CN115070294A - 一种龙门架双臂焊接机器人轨迹规划研究方法 - Google Patents

一种龙门架双臂焊接机器人轨迹规划研究方法 Download PDF

Info

Publication number
CN115070294A
CN115070294A CN202210648988.7A CN202210648988A CN115070294A CN 115070294 A CN115070294 A CN 115070294A CN 202210648988 A CN202210648988 A CN 202210648988A CN 115070294 A CN115070294 A CN 115070294A
Authority
CN
China
Prior art keywords
welding
joint
robot
arm
planning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210648988.7A
Other languages
English (en)
Inventor
徐一村
姬玉杰
程磊
王浩南
孙宏伟
张本顺
刘超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN202210648988.7A priority Critical patent/CN115070294A/zh
Publication of CN115070294A publication Critical patent/CN115070294A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0252Steering means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/023Cartesian coordinate type
    • B25J9/026Gantry-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/163Programme controls characterised by the control loop learning, adaptive, model based, rule based expert control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning

Abstract

本发明公开了一种龙门架双臂焊接机器人轨迹规划研究方法,其特征在于:三维模型的建立、焊缝曲线和基于Matlab的Simscape Multibody进行轨迹规划的可视化仿真,其具体操作流程为待焊工件焊缝‑焊接工作站的位姿信息‑龙门架位置移动‑机器人轨迹规划‑机器人空间位置是否可达‑机械臂关节转角规划‑焊接完成‑生成程序,本发明与现有技术相比的优点在于:针对船舶焊接中的典型焊缝,采用将双臂系统解耦成单臂系统分开规划和区分关节运动优先级的策略,进行不同形式焊缝的轨迹规划研究。保证焊接机器人在完成预期轨迹的同时,其关节角度变化平缓无突变,提高焊接机器人工作时的平稳性,对工程现场的焊接具有一定的指导意义。

Description

一种龙门架双臂焊接机器人轨迹规划研究方法
技术领域
本发明涉及焊接机器人技术领域,具体是指一种龙门架双臂焊接机器人轨迹规划研究方法。
背景技术
在船舶制造工业中,焊接工作量占船体建造总工作量的30%~40%。以人工作业为主的劳动密集型生产焊接效率低、劳动强度大、质量不稳定,船体焊接工作站一般为龙门架式双臂焊接机器人系统,该系统有17个自由度,存在自由度冗余和双臂协调问题,焊接中焊缝的类型多样,如直线焊缝、立角焊缝和弧线焊缝等,为了保证焊接机器人能够沿焊缝准确完成焊接任务,需要对龙门架双臂焊接机器人系统进行轨迹规划,首先将双臂系统解耦成单臂系统分开规划,其次将龙门架的三个移动关节与机械臂的六个旋转关节做运动优先级别划分,针对不同的任务类型采用不同的关节运动组合方式,最后在进行笛卡尔空间轨迹规划,以保证末端运动轨迹的稳定性,从而提高焊接精度和效率,对工程现场的焊接提供一定的参考。
现有技术方案的内容:专利CN109278048A:五轴焊接机器人的焊接路径规划方法:建立五轴焊接机器人本体及焊接头的D—H连杆坐标系,得到五轴焊接机器人本体及焊接头相应参数,求解出五轴焊接机器人的运动学正解和运动学逆解,进而得到五轴焊接机器人的末端位姿和关节角,根据五轴焊接机器人的末端位姿和关节角,计算五轴焊接机器人的工作空间;建立五轴焊接机器人的工作空间的三维模型,在三维模型中勾画出焊接路径曲线,在焊接路径曲线上取一定数量的焊接点,从预先定义的零点处开始以粗插补的形式控制焊接头移动到第一个焊接点处,在任意两个相邻焊接点之间进行精插补来控制焊接头移动,直至焊接完成焊接路径曲线。
专利CN110355764A:一种龙门式双机器人的焊接路径规划方法及系统:获取待焊接船舱分段的分段模型;基于分段模型和每台焊接机器人的结构信息,构建焊接装置的多个焊接工作站点;基于多个焊接工作站点,构建龙门架的移动路径集合,依次将龙门架移动至每一焊接工作站点,在每一焊接工作站点中,基于每台焊接机器人对应的多条焊缝信息,确定每台焊接机器人的最优无碰撞路径,利用最优无碰撞路径,控制每台焊接机器人焊接对应的工作站点对应的多条焊缝,通过船舱分段的模型信息,构建多个焊接工作站点,在每一焊接工作站点中规划每台焊接机器人的最优无碰撞路径,控制焊接机器人进行焊接任务。
现有技术的缺点:1、五自由度焊接机器人在进行焊接时,工作空间有限、灵活性较差且焊接工艺会受到一定限制,能导致焊接效果不好。
2、没有明确的焊接应用场景和具体焊接对象。
发明内容
本发明要解决的技术问题是,针对上述背景技术中提出的问题,提供一种龙门架双臂焊接机器人轨迹规划研究方法。
为解决上述技术问题,本发明提供的技术方案为:一种龙门架双臂焊接机器人轨迹规划研究方法,其特征在于:三维模型的建立、焊缝曲线和基于Matlab的SimscapeMultibody进行轨迹规划的视化仿真,所述的基于Matlab的Simscape Multibody进行轨迹规划的视化仿真分为现实物理限制约束、进行关节运动优先级划分和焊接轨迹规划仿真,其具体操作流程为待焊工件焊缝-焊接工作站的位姿信息-龙门架位置移动-机器人轨迹规划-机器人空间位置是否达-机械臂关节转角规划-焊接完成-生成程序。
进一步的,所述的机器人空间位置是否达为是时,需要进行机械臂位姿优化和调整焊枪理想状态,然后进入机械臂关节转角规划。
进一步的,所述的机器人空间位置是否达为否时,需要进行龙门架与机械臂协同轨迹规划和协同控制策略,然后进入机械臂关节转角规划。
进一步的,所述的三维模型的建立,首先进利用Solidworks建立龙门架双臂焊接机器人系统的三维模型,由标准的六自由度工业机器臂与龙门架式移动装置两部分构成,该龙门架双臂焊接机器人系统具有17个关节,其中有5个滑动运动轴,12个旋转运动轴,其次将17 自由度的龙门架双臂焊接机器人系统划分为单臂的9自由度系统,由改进的D-H参数法建立了其运动学模型,求解系统的正运动学方程、雅克比矩阵和微分运动学方程。
进一步的,所述的焊缝曲线以归结为三类:空间平面相交形成的直线焊缝、空间平面与空间曲面形成的平面弧线焊缝和空间曲面与空间曲面形成的空间弧线焊缝。
进一步的,所述的现实物理限制约束将龙门架双臂焊接机器人的最大运动速度为170mm/S、最大运动加速度为170mm/S2、额定功率为1.5KW、额定转速为3000r/min,机械臂的每个关节的最大运动角速度为180°/S2,每个关节最大运动加速度为180°/S2,对于移动关节,龙门架整体沿导轨方向实现X轴方向运动范围约10米,水平关节移动范围约为10 米,由于双臂分工且不许交叉的原则,单个机械臂关节在Y轴的有效移动范围约为5米,轴移动范围距地面约4米。
进一步的,所述的进行关节运动优先级划分分为三类:1)龙门架地面导轨的运动优先级别最低,2)横梁上的水平移动关节和竖直移动关节优先级别居中,3)机械臂的旋转关节运动优先级别最高。
进一步的,所述的焊接轨迹规划仿真分为直线焊缝和弧线焊缝。
采用以上方法后,本发明具有如下优点:针对船舶焊接中的典型焊缝,采用将双臂系统解耦成单臂系统分开规划和区分关节运动优先级的策略,进行不同形式焊缝的轨迹规划研究。保证焊接机器人在完成预期轨迹的同时,其关节角度变化平缓无突变,提高焊接机器人工作时的平稳性,对工程现场的焊接具有一定的指导意义。
附图说明
图1是本发明一种龙门架双臂焊接机器人轨迹规划研究方法的流程示意图。
图2是本发明一种龙门架双臂焊接机器人轨迹规划研究方法的龙门架双臂焊接机器人系统三维模型结构示意图。
图3是本发明一种龙门架双臂焊接机器人轨迹规划研究方法的龙门架双臂焊接机器人系统关节结构示意图。
图4是本发明一种龙门架双臂焊接机器人轨迹规划研究方法的双机械臂关节变化曲线示意图。
图5是本发明一种龙门架双臂焊接机器人轨迹规划研究方法的机械臂关节变化曲线示意图。
具体实施方式
下面结合附图对本发明做进一步的详细说明。
结合附图1-5,一种龙门架双臂焊接机器人轨迹规划研究方法,其特征在于:三维模型的建立、焊缝曲线和基于Matlab的Simscape Multibody进行轨迹规划的视化仿真,所述的基于 Matlab的Simscape Multibody进行轨迹规划的视化仿真分为现实物理限制约束、进行关节运动优先级划分和焊接轨迹规划仿真,其具体操作流程为待焊工件焊缝-焊接工作站的位姿信息 -龙门架位置移动-机器人轨迹规划-机器人空间位置是否达-机械臂关节转角规划-焊接完成-生成程序。
所述的机器人空间位置是否达为是时,需要进行机械臂位姿优化和调整焊枪理想状态,然后进入机械臂关节转角规划。
所述的机器人空间位置是否达为否时,需要进行龙门架与机械臂协同轨迹规划和协同控制策略,然后进入机械臂关节转角规划。
所述的三维模型的建立,首先进利用Solidworks建立龙门架双臂焊接机器人系统的三维模型,由标准的六自由度工业机器臂与龙门架式移动装置两部分构成,该系统的双臂焊接机器人立于两条导轨上,前后可以进行10米范围的移动。水平主梁长约12m,双臂可在主梁进行独立的水平移动;机器人的每个独立臂能在水平主梁距离2到4米的高度运动,每个机械臂具有六个旋转的关节。通过六个旋转关节的控制,满足机器人依据焊接工艺实现精确轨迹控制的需要,该龙门架双臂焊接机器人系统具有17个关节,其中有5个滑动运动轴,12个旋转运动轴,其次将17自由度的龙门架双臂焊接机器人系统划分为单臂的9自由度系统,由改进的D-H参数法建立了其运动学模型,求解系统的正运动学方程、雅克比矩阵和微分运动学方程。
所述的焊缝曲线以归结为三类:空间平面相交形成的直线焊缝、空间平面与空间曲面形成的平面弧线焊缝和空间曲面与空间曲面形成的空间弧线焊缝,三种焊缝的形式都可以由公式(1)表示,也可以用三角函数表达式由公式(2)表示。对于船舶焊接中的典型焊缝,包含直线焊缝、立角焊缝和弧线焊缝。
公式(1):
Figure BDA0003685166530000041
公式(2):
Figure BDA0003685166530000042
所述的现实物理限制约束将龙门架双臂焊接机器人的最大运动速度为170mm/S、最大运动加速度为170mm/S2、额定功率为1.5KW、额定转速为3000r/min,机械臂的每个关节的最大运动角速度为180°/S2,每个关节最大运动加速度为180°/S2,对于移动关节,龙门架整体沿导轨方向实现X轴方向运动范围约10米,水平关节移动范围约为10米,由于双臂分工且不许交叉的原则,单个机械臂关节在Y轴的有效移动范围约为5米,轴移动范围距地面约4米。
对于龙门架双臂焊接机器人系统,龙门架的作用主要是在广阔的空间内快速调节位姿,倒装的机械臂主要用于末端位姿的精确调整,不同的任务类型可由不同的关节由其运动特性组合,这就消除了关节功能的重复性,为焊接的轨迹规划提供了新思路,龙门架本体,门架可调关节和倒装的两个六自由度焊接机械臂的运动精度各不相同,针对不同的任务类型,可对三种关节做进一步分类:1)龙门架地面导轨的运动优先级别最低,用于快速的初始定位;
2)横梁上的水平移动关节和竖直移动关节优先级别居中。它们常用于辅助定位,可以弥补门架关节单独移动调节位置时的不足;3)机械臂的旋转关节运动优先级别最高。对于常规的焊接任务,由于要求速度快,精度高,通常由竖直移动关节下倒装的焊接机械臂完成。
所述的焊接轨迹规划仿真分为直线焊缝和弧线焊缝,顶边舱小肋板和底板两个零件为例,进行机器人焊接轨迹规划研究,将Solidworks建立好的龙门架双臂焊接机器人系统模型简化,通过位置约束定义好工件和龙门架双臂焊接机器人系统的相对位置,然后以XML文件形式导入Matlab的Simcape模块,搭建系统的仿真模型,选取顶边舱小肋板上的一条直线焊缝为例,由两个机械臂对同一条焊缝的不同侧进行双枪焊接,选取底板上的一条弧线焊缝为例,由于焊缝为单侧,由单个机械臂对焊缝的一侧进行焊接,通过Matlab进行仿真,得出相关数据,整个仿真过程分为三段,龙门架移动到合适位置,机械臂调整焊接初始姿态,机械臂完成焊接,由结果可以看出焊接过程中两个机械臂保持同步,机械臂的关节变化平稳没有突变,可以平稳运行完成焊接任务。
本发明在具体实施时,1、焊接任务包含以下三种情况:单条焊缝焊接任务、双焊缝同时焊接任务、单焊缝双焊枪同步焊接任务,单焊缝焊接要求指定焊接工作站系统中的一个机械臂对给定焊缝进行焊接,双焊缝同时焊接要求双机械臂同时对两条焊缝进行焊接,单焊缝双枪同步焊接要求双机械臂对同一焊缝进行焊接,根据船舶制造中零件上不同的焊缝类型分为不同的焊接任务,对于双机械臂同时焊接时需要将双臂解耦成单臂系统分开规划。
2、关节运动优先级的划分:将龙门架的三个移动关节与机械臂的六个旋转关节做运动优先级别划分,针对不同的任务类型采用不同的关节运动组合方式。
3、基于Matlab的Simscape Multibody进行轨迹规划的视化仿真,为了保证焊接机器人能够沿焊缝准确完成焊接任务,进行笛卡尔空间轨迹规,将直线焊缝和弧线焊缝分解为离散点,通过逆运动学求解这些离散点的关节位置并进行筛选寻优,对于不同的关节设置不同的权重系数,基于“多移动小关节,少移动大关节”和“关节转角之和最小”的原则挑选逆解,由焊缝起点到焊缝终点进行焊接轨迹规划,以保证末端运动轨迹的稳定性,为工程现场的焊接提供一定的参考。
以上对本发明及其实施方式进行了描述,这种描述没有限制性,实际的结构并不局限于此。总而言之,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (8)

1.一种龙门架双臂焊接机器人轨迹规划研究方法,其特征在于:三维模型的建立、焊缝曲线和基于Matlab的Simscape Multibody进行轨迹规划的视化仿真,所述的基于Matlab的Simscape Multibody进行轨迹规划的视化仿真分为现实物理限制约束、进行关节运动优先级划分和焊接轨迹规划仿真,其具体操作流程为待焊工件焊缝-焊接工作站的位姿信息-龙门架位置移动-机器人轨迹规划-机器人空间位置是否达-机械臂关节转角规划-焊接完成-生成程序。
2.根据权利要求1所述的一种龙门架双臂焊接机器人轨迹规划研究方法,其特征在于:所述的机器人空间位置是否达为是时,需要进行机械臂位姿优化和调整焊枪理想状态,然后进入机械臂关节转角规划。
3.根据权利要求1所述的一种龙门架双臂焊接机器人轨迹规划研究方法,其特征在于:所述的机器人空间位置是否达为否时,需要进行龙门架与机械臂协同轨迹规划和协同控制策略,然后进入机械臂关节转角规划。
4.根据权利要求1所述的一种龙门架双臂焊接机器人轨迹规划研究方法,其特征在于:所述的三维模型的建立,首先进利用Solidworks建立龙门架双臂焊接机器人系统的三维模型,由标准的六自由度工业机器臂与龙门架式移动装置两部分构成,该龙门架双臂焊接机器人系统具有17个关节,其中有5个滑动运动轴,12个旋转运动轴,其次将17自由度的龙门架双臂焊接机器人系统划分为单臂的9自由度系统,由改进的D-H参数法建立了其运动学模型,求解系统的正运动学方程、雅克比矩阵和微分运动学方程。
5.根据权利要求1所述的一种龙门架双臂焊接机器人轨迹规划研究方法,其特征在于:所述的焊缝曲线以归结为三类:空间平面相交形成的直线焊缝、空间平面与空间曲面形成的平面弧线焊缝和空间曲面与空间曲面形成的空间弧线焊缝。
6.根据权利要求1所述的一种龙门架双臂焊接机器人轨迹规划研究方法,其特征在于:所述的现实物理限制约束将龙门架双臂焊接机器人的最大运动速度为170mm/S、最大运动加速度为170mm/S2、额定功率为1.5KW、额定转速为3000r/min,机械臂的每个关节的最大运动角速度为180°/S2,每个关节最大运动加速度为180°/S2,对于移动关节,龙门架整体沿导轨方向实现X轴方向运动范围约10米,水平关节移动范围约为10米,由于双臂分工且不许交叉的原则,单个机械臂关节在Y轴的有效移动范围约为5米,轴移动范围距地面约4米。
7.根据权利要求1所述的一种龙门架双臂焊接机器人轨迹规划研究方法,其特征在于:所述的进行关节运动优先级划分分为三类:1)龙门架地面导轨的运动优先级别最低,2)横梁上的水平移动关节和竖直移动关节优先级别居中,3)机械臂的旋转关节运动优先级别最高。
8.根据权利要求1所述的一种龙门架双臂焊接机器人轨迹规划研究方法,其特征在于:所述的焊接轨迹规划仿真分为直线焊缝和弧线焊缝。
CN202210648988.7A 2022-06-09 2022-06-09 一种龙门架双臂焊接机器人轨迹规划研究方法 Pending CN115070294A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210648988.7A CN115070294A (zh) 2022-06-09 2022-06-09 一种龙门架双臂焊接机器人轨迹规划研究方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210648988.7A CN115070294A (zh) 2022-06-09 2022-06-09 一种龙门架双臂焊接机器人轨迹规划研究方法

Publications (1)

Publication Number Publication Date
CN115070294A true CN115070294A (zh) 2022-09-20

Family

ID=83251703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210648988.7A Pending CN115070294A (zh) 2022-06-09 2022-06-09 一种龙门架双臂焊接机器人轨迹规划研究方法

Country Status (1)

Country Link
CN (1) CN115070294A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114460904A (zh) * 2022-01-25 2022-05-10 燕山大学 一种面向龙门机器人的数字孪生系统
CN115446851A (zh) * 2022-11-11 2022-12-09 北京炎凌嘉业机电设备有限公司 双臂机器人控制系统及用于自动喷涂的双臂机器人

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114460904A (zh) * 2022-01-25 2022-05-10 燕山大学 一种面向龙门机器人的数字孪生系统
CN114460904B (zh) * 2022-01-25 2024-02-02 燕山大学 一种面向龙门机器人的数字孪生系统
CN115446851A (zh) * 2022-11-11 2022-12-09 北京炎凌嘉业机电设备有限公司 双臂机器人控制系统及用于自动喷涂的双臂机器人

Similar Documents

Publication Publication Date Title
CN115070294A (zh) 一种龙门架双臂焊接机器人轨迹规划研究方法
CN111230869B (zh) 一种复杂空间曲线焊缝运动轨迹和焊接工艺协同规划方法
CN103692433B (zh) 可模型解耦的三臂杆五自由度平移焊接机器人及其解耦方法
CN104827479A (zh) 一种面向激光加工机器人的管道插接相贯线轨迹规划方法
CN104999188A (zh) 大型罐体机器人自动化焊接工作站及利用该装置焊接的方法
CN105081524B (zh) 焊接过程中轨迹在线动态规划与焊道跟踪协同的控制方法
CN104331542A (zh) 一种大型自由曲面的喷涂机器人站位规划方法
CN113942017B (zh) 罐体焊接点位姿规划方法、焊接工作站、设备及介质
CN111496428B (zh) 基于直焊缝轮廓识别的多层多道焊道规划方法及焊接工作站
CN104942459A (zh) 一种大型罐体机器人自动化焊接工作站
CN113334018A (zh) 视觉引导机器人自动焊接管道相贯线装置及方法
CN113118675B (zh) 一种基于移动平台的机器人焊接系统任务分配与路径规划方法
CN102451953A (zh) 一种多功能激光加工制造系统
CN102000913A (zh) 一种多轴数控激光加工装置
Kim et al. Robot arc welding operations planning with a rotating/tilting positioner
CN113579766B (zh) 一种六自由度串并混联数控机床及其后处理方法
CN112719702B (zh) 一种复杂管路智能装配与焊接一体化装置及方法
CN113664431A (zh) 一种可实时调整姿态的钢结构件焊接臂及调整方法
US11878420B2 (en) High-precision mobile robot management and scheduling system
CN204954184U (zh) 一种大型罐体机器人自动化焊接工作站
CN109352152A (zh) 一种多轴联动空间曲线焊缝变极性等离子弧焊接方法
CN215149121U (zh) 一种基于力控的智能清洗机器人系统
CN113385782A (zh) 一种多轴焊接加工中心
CN207205613U (zh) 一种基于视觉提取的异型工件的焊接系统
Han et al. Dual Robot Coordinated Welding Trajectory Planning for Single Y-Groove Weld Seam of Plug-in Cross Pipe

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination