poussés à l’intérieur de ce tube par un gaz sous pression.
Le carrousel secondaire 1008 est ensuite entraîné en rotation de sorte à placer l’alvéole 1009 contenant le rivet au poste de chargement de rivet P3.
De l’air sous pression est injecté dans la conduite d’air 906 du module de support de rivet 200 de sorte à maintenir son piston 205 dans sa première position extrême en butée contre le circlips 218 du côté opposé à la bague fendue.
Le vérin 1006 est ensuite mis en œuvre pour pousser le rivet 216 contenu dans l’alvéole 1009 à l’intérieur du module de support de rivet 200 jusqu’à ce que la tête 219 du rivet 216 soit logée dans la bague fendue 213. Au cours de ce déplacement, la tête 219 du rivet 216 agit sur la bague fendue 213 pour l’élargir de sorte à venir se loger dans la rainure 214 et dans l’alésage conique 215 de la bague fendue 213. La bague 213 se resserre alors autour de la tête 219 du rivet 216 sous l’effet des joints toriques mis en oeuvre à cet effet si bien que le rivet 216 ne peut plus sortir de la bague 213 en suivant le chemin inverse. Le rivet 216 se trouve alors maintenu dans le module de support de rivet 100 et son corps 220 forme saillie en dehors du module 200 au-delà de la bague fendue 213.
Opération d'enduction de rivet
Pour réaliser une opération d’enduction d’un rivet, le module de support de rivet 200 préalablement chargé du rivet 216 qu’il est souhaité d’enduire de mastic est amené au poste d’enduction P4 en faisant tourner le carrousel principal 6.
Au cours de ce déplacement, le piston 205 du module de support de rivet reste en butée contre le circlips 218 sous l’effet des frottements des joints toriques assurant l’étanchéité de la chambre.
Il est possible de réaliser une enduction du type hélicoïdal, ou une enduction du type annulaire ou encore une enduction de cordons annulaires parallèles.
Enduction hélicoïdale
Une enduction de type héliocoïdale consiste à déposer au moins un cordon annulaire de mastic à l’extrémité 221 du rivet, au moins un cordon annulaire de mastic sous la tête 219 du rivet et un cordon hélicoïdal le long du corps 220 du rivet entre l’extrémité et la tête du rivet. Pour cela, il est procédé comme suit.
Préalablement à l'arrivée au poste d’enduction d’un module de support de rivet : le vérin 1053 est actionné pour maintenir l’extrémité de la buse 1050 dans sa position extrême dans laquelle elle se trouve la plus éloignée du corps 220 du rivet 216 ; le vérin 1047 est actionné de sorte à maintenir le sabot 1046 dans sa position de désengrènement ; le vérin 1060 est actionné de sorte que le palpeur 1058 se trouve dans sa position extrême du côté de l’extrémité 221 du rivet 216 ; le vérin 1057 est actionné de sorte que le bloc 1054 portant le sabot 1046 et la buse 1050 se trouve dans sa position extrême du côté de l’extrémité 221 du rivet 216.
Le support 1062 de la buse 1050 est alors en butée contre le palpeur 1058.
Le chambre du vérin 1057 portant le bloc 1054 est mise à l’échappement.
Le vérin 1036 est actionné de sorte à mettre en prise le demi-crabot 1038 qu’il porte avec le demi crabot 211 du piston du module de support de rivet 100 placé au poste d’enduction. Le piston constitue ici un organe mobile et la mise en coopération des deuxdemi- crabot constitue un appareillage indirect de la broche principale avec cet organe mobile. L’appareillage est ici une liaison en rotation.
Le demi-crabot 1038 porté par le vérin 1036 vient alors déplacer le piston 205 du module de support de rivet 100 en direction du palpeur 1058. Lorsque le vérin 1036 arrive en fin de course, le piston 205 du module est placé de telle sorte que la zone de raccordement entre la tête 219 et le corps 220 du rivet porté par le module se trouve à une position donnée. Il est à noter que chaque module de support de rivet est propre à supporter un rivet d’une taille donnée. La longueur selon l’axe de la broche 51 du piston 205 de chaque module de support de rivet est déterminée en fonction de la taille du rivet qu’il est destiné à supporter de sorte que, lorsque le vérin 1036 portant le demi crabot 1038 arrive en fin de course, la zone de raccordement entre la tête 219 et le corps 220 du rivet porté par un module se trouve toujours à la même position donnée suivant l’axe de la broche 51.
Le vérin 1060 est actionné pour déplacer le palpeur 1058 en direction de la tête 219 du rivet jusqu’à ce que la pointe conique 1061 vienne en appui contre l’extrémité 221 du rivet stoppant ainsi la course du vérin 1060.
Le palpeur 1058, contre lequel est en butée la buse 1050, déplace ainsi la buse au niveau de l’extrémité 221 du rivet (à une distance prédéterminée de l’extrémité du rivet).
Le vérin 1053 déplace la buse 1050 vers le corps 220 du rivet jusqu’à ce que son extrémité entre en contact avec le corps du rivet.
La broche principale 51 est entraînée en rotation de sorte à entraîner en rotation via les poulies et courroies d’une part le piston 205 du module et donc le rivet qu’il porte mais aussi la vis-mère 1043 au temps tO.
Dans le même temps, la pompe à mastic est mise en œuvre de sorte que la buse 1050 délivre du mastic au niveau de l’extrémité 221 du rivet.
Après une durée correspondant à un tour de vis mère 1043, le sabot 1046 est déplacé vers sa position d’engrènement avec la vis mère 1043 au moyen du vérin 1049.
Le contact entre le sabot 1046 et la surface 1045 du filet 1044 de la vis mère 1043 est finalisé après une fraction X d’un tour de vis mère 1043. Cette fraction de tour est nécessaire dans la mesure où lorsque le sabot entre en contact avec la vis, il est dans une position relative aléatoire telle qu’un espace entre le sabot et le flanc du filet subsiste. Ainsi l’entrainement en translation du sabot par la vis mère n’est effectif qu’après que cet espace se soit résorbé sous l’action d’une fraction aléatoire de tour X.
A ce stade, un cordon de mastic de 1 + X tour a été déposé au niveau de l’extrémité 221 du rivet.
Lorsque le sabot 1046 se trouve dans sa position d’engrènement, i.e. après finalisation du contact entre le sabot et la vis mère, la buse 1050 se met alors à se déplacer vers la tête 219 du rivet et la buse 1050 commence à déposer un cordon de mastic en spirale le long du corps 220 de rivet.
Lorsque le piston 1055 du vérin 1057 portant le bloc 1054 arrive en butée en étant déplacé depuis l’extrémité 221 vers la tête 219 du rivet, la buse 1050 arrive à la hauteur du raccordement entre le corps 220 et la tête 219 du rivet.
La rotation de la broche unique 51 est arrêtée après un temps écoulé depuis tO permettant un nombre de tour de vis mère de 3 + Y, Y étant le nombre de tour de la spirale entre le cordon sur l’extrémité et le cordon sous tête du rivet. La connaissance de la longueur de rivet permet de connaître la distance Z entre les cordons de l’extrémité et de tête, Y = Z / pas de vis mère (en faisant ici l’hypothèse que le rivet à enduire et la vis mère tourne à la même fréquence).
La longueur de cordon déposée sur l’extrémité pouvant être de 2 tours au plus justifie le nombre de tours total de 3 + Y pour avoir au moins un dépôt de 1 tour sous tête.
En même temps que la broche principale 51 est stoppée en rotation, la dépose de mastic est désactivée par mise hors pression de la pompe à mastic.
Au moment de l’arrêt de la broche unique 51, un cordon de mastic de 2 -X tour a été déposé sous la tête de rivet (3 tours moins (1 + X)).
Le sabot 1046 est déplacé dans sa position de désengrènement grâce au vérin 1049.
La buse 1050 est écartée du corps 220 de rivet grâce au vérin 1053.
La buse 1050 et le palpeur 1058 sont amenés en position extrême du côté de l’extrémité 221 du rivet respectivement grâce à l’extension des vérins 1057 et 1060.
Le carrousel principal 6 est entraîné en rotation pour amener le rivet enduit de mastic au poste de pose de rivet auquel se trouve un dispositif de pose de rivet.
Enduction annulaire
Une enduction de type annulaire consiste à déposer au moins un cordon annulaire de mastic sous la tête 219 du rivet.
Pour cela, il est procédé comme suit.
Préalablement à l’arrivée au poste d’enduction d’un module de support de rivet 100 : le vérin 1053 est actionné pour maintenir l’extrémité de la buse 1050 dans sa position extrême dans laquelle elle se trouve la plus éloignée du corps 220 du rivet ; le vérin 1049 est actionné de sorte à maintenir le sabot 1046 dans sa position de désengrènement ; le vérin 1060 est actionné de sorte que le palpeur 1058 se trouve dans sa position extrême du côté de l’extrémité 221 du rivet.
Le vérin 1036 est actionné de sorte à mettre en prise le demi-crabot 1038 qu’il porte avec le demi crabot 211 du module de support de rivet 100 placé au poste d’enduction.
Le demi-crabot 1038 vient alors déplacer le piston 205 du module de support de rivet 100 en direction du palpeur 1058. Lorsque le vérin 1036 arrive en fin de course, le piston 205 du module est placé de telle sorte que la zone de raccordement entre la tête 219 et le corps 220 du rivet porté par le module 200 se trouve à une position donnée. Il est à noter que chaque module de support de rivet est propre à supporter un rivet d’une taille donnée. La longueur selon l’axe de la broche du piston de chaque module de support de rivet est déterminée en fonction de la taille du rivet qu’il est destiné à supporter de sorte que, lorsque le vérin portant le demi crabot arrive en fin de course, la zone de raccordement entre la tête et le corps du rivet porté par un module se trouve toujours à la même une position donnée.
Le vérin 1060 est actionné pour déplacer le palpeur 1058 en direction de la tête 219 du rivet jusqu’à ce que la pointe conique 1061 vienne en appui contre l’extrémité 221 du rivet stoppant ainsi la course du vérin 1060.
Le vérin 1057 est actionné pour venir en butée à son extrémité du côté de la tête 219 de rivet arrêtant ainsi la buse 1050 à la hauteur du raccordement entre le corps 220 et la tête
219 de rivet.
Le vérin 1053 déplace la buse 1050 vers le corps 220 du rivet jusqu’à ce que son extrémité entre en contact avec le corps 220 du rivet.
La broche principale 51 est entraînée en rotation de sorte à entraîner en rotation via les poulies et courroies d’une part le piston 205 du module et donc le rivet qu’il porte.
Dans le même temps, la pompe à mastic est mise en œuvre de sorte que la buse 1050 délivre du mastic au niveau de la zone de raccordement entre la tête 219 et le corps
220 du rivet.
La rotation de la broche principale 51 est arrêtée après avoir imprimer une rotation d’au moins un tour au rivet, à ce stade un cordon d’au moins un tour est déposé sous la tête 219 de rivet. Dans le même temps la dépose de mastic est désactivée par mise hors pression de la pompe à mastic.
La buse 1050 est écartée du corps 220 de rivet grâce à la rétraction du vérin 1053.
La buse 1050 et le palpeur 1058 sont amenés en position extrême du côté de l’extrémité 221 du rivet respectivement grâce à l’extension des vérins 1057 et 1060.
Le carrousel principal 6 est tourné pour amener le rivet enduit de mastic au poste de travail pour poser le rivet.
Enduction avec des cordons annulaires parallèles
Une enduction d’un rivet avec des cordons de mastic annulaires parallèles entre son extrémité et la zone de raccordement de son corps avec sa tête est obtenue de la manière suivante.
Le vérin 3010 est actionné pour déplacer le palpeur 3008 suivant la flèche E jusqu’à sa position extrême.
Un module support de rivet portant un rivet à enduire est ensuite amené au poste d’enduction.
Le demi-crabot 1038 est déplacé jusqu’en butée par le vérin correspondant de sorte à venir en prise avec le demi-crabot 211 du module et à déplacer le piston du module dans une position dans laquelle la zone de raccordement du rivet qu’il porte se trouve en alignement avec le canal 3003 de la buse situé à l’opposé de celui situé du côté d l’extrémité du rivet.
Le vérin 3010 est actionné suivant la flèche F pour que l’extrémité 3008 du palpeur vienne en contact avec l’extrémité du rivet.
Le tiroir 3005 coulisse alors à l’intérieur de la chambre 3002 de sorte à obturer les canaux qui s’étendent au-delà de l’extrémité du rivet.
Le rivet est ensuite entraîné en rotation sur un tour alors que la pompe à mastic est mise en œuvre pour distribuer du mastic. Ceci permet de déposer sur le corps du rivet simultanément une pluralité de cordons annulaires de mastic parallèlement entre l’extrémité et la zone de raccordement du rivet.
Une fois les cordons déposés, la rotation du rivet est stoppée, la pompe est arrêtée, le vérin est actionné suivant la flèche E pour éloigner le palpeur du rivet puis le carrousel principal est actionné pour déplacer le module portant le rivet enduit au poste de travail pour poser le rivet.
Opération de pose de rivet
Le dispositif peut-être mis en œuvre pour procéder à la pose de rivets, préalablement enduit ou non de mastic, selon les cas. Il comprend donc un dispositif de pose de rivet.
Après l’arrivée au poste de travail P5 d’un module de support de rivet 200 portant un rivet, la pose de ce dernier, dans un trou préalablement réalisé dans la structure à travailler, est obtenue de la manière suivante.
La broche principale 51 est entraînée en translation selon son axe via le moteur d’avance.
La broche principale 51 vient alors en appui contre le piston 205 du module de support de rivet 200 si bien que celui-ci se déplace en translation à l’intérieur de la chambre depuis une position rétractée dans laquelle il s’étend à l’intérieur du fourreau vers une position déployée dans laquelle il s’étend au moins en partie à l’extérieur du fourreau jusqu’à venir en butée au fond de celle-ci et que le fourreau se translate dans l’alvéole du carrousel sur une distance suffisante pour venir engager l’extrémité 221 du rivet dans le trou correspondant (dans le cas d’un rivet à extrémité fileté, l’insertion de la portion filetée peut suffire).
Le piston du module constitue un organe mobile et l’appareillage constitue ici une simple mise en contact de la broche principale avec l’organe mobile de sorte à l’entraîner en translation dans un sens.
Le moteur d’avance est ensuite piloté de sorte à déplacer la broche principale 51 dans le sens inverse.
Au cours de ce déplacement de la broche principale, le piston 205 du module de support de rivet reste immobile à l’intérieur de sa chambre sous l’effet des frottements.
La broche principale 51 est translatée jusqu’à ce que ce qu’elle atteigne sa position extrême dans laquelle la portion de l’élément mâle 162 portant la bague de verrouillage 1067 se trouve logée dans la portion cylindrique 1065 de la bague de déverrouillage 1064 qui agit sur la bague de déverrouillage 1067 pour la déplacer dans sa position de déverrouillage.
La broche secondaire 170 est ensuite translatée à l’intérieur de la broche principale 51 en alimentant la chambre de son vérin 17 (jusqu’à venir en contact avec la tête du rivet).
Durant cette sortie de la broche secondaire, la rainure circonférentielle 1063 passe au travers de la bague de déverrouillage 1064.
Puis la broche principale 51 est avancée, la portion de l’élément mâle 162 sort de la portion cylindrique 1065, ainsi la bague de déverrouillage se trouve de nouveau appuyée contre la broche secondaire et lorsque cette bague arrive de nouveau au niveau de la rainure circonférentielle 1063, elle vient se loger dans la rainure 1063 sous l’action de l’élément de rappel élastique. La broche secondaire 170 est alors liée en translation avec la broche principale 51 si bien que le déplacement en translation de la broche principale 51 s’accompagne d’un déplacement en translation de la broche secondaire 170 qui forment ensemble une broche longue.
La clé de verrouillage 164 vient alors pousser sur la tête 219 du rivet pour l’extraire de la pince et l’insérer complètement dans le trou.
Le rivet est ainsi évacué du module par des moyens d’évacuation qui permettent de l’insérer dans un trou et qui comprennent dans ce mode de réalisation notamment les broches principale et secondaire.
La lecture des courants des moteurs entraînant la broche principale, en l’occurrence du moteur d’avance, permet de connaître l’effet de poussée sur le rivet et de stopper la progression de la broche principale lorsque l’effet de poussé devient supérieur à un seuil prédéterminé correspondant à une insertion totale du rivet dans son trou.
Cette approche permet d’assurer une mise en place efficace d’un rivet avec des efforts plus importants que si la mise en place était réalisée avec le vérin central mis en œuvre pour contrôler l’élément presseur 15 et avec une meilleure précision compte tenu de la prise en compte des efforts de poussée enregistrée au niveau de la broche principale.
Une fois le rivet correctement inséré dans le trou, la broche principale 51 estdéplacée vers sa position extrême dans laquelle la portion de l’élément mâle 162 portant la bague de verrouillage 1067 se trouve logée dans la portion cylindrique 1065 de la bague de déverrouillage 1064 qui agit de ce fait sur la surface externe de la portion latérale d’actionnement 1069 pour déplacer la bague de verrouillage 1067 par rapport à l’élément mâle 162 contre l’effet du ressort de compression dans sa position de déveirouillage.
La broche secondaire 170 est ensuite rentrée dans la broche principale 51 en actionnant son vérin 17.
Enfin, le piston 205 du module de support de rivet est rentré dans le fourreau en alimentant sa chambre en air comprimée jusqu’à venir en butée contre le circlips 218 et le fourreau 90 est rentré dans son alvéole grâce à l’action du vérin 80.
Chargement de fixation temporaire
Un dispositif selon l’invention peut être mis en œuvre pour réaliser la pose de fixations temporaires.
Une fixation temporaire 2000 comprend classiquement un corps 2001 , une extrémité 2002 déformable (expansible et rétractable) en pointe de harpon présentant une fente longitudinale et contenant un élément écarteur fixe par rapport au corps, et un élément rotatif 2003 qui lorsqu’il est tourné par rapport au corps, provoque l’écartement (expansion) du harpon puis sa rétractation dans le corps. Ainsi lorsque qu’après avoir été introduit dans un trou traversant 2 tôles, l’élément rotatif est tourné et serré par rapport au corps, le harpon s’écarte de l’autre coté des tôles par rapport au corps puis rentre dans le corps et provoque le placage des tôles l’une sur l’autre. Un exemple illustratif et non limitatif de fixation temporaire est décrit dans le document US 4548533.
Les fixations temporaires selon l’invention comprennent un corps et un élément rotatif de section cylindrique et de même diamètre et présentant des surfaces externes lisses et uniformes. Le corps et l’élément rotatifs sont séparés par un espace (logement) pour permettre leur verrouillage en position comme cela sera décrit plus en détail par ailleurs.
Préalablement à la réalisation d’une opération de pose de fixation temporaire, un module 300 de support de fixation temporaire doit être chargé avec une fixation temporaire.
Pour cela, le carrousel principal 6 est entraîné en rotation de sorte à amener au poste de chargement P2 le module de support de fixation temporaire.
Une fois le module de support de fixation temporaire amené au poste de chargement de fixation temporaire, une opération de chargement de fixation temporaire est mise en oeuvre.
Le vérin 1005 est actionné pour placer la fourchette 1003 dans sa position de maintien.
La cartouchière 1000 est mise en œuvre pour placer une fixation temporaire 2000 dans l’axe du module de support de fixation temporaire.
La chambre du module de support de fixation temporaire est alimentée en air comprimé de sorte à maintenir le piston 306 dans une position libération dans laquelle son épaulement 307 est proche de la collerette 314 du tube d’entrainement 313. Dans cette position, la surface de l’alésage conique 331 du piston 306 agit sur l’élément de verrouillage 321 pour le maintenir dans sa position de repos dans laquelle l’extrémité de l’ergot de verrouillage 327 est éloignée de l’axe longitudinal du tube d’entrainement.
Le vérin de chargement 1002 est activé de manière telle que l’extrémité de sa tige sorte de sa chambre pour venir pousser la tête de l’élément rotatif 2003 de la fixation temporaire de sorte à introduire la fixation temporaire dans le module de support de fixation temporaire jusqu’à ce que la partie femelle 2001 vienne en butée contre la fourchette 1003.
L’élément rotatif 2003 de la fixation temporaire se trouve alors en prise avec la première roue-libre 318 alors que la corps 2001 se trouve en prise avec la deuxième roue- libre 33’.
La chambre du module de support de fixation temporaire est mise à l’air libre si bien que le piston 306 s’éloigne de la collerette 314 sous l’effet du ressort 315 jusqu’à atteindre une position de verrouillage. Au cours de ce déplacement, l’élément de verrouillage 321 retourne dans sa position de verrouillage sous l’effet du ressort logé dans le logement 328 : l’extrémité de l’ergot de verrouillage 327 sa trouve alors logée dans l’espace E entre la tête de l’élément rotatif 2003 et le corps de la fixation temporaire si bien que celle-ci est bloquée en translation à l’intérieur du module suivant son axe longitudinal.
Le vérin de chargement 1002 est ensuite rétracté dans sa position de départ puis le vérin 1005 est actionné de sorte à ramener la fourchette 1003 dans sa position de libération.
Opération de pose de fixation temporaire
Le dispositif permet la pose de fixation temporaires et comprend ainsi un dispositif de pose de fixation temporaire.
Afin de réaliser la pose d’une fixation temporaire, un module de support de fixation temporaire dans lequel une fixation temporaire a été introduite est amené avec le carrousel principal au poste de travail.
Le module de support de fixation temporaire doit ensuite être appareillé à la broche principale.
Pour cela, la broche 51 est entraînée en translation selon son axe en direction du module fonctionnel placé au poste de travail jusqu’à ce que l’élément mâle 162 se trouve logé dans la cloche 160.
Une légère pression d’air peut être introduite dans la chambre du module afin que le piston 306 exerce un contre effort suivant l’axe longitudinal du module vis-à-vis de l’effort d’appareillage.
De l’air sous pression est injecté dans la chambre 171 du vérin 17 afin de déplacer la broche interne 170 selon la flèche E. La rampe 165 de la clé de verrouillage 164 agit alors sur les éléments de verrouillage 163 pour les placer dans leur position d’appareillage dans laquelle ils coopèrent avec les trous radiaux 161 de la cloche 160. La broche 51 et le tube d’entrainement sont alors liés en rotation et en translation. Le tube d’entrainement est un organe mobile et l’appareillage de celui-ci avec la broche principale est une liaison en rotation et en translation.
Afin d’insérer la fixation temporaire dans le trou de la structure à travailler : le moteur d’avance est mis en œuvre pour translater la broche principale 51 de manière à faire coulisser le tube d’entrainement 313 et par la même le piston 306 à l’intérieur du module, le vérin 80 et l’alimentation en gaz comprimé du module support de fixation temporaire via la conduite 906 sont mis à l’échappement jusqu’à ce que la descente de la broche 51 ait permis l’insertion de la fixation temporaire dans son logement de la pièce à travailler ; le moteur d’avance continu d’être est mis en œuvre pour translater la broche principale 51 de manière à continuer de faire coulisser le tube d’entrainement 313 et par la même le piston 306 à l’intérieur du module jusqu’à ce que la poussée enregistrée au niveau de la broche principale 51 parle capteur de courant consommé par le moteur d’avance atteigne une valeur seuil prédéterminée correspondant à la mise en butée de la fixation temporaire contre la structure à travailler.
La broche principale 51 est entraînée en rotation au moyen du moteur de rotation si bien que le tube d’entrainement entraîne en rotation la tête de la partie mâle de la fixation temporaire. Compte tenu du fonctionnement antagoniste des roues libres, la partie mâle de la fixation temporaire tourne alors que la partie femelle est maintenue immobile en rotation. De ce fait, la partie mâle se visse entraînant l’expansion de l’extrémité déformable dans le trou et ainsi la solidarisation de la fixation temporaire dans le trou de la structure à travailler.
Lorsque le couple de serrage déterminé par le capteur de courant du moteur de rotation atteint une valeur de seuil prédéterminée correspondant à l’achèvement du serrage de la fixation temporaire, le moteur de rotation est stoppé.
Le moteur de rotation est entraîné en rotation dans l’autre sens de sorte à entraîner en rotation sur quelque degré la broche principale 51 afin de désengager les roues- libres du module.
De l’air est introduit dans la conduite 906 pour déplacer le piston dans sa position de libération et placer l’ergot de verrouillage dans sa position de repos.
Le moteur d’avance est mis en œuvre pour déplacer la broche 51 vers sa position d’origine.
La broche principale est arrêtée lorsque le tube d’entrainement se trouve à sa position initiale.
Le vérin 820 est activé pour replacer le fourreau dans sa position d’origine. Le vérin 17 est actionné pour libérer les éléments de verrouillage 163 des trous radiaux 161 de la cloche 160 et ainsi désaccoupler la broche principale 51 du tube d’entrainement 313 du module.
Le moteur d’avance est de nouveau mis en oeuvre pour ramener en butée la broche principale dans sa position initiale de départ.
Le module de support de fixation temporaire peut alors être de nouveau mené au poste de chargement de fixation temporaire pour recevoir une nouvelle fixation temporaire à mettre en place.
Variantes
Dans le cas des modules de perçage, l’appareillage entre la broche et l’organe mobile, i.e. l’arbre de sortie ou le tube d’entrainement, est direct. En effet, la broche et l’arbre de sortie ou le tube d’entrainement sont interconnectés directement via les moyens d’appareillage 16 sans transmission intermédiaire. Une transmission intermédiaire pourrait toutefois être interposée entre l’organe mobile et la cloche 160. Une telle transmission intermédiaire pourrait servir ou non de démultiplicateur. Elle pourrait ne pas induire de transformation de mouvement ou au contraire induire une transformation de mouvement (par exemple transformation d’un mouvement de translation de la broche en un mouvement de rotation d’au moins un organe mobile d’un module fonctionnel).
Dans le cas du module de support de rivet, l’appareillage entre l’organe mobile (le pison du module) et la broche se fait de manière indirecte au poste d’enduction via les poulies, courroies et demis-crabots. Elle se fait de manière directe pas simple contact au niveau du poste de travail.
Les exemples de modules fonctionnels décrits ici ne comprennent qu’un organe mobile, i.e. l’arbre de sortie, piston, tube d’entrainement. Il pourrait toutefois comprendre plusieurs organes de sortie.
Au cours de la réalisation d’une opération, les capteurs de l’ensemble de contrôle et de mesure peuvent permettre de relever des paramètres propres au fonctionnement du module appareillé.
Au cours d’une opération de perçage, on peut par exemple mesurer les paramètres suivants : poussée axiale sur le foret : déduite par exemple à partir d’un capteur d’effort sur la broche ou dans la transmission ou à partir de l’intensité du courant d’alimentation du moteur d’avance ; couple sur le foret : déduite par exemple à partir d’un capteur de couple sur la broche ou dans la transmission ou à partir de l’intensité du courant d’alimentation du moteur de rotation ; course du foret : par exemple déduite à partirdu capteur d’angle du moteur d’avance. Au cours d’une opération de vissage, on peut par exemple mesurer les paramètres suivants : course de la vis : déduite par exemple à partir du capteur d’angle du moteur de rotation ; couple de serrage : par exemple déduite à partir du capteur de couple dans la transmission ou de l’intensité du moteur de rotation.
Au cours d’une opération de pose de rivet on peut par exemple mesurer : la poussée axiale sur le rivet : déduite par exemple à partir d’un capteur d’effort sur la broche ou dans la transmission ou à partir de l’intensité du courant d’alimentation du moteur d’avance. la course axiale du rivet : déduite par exemple à partir du capteur d’angle du moteur d’avance.
Au cours d’une opération de pose de fixation temporaire, on peut par exemple mesurer les paramètres suivants : poussée axiale sur la fixation temporaire : déduite par exemple à partir d’un capteur d’effort sur la broche ou dans la transmission ou à partir de l’intensité du courant d’alimentation du moteur d’avance ; couple de serrage : par exemple déduite à partir du capteur de couple dans la transmission ou de l’intensité du moteur de rotation.
On pourra également utiliser la mesure de poussée axiale pour détecter la mise en coopération de l’élément mâle 162 et de la cloche 160 lors de l’appareillage d’un module fonctionnel.
Ceci ne représente bien entendu pas une liste exhaustive des mesures de paramètres possibles.
Tous les capteurs et autres moyens de mesure sont intégrés à l’ensemble de commande et de mesure 5. Les modules fonctionnels ne comprennent donc préférentiellement aucun capteur, ou à tout le moins un nombre très restreint de capteurs, ce qui rend leur structure particulièrement simple, robuste et économique.
Le dispositif comprend également une batterie de connecteurs pneumatiques 18 permettant de relier l’ensemble des actionneurs pneumatiques à des moyens d’alimentation en fluide sous pression et/ou à des moyens pour faire le vide.
Plusieurs opérations peuvent être mises en oeuvre simultanément à différents postes, par exemple : une opération de perçage ou de pose de rivet ou de pose de fixation temporaire peut être mise en oeuvre au poste de travail ; une opération de chargement de rivet au poste de chargement de rivet ; une opération de chargement de fixation temporaire au pose de chargement de fixation temporaire.
Le dispositif selon l’invention permet de réaliser une pluralité de fonctions, par exemple pose d’élément de fixation, enduction d’élément de fixation, perçage... Il constitue en ce sens un dispositif multitâches. Il comprend ainsi des dispositifs permettant de réaliser chacun des fonctionnalités, notamment dispositif d’enduction, dispositif de pose de fixation temporaire, dispositif de pose d’élément de fixation, dispositif de perçage, dispositif de transfert d’élément de fixation... Chacun de ces dispositifs peut être dissocié pour former un dispositif indépendant assurant sa fonction propre. Toute combinaison de plusieurs (notamment au moins 2) de ces dispositifs peut être réalisée.

Claims

REVENDICATIONS
1. Dispositif multi-tâche comprenant : des moyens de solidarisation dudit dispositif à des moyens de manutention motorisés aptes à déplacer au moins en partie ledit dispositif multi-tâche dans l’espace par rapport à une structure à travailler ; des moyens de solidarisation dudit dispositif à ladite structure à travailler ; au moins deux modules fonctionnels, chacun desdits modules fonctionnels comprenant au moins un organe mobile apte à permettre la réalisation d’une tâche donnée ; ledit dispositif comprenant un unique ensemble d’entrainement et de contrôle desdits modules fonctionnels, ledit ensemble d’entrainement et de contrôle comprenant : une unique broche d’entrainement ; des moyens moteurs aptes à entraîner en mouvement ladite broche ; des moyens de mesure d’au moins un paramètre physique représentatif d’au moins une caractéristique de fonctionnement desdits modules fonctionnels ; des moyens de contrôle desdits moyens moteurs et desdits moyens de mesure ; ledit dispositif comprenant en outre des moyens d’appareillage aptes à lier en mouvement ladite unique broche d’entrainement alternativement avec ledit au moins un organe mobile desdits modules fonctionnels.
2. Dispositif selon la revendication 1 dans lequel lesdits moyens d’appareillage assurent une liaison directe entre ladite broche et ledit au moins un organe mobile du module fonctionnel appareillé.
3. Dispositif selon la revendication 1 comprenant des moyens de transformation de mouvement entre ladite broche et ledit au moins un organe mobile dudit module fonctionnel appareillé.
4. Dispositif selon l’une quelconque des revendications 1 à 3 dans lequel lesdits moyens de manutention motorisés appartiennent au groupe comprenant :
- les robots ;
- les grilles de perçage numériques.
5. Dispositif selon l’une quelconque des revendications 1 à 4 dans lesdits moyens de mesure sont aptes à mesurer au moins un paramètre représentatif d’au moins une caractéristique de fonctionnement desdits modules fonctionnels appartenant au groupe comprenant :
- un couple sur ledit au moins un organe mobile du module appareillé ; - un effort axial sur ledit au moins un organe mobile du module appareillé ;
- une position angulaire dudit au moins un organe mobile du module appareillé ;
- une position axiale dudit au moins un organe mobile du module appareillé.
6. Dispositif selon l’une quelconque des revendications 1 à 5 dans lequel lesdits moyens moteur comprennent au moins un moteur électrique apte à entraîner en mouvement ladite broche et ledit au moins un organe mobile d’un module fonctionnel appareillé à ladite broche.
7. Dispositif selon la revendication 6 dans lequel lesdits moyens de contrôle comprennent des moyens de mesure de l’intensité électrique consommée par ledit moteur et des moyens de détermination, en fonction de l’intensité électrique mesurée, d’un couple et/ou d’un effort axial sur ledit au moins un organe mobile d’un module appareillé.
8. Dispositif selon la revendication 6 ou 7 dans lequel ledit au moins un moteur comprend un rotor, lesdits moyens de mesure comprenant au moins un capteur de mesure de la position angulaire dudit rotor, lesdits moyens de contrôle comprenant des moyens de détermination, en fonction de la position angulaire dudit rotor mesurée, de la position angulaire et/ de la position axiale dudit au moins un organe mobile d’un module fonctionnel appareillé à ladite broche.
9. Dispositif selon l’une quelconque des revendications 6 à 8 dans lequel lesdits moyens moteur comprennent une transmission reliant ledit au moins un moteur à ladite unique broche d’entrainement, lesdits moyens de mesure comprenant au moins un capteur de couple et/ou d’effort et/ou de position intégrés à ladite transmission aptes à permettre la détermination d’un couple et/ou d’un effort axial sur ledit au moins un organe mobile d’un module appareillé et/ou d’une position angulaire et/ou axiale dudit au moins un organe mobile d’un module appareillé.
10. Dispositif selon l’une quelconque des revendications 1 à 9 comprenant des moyens d’acheminement desdits modules fonctionnels dans le prolongement de ladite broche d’entrainement.
11. Dispositif selon la revendication 10 dans lequel lesdits moyens d’acheminement comprennent au moins un carrousel monté mobile en rotation et comprenant des moyens de support d’une pluralité de modules fonctionnels.
12. Dispositif selon la revendication 11 comprenant des moyens d’entrainement en rotation dudit au moins un carrousel, lesdits moyens d’entrainement en rotation comprenant au moins un cliquet d’entrainement mobile formant avec ledit carrousel un ensemble de type roue à rochet, lesdits moyens d’entrainement en rotation comprenant des moyens de déplacement dudit cliquet d’entrainement mobile selon un axe orthogonal à l’axe de rotation dudit carrousel.
13. Dispositif selon l’une quelconque des revendications 10 à 12 dans lequel lesdits moyens d’acheminement comprennent au moins un organe de support mobile en translation et comprenant des moyens de support d’une pluralité de modules fonctionnels.
14. Dispositif selon l’une quelconque des revendications 1 à 13 comprenant des moyens d’activation-désactivation à distance desdits moyens d’appareillage.
15. Dispositif selon l’une quelconque des revendications 1 à 14 dans lequel ladite broche d’entrainement est montée mobile en rotation et en translation selon un même axe, lesdits moyens moteurs comprenant au moins un moteur et une transmission reliant ladite broche d’entrainement audit au moins un moteur, ladite transmission comprenant : une noix d’entrainement en rotation comprenant une portion cannelée de forme complémentaire d’une portion cannelée ménagée sur ladite broche le long dudit axe ; une bague d’entrainement en translation liée à ladite broche d’entrainement par une liaison hélicoïdale selon ledit axe.
16. Dispositif selon l’une quelconque des revendications 1 à 15 comprenant au moins un élément presseur, apte à exercer une pression sur ladite structure à travailler, situé dans le prolongement de ladite broche d’entrainement, et des moyens de déplacement dudit élément presseur en direction de ladite structure à travailler, lesdits moyens de déplacement dudit élément presseur agissant sur ledit élément presseur via un module fonctionnel situé dans le prolongement de ladite broche.
17. Dispositif selon l’une quelconque des revendications 1 à 16 au moins un desdits ensembles fonctionnels comprend un fourreau logeant en coulissement un ensemble fonctionnel, ledit ensemble fonctionnement comprenant en outre des moyens de blocage en translation dudit ensemble fonctionnel dans ledit fourreau.
PCT/EP2020/069158 2020-07-07 2020-07-07 Dispositif multi-tâche mono-broche à carrousel WO2022008039A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112023000137A BR112023000137A2 (pt) 2020-07-07 2020-07-07 Dispositivo multitarefas
JP2023501513A JP2023538485A (ja) 2020-07-07 2020-07-07 カルーセル型シングルスピンドルマルチタスク装置
US18/004,245 US20230302597A1 (en) 2020-07-07 2020-07-07 Carousel-type single-spindle multi-task device
EP20750168.5A EP4178759A1 (fr) 2020-07-07 2020-07-07 Dispositif multi-tâche mono-broche à carrousel
PCT/EP2020/069158 WO2022008039A1 (fr) 2020-07-07 2020-07-07 Dispositif multi-tâche mono-broche à carrousel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2020/069158 WO2022008039A1 (fr) 2020-07-07 2020-07-07 Dispositif multi-tâche mono-broche à carrousel

Publications (1)

Publication Number Publication Date
WO2022008039A1 true WO2022008039A1 (fr) 2022-01-13

Family

ID=71899695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/069158 WO2022008039A1 (fr) 2020-07-07 2020-07-07 Dispositif multi-tâche mono-broche à carrousel

Country Status (5)

Country Link
US (1) US20230302597A1 (fr)
EP (1) EP4178759A1 (fr)
JP (1) JP2023538485A (fr)
BR (1) BR112023000137A2 (fr)
WO (1) WO2022008039A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114505441A (zh) * 2022-02-14 2022-05-17 恒昶精密组件(北京)有限公司 一种热压铆接设备
CN118123087A (zh) * 2024-04-30 2024-06-04 成都飞机工业(集团)有限责任公司 一种蒙皮分区锪窝方法、装置、设备及介质
US12076756B2 (en) 2021-12-09 2024-09-03 Seti-Tec Multi-task device comprising means for discharging a rivet or temporary fastener identified as non-compliant to a disposal zone

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4548533A (en) 1984-04-20 1985-10-22 Monogram Industries, Inc. Wedge-type fastener
WO1988002673A1 (fr) * 1986-10-15 1988-04-21 Saab-Scania Aktiebolag Unite de rivetage
US5088171A (en) 1990-07-23 1992-02-18 Fuji Jukogyo Kabushiki Kaisha Assembly robot with drilling unit
EP0917920A2 (fr) * 1997-11-26 1999-05-26 The Boeing Company Système et procédé de rivetage
FR2809034B1 (fr) 2000-03-28 2002-11-22 S O C O A Soc De Conception Co Dispositif de deplacement et d'orientation d'une machine- outil notamment de percage-rivetage sur la surface d'une piece et son procede de travail
WO2003049899A2 (fr) 2001-12-10 2003-06-19 The Boeing Company Machine de percage a piste flexible
EP1671745A1 (fr) * 2001-10-31 2006-06-21 The Boeing Company Système de fabrication de structures aéronautiques et d'autres structures de grande dimension
EP2754531A1 (fr) * 2013-01-09 2014-07-16 Seti-Tec Perceuse bimoteur à vitesse d'avance contrôlée
EP2946875A2 (fr) * 2014-04-30 2015-11-25 The Boeing Company Robot à chenilles et plate-forme de support

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4548533A (en) 1984-04-20 1985-10-22 Monogram Industries, Inc. Wedge-type fastener
WO1988002673A1 (fr) * 1986-10-15 1988-04-21 Saab-Scania Aktiebolag Unite de rivetage
US5088171A (en) 1990-07-23 1992-02-18 Fuji Jukogyo Kabushiki Kaisha Assembly robot with drilling unit
EP0917920A2 (fr) * 1997-11-26 1999-05-26 The Boeing Company Système et procédé de rivetage
FR2809034B1 (fr) 2000-03-28 2002-11-22 S O C O A Soc De Conception Co Dispositif de deplacement et d'orientation d'une machine- outil notamment de percage-rivetage sur la surface d'une piece et son procede de travail
EP1671745A1 (fr) * 2001-10-31 2006-06-21 The Boeing Company Système de fabrication de structures aéronautiques et d'autres structures de grande dimension
WO2003049899A2 (fr) 2001-12-10 2003-06-19 The Boeing Company Machine de percage a piste flexible
EP2754531A1 (fr) * 2013-01-09 2014-07-16 Seti-Tec Perceuse bimoteur à vitesse d'avance contrôlée
EP2754531B1 (fr) 2013-01-09 2015-09-23 Seti-Tec Perceuse bimoteur à vitesse d'avance contrôlée
EP2946875A2 (fr) * 2014-04-30 2015-11-25 The Boeing Company Robot à chenilles et plate-forme de support

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12076756B2 (en) 2021-12-09 2024-09-03 Seti-Tec Multi-task device comprising means for discharging a rivet or temporary fastener identified as non-compliant to a disposal zone
CN114505441A (zh) * 2022-02-14 2022-05-17 恒昶精密组件(北京)有限公司 一种热压铆接设备
CN118123087A (zh) * 2024-04-30 2024-06-04 成都飞机工业(集团)有限责任公司 一种蒙皮分区锪窝方法、装置、设备及介质

Also Published As

Publication number Publication date
JP2023538485A (ja) 2023-09-08
BR112023000137A2 (pt) 2023-03-14
EP4178759A1 (fr) 2023-05-17
US20230302597A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
EP4178759A1 (fr) Dispositif multi-tâche mono-broche à carrousel
EP4178728A1 (fr) Dispositif d'enduction
EP2105249B1 (fr) Machine d'usinage à avance mécanique et procédé d'usinage
WO2022008042A1 (fr) Dispositif de pose de fixation temporaire
WO2022008040A1 (fr) Dispositif de transfert d'au moins un élément de fixation
EP4178741A1 (fr) Dispositif de pose de rivet
EP0457700B1 (fr) Dispositif d'accouplement à boisseaux tournants pour tuyauteries
FR2521478A1 (fr) Dispositif de pose automatique des systemes d'assemblage
EP4194119A1 (fr) Dispositif multitâche comprenant des moyens d'évacuation vers une zone de rebut d'un rivet ou d'une fixation temporaire identifié comme non conforme
EP2402099B1 (fr) Unité de mortaisage comportant un outil de mortaisage oscillant
FR2516431A1 (fr) Appareil d'assemblage automatique de joints homocinetiques
FR2974024A1 (fr) Dispositif de maintien d'un bras de prehenseur.
FR3117392A1 (fr) système de fixation d’un embout d’outillage à un outil
FR2651298A1 (fr) Procede d'assemblage d'un embout d'un tuyau flexible et chaine d'assemblage a transfert rotatif pour sa mise en óoeuvre.
EP0809552B1 (fr) Machine a evaser des extremites de tubes par bouterollage
WO2013178962A2 (fr) Dispositif et procédé d'emmanchement de deux raccords au bout de deux conduits, notamment dans un aéronef
FR2851187A1 (fr) Embout, dispositif de vissage et procede de commande d'un tel dispositif
EP1455991B1 (fr) Changeur d'outil
FR2977514A1 (fr) Procede et dispositif de mise en place en automatique d'un vilebrequin avec manetons non-coplanaires dans le carter moteur d'un vehicule automobile
EP3666432B1 (fr) Dispositif de solidarisation d'un dispositif de perçage à une grille de perçage comprenant un moyeu expansible à billes
WO2023104826A1 (fr) Dispositif multi-tâche comprenant une caméra et une broche unique apte à placer la caméra dans une position de mise au point
WO2024134087A1 (fr) Connecteur d'outil et système de verrouillage d'un connecteur à un outil
FR2821001A1 (fr) Dispositif de montage automatique de deux demi-cones sur une tige de soupape
WO2003031114A1 (fr) Procede d'insertion d'une piece dans une autre et dispositif permettant de le mettre en oeuvre
CH309262A (fr) Machine permettant l'usinage simultané de pièces semblables occupant pour cela plusieurs stations.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20750168

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023501513

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023000137

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020750168

Country of ref document: EP

Effective date: 20230207

ENP Entry into the national phase

Ref document number: 112023000137

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230104