WO2022007872A1 - Robot d'assemblage de pipeline à angle réglable et procédé de réglage d'angle de groupe de pipelines - Google Patents

Robot d'assemblage de pipeline à angle réglable et procédé de réglage d'angle de groupe de pipelines Download PDF

Info

Publication number
WO2022007872A1
WO2022007872A1 PCT/CN2021/105119 CN2021105119W WO2022007872A1 WO 2022007872 A1 WO2022007872 A1 WO 2022007872A1 CN 2021105119 W CN2021105119 W CN 2021105119W WO 2022007872 A1 WO2022007872 A1 WO 2022007872A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipeline
vision module
angle
pipe
alignment
Prior art date
Application number
PCT/CN2021/105119
Other languages
English (en)
Chinese (zh)
Inventor
孙龙飞
黄正凯
邓亚宏
徐小平
贺潇
邓从蓉
梅劲松
陈珉
徐浩然
Original Assignee
中建三局第二建设工程有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010658879.4A external-priority patent/CN111889951A/zh
Priority claimed from CN202021339522.1U external-priority patent/CN212330878U/zh
Application filed by 中建三局第二建设工程有限责任公司 filed Critical 中建三局第二建设工程有限责任公司
Publication of WO2022007872A1 publication Critical patent/WO2022007872A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/053Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work aligning cylindrical work; Clamping devices therefor

Definitions

  • the invention relates to an angle-adjustable pipeline alignment device for construction engineering, in particular to an angle-adjustable pipeline group-to-robot and a method for adjusting the angle of the pipeline group, which is applied to the field of engineering pipeline assembly.
  • the present invention provides a method for adjusting the angle of an angle-adjustable pipeline group to a robot and a pipeline group.
  • the angle of the present invention is adjustable.
  • the pipeline group can match the robot to different angles of different pipelines, which is fast, convenient, cost-saving, and ensures the construction progress and safety.
  • the angle-adjustable pipeline group pairing robot includes: a six-axis displacement stage, a 2D vision module, a line laser vision module, a carrying trolley, an electromagnetic lock, a concave groove, a light source, an industrial computer, and a display screen.
  • a concave groove on the six-axis stage and install an electromagnet at the bottom of the concave groove install a short bracket on the lower part of the six-axis stage, install a line laser vision module on the short bracket, and install a line laser vision module on the upper part of the carrying trolley
  • a long bracket is installed, a 2D vision module is installed on the long bracket, a light source is installed on the left and right of the 2D vision module, and an industrial computer and a display screen are installed on the carrier trolley.
  • the line laser vision module, the display screen and the light source are connected.
  • the direction wheel of the carrying trolley is an omnidirectional wheel, so that it can realize multiple directions of translation, which greatly improves the flexibility of the positioning trolley; the concave groove can improve the convenience and safety of placing pipes, so
  • the electromagnetic lock described above can absorb the column pipeline, run smoothly, and have high alignment accuracy; all the above-mentioned equipments are integrated on the carrier trolley, which can realize rapid transition according to different construction sites, which can effectively improve the system's performance. utilization.
  • the ground where the equipment is installed is the X-Y coordinate
  • the height value is the Z coordinate
  • Step 1 Manually push the angle-adjustable pipe group alignment robot to make the alignment interface of the pipe A to be butted and the pipe B to be butted as close as possible.
  • the distance between the XYZ axis directions is ⁇ 30mm;
  • Step 2 Manually place the pipeline A to be docked on the workbench with a hoist, and fix it;
  • Step 3 Manually place the pipeline B to be docked on the alignment carrying trolley with a crane, open the electromagnetic lock through the physical button, and fix the pipeline B to be docked;
  • Step 4 Through the software interface of the industrial computer, set the pipe alignment angle and relevant pipeline parameters, and enable automatic alignment. Without manual intervention, the industrial computer performs the following steps to automatically align the pipeline A to be docked and the pipeline B to be docked. Bit:
  • the industrial computer uses the multi-directional Sobel operator and the Hough straight line transform algorithm to extract the edges of the two pipelines to be docked, and calculate the average value of the angles formed by the two edges of the pipelines.
  • the 2D vision module detects the angle between the pipe A and the pipe B in real time, and controls the rotation of the six-axis stage around the Z axis to control the alignment angle of the two pipes, so as to achieve the best alignment required. angle;
  • the industrial computer Under the guidance of the 2D vision module, the industrial computer extracts the two edge corner points of the pipe A and the pipe B respectively through the calculation algorithm of the relative position of the X and Y axes of the nozzle, and then the midpoint coordinates of the two pipes can be calculated. , control the six-axis stage to move left and right along the X axis, so that the X coordinates of the center of pipeline A and pipeline B are the same;
  • the industrial computer uses the line laser algorithm to extract two suitable points on the on-line laser of the two pipelines, respectively, calculate the slope degrees of the pipeline A and the pipeline B, and monitor the two pipelines in real time through the line laser.
  • the inclination degree of the six-axis stage is controlled to make a pitching motion around the X axis, so that the inclination degree of the two pipes is the same;
  • the industrial computer extracts the coordinates of the line lasers at the ends of the two pipelines through the line laser algorithm, and calculates the height information of the pipeline A and the pipeline B.
  • the line laser vision module monitors the height in real time and controls the edge of the six-axis displacement stage. Move up and down along the Z axis, so that pipe A and pipe B are at the same height;
  • the industrial computer uses the corner extraction algorithm to extract the two corner points of the central pipe edge of the pipeline A and the pipeline B, obtain the corner coordinates, and calculate the midpoint coordinates of the two pipelines. , control the front and rear movement of the six-axis stage, when the two edge corners of the extracted pipeline A and pipeline B and the calculated midpoint of pipeline A and pipeline B, any of these three points are close to each other , the alignment stops, and the operator is reminded by the interface color, that is, the alignment is completed, manual spot welding is completed, and the pipeline is hoisted away by line hoisting.
  • the invention solves the problem that the pipe alignment is difficult, the precision is low, the product consistency is poor, and the angle-adjustable pipe group is caused by the error of pipe processing and the large quality of the pipe during the actual application of pipe alignment and welding in the field of engineering pipe assembly.
  • the robot is easy to operate and has strong practicability.
  • FIG. 1 is a schematic structural diagram of the present invention.
  • FIG. 2 is a diagram of a groove-mounted electromagnet fixing pipe of the present invention.
  • FIG. 3 is a flow chart of the operation of the present invention.
  • FIG. 4 is a pipeline edge extraction diagram of the present invention.
  • FIG. 5 is a drawing of extraction of pipe corners according to the present invention.
  • FIG. 6 is a flow chart of an algorithm for an angle-adjustable pipeline pairing algorithm of the present invention.
  • the angle-adjustable pipeline pairing robot of the present invention includes: a six-axis displacement stage 1, a 2D vision module 2, a line laser vision module 3, a carrying trolley 4, six electromagnetic locks 5, and three concave grooves 6 , two light sources 7, an industrial computer 8, and a display screen 9, characterized in that: the six-axis displacement table 1 is placed on the carrying trolley 4, three concave grooves 6 are installed on the six-axis displacement table 1, and the bottom of each concave groove 6 is There are two electromagnetic locks 5 installed inside, a short bracket is installed on the lower part of the six-axis translation stage 1, a line laser vision module 3 is installed on the short bracket, and a long bracket is installed on the upper part of the carrying trolley 4, which is installed on the long bracket The 2D vision module 2 is installed, a light source 7 is installed on the left and right of the 2D vision module 2, and an industrial computer 8 and a display screen 9 are installed on the carrying trolley 4.
  • the laser vision module 3, the display screen 9, and the light source 7 are connected.
  • the carrying trolley 4 is assembled into a model of the trolley using steel pipes and welded, and four omnidirectional wheels are installed on it.
  • the structures of the six-axis displacement stage 1 , the 2D vision module 2 , the line laser vision module 3 and the industrial computer 8 are existing, and they are all purchased from the market, and the algorithms and software used in the present invention are all existing.
  • the operation process of the present invention is as follows:
  • Step 1 Manually push the angle-adjustable pipe group alignment robot, as shown in Figure 1, to make the alignment interface of the pipe A to be butted and the pipe B to be butted as close as possible, and the requirements: the distance in the XYZ axis direction is less than or equal to 30mm;
  • Step 2 Manually place the pipeline A to be docked on the workbench with a hoist, and fix it;
  • Step 3 Manually place the pipeline B 10 to be docked on the alignment carrying trolley 4 with a hoist, open the electromagnetic lock 5 through the physical button, and fix the pipeline B 10 to be docked;
  • Step 4 Through the software interface of the industrial computer, set the pipe alignment angle and relevant pipeline parameters, and enable automatic alignment. Without manual intervention, the industrial computer performs the following steps to perform the automatic alignment of the butt-jointed pipe A and the pipe to be joined. , the process is shown in Figure 6:
  • the industrial computer mainly extracts the edges of the two pipelines through the multi-directional Sobel operator and the Hough straight line transformation algorithm, and calculates the average value of the angles formed by the two edges of the pipelines. Determine the angle, the 2D vision module detects the angle between the pipe A and the pipe B in real time, and controls the rotation of the six-axis stage around the Z axis to control the alignment angle of the two pipes, so as to achieve the best alignment we need.
  • Angle edge extraction is shown in Figure 4; by calculating the angle between the upper edge of pipeline A and the left edge of pipeline B, the angle between the lower edge of pipeline A and the right edge of pipeline B, and then taking the average value as the final angle value.
  • the industrial computer uses the line laser algorithm to extract two suitable points on the laser line on the two pipelines, respectively, calculate the slope degrees of the pipeline A and the pipeline B, and monitor the two pipelines in real time through the line laser.
  • the inclination degree of the pipeline control the six-axis stage to make the pitching motion around the X axis, so that the inclination degree of the two pipelines is the same;
  • the line laser vision module uses the line laser vision module to calculate the coordinates of the line lasers at the ends of the two pipes, and the height information of the pipe A and the pipe B is calculated.
  • the line laser vision module monitors the height in real time and controls the six-axis displacement stage along the The Z axis moves up and down, so that pipe A and pipe B are at the same height;
  • the industrial computer uses the corner extraction algorithm to extract the two corner points of the pipe edge of the pipe A and pipe B, obtain the coordinates of the corner points, and calculate the midpoint of the two pipes. Coordinates, control the forward and backward movement of the six-axis stage, when the two edge corners of the extracted pipeline A and pipeline B and the calculated midpoint of pipeline A and pipeline B, any of these three points are mutually Approach, stop the alignment, and remind the operator through the color interface color, that is, the alignment is completed, manual spot welding, and the pipeline is lifted by line hoisting;
  • FIG. 6 The entire algorithm control process of the angle-adjustable pipeline alignment robot of the present invention is shown in FIG. 6 . Due to the machining error of the workpieces of each batch of pipes, it is impossible to perfectly align the seam, so the alignment is stopped once it is a little closer.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

L'invention concerne un robot d'assemblage de pipeline à angle réglable et un procédé de réglage d'angle de groupe de pipelines, le robot comprenant : une plate-forme de déplacement à six axes (1), un module de vision 2D (2), un module de vision laser en ligne (3), un chariot de transport (4), des verrous électromagnétiques (5), des rainures concaves (6), des sources de lumière (7), un ordinateur personnel industriel (8), et un écran d'affichage (9). La plate-forme de déplacement à six axes (1) est placée sur le chariot de transport (4). Les rainures concaves (6) sont installées sur la plate-forme de déplacement à six axes (1), et les verrous électromagnétiques (5) sont installés au niveau des parties inférieures des rainures concaves (6). Un support court est monté sur une partie inférieure de la plate-forme de déplacement à six axes (1), et le module de vision laser en ligne (3) est monté sur le support court. Un support long est monté sur une partie supérieure du chariot de transport (4), et le module de vision en 2D (2) est monté sur le support long. Une source de lumière (7) est installée à gauche et à droite du module de vision 2D (2), respectivement. L'ordinateur personnel industriel (8) et l'écran d'affichage (9) sont montés sur le chariot de transport (4), et l'ordinateur personnel industriel (8) est connecté à la plate-forme de déplacement à six axes (1), au module de vision 2D (2), au module de vision laser en ligne (3), à l'écran d'affichage (9) et aux sources de lumière (7), respectivement. Le robot décrit peut satisfaire aux exigences pour différents angles d'alignement pour différents pipelines, est facile à utiliser, a une efficacité élevée, une forte aptitude en termes de côté pratique, et une forte aptitude en termes de promotion et d'application.
PCT/CN2021/105119 2020-07-09 2021-07-08 Robot d'assemblage de pipeline à angle réglable et procédé de réglage d'angle de groupe de pipelines WO2022007872A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010658879.4A CN111889951A (zh) 2020-07-09 2020-07-09 角度可调管道组对机器人及管道组角度调节方法
CN202010658879.4 2020-07-09
CN202021339522.1U CN212330878U (zh) 2020-07-09 2020-07-09 角度可调管道组对机器人
CN202021339522.1 2020-07-09

Publications (1)

Publication Number Publication Date
WO2022007872A1 true WO2022007872A1 (fr) 2022-01-13

Family

ID=79552280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105119 WO2022007872A1 (fr) 2020-07-09 2021-07-08 Robot d'assemblage de pipeline à angle réglable et procédé de réglage d'angle de groupe de pipelines

Country Status (1)

Country Link
WO (1) WO2022007872A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116038694A (zh) * 2022-12-28 2023-05-02 东方电气集团东方汽轮机有限公司 一种管道柔性装配系统和装配方法
CN116374191A (zh) * 2023-06-02 2023-07-04 成都国营锦江机器厂 一种直升机尾梁自动安装方法及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101378877A (zh) * 2006-02-06 2009-03-04 力技术公司 用于自动焊接、钎焊、切割和表面处理工艺的走车
CN101389444A (zh) * 2006-02-23 2009-03-18 三星重工业株式会社 重量平衡器和管道结合方法
JP2009142840A (ja) * 2007-12-13 2009-07-02 Akihisa Murata パイプの溶接方法及びパイプの水平自動溶接装置
CN101602194A (zh) * 2009-07-11 2009-12-16 中国第二冶金建设有限责任公司 一种钢制筒体组对接长法
CN104400279A (zh) * 2014-10-11 2015-03-11 南京航空航天大学 基于ccd的管道空间焊缝自动识别与轨迹规划的方法及系统
CN105157600A (zh) * 2015-05-30 2015-12-16 深圳赤湾胜宝旺工程有限公司 一种钢管轮廓在线测量方法
CN106623515A (zh) * 2016-12-30 2017-05-10 深圳赤湾胜宝旺工程有限公司 重型钢管匹配及组对方法与系统
CN210188943U (zh) * 2019-06-24 2020-03-27 上海前山管道技术有限公司 管子管件自动组对器
CN111889951A (zh) * 2020-07-09 2020-11-06 中建三局第二建设工程有限责任公司 角度可调管道组对机器人及管道组角度调节方法
CN212330878U (zh) * 2020-07-09 2021-01-12 中建三局第二建设工程有限责任公司 角度可调管道组对机器人

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101378877A (zh) * 2006-02-06 2009-03-04 力技术公司 用于自动焊接、钎焊、切割和表面处理工艺的走车
CN101389444A (zh) * 2006-02-23 2009-03-18 三星重工业株式会社 重量平衡器和管道结合方法
JP2009142840A (ja) * 2007-12-13 2009-07-02 Akihisa Murata パイプの溶接方法及びパイプの水平自動溶接装置
CN101602194A (zh) * 2009-07-11 2009-12-16 中国第二冶金建设有限责任公司 一种钢制筒体组对接长法
CN104400279A (zh) * 2014-10-11 2015-03-11 南京航空航天大学 基于ccd的管道空间焊缝自动识别与轨迹规划的方法及系统
CN105157600A (zh) * 2015-05-30 2015-12-16 深圳赤湾胜宝旺工程有限公司 一种钢管轮廓在线测量方法
CN106623515A (zh) * 2016-12-30 2017-05-10 深圳赤湾胜宝旺工程有限公司 重型钢管匹配及组对方法与系统
CN210188943U (zh) * 2019-06-24 2020-03-27 上海前山管道技术有限公司 管子管件自动组对器
CN111889951A (zh) * 2020-07-09 2020-11-06 中建三局第二建设工程有限责任公司 角度可调管道组对机器人及管道组角度调节方法
CN212330878U (zh) * 2020-07-09 2021-01-12 中建三局第二建设工程有限责任公司 角度可调管道组对机器人

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116038694A (zh) * 2022-12-28 2023-05-02 东方电气集团东方汽轮机有限公司 一种管道柔性装配系统和装配方法
CN116374191A (zh) * 2023-06-02 2023-07-04 成都国营锦江机器厂 一种直升机尾梁自动安装方法及系统
CN116374191B (zh) * 2023-06-02 2023-12-29 成都国营锦江机器厂 一种直升机尾梁自动安装方法及系统

Similar Documents

Publication Publication Date Title
WO2022007872A1 (fr) Robot d'assemblage de pipeline à angle réglable et procédé de réglage d'angle de groupe de pipelines
CN107253084B (zh) 飞机数字化装配中的高效高精机器人自动铣削系统
CN109914756B (zh) 基于室内施工智能机器人的室内墙体3d腻子打印平整处理方法
CN114515924B (zh) 一种基于焊缝识别的塔脚工件自动焊接系统及方法
Guo et al. A novel field box girder welding robot and realization of all-position welding process based on visual servoing
CN111238375A (zh) 基于激光跟踪仪的移动检测机器人大型构件外形重构方法
CN105935830A (zh) 一种智能焊接系统及其焊接方法
CN110270997A (zh) 一种智能焊接方法及工作站
JP2023133088A (ja) 複雑な大型部材用の可動式のフレキシブル測定システム及び測定方法
JP3504936B2 (ja) マイクロポジショニングシステム
Liu et al. Trajectory and velocity planning of the robot for sphere-pipe intersection hole cutting with single-Y welding groove
CN212330878U (zh) 角度可调管道组对机器人
CN115890220A (zh) 一种航天冲压发动机舱段精确调姿对接装置及方法
CN113653504B (zh) 用于隧道内的中隔墙、其安装设备和安装方法
CN111889951A (zh) 角度可调管道组对机器人及管道组角度调节方法
WO2024193077A1 (fr) Procédé de soudage intelligent basé sur un apprentissage profond pour un robot de soudage de structure en acier à haute altitude
CN108620840B (zh) 一种基于agv智能并联机器人的飞机舱门智能安装方法
CA3154657A1 (fr) Procede de determination de positionnement d'articulations de machine cinematique parallele, et machine cinematique parallele a rigidite elevee
US20230085100A1 (en) Collaborative Robot Cutting System and Method
CN204735821U (zh) 一种大尺寸立体曲线焊缝智能焊接设备
CN116330257A (zh) 一种移动式混联机器系统及控制方法
CN215787900U (zh) 视觉引导机器人自动焊接管道相贯线装置
CN205764375U (zh) 一种移动式智能焊接机器人
CN205764378U (zh) 一种智能焊接系统
CN115122007A (zh) 移动智能焊接工作平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (12.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21837827

Country of ref document: EP

Kind code of ref document: A1