WO2022007906A1 - 一种催化酸酐固化的环氧树脂降解的方法 - Google Patents

一种催化酸酐固化的环氧树脂降解的方法 Download PDF

Info

Publication number
WO2022007906A1
WO2022007906A1 PCT/CN2021/105298 CN2021105298W WO2022007906A1 WO 2022007906 A1 WO2022007906 A1 WO 2022007906A1 CN 2021105298 W CN2021105298 W CN 2021105298W WO 2022007906 A1 WO2022007906 A1 WO 2022007906A1
Authority
WO
WIPO (PCT)
Prior art keywords
degradation
acid
epoxy resin
anhydride
reaction
Prior art date
Application number
PCT/CN2021/105298
Other languages
English (en)
French (fr)
Inventor
邓天昇
张宁
侯相林
Original Assignee
中国科学院山西煤炭化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院山西煤炭化学研究所 filed Critical 中国科学院山西煤炭化学研究所
Publication of WO2022007906A1 publication Critical patent/WO2022007906A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/28Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic compounds containing nitrogen, sulfur or phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/26Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing carboxylic acid groups, their anhydrides or esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the invention belongs to the technical field of solid waste material recovery, and in particular relates to a method for degrading epoxy resin cured by catalyzing acid anhydride.
  • Epoxy resin refers to a large class of active compounds containing two or more epoxy groups in the molecule. Compared with other thermosetting resins, the cured epoxy resin has the advantages of excellent mechanical properties, good dimensional stability, excellent chemical stability, good bonding performance, excellent insulation performance, etc. And composite materials using matrix resin, etc., are widely used in aerospace, ships, automobiles, construction, electrical and electronic and many other fields. Cured epoxy resin is difficult to degrade in nature, so a large amount of corner waste generated in production and life cannot be well recycled, which is not only a waste of resources, but also causes environmental pollution problems.
  • Patent CN 105153461A discloses an epoxy resin composite material recycling process, which is made by mixing absolute ethanol and p-toluic acid into an organic solvent, and adding ionic liquid to the organic solvent to degrade the epoxy resin.
  • the ionic liquid of the invention has high cost and complicated degradation process.
  • Patent CN 108779286A discloses a treatment method for a thermosetting resin cured product. The epoxy resin cured product or acid anhydride cured epoxy resin is treated and contacted with an alkali metal hydroxide and an alcohol solvent to decompose and dissolve the thermosetting resin cured product.
  • Patent CN 107365429A discloses the application of a heteropolyacid and Lewis acid as catalyst in degrading thermosetting resin, using heteropolyacid and Lewis acid as catalyst, water, ethanol, methanol, butanol, propanol, acetic acid, acetone or tetrahydrofuran It is a solvent that can degrade anhydride-cured epoxy resins.
  • the heteropolyacid has high catalytic activity, the heteropolyacid has redox properties, so the catalyst changes before and after the reaction and cannot be recycled again.
  • the current degradation and recovery methods for acid anhydride-cured epoxy resins have the problems of difficult catalyst recovery, low degradation activity, or high cost of degradation solvents.
  • the present invention provides a method for catalyzing the degradation of the acid anhydride-cured epoxy resin.
  • a method for catalyzing the degradation of an epoxy resin cured by an acid anhydride comprising the following steps: formulating the epoxy resin cured by an acid anhydride, a reaction solvent and an organic acid catalyst into a degradation system, and performing a degradation reaction; adding hot water to the system after the degradation is completed, Fully dissolve and filter; the filtrate is evaporated and recovered to obtain reaction solvent, curing agent and organic acid catalyst; filter cake is the degradation product of organic phase epoxy resin.
  • the organic acid catalyst is an organic protonic acid catalyst, which can give hydrogen ions to combine with the carbonyl oxygen of the ester bond, thereby selectively breaking the ester bond in the acid anhydride-cured epoxy resin. Efficiency is very important.
  • the organic protonic acid also contains a lipophilic group, which makes it easier for it to enter the body of the resin and selectively open the catalytic chemical bond. Therefore, organic protonic acid catalysts and metal ion catalysts compared with higher catalytic activity.
  • reaction solvent is any one of water, glacial acetic acid, acetic acid water mixed solvent, tetrahydrofuran water mixed solvent, 1,4-dioxane water mixed solvent or acetone water mixed solvent.
  • the above reaction solvent can not only provide active end groups for reacting with the ester bond in the acid anhydride-cured epoxy resin, but also have a better swelling effect on the acid-anhydride-cured epoxy resin under certain conditions, so that the catalyst can easily enter the resin body.
  • the mass fraction of water in the acetic acid water mixed solvent, the tetrahydrofuran water mixed solvent, the 1,4-dioxane water mixed solvent or the acetone water mixed solvent is 1% to 70%.
  • the reaction solvent of this ratio has a very good swelling effect on the epoxy resin cured by the acid anhydride, which is beneficial for the catalyst to enter the three-dimensional network structure of the cross-linked resin, and can ensure sufficient moisture and ester bond effect simultaneously, and the catalytic degradation reaction occurs rapidly.
  • the organic acid catalyst is an organic strong acid containing a sulfonic acid group and a carboxyl group capable of ionizing hydrogen ions.
  • the organic acid catalyst is any one of dodecylbenzenesulfonic acid, p-toluenesulfonic acid, methanesulfonic acid, trichloroacetic acid, trifluoroacetic acid, and squaraine.
  • the above-mentioned organic acid belongs to strong acid or super acid, and has good solubility in the degradation system, which is conducive to its catalytic effect.
  • the mass ratio of the epoxy resin cured by the acid anhydride, the reaction solvent, and the organic acid catalyst is 10:50-500:1-10.
  • the mass ratio of the acid anhydride-cured epoxy resin to the reaction solvent is too large, the reaction solvent cannot fully swell the resin, which is not conducive to the catalyst entering the three-dimensional network structure of the resin and reduces the catalytic effect; If the mass ratio is too small, the amount of solvent used is large, and the relative content of degradation products is low, which is not conducive to subsequent separation, and the economy is not good.
  • the temperature of the degradation reaction is 80-250°C, and the reaction time is 10min-48h.
  • the reaction temperature is lower than 100°C, the degradation reaction basically does not occur, and when the reaction temperature is higher than 250°C, side reactions occur.
  • the reaction time is less than 10min, the degradation reaction is insufficient; when the reaction time is more than 48h, other chemical bonds in the resin are broken, and controllable degradation cannot be achieved.
  • the temperature of the hot water is 50-90°C. Water in this temperature range can fully dissolve the degraded curing agent components, which facilitates better separation of the curing agent.
  • the epoxy resins are glycidyl ethers, glycidyl esters, glycidyl amines, alicyclic epoxy resins, epoxidized olefins, new epoxy resins, etc., preferably bisphenol A epoxy resins.
  • Described epoxy resin curing agent is straight-chain aliphatic acid anhydride, aromatic acid anhydride and alicyclic acid anhydride etc., preferably phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, cis One of butenedioic anhydride.
  • the present invention has the following advantages:
  • the used catalyst consumption of the present invention is few, and the price is low, and the catalytic efficiency is high;
  • the degradation rate can reach 80% to 100%
  • the present invention can selectively break the ester bond in the acid anhydride-cured epoxy resin, so as to realize the recovery of high value-added products.
  • Fig. 1 is the 13 C-NMR spectrum of water-phase degradation products
  • Figure 2 is a 13 C-NMR spectrum of organic phase degradation products.
  • 10g of tetrahydrophthalic anhydride-cured hydrogenated bisphenol A epoxy resin, 150g of acetic acid content of 85wt% acetic acid water mixed solvent, and 5g of methanesulfonic acid were prepared into a degradation system, and the degradation reaction was carried out by reacting at 160°C for 20h. After the degradation is completed, add 90°C hot water to the system, dissolve fully, filter, and steam the filtrate at 130°C to recover the reaction solvent to obtain acetic acid aqueous solution, tetrahydrophthalic acid and methanesulfonic acid catalyst; the filter cake is organic phase epoxy resin degradation product. The degradation rate is 97%.
  • 10g of tetrahydrophthalic anhydride-cured hydrogenated bisphenol A epoxy resin, 150g of acetone-water mixed solvent with an acetone content of 85wt%, and 5g of methanesulfonic acid were prepared into a degradation system, and the degradation reaction was carried out by reacting at 160°C for 20h. After the degradation is completed, add 58°C hot water to the system, dissolve fully, filter, and steam the filtrate at 130°C to recover the reaction solvent to obtain acetone aqueous solution, tetrahydrophthalic acid and methanesulfonic acid catalyst; the filter cake is organic phase epoxy resin degradation product. The degradation rate is 93%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

一种催化酸酐固化的环氧树脂降解的方法,通过将酸酐固化的环氧树脂与反应溶剂、有机酸催化剂配制成降解体系,进行降解反应;降解完成后向体系中加入热水,充分溶解并过滤;滤液蒸出回收得到反应溶剂、固化剂和有机酸催化剂;滤饼为有机相环氧树脂降解产物。

Description

一种催化酸酐固化的环氧树脂降解的方法 技术领域
本发明属于固体废弃物材料回收技术领域,具体涉及一种催化酸酐固化的环氧树脂降解的方法。
背景技术
环氧树脂指的是分子中含有两个及以上环氧基团的一大类活性化合物。固化后的环氧树脂同其他热固性树脂相比具有力学性能优异、尺寸稳定性良好、化学稳定性优异、粘结性能良好、绝缘性能优良等优点,常作为胶结剂、涂料、修补料、绝缘材料以及复合材利用基体树脂等等,广泛应用于航天航空、船舶、汽车、建筑、电子电气等众多领域。固化的环氧树脂难以在自然界中降解,因此生产生活中所产生的大量的边角废料无法得到良好的回收处理,不仅是对资源的一种浪费,也造成了环境污染问题。
目前环氧树脂的回收方法除了物理回收和热回收外,化学回收方法因其回收条件温和、回收率高,成为目前最有效的回收方法。专利CN 105153461A公开了一种环氧树脂复合材料回收工艺,以无水乙醇与对甲苯酸混合制成有机溶剂,有机溶剂中加入离子液体对环氧树脂进行降解。该发明离子液体成本较高且降解工艺复杂。专利CN 108779286A公开了一种热固性树脂固化物的处理方法,将环氧树脂固化物或酸酐固化环氧树脂与含有碱金属氢氧化物和醇溶剂处理接触,使热固性树脂固化物分解和溶解。专利CN 107365429A公开了一种杂多酸和路易斯酸在降解热固性树脂中作为催化剂的应用,使用杂多酸和路易斯酸作为催化剂,水、乙醇、甲醇、丁醇、丙醇、乙酸、丙酮或四氢呋喃为溶剂可以降解酸酐固化的环氧树脂。杂多酸虽然具有较高的催化活性,但是杂多酸 具有氧化还原性,因此在反应前后催化剂发生变化,无法再次回收利用。综上所述,目前针对酸酐固化的环氧树脂的降解回收方法存在催化剂难以回收、降解活性低,或者降解溶剂成本高等问题。
发明内容
针对目前酸酐固化的环氧树脂降解中存在的问题,本发明提供了一种催化酸酐固化的环氧树脂降解的方法。
为了达到上述目的,本发明采用了下列技术方案:
一种催化酸酐固化的环氧树脂降解的方法,包括如下步骤:将酸酐固化的环氧树脂与反应溶剂、有机酸催化剂配制成降解体系,进行降解反应;降解完成后向体系中加入热水,充分溶解并过滤;滤液蒸出回收得到反应溶剂、固化剂和有机酸催化剂;滤饼为有机相环氧树脂降解产物。
有机酸催化剂为有机质子酸催化剂,可以给出氢离子与酯键的羰基氧结合,从而选择性断裂酸酐固化环氧树脂中的酯键,另外在环氧树脂催化降解过程中,溶胀过程对于降解效率至关重要,而有机质子酸除了具备催化功能的酸性基团,还含有亲油性的基团,使得它更加容易进入树脂的本体,催化化学键选择性打开,因此有机质子酸催化剂与金属离子催化剂相比具有更高的催化活性。
进一步,所述反应溶剂为水、冰乙酸、乙酸水混合溶剂、四氢呋喃水混合溶剂、1,4-二氧六环水混合溶剂或丙酮水混合溶剂中的任意一种。上述反应溶剂不仅可以提供与酸酐固化环氧树脂中的酯键反应的活性端基,而且在一定条件下对酸酐固化的环氧树脂具有较好的溶胀效果,便于催化剂进入树脂本体。
进一步,所述乙酸水混合溶剂、四氢呋喃水混合溶剂、1,4-二氧六环水混合溶剂或丙酮水混合溶剂中水的质量分数为1%~70%。该比例的反应溶剂对酸酐固化的环氧树脂有很好的溶胀作用,有利于催化剂进入交联树脂的三维网状结 构,同时可以保证充足的水分与酯键作用,催化降解反应快速发生。
进一步,所述有机酸催化剂为能电离出氢离子的含有磺酸基、羧基的有机强酸。
再进一步,所述有机酸催化剂为十二烷基苯磺酸、对甲苯磺酸、甲烷磺酸、三氯乙酸、三氟乙酸、方酸中任意一种。上述有机酸属于强酸或者超强酸,在降解体系中的溶解性好,有利于其发挥催化效果。
进一步,所述酸酐固化的环氧树脂、反应溶剂、有机酸催化剂的质量比为10:50~500:1~10。当酸酐固化的环氧树脂与反应溶剂的质量比太大时,反应溶剂无法充分溶胀树脂,不利于催化剂进入树脂的三维网状结构,降低催化效果;当酸酐固化的环氧树脂与反应溶剂的质量比太小时,溶剂使用量大,降解产物相对含量低,不利于后续分离,而且经济性不好。当酸酐固化的环氧树脂与有机酸催化剂的质量比低于10:1时,有机酸催化剂的浓度过低,无法发挥其催化作用;当酸酐固化的环氧树脂与有机酸催化剂的质量比高于10:10时,有机酸催化剂过量,造成不必要的浪费,而且会发生副反应,不利于后续分离步骤的进行。
进一步,所述降解反应的温度为80~250℃,反应时间为10min~48h。当反应温度低于100℃时,降解反应基本不会发生,而高于250℃时,有副反应发生。反应时间少于10min时,降解反应不充分;反应时间多于48h时,树脂中其他化学键断裂,无法实现可控降解。
进一步,所述热水的温度为50~90℃。该温度范围的水可以充分溶解降解后的固化剂组分,便于更好得将固化剂进行分离。
所述的环氧树脂种类为缩水甘油醚类、缩水甘油酯类、缩水甘油胺类、脂环族环氧树脂、环氧化烯烃类、新型环氧树脂等,优先选用双酚A型环氧树脂、 双酚F型环氧树脂、双酚S型环氧树脂、氢化双酚A型环氧树脂中的一种。
所述的环氧树脂固化剂为直链脂肪族酸酐、芳香族酸酐和脂环族酸酐等,优先选用邻苯二甲酸酐、四氢邻苯二甲酸酐、六氢邻苯二甲酸酐、顺丁烯二酸酐中的一种。
与现有技术相比本发明具有以下优点:
(1)本发明所使用的催化剂用量少,并且价格低廉,催化效率高;
(2)本发明的降解产物与催化剂便于分离,可以降低回收成本;
(3)本发明所使用的反应溶剂成本低,而且沸点低,容易分离回收;
(4)在本发明所述的降解条件下,降解率可达80%~100%;
(5)本发明可以选择性的断裂酸酐固化的环氧树脂中的酯键,实现高附加值产品的回收。
附图说明
图1为水相降解产物 13C-NMR谱;
图2为有机相降解产物 13C-NMR谱。
具体实施方式
实施例1
将10g邻苯二甲酸酐固化的双酚F型环氧树脂与230g水、6.5g甲烷磺酸配制成降解体系,250℃反应16h进行降解反应。降解完成后向体系中加入50℃热水,充分溶解,过滤,滤液110℃蒸出反应溶剂回收得到水、邻苯二甲酸(图1)和甲烷磺酸催化剂;滤饼为有机相环氧树脂降解产物(图2)。降解率达95%。
实施例2
将10g四氢邻苯二甲酸酐固化的双酚S型环氧树脂与180g水、4.5g对甲苯磺酸配制成降解体系,240℃反应20h进行降解反应。降解完成后向体系中加 入90℃热水,充分溶解,过滤,滤液110℃蒸出反应溶剂回收得到水、四氢邻苯二甲酸和对甲苯磺酸催化剂;滤饼为有机相环氧树脂降解产物。降解率达93%。
实施例3
将10g六氢邻苯二甲酸酐固化的氢化双酚A型环氧树脂与330g水、8.5g十二烷基苯磺酸配制成降解体系,200℃反应46h进行降解反应。降解完成后向体系中加入60℃热水,充分溶解,过滤,滤液110℃蒸出反应溶剂回收得到水、六氢邻苯二甲酸和十二烷基苯磺酸催化剂;滤饼为有机相环氧树脂降解产物。降解率达90%。
实施例4
将10g顺丁烯二酸酐固化的双酚A型环氧树脂与250g水、8g三氯乙酸配制成降解体系,170℃反应26h进行降解反应。降解完成后向体系中加入70℃热水,充分溶解,过滤,滤液110℃蒸出反应溶剂回收得到水、顺丁烯二酸和三氯乙酸催化剂;滤饼为有机相环氧树脂降解产物。降解率达95%。
实施例5
将10g邻苯二甲酸酐固化的双酚A型环氧树脂与50g冰乙酸、1g三氟乙酸配制成降解体系,80℃反应48h进行降解反应。降解完成后向体系中加入70℃热水,充分溶解,过滤,滤液130℃蒸出反应溶剂回收得到乙酸水溶液、邻苯二甲酸和三氟乙酸催化剂;滤饼为有机相环氧树脂降解产物。降解率达80%。
实施例6
将10g四氢邻苯二甲酸酐固化的双酚F型环氧树脂与120g冰乙酸、3g方酸配制成降解体系,120℃反应40h进行降解反应。降解完成后向体系中加入90℃热水,充分溶解,过滤,滤液130℃蒸出反应溶剂回收得到乙酸水溶液、四氢邻苯二甲酸和方酸催化剂;滤饼为有机相环氧树脂降解产物。降解率达90%。
实施例7
将10g六氢邻苯二甲酸酐固化的双酚S型环氧树脂与350g冰乙酸、2g甲烷磺酸配制成降解体系,150℃反应15h进行降解反应。降解完成后向体系中加入50℃热水,充分溶解,过滤,滤液130℃蒸出反应溶剂回收得到乙酸水溶液、六氢邻苯二甲酸和甲烷磺酸催化剂;滤饼为有机相环氧树脂降解产物。降解率达96%。
实施例8
将10g顺丁烯二酸酐固化的氢化双酚A型环氧树脂与200g冰乙酸、2g甲烷磺酸配制成降解体系,180℃反应12h进行降解反应。降解完成后向体系中加入60℃热水,充分溶解,过滤,滤液130℃蒸出反应溶剂回收得到乙酸水溶液、顺丁烯二酸和甲烷磺酸催化剂;滤饼为有机相环氧树脂降解产物。降解率达98%。
实施例9
将10g邻苯二甲酸酐固化的双酚S型环氧树脂与500g乙酸含量为99wt%乙酸水混合溶剂、10g对甲苯磺酸配制成降解体系,250℃反应10min进行降解反应。降解完成后向体系中加入80℃热水,充分溶解,过滤,滤液130℃蒸出反应溶剂回收得到乙酸水溶液、邻苯二甲酸和对甲苯磺酸催化剂;滤饼为有机相环氧树脂降解产物。降解率达100%。
实施例10
将10g四氢邻苯二甲酸酐固化的氢化双酚A型环氧树脂与150g乙酸含量为85wt%乙酸水混合溶剂、5g甲烷磺酸配制成降解体系,160℃反应20h进行降解反应。降解完成后向体系中加入90℃热水,充分溶解,过滤,滤液130℃蒸出反应溶剂回收得到乙酸水溶液、四氢邻苯二甲酸和甲烷磺酸催化剂;滤饼 为有机相环氧树脂降解产物。降解率达97%。
实施例11
将10g六氢邻苯二甲酸酐固化的双酚A型环氧树脂与250g乙酸含量为90wt%乙酸水混合溶剂、4g十二烷基苯磺酸配制成降解体系,140℃反应30h进行降解反应。降解完成后向体系中加入80℃热水,充分溶解,过滤,滤液130℃蒸出反应溶剂回收得到乙酸水溶液、六氢邻苯二甲酸和十二烷基苯磺酸催化剂;滤饼为有机相环氧树脂降解产物。降解率达88%。
实施例12
将10g顺丁烯二酸酐固化的双酚F型环氧树脂与300g乙酸含量为85wt%乙酸水混合溶剂、9g对甲苯磺酸配制成降解体系,160℃反应20h进行降解反应。降解完成后向体系中加入70℃热水,充分溶解,过滤,滤液130℃蒸出反应溶剂回收得到乙酸水溶液、顺丁烯二酸和对甲苯磺酸催化剂;滤饼为有机相环氧树脂降解产物。降解率达100%。
实施例13
将10g邻苯二甲酸酐固化的氢化双酚A型环氧树脂与100g四氢呋喃含量为30wt%四氢呋喃水混合溶剂、5g甲烷磺酸配制成降解体系,240℃反应1h进行降解反应。降解完成后向体系中加入60℃热水,充分溶解,过滤,滤液110℃蒸出反应溶剂回收得到四氢呋喃水溶液、邻苯二甲酸和甲烷磺酸催化剂;滤饼为有机相环氧树脂降解产物。降解率达95%。
实施例14
将10g四氢邻苯二甲酸酐固化的双酚A型环氧树脂与400g四氢呋喃含量为60wt%四氢呋喃水混合溶剂、6g三氟乙酸配制成降解体系,180℃反应15h进行降解反应。降解完成后向体系中加入50℃热水,充分溶解,过滤,滤液110℃ 蒸出反应溶剂回收得到四氢呋喃水溶液、四氢邻苯二甲酸和三氟乙酸催化剂;滤饼为有机相环氧树脂降解产物。降解率达94%。
实施例15
将10g六氢邻苯二甲酸酐固化的氢化双酚F型环氧树脂与440g四氢呋喃含量为70wt%四氢呋喃水混合溶剂、6g十二烷基苯磺酸配制成降解体系,180℃反应15h进行降解反应。降解完成后向体系中加入55℃热水,充分溶解,过滤,滤液110℃蒸出反应溶剂回收得到四氢呋喃水溶液、六氢邻苯二甲酸和十二烷基苯磺酸催化剂;滤饼为有机相环氧树脂降解产物。降解率达88%。
实施例16
将10g顺丁烯二酸酐固化的双酚S型环氧树脂与100g四氢呋喃含量为85wt%四氢呋喃水混合溶剂、5g三氯乙酸配制成降解体系,120℃反应35h进行降解反应。降解完成后向体系中加入65℃热水,充分溶解,过滤,滤液110℃蒸出反应溶剂回收得到四氢呋喃水溶液、顺丁烯二酸和三氯乙酸催化剂;滤饼为有机相环氧树脂降解产物。降解率达95%。
实施例17
将10g邻苯二甲酸酐固化的双酚A型环氧树脂与200g1,4-二氧六环含量为40wt%1,4-二氧六环水混合溶剂、8g十二烷基苯磺酸配制成降解体系,230℃反应5h进行降解反应。降解完成后向体系中加入75℃热水,充分溶解,过滤,滤液110℃蒸出反应溶剂回收得到1,4-二氧六环水溶液、邻苯二甲酸和十二烷基苯磺酸催化剂;滤饼为有机相环氧树脂降解产物。降解率达90%。
实施例18
将10g四氢邻苯二甲酸酐固化的双酚F型环氧树脂与300g1,4-二氧六环含量为50wt%1,4-二氧六环水混合溶剂、7g对甲苯磺酸配制成降解体系,200℃反 应10h进行降解反应。降解完成后向体系中加入85℃热水,充分溶解,过滤,滤液110℃蒸出反应溶剂回收得到1,4-二氧六环水溶液、四氢邻苯二甲酸和对甲苯磺酸催化剂;滤饼为有机相环氧树脂降解产物。降解率达85%。
实施例19
将10g六氢邻苯二甲酸酐固化的双酚S型环氧树脂与380g1,4-二氧六环含量为40wt%1,4-二氧六环水混合溶剂、7g甲烷磺酸配制成降解体系,250℃反应2h进行降解反应。降解完成后向体系中加入88℃热水,充分溶解,过滤,滤液110℃蒸出反应溶剂回收得到1,4-二氧六环水溶液、六氢邻苯二甲酸和甲烷磺酸催化剂;滤饼为有机相环氧树脂降解产物。降解率达85%。
实施例20
将10g顺丁烯二酸酐固化的氢化双酚A型环氧树脂与280g 1,4-二氧六环含量为80wt%1,4-二氧六环水混合溶剂、6g十二烷基苯磺酸配制成降解体系,230℃反应10h进行降解反应。降解完成后向体系中加入77℃热水,充分溶解,过滤,滤液110℃蒸出反应溶剂回收得到1,4-二氧六环水溶液、顺丁烯二酸和十二烷基苯磺酸催化剂;滤饼为有机相环氧树脂降解产物。降解率达98%。
实施例21
将10g邻苯二甲酸酐固化的双酚S型环氧树脂与500g丙酮含量为95wt%丙酮水混合溶剂、10g方酸配制成降解体系,250℃反应10min进行降解反应。降解完成后向体系中加入64℃热水,充分溶解,过滤,滤液130℃蒸出反应溶剂回收得到丙酮水溶液、邻苯二甲酸和方酸催化剂;滤饼为有机相环氧树脂降解产物。降解率达80%。
实施例22
将10g四氢邻苯二甲酸酐固化的氢化双酚A型环氧树脂与150g丙酮含量 为85wt%丙酮水混合溶剂、5g甲烷磺酸配制成降解体系,160℃反应20h进行降解反应。降解完成后向体系中加入58℃热水,充分溶解,过滤,滤液130℃蒸出反应溶剂回收得到丙酮水溶液、四氢邻苯二甲酸和甲烷磺酸催化剂;滤饼为有机相环氧树脂降解产物。降解率达93%。
实施例23
将10g六氢邻苯二甲酸酐固化的双酚A型环氧树脂与250g丙酮含量为90wt%丙酮水混合溶剂、4g十二烷基苯磺酸配制成降解体系,140℃反应30h进行降解反应。降解完成后向体系中加入68℃热水,充分溶解,过滤,滤液130℃蒸出反应溶剂回收得到丙酮水溶液、六氢邻苯二甲酸和十二烷基苯磺酸催化剂;滤饼为有机相环氧树脂降解产物。降解率达90%。
实施例24
将10g顺丁烯二酸酐固化的双酚F型环氧树脂与300g丙酮含量为85wt%丙酮水混合溶剂、9g对甲苯磺酸配制成降解体系,160℃反应20h进行降解反应。降解完成后向体系中加入80℃热水,充分溶解,过滤,滤液130℃蒸出反应溶剂回收得到丙酮水溶液、顺丁烯二酸和对甲苯磺酸催化剂;滤饼为有机相环氧树脂降解产物。降解率达98%。
本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

Claims (10)

  1. 一种催化酸酐固化的环氧树脂降解的方法,其特征在于:包括如下步骤:将酸酐固化的环氧树脂与反应溶剂、有机酸催化剂配制成降解体系,进行降解反应;降解完成后向体系中加入热水,充分溶解并过滤;滤液蒸出回收得到反应溶剂、固化剂和有机酸催化剂;滤饼为有机相环氧树脂降解产物。
  2. 根据权利要求1所述的一种催化酸酐固化的环氧树脂降解的方法,其特征在于:所述反应溶剂为水、冰乙酸、乙酸水混合溶剂、四氢呋喃水混合溶剂、1,4-二氧六环水混合溶剂或丙酮水混合溶剂中的任意一种。
  3. 根据权利要求2所述的一种催化酸酐固化的环氧树脂降解的方法,其特征在于:所述乙酸水混合溶剂、四氢呋喃水混合溶剂、1,4-二氧六环水混合溶剂或丙酮水混合溶剂中水的质量分数为1%~70%。
  4. 根据权利要求1所述的一种催化酸酐固化的环氧树脂降解的方法,其特征在于:所述有机酸催化剂为能电离出氢离子的含有磺酸基、羧基的有机强酸。
  5. 根据权利要求4所述的一种催化酸酐固化的环氧树脂降解的方法,其特征在于:所述有机酸催化剂为十二烷基苯磺酸、对甲苯磺酸、甲烷磺酸、三氯乙酸、三氟乙酸、方酸中任意一种。
  6. 根据权利要求1所述的一种催化酸酐固化的环氧树脂降解的方法,其特征在于:所述酸酐固化的环氧树脂、反应溶剂、有机酸催化剂的质量比为10:50~500:1~10。
  7. 根据权利要求1所述的一种催化酸酐固化的环氧树脂降解的方法,其特征在于:所述降解反应的温度为80~250℃,反应时间为10min~48h。
  8. 根据权利要求1所述的一种催化酸酐固化的环氧树脂降解的方法,其特征在于:所述热水的温度为50~90℃。
  9. 根据权利要求1所述的一种催化酸酐固化的环氧树脂降解的方法,其特 征在于:所述环氧树脂种类为缩水甘油醚类、缩水甘油酯类、缩水甘油胺类、脂环族环氧树脂、环氧化烯烃类、新型环氧树脂中的任意一种;所述环氧树脂具体为双酚A型环氧树脂、双酚F型环氧树脂、双酚S型环氧树脂、氢化双酚A型环氧树脂中的任意一种。
  10. 根据权利要求1所述的一种催化酸酐固化的环氧树脂降解的方法,其特征在于:所述环氧树脂固化剂为直链脂肪族酸酐、芳香族酸酐和脂环族酸酐中的任意一种;环氧树脂固化剂具体为:邻苯二甲酸酐、四氢邻苯二甲酸酐、六氢邻苯二甲酸酐、顺丁烯二酸酐中的任意一种。
PCT/CN2021/105298 2020-07-08 2021-07-08 一种催化酸酐固化的环氧树脂降解的方法 WO2022007906A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010652768.2 2020-07-08
CN202010652768.2A CN111718515B (zh) 2020-07-08 2020-07-08 一种催化酸酐固化的环氧树脂降解的方法

Publications (1)

Publication Number Publication Date
WO2022007906A1 true WO2022007906A1 (zh) 2022-01-13

Family

ID=72572178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105298 WO2022007906A1 (zh) 2020-07-08 2021-07-08 一种催化酸酐固化的环氧树脂降解的方法

Country Status (2)

Country Link
CN (1) CN111718515B (zh)
WO (1) WO2022007906A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114479176A (zh) * 2022-02-20 2022-05-13 中国科学院山西煤炭化学研究所 一种通过des降解胺固化环氧树脂及其复合材料的方法
CN115960439A (zh) * 2022-12-30 2023-04-14 广西电网有限责任公司电力科学研究院 一种环氧树脂浇注线圈绝缘材料的降解回收方法
WO2024060177A1 (zh) * 2022-09-23 2024-03-28 上纬创新育成股份有限公司 降解酸酐环氧固化物的方法、其制备的多元醇以及热固性树脂

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111718515B (zh) * 2020-07-08 2021-09-03 中国科学院山西煤炭化学研究所 一种催化酸酐固化的环氧树脂降解的方法
CN112574470B (zh) * 2020-12-08 2021-11-19 中国科学院山西煤炭化学研究所 一种催化降解环氧乙烯基酯树脂的方法
CN112662008A (zh) * 2020-12-08 2021-04-16 中国科学院山西煤炭化学研究所 一种微波降解环氧树脂的方法
CN113845493A (zh) * 2021-09-17 2021-12-28 中国科学院山西煤炭化学研究所 一种降解酸酐固化环氧树脂材料制芳香多元醇的方法
CN113956428A (zh) * 2021-10-28 2022-01-21 中国科学院山西煤炭化学研究所 一种新型聚氨酯材料及其制备方法
CN114524965B (zh) * 2022-02-20 2023-11-10 中国科学院山西煤炭化学研究所 一种由酸酐固化环氧树脂制备环氧多孔材料或芳香甘油醚类化合物的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101649068A (zh) * 2008-08-12 2010-02-17 贵州航天林泉电机有限公司 环氧树脂溶解剂及其制备方法
CN104672488A (zh) * 2015-02-03 2015-06-03 中国科学院山西煤炭化学研究所 一种降解回收热固性环氧树脂材料的方法
US20180355142A1 (en) * 2017-06-09 2018-12-13 Washington State University Methods for chemical degradation of epoxies using organic salts as catalysts
CN111718515A (zh) * 2020-07-08 2020-09-29 中国科学院山西煤炭化学研究所 一种催化酸酐固化的环氧树脂降解的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105754515B (zh) * 2014-12-19 2018-11-27 广东生益科技股份有限公司 一种可降解回收的环氧导电胶及其制备和降解回收方法
JP6677254B2 (ja) * 2016-03-08 2020-04-08 日立化成株式会社 熱硬化性樹脂硬化物の処理方法
CN107400255A (zh) * 2017-08-31 2017-11-28 江苏中信世纪新材料有限公司 有机盐作为催化剂化学降解环氧树脂的方法
CN110757682A (zh) * 2019-10-29 2020-02-07 中国科学院山西煤炭化学研究所 一种两步法全组份回收废旧线路板的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101649068A (zh) * 2008-08-12 2010-02-17 贵州航天林泉电机有限公司 环氧树脂溶解剂及其制备方法
CN104672488A (zh) * 2015-02-03 2015-06-03 中国科学院山西煤炭化学研究所 一种降解回收热固性环氧树脂材料的方法
US20180355142A1 (en) * 2017-06-09 2018-12-13 Washington State University Methods for chemical degradation of epoxies using organic salts as catalysts
CN111718515A (zh) * 2020-07-08 2020-09-29 中国科学院山西煤炭化学研究所 一种催化酸酐固化的环氧树脂降解的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEI YAN-QUN; HE ZHAO-XIA; LUO YAN; LU SHAO-NING; LI CHUN-JIA: "Chemical degradation of bisphenol A diglycidyl ether/methyl tetrahydrophthalic anhydride networks by p-Toluenesulfonic-acetic anhydride", POLYMER DEGRADATION AND STABILITY, vol. 123, 1 January 2016 (2016-01-01), GB , pages 115 - 120, XP029372600, ISSN: 0141-3910, DOI: 10.1016/j.polymdegradstab.2015.11.010 *
LEI YAN-QUN;LUO YAN;HE ZHAO-XIA;LI CHUN-JIA;LU SHAO-NING: "Chemical Degradation of Bisphenol A Epoxy Resin Cured by Methyl Hexahydrophthalic Anhydride", THERMOSETTING RESIN, vol. 31, no. 4, 30 July 2006 (2006-07-30), pages 16 - 20, XP055886673, ISSN: 1002-7432, DOI: 10.13650/j.cnki.rgxsz.2016.04.005 *
PENG XIN;WU YUN;LU SHAO-NING;HE ZHAO-XIA;LUO YAN: "GC-MS Study on the Degradation of Epoxy 4221 Cured Product by P-Toluenesulfonic Acid-Acetic Anhydride", THERMOSETTING RESIN, vol. 35, no. 2, 30 March 2020 (2020-03-30), pages 38 - 42, XP055886678, ISSN: 1002-7432, DOI: 10.13650/j.cnki.rgxsz.2020.02.009 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114479176A (zh) * 2022-02-20 2022-05-13 中国科学院山西煤炭化学研究所 一种通过des降解胺固化环氧树脂及其复合材料的方法
CN114479176B (zh) * 2022-02-20 2024-04-05 中国科学院山西煤炭化学研究所 一种通过des降解胺固化环氧树脂及其复合材料的方法
WO2024060177A1 (zh) * 2022-09-23 2024-03-28 上纬创新育成股份有限公司 降解酸酐环氧固化物的方法、其制备的多元醇以及热固性树脂
CN115960439A (zh) * 2022-12-30 2023-04-14 广西电网有限责任公司电力科学研究院 一种环氧树脂浇注线圈绝缘材料的降解回收方法

Also Published As

Publication number Publication date
CN111718515B (zh) 2021-09-03
CN111718515A (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
WO2022007906A1 (zh) 一种催化酸酐固化的环氧树脂降解的方法
CN104326907B (zh) 一种降解回收不饱和聚酯树脂材料的方法
CN110590534B (zh) 一种选择性催化降解回收不饱和聚酯树脂废料的方法
KR101823487B1 (ko) 신규한 사이클릭 아세탈, 사이클릭 케탈 디아민 에폭시 경화제 및 분해성 중합체 및 그들에 기반한 복합물
CN101485990B (zh) 固载杂多酸催化剂及其制备方法
CN111777489A (zh) 一种催化聚对苯二甲酸乙二醇酯废料的降解方法
CN109529929B (zh) 磺化碳基固体酸微球、制备方法及纤维素或半纤维素的水解方法
CN111377890B (zh) 由5-羟甲基糠醛生产2,5-呋喃二甲酸的方法
CN111054392B (zh) 一种金属-固体酸双中心催化剂及其在催化木糖脱水-加氢制备糠醇中的应用
WO2022134443A1 (zh) 一种碳基固体酸催化剂和制备方法及其应用于生物质水热转化的方法
Ge et al. Highly efficient metal-acid synergetic catalytic fractionation of lignocellulose under mild conditions over lignin-coordinated N-anchoring Co single-atom catalyst
CN112662008A (zh) 一种微波降解环氧树脂的方法
WO2023226181A1 (zh) 一种糠醛制备2,5-呋喃二甲酸的方法
CN111363123A (zh) 一种可自修复型环氧树脂及其制备方法
Li et al. Selective esterification of glycerol with acetic acid to green fuel bio-additive over a lignosulfonate-based renewable solid acid
CN113754821A (zh) 一种全氟磺酸树脂分散液的提纯方法和离子交换膜
CN103143397A (zh) 一种纳米TiO2/膨胀石墨复合海绵的制备方法及其应用
Gong et al. A giant polyoxomolybdate molecular catalyst with unusual Mo6+/Mo5+ synergistic mechanism for oxidation of hydroxyfurfural under atmospheric pressure
CN101570542B (zh) 3,4-乙撑二氧噻吩的合成工艺
CN110102343B (zh) 一种复合酸催化剂及其催化糖类制备5-羟甲基糠醛的方法
CN112604622B (zh) 一种微波降解不饱和聚酯树脂的方法
CN108342080A (zh) 一种插层聚吡咯纳米材料及其制备方法
CN111848569A (zh) 一种乙酸甘油缩丙酮酯的合成方法
CN114230857A (zh) 一种通过高温溶胀作用快速降解pet的方法
CN108751180B (zh) 一种利用固相反应制备羧基化改性石墨烯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837454

Country of ref document: EP

Kind code of ref document: A1