WO2022007778A1 - 适用于多相电机驱动器的多重开路故障诊断方法 - Google Patents

适用于多相电机驱动器的多重开路故障诊断方法 Download PDF

Info

Publication number
WO2022007778A1
WO2022007778A1 PCT/CN2021/104664 CN2021104664W WO2022007778A1 WO 2022007778 A1 WO2022007778 A1 WO 2022007778A1 CN 2021104664 W CN2021104664 W CN 2021104664W WO 2022007778 A1 WO2022007778 A1 WO 2022007778A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
fault diagnosis
open
equal
switch tube
Prior art date
Application number
PCT/CN2021/104664
Other languages
English (en)
French (fr)
Inventor
王凯
孔金旺
朱姝姝
刘闯
曾凡铨
郭玲玲
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Publication of WO2022007778A1 publication Critical patent/WO2022007778A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/18Indicating phase sequence; Indicating synchronism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis

Definitions

  • the invention relates to the technical field of motor drives, in particular to a multiple open-circuit fault diagnosis method suitable for multi-phase motor drives.
  • the diagnosis methods are mainly divided into three categories: based on signal analysis, based on model analysis and based on database analysis.
  • Database-based analysis requires a large number of data samples and complex data analysis capabilities, and is not suitable for industrialized embedded products.
  • the model-based analysis class is very sensitive to the specific parameters of the control object, and the amount of calculation is often large, which has certain requirements on the computing power of the processor.
  • most of the open-circuit fault diagnosis algorithms based on signal analysis are extended from three-phase motor drive fault diagnosis algorithms. The processing variables become more, the calculation becomes more complicated, and the effect is no longer obvious.
  • due to the increase in the number of phases in multi-phase motor drives there are more types of open circuit faults. Therefore, the problem of online diagnosis of multiple open circuit faults needs to be solved and optimized.
  • the technical problem to be solved by the present invention is the detection and location of multiple open-circuit faults of a multi-phase motor driver.
  • the present invention discloses a multiple open-circuit fault diagnosis method suitable for multi-phase motor drives: redefine a set of diagnostic variables to describe the relationship between the fundamental wave and harmonic current in the multi-phase motor, and based on the defined diagnostic index In the eigenvalue of the switch tube open-circuit fault state, a judgment method combining eigenvalue detection and counting method is set, so as to realize online real-time multiple open-circuit fault diagnosis.
  • the method specifically includes current sampling and coordinate transformation, fault diagnosis variable definition, diagnosis index definition, threshold determination method and fault flag definition.
  • the specific implementation steps are as follows:
  • the motor phase current signal is sampled, and the coordinate transformation is performed to obtain the fundamental current (i ⁇ 1 , i ⁇ 1 ) and the harmonic current (i ⁇ 3 , i ⁇ 3 , ..., i ⁇ k , i ⁇ k ) in the static reference frame:
  • a, b, ..., n represents the motor phase
  • N is the number of motor phases
  • k N-2, i a, i b, ..., i n the motor phase current signals .
  • the fundamental wave diagnostic variable is the linear combination of the fundamental wave current in the static reference frame in the above formula
  • the harmonic diagnostic variable is the linear combination of all the harmonic currents in the above formula.
  • the two linear combination coefficients are the coefficients of the corresponding variables in the inverse transformation of the above formula.
  • the harmonic diagnostic variables for phases a, b, ..., n are:
  • Step 2) Diagnostic variable preprocessing and diagnostic index definition
  • T ⁇ is the moving average period, the value of this parameter is proportional to the fundamental phase current period and can be adjusted according to the actual application.
  • the ratio of the preprocessed harmonic diagnostic variables to the preprocessed fundamental wave diagnostic variables is defined as the fault diagnostic index:
  • the above fault diagnosis index considers both the fundamental current and the harmonic current. Based on the coordinate inverse transformation, the fundamental diagnostic variables related to the fundamental current and the harmonic diagnostic variables related to the harmonic current are respectively constructed to describe the fundamental current of the multi-phase motor drive. relationship with harmonic currents. Accordingly, the fault diagnosis index is defined to make it equal to the characteristic value ⁇ 1 when the switch tube has an open-circuit fault.
  • the fault diagnosis index when the switch tube has an open-circuit fault, the fault diagnosis index will be equal to the eigenvalue (when the upper tube fails, it is equal to -1; when the lower tube fails, it is equal to +1).
  • the corresponding counter is incremented by one, otherwise the counter is cleared.
  • the corresponding switch tube flag bit upper switch tube flag bit F ut , lower switch tube flag bit F lt ) is incremented by 1, otherwise it remains unchanged.
  • Step 5 repeating steps 1) to 4) to realize multiple open-circuit fault diagnosis of the online multi-phase motor driver.
  • the multi-phase motor is any multi-phase motor with an odd number of phases.
  • control strategy of the motor driver in the healthy state may be any control strategy including vector control or direct torque control strategy.
  • the present invention adopts the above technical scheme, and has the following technical effects:
  • the fault diagnosis index defined in the present invention when the driver is in a healthy state, the harmonic current is constrained to zero, and the fundamental current is not zero. Therefore, the fault index is always approximately zero in the healthy state, even if the load In the state of sudden change or sudden change of speed, no false alarm will be generated, and it has strong robust characteristics;
  • the fault flag variable of the present invention corresponds to the driver phase number (motor phase number), and the eigenvalues in the fault state between the phases do not affect each other. Therefore, the multiple open-circuit fault diagnosis results are modularized to check the fault flags of each phase. The variable results are given comprehensively, which is very simple and easy to expand to more phase-number drivers;
  • the threshold value of the counter involved in the present invention is set to a per-unit design, which can be correspondingly changed in real time according to the real-time rotation speed, and is suitable for application in frequency conversion occasions.
  • Fig. 1 is the application topology diagram of the present invention
  • Fig. 2 is the multi-open circuit fault diagnosis algorithm flow chart of the present invention
  • Fig. 3 is the change diagram of fundamental wave diagnostic variable and harmonic diagnostic variable under different fault bases of the present invention, wherein, (a) is the transformation diagram of fundamental wave diagnostic variable and harmonic diagnostic variable under upper switching tube failure; (b) is the lower The transformation diagram of the fundamental wave diagnostic variable and the harmonic diagnostic variable under the fault of the switch tube, (c) is the transformation diagram of the fundamental wave diagnostic variable and the harmonic diagnostic variable under the simultaneous failure of the upper switch tube and the lower switch tube;
  • Fig. 4 is the schematic diagram of counter threshold setting of the present invention.
  • Fig. 5 is the open-circuit fault test result diagram of the experimental example of the present invention, wherein (a) is the experimental waveform of the single-tube fault (A-phase lower tube); (b) is the same-phase double-tube (A-phase upper tube and lower tube) The experimental waveforms, (c) is the experimental waveform of the two-tube failure of different phases (A-phase upper tube and B-phase upper tube), (d) is the experiment of three-tube failure (A-phase upper tube and C-phase upper tube and lower tube) Waveform, (e) is the experimental waveform of four-tube failure (A-phase upper and lower tubes and C-phase upper and lower tubes);
  • the present invention is suitable for multi-phase motor driver open-circuit fault diagnosis.
  • the online real-time diagnosis results of multiple open-circuit faults of the driver are obtained by synthesizing the diagnosis results of each phase.
  • the phase current of the driver is collected by the current sensor, and the collected results are obtained through coordinate transformation to obtain the fundamental current and the harmonic current of each frequency band in the static reference frame.
  • the faulty phase is removed according to the diagnostic report so that the motor is switched to the fault-tolerant operating state.
  • the present invention discloses a multiple open-circuit fault diagnosis method suitable for a multi-phase motor driver: redefine a set of diagnostic variables to describe the relationship between the fundamental wave and harmonic current in the multi-phase motor, and based on the defined diagnostic index In the eigenvalue of the switch tube open-circuit fault state, a judgment method combining eigenvalue detection and counting method is set, so as to realize online real-time multiple open-circuit fault diagnosis.
  • the method specifically includes current sampling and coordinate transformation, fault diagnosis variable definition, diagnostic index definition, threshold determination method and fault flag definition.
  • the specific implementation steps are as follows (taking a five-phase motor as an example):
  • the fundamental wave diagnostic variable is the linear combination of the fundamental wave current in the static reference frame in the above formula
  • the harmonic diagnostic variable is the linear combination of all the harmonic currents in the above formula.
  • the combination coefficient is the coefficient of the corresponding variable in the inverse transformation of the above formula:
  • the harmonic diagnostic variables for phases a, b, c, d, e are:
  • Step 2) Diagnostic variable preprocessing and diagnostic index definition
  • T ⁇ is the moving average period, the value of this parameter is proportional to the fundamental phase current period and can be adjusted according to the actual application.
  • the ratio of the preprocessed harmonic diagnostic variables to the preprocessed fundamental wave diagnostic variables is defined as the fault diagnostic index:
  • the fault diagnosis index when the switch tube has an open-circuit fault, the fault diagnosis index will be equal to the eigenvalue (when the upper tube fails, it is equal to -1; when the lower tube fails, it is equal to +1).
  • the corresponding counter is incremented by one, otherwise the counter is cleared.
  • the corresponding switch tube flag bit upper switch tube flag bit F ut , lower switch tube flag bit F lt ) is incremented by 1, otherwise it remains unchanged.
  • Step 5 repeating steps 1) to 4) to realize multiple open-circuit fault diagnosis of the online multi-phase motor driver.
  • Figure 3 shows the transformation diagram of the fundamental wave diagnostic variable and the harmonic diagnostic variable under the fault base.
  • the phase current only contains a positive half cycle when the lower switch tube fails.
  • the fundamental wave diagnostic variable and the harmonic diagnostic variable are opposite numbers to each other, and the harmonic diagnostic variable is positive, as shown in (a) in Figure 3; when the upper switch tube fails, the phase current only contains negative half a week.
  • Figure 4 shows a schematic diagram of the counter threshold setting.
  • the counter threshold is set to a per-unit design, where c 0 is the counter threshold at the rated speed, n 0 is the rated speed, and n r is the real-time speed.
  • the counter threshold can move up and down in real time according to the real-time speed to ensure that the threshold judgment at different speeds can work effectively, which is suitable for frequency conversion applications.
  • FIG. 5 shows an application experiment example of the present invention in fault diagnosis of multiple switches of a five-phase motor driver.
  • (a) is the experimental waveform of single-tube failure (A-phase lower tube);
  • (b) is the experimental waveform of the same-phase double-tube (A-phase upper tube and lower tube);
  • (c) is different-phase dual-tube failure (A-phase The experimental waveforms of the upper tube and the B-phase upper tube);
  • (d) is the experimental waveform of the three-tube failure (A-phase upper tube and C-phase upper tube and lower tube);
  • (e) is the four-tube failure (A-phase upper tube and The experimental waveforms of the lower tube and the C-phase upper tube and lower tube);
  • the experimental data in (d) come from the test results of 20% rated speed, which verifies the effectiveness of the present invention under low speed conditions;
  • the data comes from 20% rated load torque test results, which verifies the effectiveness of the present invention under light load conditions.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种适用于多相电机驱动器的多重开路故障诊断方法,在参考坐标系下分别基于基波电流和谐波电流两组构造了故障诊断变量,通过对各类开路故障下所构造变量的故障特征分析,设计了滑动平均等辅助计算,从而定义了故障指数。针对故障指数在开路故障下的特征值表现,设计了一种特征值检测与计数法相结合的阈值判定方法。最后,设计了一组故障诊断标志,通过核对诊断标志的值,结合故障诊断表可得到多相电机驱动器多重开路故障诊断结果。本方法能够检测出驱动器多重开关管开路故障;具有强鲁棒特性,即使在突变负载或突变转速条件下也不会产生误报警信号;所有计算均不涉及非线性运算,兼容于处理能力不高的低端数字处理器,对处理器运算能力要求不高。

Description

适用于多相电机驱动器的多重开路故障诊断方法 技术领域
本发明涉及电机驱动技术领域,尤其涉及一种适用于多相电机驱动器的多重开路故障诊断方法。
背景技术
随着功率变换技术的不断发展,电机系统的相数由传统三相系统进一步拓展到多相系统。相较于三相系统,多相系统在低压大功率领域的突出表现使其在航空航天、舰船推进以及高速动车组电力牵引系统等多个重要场合被应用。但是,无论是三相系统还是多相系统,均具有电力电子产品存在的脆弱性短板,具体表征在某一部件的损坏会使整个系统性能急剧下降甚至无法工作。因此,在现代电机驱动器设计时,容错能力往往会成为一项重要指标。而除了基于智能算法的被动容错策略,所有的主动容错策略均需要对应的故障诊断策略以产生故障切换信号,将电机由故障运行状态转换到容错运行状态。
对于驱动器开关管开路故障,诊断方法主要由三类:基于信号分析类、基于模型分析类以及基于数据库分析类。基于数据库分析类需要大量的数据样本和复杂的数据分析能力,不适用于工业化嵌入式产品。基于模型分析类对控制对象的具体参数十分敏感,且计算量往往很大,对处理器运算能力有一定要求。而对于多相电机驱动器而言,基于信号分析的开路故障诊断算法大多由三相电机驱动器故障诊断算法扩展而来,处理变量变多,计算变复杂,且效果不再明显。此外,由于多相电机驱动器相数增多,出现的开路故障种类变多。因此,多重开路故障在线诊断问题有待解决与优化。
发明内容
技术问题:
本发明要解决的技术问题是多相电机驱动器多重开路故障检测与定位。
技术方案:
为解决上述技术问题,本发明公开了一种适用于多相电机驱动器的多重开路故障诊断方法:重新定义一组诊断变量描述多相电机中基波与谐波电流关系,并基于所定义诊断指数在开关管开路故障状态下的特征值,设定了特征值检测与计数法相结合的判定方法,从而实现 在线实时多重开路故障诊断。
该方法具体包括电流采样与坐标变换、故障诊断变量定义、诊断指数定义、阈值判定方法和故障标志定义,其具体实现步骤如下:
步骤1)诊断变量计算
采样得到电机相电流信号,并对其进行坐标变换得到静止参考坐标系下基波电流(i α1,i β1)与谐波电流(i α3,i β3,…,i αk,i βk):
Figure PCTCN2021104664-appb-000001
其中,a,b,…,n表示电机相,N为电机相数,δ=2π/N为相角差,k=N-2,i a,i b,…,i n为电机相电流信号。
分别定义基波诊断变量和谐波诊断变量,其中基波诊断变量为上式中静止参考坐标系下基波电流的线性组合,谐波诊断变量为上式中所有谐波电流的线性组合。两个线性组合系数为上式逆变换中对应变量的系数。
a,b,…,n相的基波诊断变量为:
Figure PCTCN2021104664-appb-000002
a,b,…,n相的谐波诊断变量为:
Figure PCTCN2021104664-appb-000003
其中,
Figure PCTCN2021104664-appb-000004
Figure PCTCN2021104664-appb-000005
步骤2)诊断变量预处理及诊断指数定义
先对基波诊断变量进行取绝对值,再进行滑动平均值计算,得到t相的
Figure PCTCN2021104664-appb-000006
对谐波诊断变量进行滑动平均值计算,得到t相的
Figure PCTCN2021104664-appb-000007
t=a,b,…,n。T σ为滑动平均周期,该参数的值与基波相电流周期成比例,可根据实际应用情况调节。
将经过预处理后的谐波诊断变量与预处理后的基波诊断变量的比值定义为故障诊断指数:
t相的故障诊断指数
Figure PCTCN2021104664-appb-000008
步骤3)特征值判定
上述故障诊断指数同时考虑了基波电流和谐波电流,基于坐标逆变换,分别构建基波电流有关的基波诊断变量和谐波电流有关的谐波诊断变量来描述多相电机驱动器基波电流与谐波电流之间的关系。据此定义故障诊断指数使其在开关管发生开路故障时等于特征值±1。
在上述故障诊断指数定义下,当开关管发生开路故障时,故障诊断指数将会等于特征值(上管故障时,等于-1;下管故障时等于+1)。当某相故障诊断指数等于特征值则该相对应计数器加一,否则计数器清零。当计数值超过计数器阈值时,该相对应的开关管标志位(上开关管标志位F u-t,下开关管标志位F l-t)加1,否则保持不变。
计数器阈值采用标幺化设计:thr c=c 0*n 0/n,其中c 0为额定转速下的计数器阈值,n 0为额定转速,n为实时转速。该定义下,计数器阈值可根据电机转速不同变化。
步骤4),定义相故障标志变量F t=F u-t+2*F l-t,依据以下规则得到故障诊断结果;
当F u-t与F l-t均等于0时,则F n等于0,其表征t相健康;
当F u-t为1、而F l-t等于0时,则F n等于1,其表征t相上开关管发生开路故障;
当F u-t为0、而F l-t等于1时,则F n等于2,其表征t相下开关管发生开路故障;
当F u-t为1、并且F l-t等于1时,则F n等于3,其表征t相上开关管与下开关管均发生开路故障。
步骤5),重复步骤1)至步骤4),实现在线多相电机驱动器多重开路故障诊断。
进一步,所述多相电机为任意一种相数为奇数的多相电机。
进一步,所述电机驱动器在健康状态下的控制策略可以为矢量控制或直接转矩控制策略在内的任意一种控制策略。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:
1、本发明中定义的故障诊断指下,当驱动器处在健康状态下,谐波电流被约束为零,基波电流不为零,因此,健康状态下故障指数始终近似为零,即使在负载突变或是转速突变状态下,都不会产生误报警,拥有很强的鲁棒特性;
2、本发明的故障标志变量与驱动器相数(电机相数)相对应,相与相之间故障状态下的特征值相互不影响,因此,多重开路故障诊断结果由模块化核对各个相故障标志变量结果综合给出,十分简单,便于扩展至更多相数驱动器中应用;
3、本发明所有计算均不涉及非线性运算。在一个循环周期内,大多为加减运算,仅含有少量的乘除运算。可应用于数据处理能力不高的处理器;
4、本发明中涉及的计数器阈值设定为标幺化设计,可根据实时转速实时相应变化,适用于变频场合应用。
附图说明
图1是本发明的应用拓扑图;
图2是本发明的多重开路故障诊断算法流程图;
图3是本发明的不同故障基下基波诊断变量和谐波诊断变量变化图,其中,(a)是上开关管故障下基波诊断变量与谐波诊断变量变换图;(b)是下开关管故障下基波诊断变量与谐波诊断变量变换图,(c)是上开关管与下开关管同时故障下基波诊断变量与谐波诊断变量变换图;
图4是本发明的计数器阈值设定示意图;
图5是本发明的实验例开路故障测试结果图,其中,(a)是单管故障(A相下管)的实验波形;(b)是同相双管(A相上管和下管)的实验波形,(c)是不同相双管故障(A相上管和B相上管)的实验波形,(d)是三管故障(A相上管和C相上管和下管)的实验波形,(e)是四管故障(A相上管和下管以及C相上管和下管)的实验波形;
具体实施方式:
下面结合附图对本发明做进一步说明。
如图1所示,本发明适用于多相电机驱动器开路故障诊断,以驱动器同一相上下开关管为一单元基,综合各相诊断结果得到驱动器多重开路故障在线实时诊断结果。通过电流传感器采集驱动器相电流,采集结果经过坐标变换得到静止参考坐标系下基波电流与各频率段的谐波电流。将基波电流与谐波电流输入故障诊断算法,得到故障诊断报告。根据诊断报告切除故障相从而使电机转换到容错运行状态运行。
如图2所示,本发明公开了一种适用于多相电机驱动器的多重开路故障诊断方法:重新定义一组诊断变量描述多相电机中基波与谐波电流关系,并基于所定义诊断指数在开关管开路故障状态下的特征值,设定了特征值检测与计数法相结合的判定方法,从而实现在线实时多重开路故障诊断。
该方法具体包括电流采样与坐标变换、故障诊断变量定义、诊断指数定义、阈值判定方法和故障标志定义,其具体实现步骤如下(以五相电机为例):
步骤1)诊断变量计算
采样得到电机相电流信号(i t,t=a,b,c,d,e),并对其进行坐标变换得到静止参考坐标系下基波电流(i α1,i β1)与谐波电流(i α3,i β3,i α5,i β5…):其中δ=2π/5为相角差,k=5-2=3。
Figure PCTCN2021104664-appb-000009
分别定义基波诊断变量和谐波诊断变量,其中基波诊断变量为上式中静止参考坐标系下基波电流的线性组合,谐波诊断变量为上式中所有谐波电流的线性组合。组合系数为上式逆变换中对应变量的系数:
Figure PCTCN2021104664-appb-000010
a,b,c,d,e相的基波诊断变量为:
Figure PCTCN2021104664-appb-000011
a,b,c,d,e相的谐波诊断变量为:
Figure PCTCN2021104664-appb-000012
步骤2)诊断变量预处理及诊断指数定义
先对基波诊断变量进行取绝对值,再进行滑动平均值计算,得到t相的
Figure PCTCN2021104664-appb-000013
对谐波诊断变量进行滑动平均值计算,得到t相的
Figure PCTCN2021104664-appb-000014
t=a,b,…,n。T σ为滑动平均周期,该参数的值与基波相电流周期成比例,可根据实际应用情况调节。
将经过预处理后的谐波诊断变量与预处理后的基波诊断变量的比值定义为故障诊断指数:
t相的故障诊断指数
Figure PCTCN2021104664-appb-000015
步骤3)特征值判定
在上述故障诊断指数定义下,当开关管发生开路故障时,故障诊断指数将会等于特征值(上管故障时,等于-1;下管故障时等于+1)。当某相故障诊断指数等于特征值则该相对应计数器加一,否则计数器清零。当计数值超过计数器阈值时,该相对应的开关管标志位(上开关管标志位F u-t,下开关管标志位F l-t)加1,否则保持不变。
计数器阈值采用标幺化设计:thr c=c 0*n 0/n,其中c 0为额定转速下的计数器阈值,n 0为额定转速,n为实时转速。该定义下,计数器阈值可根据电机转速不同变化。
步骤4),定义相故障标志变量为F t=F u-t+2*F l-t
检查相故障标志变量的值与查询如表1所示的故障诊断表得到故障诊断结果。
表1 故障诊断表
Figure PCTCN2021104664-appb-000016
Figure PCTCN2021104664-appb-000017
步骤5),重复步骤1)至步骤4),实现在线多相电机驱动器多重开路故障诊断。
图3显示了故障基下基波诊断变量与谐波诊断变量变换图。对于同一相上下开关管来说,下开关管故障时相电流仅含有正半周。当相电流为零时,基波诊断变量与谐波诊断变量互为相反数,且谐波诊断变量为正值,如图3中(a)所示;上开关管故障时相电流仅含有负半周。当相电流为零时,基波诊断变量与谐波诊断变量互为相反数,且谐波诊断变量为负值,如图3中(b)所示;当上下开关管均故障时,诊断变量表现为上管故障与下管故障的叠加,如图3中(c)所示。
图4显示了计数器阈值设定示意图。计数器阈值设定为标幺化设计,其中c 0为额定转速下的计数器阈值,n 0为额定转速,n r为实时转速。在该种标幺化定义下,计数器阈值可根据实时转速实时上下移动,保证不同转速下阈值判定都能有效工作,适用于变频场合应用。
图5显示了本发明在五相电机驱动器多重开关管故障诊断的应用实验例。其中(a)为单管故障(A相下管)的实验波形;(b)为同相双管(A相上管和下管)的实验波形;(c)为不同相双管故障(A相上管和B相上管)的实验波形;(d)为三管故障(A相上管和C相上管和下管)的实验波形;(e)为四管故障(A相上管和下管以及C相上管和下管)的实验波形;此外,(d)中实验数据来自于20%额定转速测试结果,验证了本发明在低转速条件下的有效性;(e)中实验数据来自于20%额定负载转矩测试结果,验证了本发明在轻载条件下的有效性。
以上只是对本发明的优选实施方式进行了描述。对该技术领域的普通技术人员来说,根据以上实施方式可以很容易地联想到其它的优点和变形。因此,本发明并不局限于上述实施方式,其仅仅作为例子对本发明的一种形态进行详细、示范性的说明。在不背离本发明宗旨 的范围内,本领域普通技术人员在本发明技术的方案范围内进行的通常变化和替换,都应包含在本发明的保护范围之内。

Claims (4)

  1. 适用于多相电机驱动器的多重开路故障诊断方法,其特征在于,具体实现步骤如下:
    步骤1)采样得到电机相电流信号,并对其进行坐标变换得到静止参考坐标系下基波电流(i α1,i β1)与谐波电流(i α3,i β3,…,i αk,i βk):
    Figure PCTCN2021104664-appb-100001
    其中,a,b,…,n表示电机相,N为电机相数,δ=2π/N为相角差,k=N-2,i a,i b,…,i n为电机相电流信号;
    a,b,…,n相的基波诊断变量为:
    Figure PCTCN2021104664-appb-100002
    a,b,…,n相的谐波诊断变量为:
    Figure PCTCN2021104664-appb-100003
    其中,
    Figure PCTCN2021104664-appb-100004
    步骤2)先对基波诊断变量进行取绝对值,再进行滑动平均值计算,得到t相的
    Figure PCTCN2021104664-appb-100005
    对谐波诊断变量进行滑动平均值计算,得到t相的
    Figure PCTCN2021104664-appb-100006
    t相的故障诊断指数
    Figure PCTCN2021104664-appb-100007
    T σ为滑动平均周期,t=a,b,…,n;
    步骤3)若某相的故障诊断指数等于特征值,则该相对应的计数器加1,否则该相对应的计数器清零;当计数器的计数值超过计数器阈值时,该相对应的开关管标志位加1,否则该相对应的开关管标志位保持不变;其中,某相的上开关管故障时特征值等于-1,下开关管故障时特征值等于+1;开关管标志位包括上开关管标志位F u-t和下开关管标志位F l-t
    步骤4),根据相故障标志变量F t=F u-t+2*F l-t,依据以下规则得到故障诊断结果;
    当F u-t与F l-t均等于0时,则F n等于0,其表征t相健康;
    当F u-t为1、而F l-t等于0时,则F n等于1,其表征t相上开关管发生开路故障;
    当F u-t为0、而F l-t等于1时,则F n等于2,其表征t相下开关管发生开路故障;
    当F u-t为1、并且F l-t等于1时,则F n等于3,其表征t相上开关管与下开关管均发生开路故障;
    步骤5),重复步骤1)至步骤4),实现多相电机驱动器的多重开路故障诊断。
  2. 根据权利要求1所述的适用于多相电机驱动器的多重开路故障诊断方法,其特征在于:所述多相电机为任意一种相数为奇数的多相电机。
  3. 根据权利要求1所述的适用于多相电机驱动器的多重开路故障诊断方法,其特征在于:所述驱动器健康状态下的控制策略包括直接转矩控制和矢量控制。
  4. 根据权利要求1所述的适用于多相电机驱动器的多重开路故障诊断方法,其特征在于:计数器阈值采用标幺化设计:thr c=c 0*n 0/n r,其中c 0为额定转速下的计数器阈值,n 0为额定转速,n r为实时转速。
PCT/CN2021/104664 2020-07-06 2021-07-06 适用于多相电机驱动器的多重开路故障诊断方法 WO2022007778A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010640222.5 2020-07-06
CN202010640222.5A CN111856275B (zh) 2020-07-06 2020-07-06 适用于多相电机驱动器的多重开路故障诊断方法

Publications (1)

Publication Number Publication Date
WO2022007778A1 true WO2022007778A1 (zh) 2022-01-13

Family

ID=73152482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104664 WO2022007778A1 (zh) 2020-07-06 2021-07-06 适用于多相电机驱动器的多重开路故障诊断方法

Country Status (2)

Country Link
CN (1) CN111856275B (zh)
WO (1) WO2022007778A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856275B (zh) * 2020-07-06 2021-05-28 南京航空航天大学 适用于多相电机驱动器的多重开路故障诊断方法
CN113030722B (zh) * 2021-03-05 2023-08-29 青岛大学 一种多相电机驱动系统开路故障在线检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2908148A2 (en) * 2014-01-16 2015-08-19 Rolls-Royce plc Rectifier diode fault detection in brushless exciters
CN109596936A (zh) * 2018-12-21 2019-04-09 许昌学院 航空三相交流励磁系统双旋转二极管开路故障检测方法
CN111308345A (zh) * 2020-04-08 2020-06-19 清华大学 用于检测无刷励磁机的电气故障的方法和系统及存储介质
CN111856275A (zh) * 2020-07-06 2020-10-30 南京航空航天大学 适用于多相电机驱动器的多重开路故障诊断方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401503B (zh) * 2013-07-29 2016-05-11 清华大学 一种在谐波平面在线辨识双三相电机参数的方法及装置
CN104597368B (zh) * 2015-01-15 2017-06-16 电子科技大学 一种基于电流的三相逆变器开路故障检测方法
CN105158627B (zh) * 2015-08-25 2018-04-17 南京航空航天大学 双绕组永磁容错电机驱动系统的开路故障诊断方法
CN107565868B (zh) * 2017-10-10 2024-03-01 东南大学盐城新能源汽车研究院 一种五相永磁同步电机开路故障下的容错控制系统及方法
CN108768223A (zh) * 2018-05-29 2018-11-06 哈尔滨理工大学 基于定子铜耗最小的十二相永磁同步电机容错控制方法
CN108923713B (zh) * 2018-07-20 2021-12-21 江苏大学 一种五相永磁同步电机单相开路故障的容错控制方法
CN108964547B (zh) * 2018-07-20 2022-06-21 江苏大学 五相永磁同步电机两相开路故障的容错控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2908148A2 (en) * 2014-01-16 2015-08-19 Rolls-Royce plc Rectifier diode fault detection in brushless exciters
CN109596936A (zh) * 2018-12-21 2019-04-09 许昌学院 航空三相交流励磁系统双旋转二极管开路故障检测方法
CN111308345A (zh) * 2020-04-08 2020-06-19 清华大学 用于检测无刷励磁机的电气故障的方法和系统及存储介质
CN111856275A (zh) * 2020-07-06 2020-10-30 南京航空航天大学 适用于多相电机驱动器的多重开路故障诊断方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KONG J. W.; WANG K.; ZHANG L. F.; ZHANG J. Y.: "Fault-Tolerant Control Strategy of Five-Phase Permanent Magnet Machine Based on Compensation in Third Harmonic Frame", 2019 22ND INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS), IEEE, 11 August 2019 (2019-08-11), pages 1 - 5, XP033643461, DOI: 10.1109/ICEMS.2019.8921867 *
KONG JINWANG; WANG KAI; ZHANG JIANYA; ZHANG HAN: "Multiple Open-Switch Fault Diagnosis for Five-Phase Permanent Magnet Machine Utilizing Currents in Stationary Reference Frame", IEEE TRANSACTIONS ON ENERGY CONVERSION., IEEE SERVICE CENTER, PISCATAWAY, NJ., US, vol. 36, no. 1, 24 July 2020 (2020-07-24), US , pages 314 - 324, XP011838955, ISSN: 0885-8969, DOI: 10.1109/TEC.2020.3011840 *

Also Published As

Publication number Publication date
CN111856275B (zh) 2021-05-28
CN111856275A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
CN104965148B (zh) 一种电机驱动系统中逆变器功率管开路故障实时检测方法
WO2022007778A1 (zh) 适用于多相电机驱动器的多重开路故障诊断方法
CN110441643B (zh) 永磁同步电机控制系统中逆变器功率管断路故障诊断方法
CN104122479B (zh) 感应电机矢量控制系统功率管开路故障的在线检测方法
CN108490353A (zh) 多相永磁同步电机驱动系统故障诊断方法
CN112162218B (zh) 一种直驱永磁风电机组变流器多功率管开路故障诊断方法
CN111025151B (zh) 多相永磁同步电机驱动系统开路故障诊断方法
CN111413646B (zh) 一种三相电压源逆变器桥臂开路故障实时检测方法
CN112688608B (zh) 一种三相永磁同步电机控制系统的故障诊断方法
CN113325334B (zh) 一种三相永磁同步电机驱动系统的开路故障诊断方法
CN109782105B (zh) 一种变频调速系统三相逆变器功率管故障实时检测方法
CN114114081A (zh) 基于改进观测器的mmc子模块开路故障诊断与定位方法
CN114172443A (zh) 一种永磁电机驱动系统电流传感器故障在线诊断方法
CN114441958A (zh) 永磁同步电机驱动器igbt开路故障诊断方法
CN109738778B (zh) 逆变器开路诊断方法、装置、终端设备及计算机可读介质
CN113504497B (zh) 基于交错分析的电机驱动系统电流传感器异常检测方法
Uddin et al. Modeling and minimization of speed ripple of a faulty induction motor with broken rotor bars
CN108445340B (zh) 五相永磁同步电机逆变器开路故障的检测方法
CN109600095B (zh) 一种基于四桥臂逆变器的永磁同步电机的断相容错控制系统及方法
CN111740663A (zh) 一种抑制三相四开关容错控制系统过渡过程的方法
CN106019055A (zh) 矢量控制电机驱动系统逆变器开路故障诊断方法
CN112198458B (zh) 一种三相电压源逆变器开路故障实时检测方法和系统
CN112834891B (zh) 检测相控整流电路中失效晶闸管的方法、装置及终端设备
Li et al. Inverter fault diagnosis algorithm based on midpoint voltage deviation polarity and topology reconstruction
CN112526397A (zh) 一种中点钳位型单相三电平逆变器开路故障诊断方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837370

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21837370

Country of ref document: EP

Kind code of ref document: A1